JP5339193B2 - Exhaust gas heat recovery device - Google Patents

Exhaust gas heat recovery device Download PDF

Info

Publication number
JP5339193B2
JP5339193B2 JP2009090527A JP2009090527A JP5339193B2 JP 5339193 B2 JP5339193 B2 JP 5339193B2 JP 2009090527 A JP2009090527 A JP 2009090527A JP 2009090527 A JP2009090527 A JP 2009090527A JP 5339193 B2 JP5339193 B2 JP 5339193B2
Authority
JP
Japan
Prior art keywords
boiler
exhaust gas
evaporator
water
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009090527A
Other languages
Japanese (ja)
Other versions
JP2010243012A (en
Inventor
昭生 森田
康夫 越智
英夫 古川
靖国 田中
真嘉 金丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Co Ltd
Original Assignee
Miura Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co Ltd filed Critical Miura Co Ltd
Priority to JP2009090527A priority Critical patent/JP5339193B2/en
Publication of JP2010243012A publication Critical patent/JP2010243012A/en
Application granted granted Critical
Publication of JP5339193B2 publication Critical patent/JP5339193B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

本発明は、ボイラからの排ガスを用いてボイラへの給水を予熱する排ガス熱回収装置に関するものである。   The present invention relates to an exhaust gas heat recovery device that preheats feed water to a boiler using exhaust gas from a boiler.

従来、下記特許文献1に開示されるように、ボイラとヒートポンプとを備え、被加熱媒体としての水に対する比較的低温域の加熱にヒートポンプを用い、比較的高温域の加熱にボイラを用いた蒸気供給システムが提案されている。具体的には、この蒸気供給システムでは、被加熱媒体である水の流れ方向に関して、上流側にヒートポンプが配置され、下流側にボイラが配置される。ヒートポンプは、大気から熱をくみ上げて、ボイラへの給水を予熱する。このようにして、被加熱媒体である水は、ヒートポンプの冷媒との熱交換により温度上昇した後、ボイラへ供給され蒸気化される。   Conventionally, as disclosed in Patent Document 1 below, steam that includes a boiler and a heat pump, uses a heat pump for heating in a relatively low temperature range to water as a medium to be heated, and uses a boiler for heating in a relatively high temperature range A supply system has been proposed. Specifically, in this steam supply system, a heat pump is disposed on the upstream side and a boiler is disposed on the downstream side with respect to the flow direction of the water to be heated. The heat pump draws heat from the atmosphere and preheats the water supplied to the boiler. In this way, the water that is the medium to be heated rises in temperature by heat exchange with the refrigerant of the heat pump, and is then supplied to the boiler and vaporized.

一方、ボイラからの排ガスを用いてボイラへの給水を予熱するエコノマイザも知られている。この場合、ボイラへの給水は、エコノマイザにおいて排ガスにより予熱を図られた後、ボイラへ供給され蒸発化される。   On the other hand, an economizer that preheats water supplied to the boiler using exhaust gas from the boiler is also known. In this case, water supplied to the boiler is preheated with exhaust gas in an economizer and then supplied to the boiler and evaporated.

特開2006−308164号公報(請求項1、段落番号0018、0019、図1)JP 2006-308164 A (Claim 1, paragraph numbers 0018, 0019, FIG. 1)

上述したいずれの方法も、蒸気供給システム全体の熱効率に改善の余地があった。特に、給水温度が高い場合、従来のエコノマイザでは、給水の加熱を十分に行うことができなかった。すなわち、ボイラへの給水タンクに蒸気使用設備から高温のドレンを戻して熱回収を図ると、高温のドレンにより給水タンク内の水は昇温し、給水温度が常温よりもかなり高くなることがあるが、その場合、従来のエコノマイザでは、給水の加熱を十分に行うことができなかった。   In any of the above-described methods, there is room for improvement in the thermal efficiency of the entire steam supply system. In particular, when the feed water temperature is high, the conventional economizer cannot sufficiently heat the feed water. That is, if high temperature drain is returned from the steam using equipment to the water supply tank to the boiler and heat recovery is performed, the water in the water supply tank rises in temperature due to the high temperature drain, and the water supply temperature may become considerably higher than normal temperature However, in that case, the conventional economizer has not been able to sufficiently heat the feed water.

