JP6066189B2 - Water heating system - Google Patents

Water heating system Download PDF

Info

Publication number
JP6066189B2
JP6066189B2 JP2013043598A JP2013043598A JP6066189B2 JP 6066189 B2 JP6066189 B2 JP 6066189B2 JP 2013043598 A JP2013043598 A JP 2013043598A JP 2013043598 A JP2013043598 A JP 2013043598A JP 6066189 B2 JP6066189 B2 JP 6066189B2
Authority
JP
Japan
Prior art keywords
water
heat
heat exchanger
engine
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013043598A
Other languages
Japanese (ja)
Other versions
JP2014173741A (en
Inventor
和之 大谷
和之 大谷
大下 悟
悟 大下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Co Ltd
Original Assignee
Miura Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co Ltd filed Critical Miura Co Ltd
Priority to JP2013043598A priority Critical patent/JP6066189B2/en
Publication of JP2014173741A publication Critical patent/JP2014173741A/en
Application granted granted Critical
Publication of JP6066189B2 publication Critical patent/JP6066189B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

本発明は、エンジンで駆動されるヒートポンプを用いた給水加温システムに関するものである。   The present invention relates to a feed water heating system using a heat pump driven by an engine.

従来、下記特許文献1に開示されるように、ボイラ(24)の給水タンク(23)への給水を、ヒートポンプ(12)を用いて加温できるシステムが知られている。また、出願人は、この従来技術に比べてヒートポンプの効率をさらに向上した給水加温システムを提案し、既に特許出願を済ませている(特願2012−79191)。   Conventionally, as disclosed in Patent Document 1 below, a system capable of heating water supplied to a water supply tank (23) of a boiler (24) using a heat pump (12) is known. In addition, the applicant has proposed a feed water warming system in which the efficiency of the heat pump is further improved as compared with this prior art, and has already filed a patent application (Japanese Patent Application No. 2012-79191).

特開2010−25431号公報(図2、図3)JP 2010-25431 A (FIGS. 2 and 3)

本発明が解決しようとする課題は、エンジンで駆動されるヒートポンプを用いた給水加温システムにおいて、その効率を向上することにある。また、エンジンからの排熱も有効活用することにある。   The problem to be solved by the present invention is to improve the efficiency of a feed water heating system using a heat pump driven by an engine. Also, the exhaust heat from the engine is used effectively.

本発明は、前記課題を解決するためになされたもので、請求項1に記載の発明は、圧縮機、凝縮器、膨張弁および蒸発器が順次環状に接続されて冷媒を循環させ、前記蒸発器において熱源流体から熱をくみ上げ、前記凝縮器において給水路の水を加温するヒートポンプと、このヒートポンプの圧縮機を駆動するエンジンとを備え、前記給水路の水は、廃熱回収熱交換器、過冷却器および前記凝縮器を順に通され、前記廃熱回収熱交換器は、前記給水路の給水と、前記蒸発器を通過後の熱源流体との間接熱交換器であり、前記過冷却器は、前記給水路の給水と、前記凝縮器から前記膨張弁への冷媒との間接熱交換器であることを特徴とする給水加温システムである。   The present invention has been made to solve the above problems, and the invention according to claim 1 is characterized in that a compressor, a condenser, an expansion valve, and an evaporator are sequentially connected in an annular manner to circulate a refrigerant, and the evaporation. A heat pump that draws up heat from a heat source fluid in the condenser and heats water in the water supply channel in the condenser, and an engine that drives a compressor of the heat pump, and the water in the water supply channel is a waste heat recovery heat exchanger The waste heat recovery heat exchanger is an indirect heat exchanger between the feed water in the feed water channel and the heat source fluid after passing through the evaporator, and is passed through the supercooler and the condenser in order. The water heater is an indirect heat exchanger for supplying water from the water supply channel to the refrigerant from the condenser to the expansion valve.

請求項1に記載の発明によれば、エンジンで駆動されるヒートポンプを用いた給水加温システムにおいて、給水路の給水は、廃熱回収熱交換器、過冷却器および凝縮器を順に通される一方、ヒートポンプの熱源流体は、蒸発器および廃熱回収熱交換器を順に通される。蒸発器を通過後の熱源流体の廃熱や、凝縮器を通過後の冷媒の熱を用いて、凝縮器への給水を予熱しておくことで、ヒートポンプの効率を向上することができる。   According to the first aspect of the present invention, in the feed water heating system using the heat pump driven by the engine, the feed water in the feed water passage is sequentially passed through the waste heat recovery heat exchanger, the subcooler, and the condenser. On the other hand, the heat source fluid of the heat pump is sequentially passed through the evaporator and the waste heat recovery heat exchanger. The efficiency of the heat pump can be improved by preheating the feed water to the condenser using the waste heat of the heat source fluid after passing through the evaporator and the heat of the refrigerant after passing through the condenser.

