KR101103768B1 - Electric Generating System Using Heat Pump Unit - Google Patents

Electric Generating System Using Heat Pump Unit Download PDF

Info

Publication number
KR101103768B1
KR101103768B1 KR1020090066263A KR20090066263A KR101103768B1 KR 101103768 B1 KR101103768 B1 KR 101103768B1 KR 1020090066263 A KR1020090066263 A KR 1020090066263A KR 20090066263 A KR20090066263 A KR 20090066263A KR 101103768 B1 KR101103768 B1 KR 101103768B1
Authority
KR
South Korea
Prior art keywords
condenser
heat
water
power generation
cooling water
Prior art date
Application number
KR1020090066263A
Other languages
Korean (ko)
Other versions
KR20110008757A (en
Inventor
황우정
박강호
박광윤
Original Assignee
주식회사 코와
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 코와 filed Critical 주식회사 코와
Priority to KR1020090066263A priority Critical patent/KR101103768B1/en
Publication of KR20110008757A publication Critical patent/KR20110008757A/en
Application granted granted Critical
Publication of KR101103768B1 publication Critical patent/KR101103768B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/04Heat pumps of the sorption type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • F25B27/002Machines, plants or systems, using particular sources of energy using solar energy
    • F25B27/007Machines, plants or systems, using particular sources of energy using solar energy in sorption type systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

본 발명은 히트펌프를 이용한 발전시스템에 관한 것으로서, 냉각용으로 사용된 해수는 계통수를 냉각시킨 후에 승온상태에서 버려지게 되는데, 승온된 상태의 냉각수로부터 열을 회수하여 발전 계통수의 승온에 재사용함으로써 발전시스템의 효율을 향상시킬 수 있도록 한 것이다. The present invention relates to a power generation system using a heat pump, the sea water used for cooling is discarded in the elevated temperature after cooling the system water, by recovering heat from the elevated temperature of the cooling water to reuse the power generation system water temperature generation This is to improve the efficiency of the system.

본 발명은 보일러와 터빈을 거치는 스팀이 복수기를 통과하는 냉각수배관에 의해 냉각되어 계통수가 된 다음, 열교환기를 거쳐서 다시 보일러로 순환되는 발전시스템에서, 상기 복수기와 열교환기 사이에, 복수기에서 계통수 냉각 및 응축용으로 사용된 후 승온된 냉각수로부터 열을 회수하여 계통수 승온에 이용하도록 하는 흡수식 히트펌프가 구비된 것으로서, The present invention in the power generation system in which the steam passing through the boiler and the turbine is cooled by the cooling water pipe passing through the condenser and then circulated back to the boiler via the heat exchanger, between the condenser and the heat exchanger, cooling the condensed water in the condenser and It is equipped with an absorption heat pump for recovering heat from the cooled water used for condensation and using it for raising the system water.

상기 흡수식 히트펌프는 냉매증기를 흡수제에 의해 흡수시켜서 흡수열이 발생되도록 하는 흡수기와, 축열조와 연결된 순환배관에 의해 열을 얻어서 냉매증기를 발생시키는 재생기와, 발생된 냉매증기를 냉각수에 의해 응축시키는 응축기와, 냉매증기가 응축기를 거쳐서 응축되어 발생되는 냉매액을 증발시키는 증발기를 포함하여 구성되고, The absorption heat pump includes an absorber for absorbing refrigerant vapor by an absorbent to generate heat of absorption, a regenerator for generating refrigerant vapor by obtaining heat by a circulation pipe connected to the heat storage tank, and condensing the generated refrigerant vapor with cooling water. And a condenser and an evaporator for evaporating the refrigerant liquid generated by condensation of the refrigerant vapor through the condenser,

상기 증발기는 복수기를 거치면서 승온된 냉각수로부터 열을 회수하기 위해 냉각수배관이 통과하도록 되어 있으며, 복수기로부터 연결된 배관을 통해 계통수가 흡수기를 통과하여 응축기를 거쳐서 열교환기로 유입되어 보일러로 이동하도록 되며, 계통수가 흡수기를 통과하면서 1차로 승온이 이루어지고, 응축기를 거치면서 2차로 승온이 이루어지도록 된 것이다. The evaporator is passed through the condenser to recover the heat from the cooling water heated up, the cooling water pipe is passed through, through the pipe connected from the condenser, the water flows through the absorber and enters the heat exchanger through the condenser to move to the boiler. The first temperature rise while passing through the absorber, the second temperature is to be achieved through the condenser.

이러한 본 발명은 발전시스템에서 복수기 냉각수의 열을 버리지 않고 히트펌프를 통해 회수하여 이를 발전시스템의 계통수 승온에 사용함으로써 발전효율을 향상시키고, 나아가서 연료감소 효과가 있도록 한 것이다. The present invention is to recover the heat generated by the heat pump without discarding the heat of the condenser cooling water in the power generation system to improve the power generation efficiency by further increasing the power generation system, further reducing the fuel.