本発明が解決しようとする課題は、給水温度が比較的高くても、ボイラへの給水の加熱を効率よく行うことができる排ガス熱回収装置を実現することにある。   The problem to be solved by the present invention is to realize an exhaust gas heat recovery device capable of efficiently heating the feed water to the boiler even when the feed water temperature is relatively high.

本発明は、前記課題を解決するためになされたもので、請求項1に記載の発明は、圧縮機、凝縮器、膨張弁および蒸発器が順次環状に接続されて構成されるヒートポンプを備え、前記蒸発器は、ボイラからの排ガスとの熱交換器とされ、前記凝縮器は、ボイラへの給水との熱交換器とされ、前記ボイラの煙道には、前記蒸発器が設けられると共に、前記蒸発器よりも排ガス流の上流側に、エコノマイザが設けられ、前記ボイラへの給水は、前記凝縮器を通された後、前記エコノマイザを通されて、前記ボイラへ供給され、前記エコノマイザは、排ガスの顕熱回収部とされ、前記蒸発器は、排ガスの潜熱回収部とされることを特徴とする排ガス熱回収装置である。 The present invention has been made to solve the above problems, and the invention according to claim 1 includes a heat pump configured by sequentially connecting a compressor, a condenser, an expansion valve, and an evaporator in an annular shape, The evaporator is a heat exchanger with exhaust gas from the boiler, the condenser is a heat exchanger with water supply to the boiler, and the evaporator is provided in the boiler flue, An economizer is provided on the upstream side of the exhaust gas flow with respect to the evaporator, and water supplied to the boiler is supplied to the boiler through the economizer after being passed through the condenser, and the economizer is The exhaust gas heat recovery device is an exhaust gas sensible heat recovery unit, and the evaporator is an exhaust gas latent heat recovery unit .

請求項1に記載の発明によれば、ヒートポンプを用いて、ボイラの排ガスから熱をくみ上げて、ボイラへの給水の加熱を有効に図ることができる。ボイラの排ガスから熱をくみ上げるヒートポンプを用いることで、比較的高温の給水も加熱することができる。   According to the first aspect of the present invention, heat can be pumped up from the exhaust gas of the boiler using the heat pump, and heating of the feed water to the boiler can be effectively achieved. By using a heat pump that draws heat from the exhaust gas of the boiler, it is possible to heat relatively high-temperature water supply.

請求項1に記載の発明によれば、ヒートポンプをエコノマイザと併用し、エコノマイザよりも排ガス流の下流側で且つエコノマイザよりも給水の上流側に配置することで、より有効な熱回収を図ることができる。 According to the first aspect of the present invention, a heat pump is used in combination with an economizer, and more effective heat recovery can be achieved by disposing the exhaust gas flow downstream of the economizer and upstream of the water supply from the economizer. it can.

さらに、請求項2に記載の発明は、前記蒸発器において、前記ヒートポンプの冷媒は、前記ボイラからの排ガス流の下流側から上流側へ流され、前記凝縮器において、前記ヒートポンプの冷媒は、前記ボイラへの給水の下流側から上流側へ流され、前記エコノマイザにおいて、前記ボイラへの給水は、前記ボイラからの排ガス流の下流側から上流側へ流されることを特徴とする請求項1に記載の排ガス熱回収装置である。 Furthermore, in the invention according to claim 2 , in the evaporator, the refrigerant of the heat pump is caused to flow from the downstream side to the upstream side of the exhaust gas flow from the boiler, and in the condenser, the refrigerant of the heat pump is the flows from the downstream side of the water supply to the boiler to the upstream side, in the economizer, the water supply to the boiler, according to claim 1, characterized in that flows to the upstream side from the downstream side of the exhaust gas flow from said boiler The exhaust gas heat recovery device.