請求項2に記載の発明は、前記凝縮器を通過後の水を、前記エンジンのジャケットの冷却に用いて加温するジャケット熱交換器をさらに備えることを特徴とする請求項1に記載の給水加温システムである。   Invention of Claim 2 is further equipped with the jacket heat exchanger which heats the water after passing through the said condenser for cooling of the jacket of the said engine, The water supply of Claim 1 characterized by the above-mentioned It is a heating system.

請求項2に記載の発明によれば、給水をヒートポンプで加温した後、エンジンのジャケット冷却時の排熱でさらに加温することができる。   According to invention of Claim 2, after heating water supply with a heat pump, it can further heat with exhaust heat at the time of engine jacket cooling.

請求項3に記載の発明は、前記凝縮器を通過後の水を、前記エンジンからの排ガスで加温する排ガス熱交換器をさらに備えることを特徴とする請求項1または請求項2に記載の給水加温システムである。   Invention of Claim 3 is further equipped with the waste gas heat exchanger which heats the water after passing the said condenser with the waste gas from the said engine, The Claim 1 or Claim 2 characterized by the above-mentioned. This is a water heating system.

請求項3に記載の発明によれば、給水をヒートポンプで加温した後、エンジンからの排ガスでさらに加温することができる。   According to the invention described in claim 3, after heating the feed water with the heat pump, it can be further heated with the exhaust gas from the engine.

請求項4に記載の発明は、前記エンジンは、ガスエンジンであり、前記排ガス熱交換器の出口側の水温に基づき、前記ガスエンジンへの供給ガス量を調整することを特徴とする請求項3に記載の給水加温システムである。   According to a fourth aspect of the present invention, the engine is a gas engine, and the amount of gas supplied to the gas engine is adjusted based on the water temperature on the outlet side of the exhaust gas heat exchanger. It is a feed water heating system described in 1.

請求項4に記載の発明によれば、排ガス熱交換器の出口側の水温に基づき、ガスエンジンへの供給ガス量を調整することで、給水路の通水流量が変化しても、出湯温度を所望に維持することができる。   According to the fourth aspect of the present invention, even if the flow rate of the water supply passage is changed by adjusting the amount of gas supplied to the gas engine based on the water temperature on the outlet side of the exhaust gas heat exchanger, Can be maintained as desired.

請求項5に記載の発明は、前記廃熱回収熱交換器から前記過冷却器への給水を、前記エンジンからの排ガスで加温する給水予熱器をさらに備えることを特徴とする請求項1〜4のいずれか1項に記載の給水加温システムである。   Invention of Claim 5 is further equipped with the feed water preheater which heats the feed water from the said waste heat recovery heat exchanger to the said subcooler with the waste gas from the said engine. The feed water warming system according to any one of 4.

請求項5に記載の発明によれば、ヒートポンプへの給水を、エンジンからの排ガスで予め加温しておくことで、ヒートポンプの効率を向上することができる。   According to invention of Claim 5, the efficiency of a heat pump can be improved by heating the water supply to a heat pump beforehand with the exhaust gas from an engine.

請求項6に記載の発明は、前記廃熱回収熱交換器を通過後の熱源流体を、前記エンジンからの排ガスを用いて中和する中和装置をさらに備えることを特徴とする請求項1〜5のいずれか1項に記載の給水加温システムである。   Invention of Claim 6 is further equipped with the neutralization apparatus which neutralizes the heat source fluid after passing the said waste-heat recovery heat exchanger using the waste gas from the said engine. 5. The feed water warming system according to claim 1.

請求項6に記載の発明によれば、ヒートポンプの熱源流体がたとえばボイラからのブロー水のようにアルカリ性が高くても、排ガスを用いて中和することができる。これにより、熱源流体の排出基準を満足させ、また排ガス中の二酸化炭素を削減することもできる。   According to invention of Claim 6, even if the heat source fluid of a heat pump has high alkalinity like the blow water from a boiler, for example, it can neutralize using waste gas. Thereby, the discharge | emission standard of a heat source fluid is satisfied, and the carbon dioxide in exhaust gas can also be reduced.

さらに、請求項7に記載の発明は、前記廃熱回収熱交換器を通過後の熱源流体の温度に基づき、前記蒸発器への熱源流体の供給流量を調整することを特徴とする請求項1〜6のいずれか1項に記載の給水加温システムである。   Further, the invention according to claim 7 is characterized in that the supply flow rate of the heat source fluid to the evaporator is adjusted based on the temperature of the heat source fluid after passing through the waste heat recovery heat exchanger. It is a feed water heating system of any one of -6.

請求項7に記載の発明によれば、熱源流体の排出温度を所望に調整することができる。   According to the seventh aspect of the invention, the exhaust temperature of the heat source fluid can be adjusted as desired.