히트펌프, 흡수식, 발전, 해수, 회수, 냉각수 Heat Pump, Absorption, Power Generation, Sea Water, Recovery, Cooling Water

Description

히트펌프를 이용한 발전시스템{Electric Generating System Using Heat Pump Unit}Electric Generating System Using Heat Pump Unit

본 발명은 히트펌프를 이용한 발전시스템에 관한 것으로서, 더욱 상세하게는 복수기를 거치는 냉각수의 열을 버리지 않고 히트펌프를 통해 회수하여 이를 발전시스템의 계통수 승온에 사용함으로써 발전시스템의 효율을 향상시키고, 나아가서 연료감소 효과가 있도록 한 것이다. The present invention relates to a power generation system using a heat pump, and more particularly, to recover the power through the heat pump without discarding the heat of the cooling water passing through the condenser, and to use this for raising the system water of the power generation system to improve the efficiency of the power generation system, and It is to reduce the fuel effect.

일반적으로, 발전소에 설치된 발전시스템은 첨부된 예시도면 도 1에 도시된 바와 같이, 보일러(10)로부터 연료의 소모에 의해 생성된 스팀(steam)이 터빈(T)을 거치면서 전기를 생산하는데 필요한 일을 하게 되는데, 상기 터빈(T)은 예를 들어 고압터빈(20), 중압터빈(30), 저압터빈(40)으로 구성되어 있다. In general, the power generation system installed in the power plant is required to produce electricity as the steam generated by the consumption of fuel from the boiler 10 passes through the turbine T, as shown in FIG. The work, the turbine (T) is composed of a high pressure turbine 20, a medium pressure turbine 30, a low pressure turbine 40, for example.

이러한 터빈(T)을 빠져나온 스팀은 복수기(50)에서 냉각수(일반적으로 해수를 사용)에 의해 응축되어 다시 복수의 열교환기(60)를 거쳐서 보일러(10)로 환수되는데, 이러한 과정을 반복함으로써 지속적인 발전기능을 유지한다. The steam exiting the turbine T is condensed by the coolant (generally using sea water) in the condenser 50 and then returned to the boiler 10 through the plurality of heat exchangers 60. By repeating this process, Maintain continuous development function.

상기 열교환기(60)는 각 터빈별로 복수 구비되어 있다. The heat exchanger 60 is provided in plurality for each turbine.

또한, 종래의 발전시스템은 효율을 높이기 위해서, 각 터빈(20)(30)(40)에서 스팀의 일부를 취출하여 복수기(50)에서 보일러(10)로 유입되는 계통수(터빈에 공급되어 터빈에 회전력을 주도록 사용된 다음 나온 스팀이 복수기(50)를 거치면서 발생된 물)와 상기 일부 취출된 스팀이 열교환되어 다시 보일러(10)로 유입되어 계통수의 온도를 높여줌으로써, 보일러(10)의 연료소모를 감소시키는 구성으로 되어있다.In addition, in order to improve efficiency, the conventional power generation system extracts a part of steam from each of the turbines 20, 30, and 40, and introduces a system water flowing into the boiler 10 from the condenser 50 to the turbine. Steam generated after passing through the condenser 50) and the partially extracted steam are heat-exchanged and flowed back into the boiler 10 to raise the temperature of the system water, thereby increasing the fuel of the boiler 10. It is configured to reduce consumption.

예를 들어, 저압터빈(40)으로부터 추기관(41)(42)(43)(44)을 연결하여 열교환기(60)와 연결하여 스팀의 일부를 보내도록 한 구조를 가진다. For example, the low pressure turbine 40 has a structure that connects the duct pipes 41, 42, 43, 44 to the heat exchanger 60 to send a part of steam.

그러나, 종래의 발전시스템에 있어서, 일반적으로 복수기(50)의 온도는 터빈의 효율을 최소화하기 위하여 낮게 유지되어야 하며, 보일러(10)로 유입되는 계통수의 온도는 높을 수록 전체적인 발전효율이 증대되는데, 이러한 복수기(50)의 냉각수로 사용되는 해수는 냉각수배관(S)이 복수기(50)를 거친 다음, 바로 다시 바다로 버려지는 실정이다.However, in the conventional power generation system, in general, the temperature of the condenser 50 should be kept low to minimize the efficiency of the turbine, the higher the temperature of the system water flowing into the boiler 10, the overall power generation efficiency is increased, The seawater used as the coolant of the condenser 50 is a situation where the cooling water pipe S passes through the condenser 50 and is immediately discarded into the sea.