請求項2に記載の発明によれば、ヒートポンプの蒸発器では冷媒と排ガスとを対向流とし、ヒートポンプの凝縮器では冷媒と給水とを対向流とし、エコノマイザでは給水と排ガスとを対向流とすることで、一層効率よく熱回収を図ることができる。 According to the invention of claim 2 , in the evaporator of the heat pump, the refrigerant and the exhaust gas are opposed to each other, in the condenser of the heat pump, the refrigerant and the water supply are opposed to each other, and in the economizer, the water supply and the exhaust gas are opposed to each other. Thus, heat recovery can be achieved more efficiently.

本発明によれば、給水温度が比較的高くても、ボイラへの給水の加熱を効率よく行うことができる。   According to the present invention, even when the feed water temperature is relatively high, the feed water to the boiler can be efficiently heated.

本発明の排ガス熱回収装置の実施例1の使用状態を示す概略図である。It is the schematic which shows the use condition of Example 1 of the waste gas heat recovery apparatus of this invention. 本発明の排ガス熱回収装置の実施例2の使用状態を示す概略図である。It is the schematic which shows the use condition of Example 2 of the waste gas heat recovery apparatus of this invention.

以下、本発明の具体的実施例を図面に基づいて詳細に説明する。但し、本発明の排ガス熱回収装置は、下記実施例の構成に限らず、適宜変更可能である。   Hereinafter, specific embodiments of the present invention will be described in detail with reference to the drawings. However, the exhaust gas heat recovery apparatus of the present invention is not limited to the configuration of the following embodiment, and can be changed as appropriate.

図1は、本発明の排ガス熱回収装置の実施例1の使用状態を示す概略図である。本実施例の排ガス熱回収装置は、ヒートポンプ1を用いてボイラ2の排ガスから熱をくみ上げて、ボイラ2への給水の加熱を図る装置である。   FIG. 1 is a schematic view showing a usage state of Embodiment 1 of the exhaust gas heat recovery apparatus of the present invention. The exhaust gas heat recovery device of the present embodiment is a device that uses the heat pump 1 to heat up the exhaust gas from the boiler 2 and heats the feed water to the boiler 2.

ボイラ2には、給水タンク3からの水が、給水路4を介して供給される。給水路4には、給水ポンプ5が設けられており、この給水ポンプ5の作動の有無により、ボイラ2への給水の有無が切り替えられる。給水タンク3は、補給水路6から適宜水が供給されて、所望水位に維持される。給水タンク3への補給水路6には純水装置または軟水装置(図示省略)が備えらており、純水または軟水が給水タンク3に供給される。   The boiler 2 is supplied with water from the water supply tank 3 via the water supply path 4. A water supply pump 5 is provided in the water supply path 4, and the presence or absence of water supply to the boiler 2 is switched depending on whether or not the water supply pump 5 is activated. The water supply tank 3 is appropriately supplied with water from the make-up water channel 6 and maintained at a desired water level. The replenishment water channel 6 to the water supply tank 3 is provided with a pure water device or a soft water device (not shown), and pure water or soft water is supplied to the water supply tank 3.

ボイラ2に供給された水は、ボイラ2で蒸気化される。ボイラ2からの蒸気は、所望により蒸気ヘッダ(図示省略)などを介して、一または複数の各種の蒸気利用機器7へ送られる。蒸気利用機器7にて生じるドレンは、スチームトラップ8を介して、ドレン回収路9により給水タンク3へ戻される。   The water supplied to the boiler 2 is vaporized by the boiler 2. The steam from the boiler 2 is sent to one or a plurality of various steam utilizing devices 7 via a steam header (not shown) as required. Drain generated in the steam using device 7 is returned to the water supply tank 3 through a steam trap 8 and a drain recovery path 9.

ボイラ2では、給水を加熱して蒸気化するために燃料の燃焼がなされ、その排ガスは煙道10を介して外部へ排出される。この煙道10を通過する排ガスの熱を用いて、ヒートポンプ1によりボイラ2への給水の予熱を図ろうとするのが、排ガス熱回収装置である。   In the boiler 2, fuel is burned in order to heat and vaporize the feed water, and the exhaust gas is discharged to the outside through the flue 10. The exhaust gas heat recovery device attempts to preheat water supplied to the boiler 2 by the heat pump 1 using the heat of the exhaust gas passing through the flue 10.