本発明によれば、エンジンで駆動されるヒートポンプを用いた給水加温システムにおいて、その効率を向上することができる。また、エンジンからの排熱も有効活用することができる。   ADVANTAGE OF THE INVENTION According to this invention, in the feed water heating system using the heat pump driven with an engine, the efficiency can be improved. Also, exhaust heat from the engine can be effectively utilized.

本発明の給水加温システムの実施例1を示す概略図である。It is the schematic which shows Example 1 of the feed water heating system of this invention. 本発明の給水加温システムの実施例2を示す概略図である。It is the schematic which shows Example 2 of the feed water heating system of this invention. 本発明の給水加温システムの実施例3を示す概略図である。It is the schematic which shows Example 3 of the feed water heating system of this invention.

以下、本発明の具体的実施例を図面に基づいて詳細に説明する。   Hereinafter, specific embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明の給水加温システム1の実施例1を示す概略図である。
本実施例の給水加温システム1は、蒸気圧縮式のヒートポンプ2と、このヒートポンプ2を駆動するエンジン3とを備える。そして、給水加温システム1は、給水路4の水を、ヒートポンプ2で加温すると共に、エンジン3の排熱を用いて加温する。このようにして加温された水は、その用途を特に問わないが、たとえばボイラへの給水として用いられる。
FIG. 1 is a schematic diagram showing a first embodiment of a feed water warming system 1 of the present invention.
The feed water heating system 1 of the present embodiment includes a vapor compression heat pump 2 and an engine 3 that drives the heat pump 2. And the feed water heating system 1 heats the water of the water supply path 4 with the heat pump 2 and warms it using the exhaust heat of the engine 3. The water thus heated is not particularly limited in its use, but is used, for example, as water supply to a boiler.

ヒートポンプ2は、圧縮機5、凝縮器6、膨張弁7および蒸発器8が順次環状に接続されて構成される。そして、圧縮機5は、ガス冷媒を圧縮して高温高圧にする。また、凝縮器6は、圧縮機5からのガス冷媒を凝縮液化する。さらに、膨張弁7は、凝縮器6からの液冷媒を通過させることで、冷媒の圧力と温度とを低下させる。そして、蒸発器8は、膨張弁7からの冷媒の蒸発を図る。   The heat pump 2 is configured by sequentially connecting a compressor 5, a condenser 6, an expansion valve 7 and an evaporator 8 in an annular shape. The compressor 5 compresses the gas refrigerant to a high temperature and a high pressure. The condenser 6 condenses and liquefies the gas refrigerant from the compressor 5. Further, the expansion valve 7 allows the liquid refrigerant from the condenser 6 to pass therethrough, thereby reducing the pressure and temperature of the refrigerant. The evaporator 8 evaporates the refrigerant from the expansion valve 7.

従って、ヒートポンプ2は、蒸発器8において、冷媒が外部から熱を奪って気化する一方、凝縮器6において、冷媒が外部へ放熱して凝縮することになる。これを利用して、ヒートポンプ2は、蒸発器8において熱源流体から熱をくみ上げ、凝縮器6において給水路4の水を加温する。なお、熱源流体は、特に問わないが、本実施例では熱源水(たとえば廃温水)である。   Therefore, in the heat pump 2, the refrigerant takes heat from the outside in the evaporator 8 and vaporizes, while in the condenser 6, the refrigerant dissipates heat to the outside and condenses. Using this, the heat pump 2 draws up heat from the heat source fluid in the evaporator 8 and heats the water in the water supply channel 4 in the condenser 6. The heat source fluid is not particularly limited, but is heat source water (for example, waste hot water) in this embodiment.

ヒートポンプ2は、さらに、凝縮器6と膨張弁7との間に、過冷却器9を備えるのが好ましい。過冷却器9は、凝縮器6から膨張弁7への冷媒と、凝縮器6への給水との間接熱交換器である。過冷却器9により、凝縮器6への給水で、凝縮器6から膨張弁7への冷媒を過冷却することができると共に、凝縮器6から膨張弁7への冷媒で、凝縮器6への給水を加温することができる。ヒートポンプ2の冷媒は、好適には、凝縮器6において潜熱を放出し、過冷却器9において顕熱を放出する。   It is preferable that the heat pump 2 further includes a supercooler 9 between the condenser 6 and the expansion valve 7. The subcooler 9 is an indirect heat exchanger between the refrigerant from the condenser 6 to the expansion valve 7 and the feed water to the condenser 6. The subcooler 9 can supercool the refrigerant from the condenser 6 to the expansion valve 7 by supplying water to the condenser 6, and can supply the refrigerant to the condenser 6 by the refrigerant from the condenser 6 to the expansion valve 7. The water supply can be heated. The refrigerant of the heat pump 2 preferably releases latent heat in the condenser 6 and releases sensible heat in the subcooler 9.