따라서, 종래에는 각 터빈으로부터 스팀이 거치게 되는 과정에서, 일부 스팀을 빼내어 열교환기(60)를 거치도록 하면서 복수기(50)를 거친 계통수와 합해져서 열교환되는 과정을 거쳐서 효율을 높이도록 하기때문에, 그 만큼 터빈의 출력량이 저하되는 결과를 초래하는 문제점이 있었다. Therefore, in the process of passing the steam from each turbine in the prior art, some steam is taken out to pass through the heat exchanger 60 and combined with the system water passing through the condenser 50 to increase the efficiency through the process of heat exchange. As a result, there was a problem that results in a decrease in the output of the turbine.

이에, 본 발명은 상기와 같은 종래의 제반 문제점을 해결하기 위해 발명된 것으로서, 종래에 사용된 다음 버려지던 냉각수로부터 히트펌프를 이용하여 열을 회수하여 계통수 승온에 사용하게 되면, 터빈으로부터 계통수 승온을 위해 취출하던 스팀의 일부를 취출하지 않고 발전에 사용함으로써, 터빈 출력량을 높여 전체적인 발전효율을 증대시킬 수 있도록 한 히트펌프를 이용한 발전시스템을 제공함에 발명의 목적이 있다. Thus, the present invention was invented to solve the above-mentioned conventional problems, and when used to recover the heat using a heat pump from the cooling water was discarded after the conventional use, the system water temperature rise from the turbine It is an object of the present invention to provide a power generation system using a heat pump to increase the turbine output and increase the overall power generation efficiency by using a portion of steam taken out for the purpose of power generation without taking out.

상기와 같은 목적을 달성하기 위한 본 발명은, 보일러와 터빈을 거치는 스팀이 복수기를 통과하는 냉각수배관에 의해 냉각되어 계통수가 된 다음, 열교환기를 거쳐서 다시 보일러로 순환되는 발전시스템에서, 상기 복수기와 열교환기 사이에, 복수기에서 계통수 냉각 및 응축용으로 사용된 후 승온된 냉각수로부터 열을 회수하여 계통수 승온에 이용하도록 하는 흡수식 히트펌프가 구비된 것으로서,
상기 흡수식 히트펌프는, 냉매증기를 흡수제에 의해 흡수시켜서 흡수열이 발생되도록 하는 흡수기와, 축열조와 연결된 순환배관에 의해 열을 얻어서 냉매증기를 발생시키는 재생기와, 발생된 냉매증기를 냉각수에 의해 응축시키는 응축기와, 냉매증기가 응축기를 거쳐서 응축되어 발생되는 냉매액을 증발시키는 증발기를 포함하여 구성되고,
The present invention for achieving the above object, the steam passing through the boiler and the turbine is cooled by the cooling water pipe passing through the condenser becomes a system water, and then circulated back to the boiler through a heat exchanger, the heat exchanger with the condenser Between the stages, the absorption heat pump is used to recover the heat from the elevated temperature after being used for cooling and condensing the system water in the condenser to be used for the system water temperature rise,
The absorption heat pump includes an absorber for absorbing refrigerant vapor by an absorbent to generate heat of absorption, a regenerator for generating refrigerant vapor by obtaining heat by a circulation pipe connected to the heat storage tank, and condensing the generated refrigerant vapor with cooling water. And an evaporator for evaporating the refrigerant liquid generated by condensing the refrigerant vapor through the condenser,

삭제delete

삭제delete

상기 증발기는 복수기를 거치면서 승온된 냉각수로부터 열을 회수하기 위해 냉각수배관이 통과하도록 되어 있으며, The evaporator is a cooling water pipe to pass through the condenser to recover the heat from the elevated cooling water,

복수기로부터 연결된 배관을 통해 계통수가 흡수기를 통과하여 응축기를 거쳐서 열교환기로 유입되어 보일러로 이동하도록 되며, 계통수가 흡수기를 통과하면서 1차로 승온이 이루어지고, 응축기를 거치면서 2차로 승온이 이루어지도록 된 것 구조이다. Through the pipe connected from the condenser, the system water passes through the absorber, passes through the condenser, enters the heat exchanger, and moves to the boiler, and the system temperature rises first as the water passes through the absorber, and the second temperature is elevated through the condenser. Structure.

또한, 상기 축열조는 태양열에 의해 재생된 열원을 이용하도록 되어 있는 구조이다. In addition, the heat storage tank is configured to use a heat source regenerated by solar heat.

또한, 상기 흡수기와 재생기 사이에는 제 1열교환기가 구비되고, 상기 응축기와 증발기의 사이에는 제 2열교환기가 구비된 구조이다. In addition, a first heat exchanger is provided between the absorber and the regenerator, and a second heat exchanger is provided between the condenser and the evaporator.

이와 같이, 본 발명은 발전시스템에서 복수기의 냉각수로 이용되는 자연수(해수 등)를 승온된 상태에서 자연(바다 등)으로 바로 내보내지 않고, 이를 히트펌프를 통해 회수하여 발전시스템의 계통에 재활용함으로써 발전시스템의 효율을 증대시키고, 연료소비를 감소시킬 수 있도록 한 효과가 있다.As described above, the present invention does not directly discharge the natural water (sea water, etc.) used as the cooling water of the condenser in the power generation system to nature (sea, etc.) in a heated state, and recovers it through a heat pump and recycles it to the system of the power generation system. This has the effect of increasing the efficiency of the power generation system and reducing fuel consumption.

또한, 이를 통해 바닷물 또는 강물 온도 상승에 따른 생태계 파괴를 방지하 고, 온난화 가스(CO2)의 배출량이 감소함으로써, 지구 온난화 방지에도 큰 효과가 있는 것이다. In addition, this prevents the destruction of the ecosystem caused by sea or river temperature rise, and reduces the emissions of warming gas (CO 2 ), it is also effective in preventing global warming.

이하, 본 발명의 바람직한 실시예를 첨부된 예시도면에 의거 상세하게 설명한다. Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

상기 종래기술과 동일한 구성요소에 대해서는 동일한 부호를 부여하여 설명하고, 상세한 설명은 생략하며, 새로운 구성요소에 대해서는 새로운 부호를 부여하여 상세하게 설명한다. The same components as in the prior art will be described with the same reference numerals, and detailed description thereof will be omitted, and new components will be described in detail with the new reference numerals.

도면에 도시된 바와 같이, 본 발명에 따른 히트펌프를 이용한 발전시스템은 보일러(10)와, 터빈(T)을 구성하는 고압터빈(20),중압터빈(30), 저압터빈(40)을 거치는 스팀이 복수기(50)를 통과하는 냉각수배관(S)에 의해 냉각,응축되어 계통수가 된 다음, 다시 보일러(10)로 순환되는 발전시스템에 있어서, 복수기(50)와 열교환기(60) 사이에 복수기(50)를 거치면서 승온된 냉각수가 흐르는 냉각수배관(S)이 통과되어 열을 회수하는 히트펌프(100)를 설치한 구조이다. As shown in the figure, the power generation system using a heat pump according to the present invention is to pass through the high-pressure turbine 20, medium-pressure turbine 30, low-pressure turbine 40 constituting the boiler 10, the turbine (T). In a power generation system in which steam is cooled and condensed by the cooling water pipe S passing through the condenser 50 to form a system water, and then circulated back to the boiler 10, between the condenser 50 and the heat exchanger 60. The cooling water pipe (S) is passed through the condenser 50, the cooling water is heated to pass through the heat pump 100 to recover the heat is installed.

여기서, 본 발명은, 히트펌프의 구성요소인 증발기(110)에 복수기(50)를 거치면서 승온된 냉각수가 통과한 다음 내보내지도록 하는 냉각수배관(S)을 연결하고, 복수기(50)를 통과하여 생성된 계통수는 배관(51)을 통해 히트펌프에 구비된 응축기(120)를 거쳐서 열교환기(60)로 이동하도록 된 구조이다. Here, the present invention, by passing through the condenser 50 to the evaporator 110, which is a component of the heat pump passes through the condenser 50, the cooling water pipe (S) to be sent out, and passed through the condenser 50 The generated system water is configured to move to the heat exchanger 60 via the condenser 120 provided in the heat pump through the pipe 51.

본 발명에서의 히트펌프는 일반적인 히트펌프로서 압축기, 응축기, 팽창밸브, 증발기로 이루어진 구성이고, 설명의 편의상 이러한 구성요소에 대한 유기적인 결합관계는 공지의 기술이므로 도면 및 설명을 간략히 하였다. Heat pump in the present invention is a general heat pump composed of a compressor, a condenser, expansion valve, evaporator, and for convenience of description, organic coupling relationship for these components is a well-known technique, so the drawings and description are simplified.

이와 같이 구성된 본 발명은 도 2에 도시된 바와 같이, 통상의 발전시스템에서 복수기(50)에서 계통수를 냉각,응축시키는 냉각수로 자연수(해수 등)를 사용할 수 있도록 냉각수배관(S)이 연결되어 있는데, 이 냉각수배관(S)은 다시 히트펌프(100)의 증발기(110)를 거치도록 연결되어 있어, 복수기(50)에서 냉각수로 사용된 다음 승온된 상태가 되며, 이 승온된 상태의 냉각수가 증발기(110)를 거치는 과정에서, 열을 빼앗기므로, 복수기(50)를 거치기 전의 온도로 감온되어 내보내지도록 된 것이다. In the present invention configured as described above, as shown in FIG. 2, in a typical power generation system, a cooling water pipe S is connected to use natural water (sea water, etc.) as cooling water for cooling and condensing the system water in the condenser 50. , The cooling water pipe (S) is again connected to pass through the evaporator 110 of the heat pump 100, used as the cooling water in the condenser 50, and then the temperature is raised, the temperature of the cooling water is evaporator In the process of passing through (110), the heat is taken away, so that the temperature is reduced to the temperature before passing through the condenser (50) is to be sent out.

따라서, 승온된 냉각수에 의해 증발기(110)에서 열교환되어 열을 얻은 냉매증기는, 증발기(110)로부터 응축기(120)로 보내어지는 한편, 상기 복수기(50)에서 냉각수에 의해 냉각,응축된 계통수는 배관(51)을 통해 히트펌프의 응축기(120)를 거쳐서 열교환기(60)로 유입어 보일러(10)로 재공급되며, 이러한 과정에서 복수기(50)에서 한번 사용된 냉각수는 종래와 같이 그대로 버려지는 것이 아니라, 히트펌프(100)를 이용하여 회수되어 열을 얻도록 하는 것이다. Therefore, the refrigerant vapor, which is heat-exchanged in the evaporator 110 by the heated cooling water and is heated, is sent from the evaporator 110 to the condenser 120, while the system water cooled and condensed by the cooling water in the condenser 50 is Through the pipe 51 through the condenser 120 of the heat pump is introduced into the heat exchanger 60 is supplied back to the boiler 10, in this process the cooling water once used in the condenser 50 is discarded as it is. Rather, it is to be recovered by using the heat pump 100 to obtain heat.

그러나, 여기서 본 발명은 더욱 바람직하게는, 흡수식 히트펌프를 적용하는 것으로, 이러한 흡수식 히트펌프로 인해 전체적인 발전효율이 더욱 향상될 수 있 다. However, the present invention is more preferably, by applying an absorption heat pump, the overall power generation efficiency can be further improved due to this absorption heat pump.

도 3에 도시된 바와 같이, 흡수식 히트펌프(200)는, 냉매증기를 흡수제에 의해 흡수시켜서 흡수열이 발생되도록 하는 흡수기(210)와, 가열되어 냉매증기를 발생시키는 재생기(220)와, As shown in FIG. 3, the absorption heat pump 200 includes an absorber 210 that absorbs refrigerant vapor by an absorbent to generate absorption heat, a regenerator 220 that is heated to generate refrigerant steam,

발생된 냉매증기를 냉각수에 의해 응축시키는 응축기(230)와, A condenser 230 for condensing the generated refrigerant vapor with cooling water;

응축기(230)를 거친 냉매증기가 냉매액으로 증발시키는 증발기(240)를 갖추고, 상기 재생기(220)의 열은 축열조(250)(heat storage)를 통해 얻도록 한다. The refrigerant vapor passing through the condenser 230 is provided with an evaporator 240 for evaporating the refrigerant liquid, and the heat of the regenerator 220 is obtained through the heat storage tank 250 (heat storage).

상기 증발기(240)는 복수기(50)를 거치면서 승온된 냉각수로부터 열을 회수하기 위해 냉각수배관(S)이 통과하도록 되어 있다. The evaporator 240 is configured to allow the cooling water pipe S to pass through the condenser 50 to recover heat from the elevated cooling water.

또한, 상기 축열조(250)는 태양열에 의해 재생된 열을 이용하는 것이다. In addition, the heat storage tank 250 uses heat regenerated by solar heat.

또한, 상기 흡수기(210)와 재생기(220) 사이에는 제 1열교환기(260)가 구비되고, 상기 응축기(230)와 증발기(240)의 사이에는 제 2열교환기(270)가 구비된 구조를 가진다. In addition, a first heat exchanger 260 is provided between the absorber 210 and the regenerator 220, and a second heat exchanger 270 is provided between the condenser 230 and the evaporator 240. Have

발전시스템의 복수기(50)로부터 연결된 배관(51)을 통해 터빈(T)으로부터 나온 스팀이 복수기(50)를 거치면서 냉각수에 의해 생성되는 물인 계통수가 흡수기(210)를 통과하여 응축기(230)를 거쳐서 열교환기(60)로 유입되어 결국 보일러(10)로 이동하도록 되는데, 계통수가 흡수기(210)를 통과하면서 1차로 승온이 이루어지고, 응축기(230)를 거치면서 2차로 승온이 이루어진다. Steam from the turbine T is passed through the condenser 50 through the pipe 51 connected to the condenser 50 of the power generation system, and the system water, which is water generated by the coolant, passes through the absorber 210 to pass the condenser 230. After passing through the heat exchanger (60) to eventually move to the boiler (10), while the system water passes through the absorber (210), the temperature rises first, and the second temperature rises through the condenser (230).

이것은 태양열에 의해 열을 얻는 축열조(250)의 스팀 또는 온수가 순환배관(251)을 통해 재생기(220)를 순환하도록 되어 있는데, 흡수용액(묽은 용액)은 펌 프(P)를 통해 흡수용액 배관(211)을 거쳐서 재생기(220)로 보내지며, 재생기(220)에서 축열조(250)에서의 스팀 또는 온수에 의해, 증기와 진한용액으로 분리되어서, 증기는 증기배관(221)을 통해 응축기(230)로 보내지고, 진한용액은 흡수기(210)에서 증발기(240)로부터 증발된 냉매증기를 흡수한 다음, 다시 묽은 용액 상태가 되어서 펌프(P)에 의해 흡수용액 배관(211)을 통해 재생기(220)로 보내지며, 이러한 과정을 순환,반복한다. This is to steam or hot water of the heat storage tank 250 to obtain heat by solar heat circulates the regenerator 220 through the circulation pipe 251, the absorbing solution (dilute solution) through the pump (P) absorbing solution piping It is sent to the regenerator 220 via the 211, by steam or hot water in the heat storage tank 250 in the regenerator 220, separated into steam and concentrated solution, the steam is condenser 230 through the steam pipe 221 ), And the concentrated solution absorbs the refrigerant vapor evaporated from the evaporator 240 in the absorber 210, and then becomes a dilute solution, thereby regenerating the regenerator 220 through the absorption solution pipe 211 by the pump P. ), And this process is repeated and repeated.

이때, 흡수기(210)와 재생기(220) 사이에는, 제 1열교환기(260)가 설치되어 있어 흡수기(210)에서 재생기(220)로 이동하는 저온의 묽은용액과 재생기(220)에서 흡수기(210)로 이동하는 고온의 진한용액을 열교환시켜서 묽은용액과 진한용액의 상태로 흡수기(210)와 재생기(220)로 유입된다. At this time, between the absorber 210 and the regenerator 220, a first heat exchanger 260 is installed and the low temperature dilute solution moving from the absorber 210 to the regenerator 220 and the absorber 210 in the regenerator 220. The high temperature concentrated solution moving to the heat exchanger is introduced into the absorber 210 and the regenerator 220 in the state of the diluted solution and the concentrated solution.

재생기(220)에서 재생된 증기는 응축기(230)에서 계통수와 열교환하여 잠열을 빼앗겨 응축수가 발생된다. 이 응축수는 증발기(240)에서 다시 증기로 되어 증기배관(241)을 통해 흡수기(210)로 이동한다. The steam regenerated in the regenerator 220 is heat-exchanged with the system water in the condenser 230, the latent heat is deprived, condensed water is generated. This condensed water becomes steam again in the evaporator 240 and moves to the absorber 210 through the steam pipe 241.

여기서, 본 발명은 응축기(230)와 증발기(240) 사이에 제 2열교환기(270)가 설치되어 있어, 응축기(230)에서 흡수기(210)로 냉매액 배관(231)을 지나 이동하는 고온의 냉매액과, 배관(51)을 통해 흡수기(210)에 공급되는 저온의 계통수와 열교환되어 냉매액과 계통수의 상태로 증발기(240)와 흡수기(210)로 유입된다. Here, in the present invention, a second heat exchanger 270 is installed between the condenser 230 and the evaporator 240, and moves from the condenser 230 to the absorber 210 through the refrigerant liquid pipe 231. The refrigerant liquid and the low temperature system water supplied to the absorber 210 through the pipe 51 are introduced into the evaporator 240 and the absorber 210 in the state of the refrigerant liquid and the system water.

이와 같이, 본 발명은 터빈(T)으로부터 분기되는 추기관도 일부 추기관의 밸브를 잠그거나 또는 터빈의 자동 압력 및 온도조절 기능에 의하여 추기관으로 분기 하는 스팀양이 줄어들어 터빈의 출력량이 증가될 수 있는 것이다. As described above, the present invention also reduces the amount of steam branching to the vertebral tube by closing the valve of some vertebral tubes or by the automatic pressure and temperature control function of the turbine. It can be.

또한, 터빈의 증가된 출력량을 요구 출력량으로 낮출 경우, 터빈의 스팀 유입량을 줄여서 요구 출력량을 조절하게 되는데, 이때 감소된 스팀 양만큼 가열하지 않아도 되므로, 보일러의 연료소비를 줄일 수 있다. In addition, when the increased output of the turbine is lowered to the required output, the required amount of output is controlled by reducing the steam inflow of the turbine. In this case, the boiler does not need to be heated by the reduced amount of steam, thereby reducing the fuel consumption of the boiler.

또한, 보일러의 연료소비 감소량 만큼에 해당하는 온난화 가스(CO2)의 배출량을 줄일 수 있다. In addition, it is possible to reduce the emissions of the warming gas (CO 2 ) corresponding to the reduced amount of fuel consumption of the boiler.

본 발명의 실시예에서 설명한 발전시스템은 500mW급 석탄화력 발전소용을 일례로 들어서 설명한 것이고, 이에 한정되지 않고 다른 타입의 발전시스템에도 동일하게 적용될 수 있는 것이다.  The power generation system described in the embodiment of the present invention has been described as an example for a 500mW class coal-fired power plant, and is not limited thereto and may be equally applicable to other types of power generation systems.

또한, 본 발명의 상세한 설명 및 청구범위 전반에 걸쳐서 기재된 발전시스템은 장치를 의미한다. In addition, the power generation system described throughout the description and claims of the present invention means an apparatus.

본 발명은 편의상 첨부된 예시도면에 의거 본 발명의 실시예를 설명하였지만, 이에 국한되지 않고 본 발명의 기술적 사상의 범주내에서 여러가지 변형 및 수정이 가능함은 자명한 사실이다. Although the present invention has been described for the embodiments of the present invention based on the accompanying drawings for convenience, it is obvious that various modifications and changes are possible within the scope of the technical idea of the present invention.

도 1은 종래의 발전시스템을 나타낸 구성도이다.1 is a configuration diagram showing a conventional power generation system.

도 2는 본 발명의 발전시스템을 나타낸 구성도이다. 2 is a configuration diagram showing a power generation system of the present invention.

도 3은 본 발명에 적용되는 다른 히트펌프(흡수식 히트펌프)를 설명하는 구성도이다. 3 is a configuration diagram illustrating another heat pump (absorption heat pump) applied to the present invention.

[도면의 부호설명][Code Description in Drawings]

P : 펌프P: Pump

S : 냉각수배관S: Cooling water piping

10 : 보일러10: boiler

20 : 고압터빈20: high pressure turbine

30 : 중압터빈30: medium pressure turbine

40 : 저압터빈40: low pressure turbine

50 : 복수기50: Avenger

51 : 배관51: plumbing

60 : 열교환기60: heat exchanger

100 : 히트펌프100: heat pump

110 : 증발기110: evaporator

120 : 응축기120: condenser

200 : 흡수식 히트펌프200: absorption heat pump

210 : 흡수기210: Absorber

211 : 흡수용액 배관211: absorption solution piping

220 : 재생기220: player

221 : 증기배관221: steam piping

230 : 응축기230: condenser

231 : 냉매액 배관231: refrigerant liquid piping

240 : 증발기240: evaporator

241 : 증기배관241: steam piping

250 : 축열조250: heat storage tank

251 : 순환배관251: circulation piping

260 : 제 1열교환기260: first heat exchanger

270 : 제 2열교환기270: second heat exchanger

Claims (5)

삭제delete 삭제delete 보일러와 터빈을 거치는 스팀이 복수기를 통과하는 냉각수배관에 의해 냉각되어 계통수가 된 다음, 열교환기를 거쳐서 다시 보일러로 순환되는 발전시스템에서, 상기 복수기와 열교환기 사이에, 복수기에서 계통수 냉각 및 응축용으로 사용된 후 승온된 냉각수로부터 열을 회수하여 계통수 승온에 이용하도록 하는 흡수식 히트펌프가 구비된 것으로서, Steam passing through the boiler and the turbine is cooled by a cooling water pipe passing through the condenser to become a system water, and then circulated back to the boiler via a heat exchanger, between the condenser and the heat exchanger, for condensate cooling and condensate in the condenser. It is equipped with an absorption heat pump that recovers heat from the cooled water after use to be used for heating the system water, 상기 흡수식 히트펌프는 냉매증기를 흡수제에 의해 흡수시켜서 흡수열이 발생되도록 하는 흡수기와, The absorption heat pump includes an absorber for absorbing refrigerant vapor with an absorbent to generate heat of absorption; 축열조와 연결된 순환배관에 의해 열을 얻어서 냉매증기를 발생시키는 재생기와, A regenerator for generating refrigerant vapor by obtaining heat by a circulation pipe connected to a heat storage tank, 발생된 냉매증기를 냉각수에 의해 응축시키는 응축기와, A condenser for condensing the generated refrigerant vapor with cooling water, 냉매증기가 응축기를 거쳐서 응축되어 발생되는 냉매액을 증발시키는 증발기를 포함하여 구성되고, The refrigerant vapor is configured to include an evaporator for evaporating the refrigerant liquid generated by condensation through the condenser, 상기 증발기는 복수기를 거치면서 승온된 냉각수로부터 열을 회수하기 위해 냉각수배관이 통과하도록 되어 있으며, The evaporator is a cooling water pipe to pass through the condenser to recover the heat from the elevated cooling water, 복수기로부터 연결된 배관을 통해 계통수가 흡수기를 통과하여 응축기를 거쳐서 열교환기로 유입되어 보일러로 이동하도록 되며, 계통수가 흡수기를 통과하면서 1차로 승온이 이루어지고, 응축기를 거치면서 2차로 승온이 이루어지도록 된 것을 특징으로 하는 히트펌프를 이용한 발전시스템. Through the pipe connected from the condenser, the system water passes through the absorber, passes through the condenser, enters the heat exchanger, and moves to the boiler, and the system temperature increases first through the absorber, and the second temperature rises through the condenser. Power generation system using a heat pump characterized in that. 청구항 3에 있어서, The method of claim 3, 상기 축열조는 태양열에 의해 재생된 열을 이용하도록 되어 있는 것을 특징으로 하는 히트펌프를 이용한 발전시스템. The heat storage tank is a power generation system using a heat pump, characterized in that to use heat regenerated by solar heat. 청구항 3 또는 청구항 4에 있어서, The method according to claim 3 or 4, 흡수기와 재생기 사이에는 제 1열교환기가 구비되고, 상기 응축기와 증발기 의 사이에는 제 2열교환기가 구비된 것을 특징으로 하는 히트펌프를 이용한 발전시스템. A first heat exchanger is provided between the absorber and the regenerator, and a second heat exchanger is provided between the condenser and the evaporator.
KR1020090066263A 2009-07-21 2009-07-21 Electric Generating System Using Heat Pump Unit KR101103768B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090066263A KR101103768B1 (en) 2009-07-21 2009-07-21 Electric Generating System Using Heat Pump Unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090066263A KR101103768B1 (en) 2009-07-21 2009-07-21 Electric Generating System Using Heat Pump Unit

Publications (2)

Publication Number Publication Date
KR20110008757A KR20110008757A (en) 2011-01-27
KR101103768B1 true KR101103768B1 (en) 2012-01-06

Family

ID=43614720

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090066263A KR101103768B1 (en) 2009-07-21 2009-07-21 Electric Generating System Using Heat Pump Unit

Country Status (1)

Country Link
KR (1) KR101103768B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101320593B1 (en) * 2012-02-08 2013-10-23 지에스파워주식회사 Cogeneration system using heat pump

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103453690B (en) * 2012-05-29 2017-07-21 浙江盾安人工环境股份有限公司 Biomass energy CCHP saves absorption heat pump unit
KR101436002B1 (en) * 2012-12-20 2014-09-02 한국지역난방공사 District heating system including absorption heat pump for increasing production amount of electricity and heat

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03906A (en) * 1989-05-26 1991-01-07 Kawasaki Heavy Ind Ltd Feed water preheating method and device in steam generating plant

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03906A (en) * 1989-05-26 1991-01-07 Kawasaki Heavy Ind Ltd Feed water preheating method and device in steam generating plant

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101320593B1 (en) * 2012-02-08 2013-10-23 지에스파워주식회사 Cogeneration system using heat pump

Also Published As

Publication number Publication date
KR20110008757A (en) 2011-01-27

Similar Documents

Publication Publication Date Title
KR100975276B1 (en) Local heating water feeding system using absorbing type heat pump
JP4676284B2 (en) Waste heat recovery equipment for steam turbine plant
US9746191B2 (en) System for producing heat source for heating or electricity using medium/low temperature waste heat, and method for controlling the same
KR101295806B1 (en) Combined cycle power plant utilizing absorption heat pump for improving generating efficiency, and method for controlling thereof
KR20170102793A (en) Gas-steam combined cycle centralized heat supply device and heat supply method
CN103790732B (en) Medium and high temperature flue gas waste heat dual-working-medium combined cycle power generation device
JP2003225537A (en) Method for utilizing waste heat for carbon dioxide recovery process
JP2007205188A (en) Energy saving installation using waste heat
KR20150138661A (en) The Coolant Waste Heat Recovery of Coal Fired Power Plant and Control Method
KR20140085001A (en) Energy saving system for using waste heat of ship
JP5325038B2 (en) System and method applied to combined cycle power plant or Rankine cycle power plant using air-cooled steam condenser
CN112780373A (en) Water vapor cycle based on supercritical and subcritical heat regeneration
KR101499810B1 (en) Hybrid type condenser system
RU2152521C1 (en) Condensate degassing method and device
KR101236070B1 (en) High efficiency differential temperature power system using the thermal effluents of power plant condenser
JP7178464B2 (en) Plant and flue gas treatment method
KR101103768B1 (en) Electric Generating System Using Heat Pump Unit
CN104254673A (en) Combined cycle power plant
JP2593197B2 (en) Thermal energy recovery method and thermal energy recovery device
JP2010038160A (en) System and method for use in combined or rankine cycle power plant
JPH11173109A (en) Power generation and hot water supply system
KR101603253B1 (en) Condenser Waste-heat Recovery System
CN103836606A (en) Sewerage waste heat recovery device
US9664071B2 (en) Steam turbine plant
CN210317417U (en) Coal-fired power generation system

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160105

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170102

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20171228

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20190103

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20191111

Year of fee payment: 9