ヒートポンプ1は、圧縮機11、凝縮器12、膨張弁13および蒸発器14が順次環状に接続されて構成される。圧縮機11は、冷媒を圧縮して高温高圧の気体にする。圧縮機11からの気化冷媒は、凝縮器12へ送られる。凝縮器12は、圧縮機11からの気化冷媒を凝縮液化する。凝縮器12からの液化冷媒は、膨張弁13へ送られる。膨張弁13は、凝縮器12からの液化冷媒を通過させることで、冷媒の圧力と温度とを低下させる。そして、蒸発器14は、膨張弁13からの冷媒を蒸発させる。   The heat pump 1 is configured by sequentially connecting a compressor 11, a condenser 12, an expansion valve 13, and an evaporator 14 in an annular shape. The compressor 11 compresses the refrigerant into a high-temperature and high-pressure gas. The vaporized refrigerant from the compressor 11 is sent to the condenser 12. The condenser 12 condenses and liquefies the vaporized refrigerant from the compressor 11. The liquefied refrigerant from the condenser 12 is sent to the expansion valve 13. The expansion valve 13 allows the liquefied refrigerant from the condenser 12 to pass therethrough, thereby reducing the pressure and temperature of the refrigerant. The evaporator 14 evaporates the refrigerant from the expansion valve 13.

圧縮機11は、電動機により駆動されてもよいが、蒸気エンジンにより駆動されてもよい。蒸気エンジンは、蒸気を用いて動力を起こす装置であり、たとえばスクリュ式蒸気エンジンとされる。蒸気エンジンは、蒸気利用機器7の一つとして、ボイラ2からの蒸気により駆動される。   The compressor 11 may be driven by an electric motor, but may be driven by a steam engine. The steam engine is a device that generates power using steam, and is, for example, a screw-type steam engine. The steam engine is driven by steam from the boiler 2 as one of the steam utilization devices 7.

凝縮器12についてさらに詳細に説明すると、本実施例の凝縮器12は、冷媒流路15と水流路16とを有する熱交換器であり、冷媒と水とを混ぜることなく熱交換する。圧縮機11からの冷媒は、凝縮器12の冷媒流路15を通され、膨張弁13へ送られる。一方、給水タンク3からの水は、凝縮器12の水流路16を通され、ボイラ2へ供給される。従って、給水タンク3からの水は、凝縮器12を通過する間、冷媒から熱を奪い加熱を図られる。逆に、圧縮機11からの冷媒は、凝縮器12を通過する間、ボイラ2への給水で冷却を図られる。   The condenser 12 will be described in more detail. The condenser 12 according to the present embodiment is a heat exchanger having a refrigerant flow path 15 and a water flow path 16, and performs heat exchange without mixing the refrigerant and water. The refrigerant from the compressor 11 passes through the refrigerant flow path 15 of the condenser 12 and is sent to the expansion valve 13. On the other hand, water from the water supply tank 3 passes through the water flow path 16 of the condenser 12 and is supplied to the boiler 2. Therefore, while the water from the water supply tank 3 passes through the condenser 12, it takes heat from the refrigerant and is heated. On the contrary, the refrigerant from the compressor 11 is cooled by water supplied to the boiler 2 while passing through the condenser 12.

蒸発器14についてさらに詳細に説明すると、本実施例の蒸発器14は、煙道10内に設けられる冷媒流路17であり、冷媒と排ガスとを混ぜることなく熱交換する。この際、蒸発器14は、煙道10の一部を構成する筒体と、この筒体内に設けられる冷媒流路17とを、ユニットとして構成してもよい。また、煙道10内に設けられる冷媒流路17は、煙道10内において適宜蛇行させるなど、従来公知の各種のエコノマイザと同様に構成できる。   The evaporator 14 will be described in more detail. The evaporator 14 of the present embodiment is a refrigerant flow path 17 provided in the flue 10 and exchanges heat without mixing the refrigerant and the exhaust gas. At this time, the evaporator 14 may be configured as a unit including a cylindrical body constituting a part of the flue 10 and a refrigerant flow path 17 provided in the cylindrical body. Moreover, the refrigerant flow path 17 provided in the flue 10 can be comprised similarly to various conventionally well-known economizers, such as making it meander suitably in the flue 10. FIG.