つまり、凝縮器6において、ガス冷媒は凝縮して液冷媒となり、その液冷媒が過冷却器9に供給されて、過冷却器9において、液冷媒はさらに冷却(過冷却)される。冷媒の凝縮用と過冷却用とで熱交換器を分けることで、熱交換器の設計が容易となり、熱交換器を簡易な構造で小型化でき、コストの削減を図ることができる。また、汎用の熱交換器の利用も可能となる。   That is, in the condenser 6, the gas refrigerant is condensed into a liquid refrigerant, and the liquid refrigerant is supplied to the subcooler 9, and the liquid refrigerant is further cooled (supercooled) in the subcooler 9. By separating the heat exchangers for refrigerant condensing and supercooling, the heat exchanger can be easily designed, the heat exchanger can be downsized with a simple structure, and the cost can be reduced. In addition, a general-purpose heat exchanger can be used.

その他、ヒートポンプ2には、圧縮機5の入口側にアキュムレータを設置したり、圧縮機5の出口側に油分離器を設置したり、凝縮器6の出口側(凝縮器6と過冷却器9との間)に受液器を設置したりしてもよい。   In addition, in the heat pump 2, an accumulator is installed on the inlet side of the compressor 5, an oil separator is installed on the outlet side of the compressor 5, or the outlet side of the condenser 6 (the condenser 6 and the subcooler 9). A receiver may be installed between the two).

給水加温システム1は、さらに、廃熱回収熱交換器10を備えるのが好ましい。この廃熱回収熱交換器10は、過冷却器9への給水と、蒸発器8を通過後の熱源水との間接熱交換器である。従って、給水路4の水は、給水ポンプ11により、廃熱回収熱交換器10、過冷却器9および凝縮器6へと順に通されることになる。   It is preferable that the feed water heating system 1 further includes a waste heat recovery heat exchanger 10. The waste heat recovery heat exchanger 10 is an indirect heat exchanger for supplying water to the subcooler 9 and heat source water after passing through the evaporator 8. Accordingly, the water in the water supply channel 4 is passed through the waste heat recovery heat exchanger 10, the subcooler 9, and the condenser 6 in order by the water supply pump 11.

一方、熱源水は、熱源供給路12を介して、蒸発器8を通された後、廃熱回収熱交換器10に通される。本実施例では、熱源供給路12には、蒸発器8より上流側に熱源供給ポンプ13が設けられており、この熱源供給ポンプ13を作動させることで、熱源水を、蒸発器8と廃熱回収熱交換器10とに順に通すことができる。   On the other hand, the heat source water is passed through the evaporator 8 via the heat source supply path 12 and then passed to the waste heat recovery heat exchanger 10. In the present embodiment, the heat source supply path 12 is provided with a heat source supply pump 13 on the upstream side of the evaporator 8, and the heat source supply pump 13 is operated to convert the heat source water into the evaporator 8 and waste heat. It can be passed through the recovered heat exchanger 10 in order.

蒸発器8を先に通した後に廃熱回収熱交換器10に熱源水を通すことで、廃熱回収熱交換器10を先に通した後に蒸発器8に熱源水を通す場合と比較して、蒸発器8における冷媒の蒸発温度(つまり蒸発圧力)を高めることができ、圧縮機5の圧力比を小さくすることができ、省エネルギーを図ることができる。   By passing the heat source water through the waste heat recovery heat exchanger 10 after passing the evaporator 8 first, compared with the case where the heat source water is passed through the evaporator 8 after passing the waste heat recovery heat exchanger 10 first. The evaporation temperature (that is, the evaporation pressure) of the refrigerant in the evaporator 8 can be increased, the pressure ratio of the compressor 5 can be reduced, and energy can be saved.

エンジン3は、ヒートポンプ2の圧縮機5を駆動する。図示例では、エンジン3の動力は、ベルト14を介して圧縮機5を駆動する。エンジン3は、その構成を特に問わないが、たとえばガスエンジンまたはディーゼルエンジンであり、駆動に伴い排ガスを排出する。また、本実施例のエンジン3は、後述するように、ジャケット15を備える水冷式とされている。   The engine 3 drives the compressor 5 of the heat pump 2. In the illustrated example, the power of the engine 3 drives the compressor 5 via the belt 14. The configuration of the engine 3 is not particularly limited. For example, the engine 3 is a gas engine or a diesel engine, and exhausts exhaust gas when driven. Further, the engine 3 of this embodiment is a water-cooled type including a jacket 15 as will be described later.

給水加温システム1は、好ましくは、エンジン3のジャケット冷却水や排ガスから熱回収して、給水路4の水を加温可能に構成される。そのために、ジャケット熱交換器16と排ガス熱交換器17との内、一方または双方を備えるのが好ましい。   The feed water heating system 1 is preferably configured to be able to heat the water in the feed water channel 4 by recovering heat from jacket cooling water or exhaust gas of the engine 3. Therefore, it is preferable to provide one or both of the jacket heat exchanger 16 and the exhaust gas heat exchanger 17.