ところで、ヒートポンプ1に用いる冷媒は、特に問わないが、比較的高温の給水の加熱を可能とするために、たとえばR−245faを用いることが好ましい。但し、ヒートポンプ1に用いる冷媒は、このようなフロン系冷媒に限らず、水などの他の冷媒であってもよい。   By the way, although the refrigerant | coolant used for the heat pump 1 is not ask | required in particular, In order to enable heating of comparatively high temperature water supply, it is preferable to use R-245fa, for example. However, the refrigerant used in the heat pump 1 is not limited to such a fluorocarbon refrigerant, but may be other refrigerants such as water.

以上のような構成であるから、ボイラ2からの排ガスは、煙道10の蒸発器14を通過した後、外部へ排出される。排ガスは、蒸発器14を通過する間、冷媒により冷却され、体積の減少が図られる。その一方、膨張弁13からの冷媒は、蒸発器14を通過する間、排ガスにより温められ気化される。その後、冷媒は、圧縮機11において高温高圧とされた状態で、凝縮器12へ送られる。凝縮器12では、冷媒と比べて低温の水が通されるので、ボイラ2への給水は冷媒の熱で加熱される一方、冷媒は給水により冷却されて膨張弁13へ送られる。   Since it is the above structures, the exhaust gas from the boiler 2 passes the evaporator 14 of the flue 10, and is discharged | emitted outside. The exhaust gas is cooled by the refrigerant while passing through the evaporator 14, and the volume is reduced. On the other hand, the refrigerant from the expansion valve 13 is warmed and vaporized by the exhaust gas while passing through the evaporator 14. Thereafter, the refrigerant is sent to the condenser 12 in a state of high temperature and high pressure in the compressor 11. In the condenser 12, water having a temperature lower than that of the refrigerant is passed, so that the feed water to the boiler 2 is heated by the heat of the refrigerant, while the refrigerant is cooled by the feed water and sent to the expansion valve 13.

このように、本実施例の排ガス熱回収装置によれば、ヒートポンプ1を用いて、排ガスから熱をくみ上げて、ボイラ2への給水の加熱を図ることができる。この際、ヒートポンプ1を介していることで、比較的高温の給水の加熱も図ることができる。すなわち、蒸気利用機器7からドレンを給水タンク3に回収する場合、ドレンを給水タンク3に回収しない場合と比べて、給水タンク3内の水は高温のドレンにより加熱され、常温を超え、場合によっては80℃程度まで達することもある。そのような場合でも、本実施例の排ガス熱回収装置によれば、給水のさらなる加熱を実現できる。   Thus, according to the exhaust gas heat recovery apparatus of the present embodiment, heat can be pumped up from the exhaust gas using the heat pump 1 to heat the feed water to the boiler 2. At this time, by using the heat pump 1, heating of relatively high temperature water supply can be achieved. That is, when the drain is recovered from the steam utilization device 7 to the water supply tank 3, the water in the water supply tank 3 is heated by the high-temperature drain as compared with the case where the drain is not recovered to the water supply tank 3, May reach up to about 80 ° C. Even in such a case, according to the exhaust gas heat recovery apparatus of the present embodiment, further heating of the feed water can be realized.

図2は、本発明の排ガス熱回収装置の実施例2の使用状態を示す概略図である。本実施例2の排ガス熱回収装置は、基本的には前記実施例1と同様の構成である。そこで以下においては、両者の異なる点を中心に説明し、対応する箇所には同一に符号を付して説明する。   FIG. 2 is a schematic view showing a usage state of the second embodiment of the exhaust gas heat recovery apparatus of the present invention. The exhaust gas heat recovery apparatus according to the second embodiment basically has the same configuration as that of the first embodiment. Therefore, in the following description, the differences between the two will be mainly described, and corresponding portions will be described with the same reference numerals.