ジャケット熱交換器16は、凝縮器6を通過後の水を、エンジン3のジャケット15の冷却に用いて加温するための間接熱交換器である。この際、凝縮器6からの水は、エンジン3のジャケット15に直接に流してもよい(つまりジャケット15自体をジャケット熱交換器16としてもよい)が、ジャケット15とジャケット熱交換器16との間に液体(ジャケット冷却水)を循環させ、その循環液と給水路4の水とをジャケット熱交換器16で熱交換するのがよい。これにより、循環液で、凝縮器6からの給水が加温される。逆に、凝縮器6からの給水により、循環液は冷却され、ひいてはジャケット15やエンジン3の冷却が図られる。   The jacket heat exchanger 16 is an indirect heat exchanger for heating the water after passing through the condenser 6 by using it for cooling the jacket 15 of the engine 3. At this time, the water from the condenser 6 may flow directly to the jacket 15 of the engine 3 (that is, the jacket 15 itself may be used as the jacket heat exchanger 16). It is preferable to circulate a liquid (jacket cooling water) between them and exchange heat between the circulating liquid and the water in the water supply channel 4 by the jacket heat exchanger 16. Thereby, the feed water from the condenser 6 is heated with the circulating fluid. On the contrary, the circulating fluid is cooled by the water supply from the condenser 6, and consequently the jacket 15 and the engine 3 are cooled.

排ガス熱交換器17は、エンジン3からの排ガス路18に設けられ、ジャケット熱交換器16を通過後の水を、エンジン3からの排ガスで加温する間接熱交換器である。ジャケット熱交換器16で加温後の給水は、排ガス熱交換器17へ供給され、エンジン3からの排ガスと熱交換してさらに加温され、温水使用設備(たとえばボイラ給水タンク)へ送られる。   The exhaust gas heat exchanger 17 is an indirect heat exchanger that is provided in the exhaust gas path 18 from the engine 3 and warms the water after passing through the jacket heat exchanger 16 with the exhaust gas from the engine 3. The feed water heated by the jacket heat exchanger 16 is supplied to the exhaust gas heat exchanger 17, further heated by exchanging heat with the exhaust gas from the engine 3, and sent to a hot water use facility (for example, a boiler feed water tank).

給水路4には排ガス熱交換器17の出口側に第一温度センサ19を設けておき、この第一温度センサ19の検出温度に基づきエンジン3の出力を制御してもよい。本実施例では、エンジン3はガスエンジンとされ、第一温度センサ19の検出温度に基づきガスエンジン3への供給ガス量が調整される。排ガス熱交換器17の出口側の水温に基づき、ガスエンジン3への供給ガス量を調整することで、給水路4の通水流量が変化しても、出湯温度を所望に維持することができる。   A first temperature sensor 19 may be provided on the outlet side of the exhaust gas heat exchanger 17 in the water supply path 4, and the output of the engine 3 may be controlled based on the temperature detected by the first temperature sensor 19. In this embodiment, the engine 3 is a gas engine, and the amount of gas supplied to the gas engine 3 is adjusted based on the temperature detected by the first temperature sensor 19. By adjusting the amount of gas supplied to the gas engine 3 based on the water temperature on the outlet side of the exhaust gas heat exchanger 17, the temperature of the tapping water can be maintained as desired even if the water flow rate of the water supply channel 4 changes. .

また、廃熱回収熱交換器10を通過後の熱源水の温度に基づき、蒸発器8への熱源水の供給流量を調整可能としてもよい。具体的には、熱源供給路12には廃熱回収熱交換器10の出口側に第二温度センサ20を設けておき、この第二温度センサ20の検出温度に基づき熱源供給ポンプ13をインバータ制御するか、熱源供給路12に設けた弁の開度を調整すればよい。これにより、熱源水の排出温度を所望に調整することができる。   The supply flow rate of the heat source water to the evaporator 8 may be adjustable based on the temperature of the heat source water after passing through the waste heat recovery heat exchanger 10. Specifically, a second temperature sensor 20 is provided on the outlet side of the waste heat recovery heat exchanger 10 in the heat source supply path 12, and the heat source supply pump 13 is inverter-controlled based on the detected temperature of the second temperature sensor 20. Or the opening degree of the valve provided in the heat source supply path 12 may be adjusted. Thereby, the discharge temperature of the heat source water can be adjusted as desired.

図2は、本発明の給水加温システム1の実施例2を示す概略図である。本実施例2の給水加温システム1は、基本的には前記実施例1と同様である。そこで、以下においては、両者の異なる点を中心に説明し、対応する箇所には同一の符号を付して説明する。   FIG. 2 is a schematic diagram showing Example 2 of the feed water heating system 1 of the present invention. The feed water warming system 1 of the second embodiment is basically the same as that of the first embodiment. Therefore, in the following description, differences between the two will be mainly described, and corresponding portions will be described with the same reference numerals.

本実施例2では、廃熱回収熱交換器10から過冷却器9への給水路4に、給水予熱器21をさらに備える。この給水予熱器21は、廃熱回収熱交換器10から過冷却器9への給水と、エンジン3からの排ガスとの間接熱交換器である。給水予熱器21へ供給する排ガスは、実線で示すように、排ガス熱交換器17を通過後の排ガスでもよいし、二点鎖線で示すように、排ガス路18の内、排ガス熱交換器17より上流から分岐させて供給してもよい。いずれにしても、ヒートポンプ2への給水を、エンジン3からの排ガスで予め加温しておくことで、ヒートポンプ2の効率を向上することができる。   In the second embodiment, the feed water preheater 21 is further provided in the feed water path 4 from the waste heat recovery heat exchanger 10 to the supercooler 9. The feed water preheater 21 is an indirect heat exchanger between the feed water from the waste heat recovery heat exchanger 10 to the supercooler 9 and the exhaust gas from the engine 3. The exhaust gas supplied to the feed water preheater 21 may be exhaust gas after passing through the exhaust gas heat exchanger 17 as indicated by a solid line, or from the exhaust gas heat exchanger 17 in the exhaust gas path 18 as indicated by a two-dot chain line. You may branch and supply from upstream. In any case, the efficiency of the heat pump 2 can be improved by preheating the water supply to the heat pump 2 with the exhaust gas from the engine 3.

本実施例2においても、前記実施例1と同様に、排ガス熱交換器17の出口側の水温に基づき、エンジン3への供給ガス量を調整してもよい。また、前記実施例1と同様に、廃熱回収熱交換器10の出口側の熱源水温度に基づき、蒸発器8への熱源水の供給流量を調整してもよい。その他の構成は、前記実施例1と同様のため、説明を省略する。   Also in the second embodiment, similarly to the first embodiment, the amount of gas supplied to the engine 3 may be adjusted based on the water temperature on the outlet side of the exhaust gas heat exchanger 17. Similarly to the first embodiment, the supply flow rate of the heat source water to the evaporator 8 may be adjusted based on the heat source water temperature on the outlet side of the waste heat recovery heat exchanger 10. Since other configurations are the same as those of the first embodiment, description thereof is omitted.

図3は、本発明の給水加温システム1の実施例3を示す概略図である。本実施例3の給水加温システム1は、基本的には前記実施例1と同様である。そこで、以下においては、両者の異なる点を中心に説明し、対応する箇所には同一の符号を付して説明する。   FIG. 3 is a schematic view showing a third embodiment of the feed water warming system 1 of the present invention. The feed water warming system 1 of the third embodiment is basically the same as the first embodiment. Therefore, in the following description, differences between the two will be mainly described, and corresponding portions will be described with the same reference numerals.

本実施例3では、廃熱回収熱交換器10を通過後の熱源水を、エンジン3からの排ガスを用いて中和する中和装置22をさらに備える。中和装置22には、廃熱回収熱交換器10を通過後の熱源水が通されると共に、排ガス熱交換器17を通過後の排ガスが供給される。   In the third embodiment, the heat source water that has passed through the waste heat recovery heat exchanger 10 is further provided with a neutralizer 22 that neutralizes the exhaust water from the engine 3. The neutralization device 22 is supplied with the heat source water after passing through the waste heat recovery heat exchanger 10 and also supplied with the exhaust gas after passing through the exhaust gas heat exchanger 17.

たとえば、熱源水がボイラのブロー水のような高アルカリ水の場合、そのままでは規定の排水基準を満たさない。そこで、排ガス中の二酸化炭素を中和剤として用いることで、中和装置22において熱源水を排ガスで中和させ、排出基準を満足させることができる。また、これにより、排ガス中の二酸化炭素量を削減することもできる。   For example, when the heat source water is highly alkaline water such as boiler blow water, the specified drainage standard is not satisfied as it is. Therefore, by using carbon dioxide in the exhaust gas as a neutralizing agent, the heat source water can be neutralized with the exhaust gas in the neutralizing device 22 and the emission standard can be satisfied. Thereby, the amount of carbon dioxide in the exhaust gas can also be reduced.