本実施例2の排ガス熱回収装置は、前記実施例1のヒートポンプ1に加えて、エコノマイザ18をさらに備える。この際、ボイラ2の煙道10には、蒸発器14よりも排ガス流の上流側に、エコノマイザ18を設けるのがよい。また、ボイラ2への給水は、凝縮器12を通された後、エコノマイザ18を通されて、ボイラ2へ供給するのがよい。ヒートポンプ1をエコノマイザ18と併用し、エコノマイザ18よりも排ガス流の下流側で且つエコノマイザ18よりも給水の上流側に配置することで、より有効な熱回収を図ることができる。   The exhaust gas heat recovery apparatus according to the second embodiment further includes an economizer 18 in addition to the heat pump 1 according to the first embodiment. At this time, an economizer 18 is preferably provided in the flue 10 of the boiler 2 on the upstream side of the exhaust gas flow from the evaporator 14. In addition, the water supply to the boiler 2 is preferably supplied to the boiler 2 through the condenser 12 and then through the economizer 18. By using the heat pump 1 together with the economizer 18 and disposing the exhaust gas flow downstream of the economizer 18 and upstream of the water supply relative to the economizer 18, more effective heat recovery can be achieved.

本実施例2において、エコノマイザ18は、排ガスの顕熱回収部とされ、蒸発器14は、基本的には排ガスの潜熱回収部とされる。但し、蒸発器14は、場合により、一部または全部が顕熱回収部とされてもよい。   In the second embodiment, the economizer 18 is an exhaust gas sensible heat recovery unit, and the evaporator 14 is basically an exhaust gas latent heat recovery unit. However, part or all of the evaporator 14 may be a sensible heat recovery unit depending on circumstances.

また、図2では、ボイラ2の煙道10において、エコノマイザ18の上に蒸発器14を設置しているが、排ガスからの凝縮水の処理を考慮して、蒸発器14が設置される箇所の煙道10を下向きとして、排ガスが上方から下方へ流れるように構成してもよい。これにより、蒸発器14にて生じた凝縮水を下方へ落とすことができる。そして、蒸発器14を通過後の排ガスは、上方へ向きを変えて外部へ排出される。   Moreover, in FIG. 2, although the evaporator 14 is installed on the economizer 18 in the flue 10 of the boiler 2, the treatment of the condensed water from the exhaust gas is taken into consideration in the place where the evaporator 14 is installed. The flue 10 may be directed downward and the exhaust gas may flow downward from above. Thereby, the condensed water produced in the evaporator 14 can be dropped downward. Then, the exhaust gas after passing through the evaporator 14 turns upward and is discharged to the outside.

前記実施例1も同様であるが、蒸発器14において、ヒートポンプ1の冷媒は、ボイラ2からの排ガス流の下流側から上流側へ流され、凝縮器12において、ヒートポンプ1の冷媒は、ボイラ2への給水の下流側から上流側へ流されるよう構成するのがよい。つまり、ヒートポンプ1の蒸発器14では冷媒と排ガスとを対向流とし、ヒートポンプ1の凝縮器12では冷媒と給水とを対向流とするのがよい。さらに、本実施例2では、エコノマイザ18において、ボイラ2への給水は、ボイラ2からの排ガス流の下流側から上流側へ流されるのがよい。つまり、エコノマイザ18では給水と排ガスとを対向流とするのがよい。このように構成すれば、熱交換が効率よくなされ、熱回収効率を向上することができる。その他の構成および制御は、実施例1と同様のため、説明は省略する。   In the evaporator 14, the refrigerant of the heat pump 1 is caused to flow from the downstream side to the upstream side of the exhaust gas flow from the boiler 2. In the condenser 12, the refrigerant of the heat pump 1 is the boiler 2. It is good to comprise so that it may flow from the downstream of the feed water to the upstream. That is, it is preferable that the refrigerant and the exhaust gas are counterflowed in the evaporator 14 of the heat pump 1 and the refrigerant and feed water are counterflowed in the condenser 12 of the heat pump 1. Further, in the second embodiment, in the economizer 18, the water supply to the boiler 2 is preferably flowed from the downstream side to the upstream side of the exhaust gas flow from the boiler 2. That is, in the economizer 18, it is preferable that the water supply and the exhaust gas are opposed to each other. If comprised in this way, heat exchange will be made efficiently and heat recovery efficiency can be improved. Other configurations and controls are the same as those in the first embodiment, and thus description thereof is omitted.

1 ヒートポンプ
2 ボイラ
3 給水タンク
4 給水路
7 蒸気利用機器
9 ドレン回収路
10 煙道
11 圧縮機
12 凝縮器
13 膨張弁
14 蒸発器
18 エコノマイザ
DESCRIPTION OF SYMBOLS 1 Heat pump 2 Boiler 3 Water supply tank 4 Water supply path 7 Steam utilization apparatus 9 Drain collection path 10 Flue 11 Compressor 12 Condenser 13 Expansion valve 14 Evaporator 18 Economizer

Claims (2)

圧縮機、凝縮器、膨張弁および蒸発器が順次環状に接続されて構成されるヒートポンプを備え、
前記蒸発器は、ボイラからの排ガスとの熱交換器とされ、
前記凝縮器は、ボイラへの給水との熱交換器とされ
前記ボイラの煙道には、前記蒸発器が設けられると共に、前記蒸発器よりも排ガス流の上流側に、エコノマイザが設けられ、
前記ボイラへの給水は、前記凝縮器を通された後、前記エコノマイザを通されて、前記ボイラへ供給され
前記エコノマイザは、排ガスの顕熱回収部とされ、前記蒸発器は、排ガスの潜熱回収部とされる
ことを特徴とする排ガス熱回収装置。
A heat pump comprising a compressor, a condenser, an expansion valve and an evaporator sequentially connected in an annular manner;
The evaporator is a heat exchanger with exhaust gas from the boiler,
The condenser is a heat exchanger for supplying water to the boiler ,
In the boiler flue, the evaporator is provided, and an economizer is provided on the upstream side of the exhaust gas flow from the evaporator,
After the water supply to the boiler is passed through the condenser, the economizer is passed through and supplied to the boiler ,
The exhaust gas heat recovery apparatus , wherein the economizer is an exhaust gas sensible heat recovery unit, and the evaporator is an exhaust gas latent heat recovery unit.
前記蒸発器において、前記ヒートポンプの冷媒は、前記ボイラからの排ガス流の下流側から上流側へ流され、
前記凝縮器において、前記ヒートポンプの冷媒は、前記ボイラへの給水の下流側から上流側へ流され、
前記エコノマイザにおいて、前記ボイラへの給水は、前記ボイラからの排ガス流の下流側から上流側へ流される
ことを特徴とする請求項1に記載の排ガス熱回収装置。
In the evaporator, the refrigerant of the heat pump is caused to flow from the downstream side to the upstream side of the exhaust gas flow from the boiler,
In the condenser, the refrigerant of the heat pump is caused to flow from the downstream side to the upstream side of the water supply to the boiler,
The exhaust gas heat recovery apparatus according to claim 1 , wherein in the economizer, water supplied to the boiler flows from a downstream side to an upstream side of an exhaust gas flow from the boiler.
JP2009090527A 2009-04-02 2009-04-02 Exhaust gas heat recovery device Active JP5339193B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009090527A JP5339193B2 (en) 2009-04-02 2009-04-02 Exhaust gas heat recovery device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009090527A JP5339193B2 (en) 2009-04-02 2009-04-02 Exhaust gas heat recovery device

Publications (2)

Publication Number Publication Date
JP2010243012A JP2010243012A (en) 2010-10-28
JP5339193B2 true JP5339193B2 (en) 2013-11-13

Family

ID=43096202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009090527A Active JP5339193B2 (en) 2009-04-02 2009-04-02 Exhaust gas heat recovery device

Country Status (1)

Country Link
JP (1) JP5339193B2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5821175B2 (en) * 2010-11-02 2015-11-24 三浦工業株式会社 Water supply system
JP5707881B2 (en) * 2010-11-11 2015-04-30 三浦工業株式会社 Water supply system
JP5686285B2 (en) * 2010-12-21 2015-03-18 三浦工業株式会社 Boiler blow water heat recovery system
JP5703746B2 (en) * 2010-12-24 2015-04-22 三浦工業株式会社 Water supply system
CN102607001B (en) * 2011-01-24 2014-10-29 王文祥 Atmospheric steam generating method and atmospheric steam servo unit
CN102200273B (en) * 2011-03-28 2012-12-26 白传贞 Waste heat recovery system for mixed energy environment-friendly steam generator
KR101823513B1 (en) * 2011-09-21 2018-01-30 엘지전자 주식회사 Heat pump, air conditioner having the same, and hot water heating system
JP5263421B1 (en) * 2012-03-30 2013-08-14 三浦工業株式会社 Water heating system
JP6066071B2 (en) * 2013-03-04 2017-01-25 三浦工業株式会社 Water heating system
JP6065213B2 (en) * 2013-03-04 2017-01-25 三浦工業株式会社 Water heating system
JP6065212B2 (en) * 2013-03-04 2017-01-25 三浦工業株式会社 Water heating system
JP6066072B2 (en) * 2013-03-04 2017-01-25 三浦工業株式会社 Water heating system
CN104864581A (en) * 2015-05-11 2015-08-26 杭州兴环科技开发有限公司 Method and system for combining fuel conversion system with heat pump and natural cooling device
CN105066219A (en) * 2015-08-04 2015-11-18 湖南同为节能科技有限公司 Total flue gas waste heat recovery system and method for gas boiler or direct-fired machine
CN106091072A (en) * 2016-06-27 2016-11-09 无锡锡能锅炉有限公司 A kind of gas fired-boiler heat reutilization system
KR102151468B1 (en) * 2019-11-19 2020-09-03 대림로얄이앤피(주) Water supply temperature maintenance system of industrial condensing boiler
CN114777103A (en) * 2022-05-25 2022-07-22 西安热工研究院有限公司 Waste heat utilization boiler system and steam turbine power generation system with same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2593197B2 (en) * 1988-08-02 1997-03-26 株式会社日立製作所 Thermal energy recovery method and thermal energy recovery device

Also Published As

Publication number Publication date
JP2010243012A (en) 2010-10-28

Similar Documents

Publication Publication Date Title
JP5339193B2 (en) Exhaust gas heat recovery device
JP5845590B2 (en) Heat pump steam generator
US11365652B2 (en) High efficiency binary geothermal system
JP4624128B2 (en) Compression heat pump system
JP2007232357A (en) Heat pump type steam and warm water generator
JP2010540837A (en) Cascade type organic Rankine cycle (ORC) system using waste heat from reciprocating engine
CN104185717B (en) For reclaiming the system and method for used heat from double; two thermals source
JP2008128254A (en) System having organic rankine cycle circulation for driving at least one inflating device, heat exchanger for driving inflating device, and method for operating at least one inflating device
CN104612853B (en) Heat extraction and recovery device, heating system, steam boiler and deodoration system
JP2010071091A (en) Composite power generation system
JP2006308164A (en) Steam supply system
JP2014173742A (en) Feedwater heating system
US20170363002A1 (en) Co2 power generation system
JP2007023976A (en) Gas turbine generator and gas turbine combined-cycle power generation system
JP2011099640A (en) Hybrid heat pump
CN104619959A (en) System for recovering through an organic rankine cycle (ORC) energy from a plurality of heat sources
JP2012247167A (en) Exhaust-gas-heat recovery device
KR101481010B1 (en) Ocean thermal energy conversion system and operation method thereof
ES2281396T3 (en) TURBINE ASSEMBLY AND OPERATING PROCEDURE OF A TURBINE ASSEMBLY.
JP2011149434A (en) Gas turbine combined power generation system
JP5713824B2 (en) Power generation system
JP2007247585A (en) High moisture content air using gas turbine and high moisture content air using gas turbine cogeneration system
JP6066189B2 (en) Water heating system
JP6666148B2 (en) Electrical installation having a cooled fuel cell with an absorption heat engine
JP6152661B2 (en) Steam generation system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130725

R150 Certificate of patent or registration of utility model

Ref document number: 5339193

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250