本実施例3においても、前記実施例1と同様に、排ガス熱交換器17の出口側の水温に基づき、エンジン3への供給ガス量を調整してもよい。また、本実施例3においても、前記実施例2と同様に、給水予熱器21を設置することができる。その場合、給水予熱器21を通過後の排ガスを用いて、廃熱回収熱交換器10を通過後の熱源水を中和すればよい。その他の構成は、前記実施例1と同様のため、説明を省略する。   Also in the third embodiment, similarly to the first embodiment, the amount of gas supplied to the engine 3 may be adjusted based on the water temperature on the outlet side of the exhaust gas heat exchanger 17. Moreover, also in the present Example 3, the feed water preheater 21 can be installed similarly to the said Example 2. FIG. In that case, the heat source water after passing through the waste heat recovery heat exchanger 10 may be neutralized using the exhaust gas after passing through the feed water preheater 21. Since other configurations are the same as those of the first embodiment, description thereof is omitted.

本発明の給水加温システム1は、前記実施例の構成に限らず、適宜変更可能である。たとえば、前記実施例では、ヒートポンプ2の熱源として熱源水を用いた例について説明したが、ヒートポンプ2の熱源流体として、熱源水に限らず、空気や排ガスなど各種の流体を用いることができる。但し、熱源流体は、蒸発器8においてヒートポンプ2の冷媒に熱(顕熱)を与えつつ自身は温度低下を伴い、その後、廃熱回収熱交換器10において給水に熱(顕熱)を与えつつ自身は温度低下を伴う流体が好ましい。   The feed water warming system 1 of the present invention is not limited to the configuration of the above embodiment, and can be changed as appropriate. For example, in the above-described embodiment, an example in which heat source water is used as the heat source of the heat pump 2 has been described. However, the heat source fluid of the heat pump 2 is not limited to heat source water, and various fluids such as air and exhaust gas can be used. However, while the heat source fluid gives heat (sensible heat) to the refrigerant of the heat pump 2 in the evaporator 8, the heat source fluid itself falls in temperature, and then gives heat (sensible heat) to the feed water in the waste heat recovery heat exchanger 10. The fluid itself with a temperature drop is preferable.

1 給水加温システム
2 ヒートポンプ
3 エンジン
4 給水路
5 圧縮機
6 凝縮器
7 膨張弁
8 蒸発器
9 過冷却器
10 廃熱回収熱交換器
11 給水ポンプ
12 熱源供給路
13 熱源供給ポンプ
14 ベルト
15 ジャケット
16 ジャケット熱交換器
17 排ガス熱交換器
18 排ガス路
19 第一温度センサ
20 第二温度センサ
21 給水予熱器
22 中和装置
DESCRIPTION OF SYMBOLS 1 Feed water heating system 2 Heat pump 3 Engine 4 Feed water path 5 Compressor 6 Condenser 7 Expansion valve 8 Evaporator 9 Subcooler 10 Waste heat recovery heat exchanger 11 Feed water pump 12 Heat source supply path 13 Heat source supply pump 14 Belt 15 Jacket 16 Jacket heat exchanger 17 Exhaust gas heat exchanger 18 Exhaust gas path 19 First temperature sensor 20 Second temperature sensor 21 Feed water preheater 22 Neutralizer

Claims (7)

圧縮機、凝縮器、膨張弁および蒸発器が順次環状に接続されて冷媒を循環させ、前記蒸発器において熱源流体から熱をくみ上げ、前記凝縮器において給水路の水を加温するヒートポンプと、
このヒートポンプの圧縮機を駆動するエンジンとを備え、
前記給水路の水は、廃熱回収熱交換器、過冷却器および前記凝縮器を順に通され、
前記廃熱回収熱交換器は、前記給水路の給水と、前記蒸発器を通過後の熱源流体との間接熱交換器であり、
前記過冷却器は、前記給水路の給水と、前記凝縮器から前記膨張弁への冷媒との間接熱交換器である
ことを特徴とする給水加温システム。
A compressor, a condenser, an expansion valve and an evaporator sequentially connected in a ring to circulate the refrigerant, draw up heat from a heat source fluid in the evaporator, and heat the water in the water supply channel in the condenser;
An engine that drives the compressor of this heat pump,
The water in the water supply channel is passed through a waste heat recovery heat exchanger, a supercooler, and the condenser in order,
The waste heat recovery heat exchanger is an indirect heat exchanger between the water supply of the water supply channel and the heat source fluid after passing through the evaporator,
The subcooler is an indirect heat exchanger for supplying water from the water supply channel to the refrigerant from the condenser to the expansion valve.
前記凝縮器を通過後の水を、前記エンジンのジャケットの冷却に用いて加温するジャケット熱交換器をさらに備える
ことを特徴とする請求項1に記載の給水加温システム。
The feed water heating system according to claim 1, further comprising a jacket heat exchanger that heats the water after passing through the condenser by using it for cooling the jacket of the engine.
前記凝縮器を通過後の水を、前記エンジンからの排ガスで加温する排ガス熱交換器をさらに備える
ことを特徴とする請求項1または請求項2に記載の給水加温システム。
The feed water warming system according to claim 1, further comprising an exhaust gas heat exchanger that heats water after passing through the condenser with exhaust gas from the engine.
前記エンジンは、ガスエンジンであり、
前記排ガス熱交換器の出口側の水温に基づき、前記ガスエンジンへの供給ガス量を調整する
ことを特徴とする請求項3に記載の給水加温システム。
The engine is a gas engine;
The feed water heating system according to claim 3, wherein an amount of gas supplied to the gas engine is adjusted based on a water temperature on an outlet side of the exhaust gas heat exchanger.
前記廃熱回収熱交換器から前記過冷却器への給水を、前記エンジンからの排ガスで加温する給水予熱器をさらに備える
ことを特徴とする請求項1〜4のいずれか1項に記載の給水加温システム。
The water supply preheater which heats the water supply from the waste heat recovery heat exchanger to the supercooler with the exhaust gas from the engine is further provided. Water heating system.
前記廃熱回収熱交換器を通過後の熱源流体を、前記エンジンからの排ガスを用いて中和する中和装置をさらに備える
ことを特徴とする請求項1〜5のいずれか1項に記載の給水加温システム。
The neutralization apparatus which neutralizes the heat source fluid after passing through the waste heat recovery heat exchanger using the exhaust gas from the engine is further provided. Water heating system.
前記廃熱回収熱交換器を通過後の熱源流体の温度に基づき、前記蒸発器への熱源流体の供給流量を調整する
ことを特徴とする請求項1〜6のいずれか1項に記載の給水加温システム。
The supply water according to any one of claims 1 to 6, wherein a supply flow rate of the heat source fluid to the evaporator is adjusted based on a temperature of the heat source fluid after passing through the waste heat recovery heat exchanger. Heating system.
JP2013043598A 2013-03-06 2013-03-06 Water heating system Expired - Fee Related JP6066189B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013043598A JP6066189B2 (en) 2013-03-06 2013-03-06 Water heating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013043598A JP6066189B2 (en) 2013-03-06 2013-03-06 Water heating system

Publications (2)

Publication Number Publication Date
JP2014173741A JP2014173741A (en) 2014-09-22
JP6066189B2 true JP6066189B2 (en) 2017-01-25

Family

ID=51695153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013043598A Expired - Fee Related JP6066189B2 (en) 2013-03-06 2013-03-06 Water heating system

Country Status (1)

Country Link
JP (1) JP6066189B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109405347B (en) * 2018-12-05 2021-08-06 江苏天舒电器有限公司 Control method of multi-stage heat utilization heat pump control system for bathroom
CN114576693B (en) * 2020-11-30 2024-02-27 上海本家空调系统有限公司 Gas heat pump heating system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60101228A (en) * 1983-11-08 1985-06-05 Yamaha Motor Co Ltd Engine-driven heat pump type hot water supply device
JPS6196373A (en) * 1984-10-16 1986-05-15 富士重工業株式会社 Engine-heat pump device
JP2012017925A (en) * 2010-07-08 2012-01-26 Miura Co Ltd Steam system
JP2012037095A (en) * 2010-08-04 2012-02-23 Osaka Gas Co Ltd Device for jointly supplying steam and cold water

Also Published As

Publication number Publication date
JP2014173741A (en) 2014-09-22

Similar Documents

Publication Publication Date Title
JP5339193B2 (en) Exhaust gas heat recovery device
JP4972421B2 (en) Heat pump steam / hot water generator
JP5845590B2 (en) Heat pump steam generator
RU2015130837A (en) Rankine cycle system and corresponding method
US20130025277A1 (en) Waste heat regeneration system
RU2013106154A (en) WASTE HEAT DISPOSAL SYSTEM WITH PARTIAL RECOVERY
JP2014173742A (en) Feedwater heating system
US20110056227A1 (en) Heat recovery system of plant using heat pump
JP4471992B2 (en) Multi-source heat pump steam / hot water generator
JP3883838B2 (en) Absorption refrigerator
RU2007123710A (en) HEATING INSTALLATION AND METHOD OF HEATING
JP2010038391A (en) Heat pump type steam generating device
JP2013011259A (en) Rankine cycle
JP2023052373A (en) Device for lubricating bearing accepting rotary shaft of element of closed circuit operating on rankine cycle and method using such device
JP6066189B2 (en) Water heating system
JP2012247167A (en) Exhaust-gas-heat recovery device
US11649971B2 (en) Heat pump boiler
JP6152661B2 (en) Steam generation system
JP2018017204A (en) Rankine cycle system of vehicle
JP2016151191A (en) Power generation system
JP5153664B2 (en) Waste heat regeneration system
JP2013044239A (en) Exhaust heat recovery system for vehicle
JP2017089973A (en) Waste heat recovery system and cogeneration system
JP6103203B2 (en) Water heating system
JP2016056785A (en) Vehicular waste heat recovery device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161214

R150 Certificate of patent or registration of utility model

Ref document number: 6066189

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees