WO2015064347A1 - Vapor generation device and vapor generation heat pump - Google Patents

Vapor generation device and vapor generation heat pump Download PDF

Info

Publication number
WO2015064347A1
WO2015064347A1 PCT/JP2014/077218 JP2014077218W WO2015064347A1 WO 2015064347 A1 WO2015064347 A1 WO 2015064347A1 JP 2014077218 W JP2014077218 W JP 2014077218W WO 2015064347 A1 WO2015064347 A1 WO 2015064347A1
Authority
WO
WIPO (PCT)
Prior art keywords
evaporator
gas
liquid separator
water
refrigerant
Prior art date
Application number
PCT/JP2014/077218
Other languages
French (fr)
Japanese (ja)
Inventor
拓人 小池
祐輔 大西
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to JP2015544909A priority Critical patent/JP5967315B2/en
Publication of WO2015064347A1 publication Critical patent/WO2015064347A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/16Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being hot liquid or hot vapour, e.g. waste liquid, waste vapour
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/26Steam-separating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/34Adaptations of boilers for promoting water circulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

The present invention relates to a vapor generation device and a vapor generation heat pump. A vapor generation device (10) is configured such that the upper part of a gas-liquid separator (16) and the upper part of an evaporator (20) is connected by upper piping (22) and the lower part of the gas-liquid separator (16) and the lower part of the evaporator (20) are connected by lower piping (24), to thereby form a thermo-siphon circuit. The thermo-siphon circuit supplies water within the gas-liquid separator (16) to the evaporator (20) through the lower piping (24), causes the water to be evaporated by the heat exchange between the water and a refrigerant flowing through the evaporator (20), supplies vapor generated by the evaporator (20) to the gas-liquid separator (16) through the upper piping (22), and delivers the vapor through the gas-liquid separator (16). The positional relationship between the evaporator (20) and the gas-liquid separator (16) is specified so that the position of the vapor outlet of the evaporator (20) is located below the surface of the water stored within the gas-liquid separator (16).

Description

蒸気生成装置及び蒸気生成ヒートポンプSteam generating apparatus and steam generating heat pump
 本発明は、サーモサイフォン現象を利用して気液分離器から蒸発器へと水を循環させて蒸気を生成する蒸気生成装置及び該蒸気生成装置を備えた蒸気生成ヒートポンプに関する。 The present invention relates to a steam generation device that generates steam by circulating water from a gas-liquid separator to an evaporator using a thermosiphon phenomenon, and a steam generation heat pump including the steam generation device.
 例えば、発電設備や工業プラント等に備えられる熱機関や固体酸化物形燃料電池等では蒸気が必要となるため、通常、蒸気生成装置が併設される。 For example, since a steam is required in a heat engine, a solid oxide fuel cell, or the like provided in a power generation facility or an industrial plant, a steam generation device is usually provided.
 このような蒸気生成装置として、特許文献1には、冷媒が流通する伝熱コアを有する蒸発器と、水を貯留する気液分離器とを並設し、これら蒸発器と気液分離器の上部と下部とをそれぞれ上部配管と下部配管とで連通させたサーモサイフォン現象を利用した蒸気発生装置が開示されている。この蒸気生成装置は、サーモサイフォン現象によって気液分離器内の水を下部配管を通じて蒸発器へと循環させ蒸気を生成し、生成した蒸気を上部配管から気液分離器へと供給した後、外部機器へと送り出す構成となっている。 As such a steam generation device, Patent Document 1 discloses that an evaporator having a heat transfer core through which a refrigerant flows and a gas-liquid separator that stores water are arranged side by side. A steam generator using a thermosiphon phenomenon in which an upper part and a lower part are communicated with each other by an upper pipe and a lower pipe is disclosed. This steam generator generates water by circulating water in the gas-liquid separator to the evaporator through the lower pipe due to the thermosyphon phenomenon, and supplies the generated steam from the upper pipe to the gas-liquid separator. It is configured to send out to the equipment.
特開2010-169364号公報JP 2010-169364 A
 上記特許文献1に記載されているような従来構成の蒸気生成装置では、気液分離器と蒸発器とが高さ方向で略同位置に設置しているため、気液分離器から蒸発器へと循環される水の流量が常時一定となり、制御はできない。このため、蒸発器での負荷が変動した場合であっても供給される水の流量は変わらないため、蒸発器での熱交換性能を向上させることが難しく、蒸気の生成効率も低いものとなる。 In the steam generation device having the conventional configuration as described in Patent Document 1, the gas-liquid separator and the evaporator are installed at substantially the same position in the height direction, so that the gas-liquid separator is transferred to the evaporator. The flow rate of the circulated water is always constant and cannot be controlled. For this reason, since the flow rate of the supplied water does not change even when the load on the evaporator fluctuates, it is difficult to improve the heat exchange performance in the evaporator, and the steam generation efficiency is low. .
 そこで、気液分離器から蒸発器へと水を供給する下部配管の途中に循環ポンプを設置し、蒸発器に供給される水の流量を制御することも考えられるが、循環ポンプの駆動のための動力が必要となり、また循環ポンプによって装置全体が大型化及び複雑化し、コストも増加する。 Therefore, it is conceivable to install a circulation pump in the middle of the lower pipe that supplies water from the gas-liquid separator to the evaporator, and to control the flow rate of the water supplied to the evaporator. In addition, the entire apparatus becomes larger and complicated by the circulation pump, and the cost also increases.
 本発明は、上記従来技術の課題を考慮してなされたものであり、蒸発器へと循環される水の流量を制御することができ、蒸気の生成効率を向上させることができる蒸気生成装置及び該蒸気生成装置を備えた蒸気生成ヒートポンプを提供することを目的とする。 The present invention has been made in consideration of the above-described problems of the prior art, can control the flow rate of water circulated to the evaporator, and can improve the steam generation efficiency and It aims at providing the steam generation heat pump provided with this steam generation device.
 本発明に係る蒸気生成装置は、水を貯留する気液分離器と、冷媒が流通する蒸発器とを備え、前記気液分離器と前記蒸発器の上部及び下部をそれぞれ上部配管と下部配管で連通することにより、気液分離器内の水を前記下部配管を介して蒸発器に供給すると共に前記冷媒との熱交換によって蒸発させ、該蒸発器で生成した蒸気を前記上部配管を介して気液分離器に供給すると共に、該気液分離器から送り出すサーモサイフォン回路を形成した蒸気生成装置であって、前記蒸発器での蒸気の出口が、前記気液分離器内に貯留された水の水面よりも低位置となるように、前記蒸発器と前記気液分離器の高さ方向の位置関係を規定したことを特徴とする。 A steam generator according to the present invention includes a gas-liquid separator that stores water and an evaporator through which a refrigerant flows, and the upper and lower parts of the gas-liquid separator and the evaporator are an upper pipe and a lower pipe, respectively. By communicating, the water in the gas-liquid separator is supplied to the evaporator through the lower pipe and evaporated by heat exchange with the refrigerant, and the vapor generated in the evaporator is vaporized through the upper pipe. A steam generation device that forms a thermosiphon circuit that is supplied to the liquid separator and is sent out from the gas-liquid separator, wherein an outlet of the steam in the evaporator is the water stored in the gas-liquid separator. The positional relationship in the height direction of the evaporator and the gas-liquid separator is defined so as to be lower than the water surface.
 また、本発明に係る蒸気生成ヒートポンプは、水を貯留する気液分離器と、冷媒が流通する蒸発器とを有し、前記気液分離器と前記蒸発器の上部及び下部をそれぞれ上部配管と下部配管で連通することにより、気液分離器内の水を前記下部配管を介して蒸発器に供給すると共に前記冷媒との熱交換によって蒸発させ、該蒸発器で生成した蒸気を前記上部配管を介して気液分離器に供給すると共に、該気液分離器から送り出すサーモサイフォン回路を形成した蒸気生成装置と、圧縮機と、該圧縮機の吐出側に接続される冷媒凝縮器と、該冷媒凝縮器の出口側に接続される膨張弁と、該膨張弁の出口側に接続される冷媒蒸発器とを有し、前記冷媒を循環させる冷媒サイクル装置とを備えた蒸気生成ヒートポンプであって、前記蒸発器として前記冷媒サイクル装置の冷媒凝縮器を用い、前記蒸発器での蒸気の出口が、前記気液分離器内に貯留された水の水面よりも低位置となるように、前記蒸発器と前記気液分離器の高さ方向の位置関係を規定したことを特徴とする。 The steam generation heat pump according to the present invention includes a gas-liquid separator that stores water and an evaporator through which a refrigerant flows, and the upper and lower portions of the gas-liquid separator and the evaporator are respectively connected to an upper pipe. By communicating with the lower pipe, the water in the gas-liquid separator is supplied to the evaporator through the lower pipe and evaporated by heat exchange with the refrigerant, and the vapor generated by the evaporator is passed through the upper pipe. A steam generator that forms a thermosiphon circuit that is supplied to the gas-liquid separator through the gas-liquid separator and is sent out from the gas-liquid separator, a compressor, a refrigerant condenser connected to the discharge side of the compressor, and the refrigerant A steam generation heat pump comprising: an expansion valve connected to an outlet side of the condenser; a refrigerant evaporator connected to an outlet side of the expansion valve; and a refrigerant cycle device for circulating the refrigerant, As the evaporator Using the refrigerant condenser of the medium cycle device, the evaporator and the gas-liquid separation are so arranged that the outlet of the vapor in the evaporator is positioned lower than the surface of the water stored in the gas-liquid separator. The positional relationship in the height direction of the vessel is defined.
 このような構成によれば、サーモサイフォン現象を利用して水を循環する回路構成において、蒸発器と気液分離器との間に高低差を設け、蒸発器を気液分離器よりも下方に配置することにより、気液分離器内の水位を変化させるだけで、気液分離器から蒸発器へと下部配管を介して循環供給される水の流量を変化させることができる。これにより、蒸発器での負荷(熱交換量)が変化した場合にも、蒸発器での熱交換効率を最適に制御して蒸気の生成効率を向上させ、生成される蒸気量も増加することができ、さらに蒸発器の小型化も可能となる。 According to such a configuration, in a circuit configuration in which water is circulated using the thermosiphon phenomenon, a height difference is provided between the evaporator and the gas-liquid separator, and the evaporator is placed below the gas-liquid separator. By disposing, the flow rate of water circulated and supplied from the gas-liquid separator to the evaporator via the lower pipe can be changed only by changing the water level in the gas-liquid separator. As a result, even when the load (heat exchange amount) in the evaporator changes, the heat exchange efficiency in the evaporator is optimally controlled to improve the steam generation efficiency and the amount of steam generated is also increased. In addition, the evaporator can be miniaturized.
 この場合、前記下部配管又は前記気液分離器には、内部に水を供給するための給水配管が接続されており、前記蒸発器での水と冷媒との間の熱交換量に基づき、前記給水配管からの給水量を変化させ、前記気液分離器内の水位を制御するとよい。 In this case, a water supply pipe for supplying water to the inside is connected to the lower pipe or the gas-liquid separator, and based on the amount of heat exchange between the water and the refrigerant in the evaporator, It is preferable to control the water level in the gas-liquid separator by changing the amount of water supplied from the water supply pipe.
 前記熱交換量として、前記蒸発器への前記冷媒からの入力熱量を用いてもよい。また、前記熱交換量として、前記気液分離器から送り出される蒸気の流量を用いてもよい。 The amount of heat input from the refrigerant to the evaporator may be used as the amount of heat exchange. Moreover, you may use the flow volume of the vapor | steam sent out from the said gas-liquid separator as said heat exchange amount.
 本発明によれば、簡素な構成で気液分離器から蒸発器へと循環供給される水の流量を変化させることができる。これにより、蒸発器での負荷が変化した場合にも、蒸発器での熱交換効率を最適に制御し、蒸気の生成効率を向上させることができる。 According to the present invention, the flow rate of water circulated and supplied from the gas-liquid separator to the evaporator can be changed with a simple configuration. Thereby, even when the load on the evaporator changes, the heat exchange efficiency in the evaporator can be optimally controlled, and the steam generation efficiency can be improved.
図1は、本発明の一実施形態に係る蒸気生成装置を備えた蒸気生成ヒートポンプの全体構成図である。FIG. 1 is an overall configuration diagram of a steam generation heat pump including a steam generation apparatus according to an embodiment of the present invention. 図2は、図1に示す蒸気生成装置の構成図である。FIG. 2 is a configuration diagram of the steam generator shown in FIG. 図3は、蒸発器への入力熱量と気液分離器の水位との相関関係のデータの一例を示す表である。FIG. 3 is a table showing an example of correlation data between the amount of heat input to the evaporator and the water level of the gas-liquid separator.
 以下、本発明に係る蒸気生成装置について好適な実施の形態を挙げ、添付の図面を参照しながら詳細に説明する。 Hereinafter, preferred embodiments of the steam generating apparatus according to the present invention will be described in detail with reference to the accompanying drawings.
 図1は、本発明の一実施形態に係る蒸気生成装置10を備えた蒸気生成ヒートポンプ12の全体構成図であり、図2は、図1に示す蒸気生成装置10の構成図である。 FIG. 1 is an overall configuration diagram of a steam generation heat pump 12 including a steam generation device 10 according to an embodiment of the present invention, and FIG. 2 is a configuration diagram of the steam generation device 10 shown in FIG.
 図1に示すように、蒸気生成ヒートポンプ12は、水を蒸発させて蒸気を生成し、外部へと送り出す蒸気生成装置10と、蒸気生成装置10での蒸気生成のための熱源となる冷媒サイクル装置14と、システムの制御を行うコントローラ15(図2参照)とを備える。 As shown in FIG. 1, a steam generation heat pump 12 generates a steam by evaporating water and sends the steam to the outside, and a refrigerant cycle apparatus serving as a heat source for generating steam in the steam generation apparatus 10 14 and a controller 15 (see FIG. 2) for controlling the system.
 先ず、蒸気生成装置10は、容器内部に水を貯留する気液分離器16と、冷媒サイクル装置14を循環する冷媒が流通する蒸発器(蒸気生成器)20とを備え、気液分離器16と蒸発器20の上部及び下部がそれぞれ上部配管22及び下部配管24で連通されることによりサーモサイフォン回路が形成されている。 First, the steam generator 10 includes a gas-liquid separator 16 that stores water inside the container, and an evaporator (steam generator) 20 through which a refrigerant circulating in the refrigerant cycle device 14 circulates. And the upper and lower portions of the evaporator 20 are communicated with each other by an upper pipe 22 and a lower pipe 24 to form a thermosiphon circuit.
 図2に示すように、気液分離器16は、鉛直方向に沿った円筒状容器で構成され、気液分離器16の下部に接続された下部配管24に接続された給水配管26から水が給水補給されることで、容器内部に水を貯留するものである。給水配管26は、図示しない水道管や水タンクと接続され、その途中に気液分離器16内へと水を圧送するための水ポンプ28が設けられている。水ポンプ28は、コントローラ15によって回転数が制御されることで、気液分離器16内への給水流量を変化させ、気液分離器16内に貯留する水の水位W1を変化させることができる。給水配管26は、下部配管24に代えて気液分離器16に接続することもできるが、水ポンプ28の吸込み配管でのキャビテーションを防止する点から、下部配管24に接続する方が好ましい。 As shown in FIG. 2, the gas-liquid separator 16 is constituted by a cylindrical container along the vertical direction, and water is supplied from a water supply pipe 26 connected to a lower pipe 24 connected to a lower part of the gas-liquid separator 16. By supplying water, water is stored inside the container. The water supply pipe 26 is connected to a water pipe or a water tank (not shown), and a water pump 28 for pumping water into the gas-liquid separator 16 is provided in the middle. The water pump 28 can change the water level W <b> 1 of the water stored in the gas-liquid separator 16 by changing the water supply flow rate into the gas-liquid separator 16 by controlling the rotation speed by the controller 15. . Although the water supply pipe 26 can be connected to the gas-liquid separator 16 instead of the lower pipe 24, it is preferable to connect to the lower pipe 24 from the viewpoint of preventing cavitation in the suction pipe of the water pump 28.
 気液分離器16は、その下端壁に下部配管24が接続され、その側壁上部に上部配管22が接続され、その上端壁に蒸気送出配管30が接続されている。下部配管24は、気液分離器16内に貯留している水を蒸発器20へと供給するための液管である。上部配管22は、蒸発器20内で生成された蒸気を気液分離器16へと供給するための蒸気管である。蒸気送出配管30は、蒸発器20で生成され、上部配管22を介して気液分離器16内に供給されて気液分離された後の蒸気を、外部の蒸気利用機器側へと送り出すための配管である。つまり、下部配管24の接続口16aが水の出口となり、上部配管22の接続口16bが蒸気の入口となり、蒸気送出配管30の接続口16cが気液分離後の蒸気の出口となる。 The gas-liquid separator 16 has a lower pipe 24 connected to its lower end wall, an upper pipe 22 connected to the upper part of the side wall, and a steam delivery pipe 30 connected to its upper end wall. The lower pipe 24 is a liquid pipe for supplying water stored in the gas-liquid separator 16 to the evaporator 20. The upper pipe 22 is a steam pipe for supplying the steam generated in the evaporator 20 to the gas-liquid separator 16. The steam delivery pipe 30 is used to send the steam generated by the evaporator 20 and supplied to the gas-liquid separator 16 via the upper pipe 22 and separated into gas and liquid to the external steam utilization device side. It is piping. That is, the connection port 16a of the lower pipe 24 becomes an outlet of water, the connection port 16b of the upper pipe 22 becomes an inlet of steam, and the connection port 16c of the steam delivery pipe 30 becomes an outlet of steam after gas-liquid separation.
 蒸気送出配管30には図示しない圧力調整弁が設置されている。コントローラ15は、図示しない圧力センサによって検出される気液分離器16内の蒸気圧力に基づき、前記圧力調整弁の開度を制御することにより、蒸気送出配管30から送り出される蒸気圧力を所定値に制御することができる。 The steam delivery pipe 30 is provided with a pressure control valve (not shown). The controller 15 controls the opening of the pressure adjusting valve based on the vapor pressure in the gas-liquid separator 16 detected by a pressure sensor (not shown), thereby setting the vapor pressure sent from the vapor delivery pipe 30 to a predetermined value. Can be controlled.
 気液分離器16の内部には、貯留されている水の水位W1を測定する水位センサ32が設置されている。水位センサ32で検知された水位W1の検出値WLは、コントローラ15に送信され、水ポンプ28の回転数制御に利用される。 In the gas-liquid separator 16, a water level sensor 32 for measuring the water level W1 of the stored water is installed. The detected value WL of the water level W1 detected by the water level sensor 32 is transmitted to the controller 15 and used for controlling the rotational speed of the water pump 28.
 図2に示すように、蒸発器20は、下部配管24から供給される水を蒸発させ、上部配管22から蒸気として気液分離器16へと供給するものである。 As shown in FIG. 2, the evaporator 20 evaporates the water supplied from the lower pipe 24 and supplies it to the gas-liquid separator 16 from the upper pipe 22 as steam.
 蒸発器20は、例えば、プレートフィン型熱交換器であり、冷媒サイクル装置14側の冷媒が流通する冷媒通路18aと、水(及び蒸気)が流通する水通路18bとが交互に積層配置されている。蒸発器20では、冷媒通路18aが鉛直方向で上方から下方へと冷媒を流通させ、水通路18bが鉛直方向で下方から上方へと水を流通させ、これら冷媒と水とが対向流となって熱交換することにより、水が蒸発して蒸気が生成される。下部配管24から供給される水は、蒸発器20内において、水位W2より下方部分では水(液相)であり、水位W2の上方で水と蒸気が混ざった状態(混合相)となり、その上方では蒸気(気相)となる。 The evaporator 20 is, for example, a plate fin type heat exchanger, and a refrigerant passage 18a through which the refrigerant on the refrigerant cycle device 14 side circulates and a water passage 18b through which water (and steam) flows are alternately stacked. Yes. In the evaporator 20, the refrigerant passage 18a causes the refrigerant to flow from the upper side to the lower side in the vertical direction, and the water passage 18b causes the water to flow from the lower side to the upper side in the vertical direction. By exchanging heat, water evaporates and steam is generated. The water supplied from the lower pipe 24 is water (liquid phase) below the water level W2 in the evaporator 20, and is in a state where water and steam are mixed above the water level W2 (mixed phase). Then, it becomes steam (gas phase).
 蒸発器20は、その下端壁に下部配管24が接続され、その上端壁に上部配管22が接続されている。つまり、下部配管24の接続口20aが水の入口となり、上部配管22の接続口20bが蒸気の出口となる。 The evaporator 20 has a lower pipe 24 connected to its lower end wall and an upper pipe 22 connected to its upper end wall. That is, the connection port 20a of the lower pipe 24 serves as an inlet for water, and the connection port 20b of the upper pipe 22 serves as an outlet for steam.
 図2に示すように、蒸発器20は、気液分離器16よりも高さ方向で低位置に設置されている。具体的には、蒸気生成装置10では、蒸発器20での蒸気の出口である接続口20bが、気液分離器16内に貯留された水の水面(水位W1)よりも低位置となるように、蒸発器20と気液分離器16の高さ方向の位置関係が規定されている。これにより、蒸気生成装置10では、気液分離器16の水位W1と、蒸発器20の水位W2との間に水位差(水面のヘッド差)Wが形成され、気液分離器16内の水を蒸発器20へと確実に循環させることができる。 As shown in FIG. 2, the evaporator 20 is installed at a lower position in the height direction than the gas-liquid separator 16. Specifically, in the steam generation device 10, the connection port 20 b that is the steam outlet in the evaporator 20 is positioned lower than the water level (water level W <b> 1) of water stored in the gas-liquid separator 16. In addition, the positional relationship in the height direction between the evaporator 20 and the gas-liquid separator 16 is defined. As a result, in the steam generation apparatus 10, a water level difference (water surface head difference) W is formed between the water level W 1 of the gas-liquid separator 16 and the water level W 2 of the evaporator 20, and the water in the gas-liquid separator 16 Can be reliably circulated to the evaporator 20.
 コントローラ15は、蒸気生成装置10及びこれを備えた蒸気生成ヒートポンプ12の全体的な制御を行なう制御装置である。コントローラ15は、水位センサ32からの検出値WLと、後述する蒸発器20での熱交換量(熱出力)とに基づき、水ポンプ28の回転数を制御し、気液分離器16内の水位W1を制御する。コントローラ15は、水位W1が一定となるように制御しつつ、前記熱交換量が変動した場合にはその変動値に対応する水位W1となるように水ポンプ28を制御する。コントローラ15には、水位W1の制御パラメータとなるデータ(例えば、図3参照)を記憶した記憶部(図示せず)を設けられている。 The controller 15 is a control device that performs overall control of the steam generation device 10 and the steam generation heat pump 12 including the same. The controller 15 controls the rotational speed of the water pump 28 based on the detected value WL from the water level sensor 32 and the heat exchange amount (heat output) in the evaporator 20 described later, and the water level in the gas-liquid separator 16. W1 is controlled. The controller 15 controls the water pump 28 so that the water level W1 corresponds to the fluctuation value when the heat exchange amount fluctuates while controlling the water level W1 to be constant. The controller 15 is provided with a storage unit (not shown) that stores data (for example, see FIG. 3) that serves as a control parameter for the water level W1.
 このような蒸気生成装置10では、サーモサイフォン現象により、気液分離器16内の水が下部配管24を介して蒸発器20に供給される。蒸発器20に供給された水は、蒸発器20の水通路18bを流通する過程で、冷媒通路18aを流通する冷媒との熱交換によって加熱されて蒸発し、蒸気となる。そして、蒸発器20で生成された蒸気は、上部配管22を介して気液分離器16に供給された後、蒸気中に含まれる水分が気液分離器16内で分離され、蒸気送出配管30から外部に送り出される。この際分離された水分は、気液分離器16内に貯留され、再び下部配管24から蒸発器20へと供給される。 In such a steam generator 10, the water in the gas-liquid separator 16 is supplied to the evaporator 20 via the lower pipe 24 by the thermosiphon phenomenon. In the process of flowing through the water passage 18b of the evaporator 20, the water supplied to the evaporator 20 is heated and evaporated by heat exchange with the refrigerant flowing through the refrigerant passage 18a, and becomes vapor. Then, the steam generated in the evaporator 20 is supplied to the gas-liquid separator 16 via the upper pipe 22, and then water contained in the steam is separated in the gas-liquid separator 16, and the steam delivery pipe 30. Sent to the outside. The water separated at this time is stored in the gas-liquid separator 16 and supplied again from the lower pipe 24 to the evaporator 20.
 次に、冷媒サイクル装置14は、図1に示すように、圧縮機40と、圧縮機40の吐出側に接続される冷媒凝縮器42と、冷媒凝縮器42の出口側に接続される膨張弁44と、膨張弁44の出口側に接続される冷媒蒸発器46とを有し、冷媒(冷媒)を循環させる冷凍サイクル(ヒートポンプ)である。圧縮機40に吸入されて高温高圧となった冷媒は、冷媒凝縮器42で放熱して凝縮した後、膨張弁44で断熱膨張され、冷媒蒸発器46で外部から吸熱して蒸発し、再び圧縮機40へと戻る。このような冷媒サイクル装置14としては、公知の冷凍回路を用いることができる。 Next, as shown in FIG. 1, the refrigerant cycle device 14 includes a compressor 40, a refrigerant condenser 42 connected to the discharge side of the compressor 40, and an expansion valve connected to the outlet side of the refrigerant condenser 42. 44 and a refrigerant evaporator 46 connected to the outlet side of the expansion valve 44, and a refrigeration cycle (heat pump) that circulates refrigerant (refrigerant). The refrigerant that has been sucked into the compressor 40 and has become high-temperature and high-pressure is radiated and condensed by the refrigerant condenser 42, is adiabatically expanded by the expansion valve 44, absorbs heat from the outside by the refrigerant evaporator 46, evaporates, and is compressed again. Return to machine 40. As such a refrigerant cycle device 14, a well-known refrigeration circuit can be used.
 冷媒サイクル装置14では、圧縮機40から吐出された高温高圧の冷媒を凝縮する冷媒凝縮器42が、蒸気生成装置10の蒸発器20として用いられる。つまり、圧縮機40から吐出された高温高圧の冷媒は、冷媒凝縮器42(蒸発器20)に流通し、ここで蒸気生成装置10を循環する水と熱交換することで水を加熱する一方、冷媒自身は冷却されて凝縮し、膨張弁44へと送られる。このように、蒸気生成ヒートポンプ12では、冷媒サイクル装置14の冷媒凝縮器42で発生する熱を蒸気生成装置10での水の蒸発用の熱源として利用している。蒸気生成装置10での水の蒸発用の熱源としては、冷媒サイクル装置14以外のものを用いても勿論よい。 In the refrigerant cycle device 14, a refrigerant condenser 42 that condenses the high-temperature and high-pressure refrigerant discharged from the compressor 40 is used as the evaporator 20 of the vapor generation device 10. That is, the high-temperature and high-pressure refrigerant discharged from the compressor 40 circulates in the refrigerant condenser 42 (evaporator 20), where the water is heated by exchanging heat with the water circulating in the steam generation device 10, while The refrigerant itself is cooled and condensed, and sent to the expansion valve 44. Thus, in the steam generation heat pump 12, the heat generated in the refrigerant condenser 42 of the refrigerant cycle device 14 is used as a heat source for water evaporation in the steam generation device 10. Of course, a heat source other than the refrigerant cycle device 14 may be used as a heat source for water evaporation in the steam generation device 10.
 次に、以上のように構成される蒸気生成装置10の運転方法及びその作用効果について説明する。 Next, an operation method of the steam generating apparatus 10 configured as described above and its operation and effects will be described.
 先ず、蒸発器20内での水の状態は、上記したように、下方から上方に向かって順に、水(液相)、水と蒸気が混ざった状態(混合相)、蒸気(気相)による3層状態となっている。一般に、水は、液相の状態では伝熱性が悪いため熱交換効率が低くなり、混合相の状態で最も伝熱性が良好となり熱交換効率が高くなる。当該蒸気生成装置10では、蒸発器20内での混合相の割合を最適にするように蒸発器20に流入する水の流量を制御することにより、蒸発器20で生成される蒸気量と蒸発器20へと循環供給される水の量とを一致させ、蒸発器20での蒸気の生成効率を最大化する。 First, as described above, the state of water in the evaporator 20 depends on water (liquid phase), a state in which water and steam are mixed (mixed phase), and steam (gas phase) in order from the bottom to the top. It is in a three-layer state. In general, water has low heat transfer efficiency in the liquid phase state, so that the heat exchange efficiency is low, and in the mixed phase state, the heat transfer property is best and the heat exchange efficiency is high. In the steam generator 10, the amount of steam generated in the evaporator 20 and the evaporator are controlled by controlling the flow rate of water flowing into the evaporator 20 so as to optimize the ratio of the mixed phase in the evaporator 20. The amount of water circulated to 20 is matched to maximize the efficiency of steam generation in the evaporator 20.
 例えば、蒸発器20における冷媒と水との熱交換量(負荷)が小さい状態で蒸発器20に供給される水の流量が大きくなると、蒸発器20内での水(液相)の割合が増えて水位W2が上昇し、結果として発生する蒸気量が低下する。一方、蒸発器20での冷媒と水との熱交換量が大きい状態で蒸発器20に供給される水の流量が小さくなると、蒸発器20内で水が全て蒸発してしまい、結果として発生する蒸気量が十分なものとならない。他方、蒸発器20での冷媒と水との熱交換量が大きい状態であっても、蒸発器20に供給される水の流量が過剰に大きくなると、全ての水が蒸気にならず混合相の状態のまま上部配管22へと供給されてしまう。 For example, when the flow rate of water supplied to the evaporator 20 is increased in a state where the heat exchange amount (load) between the refrigerant and water in the evaporator 20 is small, the proportion of water (liquid phase) in the evaporator 20 increases. As a result, the water level W2 rises, resulting in a decrease in the amount of steam generated. On the other hand, if the flow rate of water supplied to the evaporator 20 is small in a state where the amount of heat exchange between the refrigerant and water in the evaporator 20 is large, all the water is evaporated in the evaporator 20 and is generated as a result. The amount of steam is not sufficient. On the other hand, even if the amount of heat exchange between the refrigerant and water in the evaporator 20 is large, if the flow rate of the water supplied to the evaporator 20 becomes excessively large, not all the water becomes steam and the mixed phase It will be supplied to the upper pipe 22 as it is.
 そこで、蒸気生成装置10では、上記したように、蒸発器20の高さ位置を気液分離器16よりも下方に配置し、水位差Wを形成している。これにより、水ポンプ28の回転数を適宜制御して気液分離器16への給水配管26からの給水量を変化させ、気液分離器16内の水位W1を変化させれば、水位差Wを利用して下部配管24から蒸発器20へと循環供給される水の流量を変更制御し、蒸発器20での蒸気の生成効率を最大化することができる。 Therefore, in the steam generator 10, as described above, the height position of the evaporator 20 is disposed below the gas-liquid separator 16 to form the water level difference W. Thereby, if the rotation speed of the water pump 28 is appropriately controlled to change the amount of water supplied from the water supply pipe 26 to the gas-liquid separator 16 and change the water level W1 in the gas-liquid separator 16, the water level difference W Can be used to change and control the flow rate of the water circulated from the lower pipe 24 to the evaporator 20 to maximize the efficiency of steam generation in the evaporator 20.
 この制御を行うため、コントローラ15には、蒸発器20での水と冷媒との間の熱交換量と、その熱交換量のときに蒸気の生成効率が最大となる水位W1(つまり、蒸発器20への水の供給流量)との相関関係のデータを実験等によって取得し、予め記憶している。該データは、例えば、図3に示すような表データでよく、数式やグラフ等であってもよい。これにより、コントローラ15は、現在の蒸発器20での熱交換量に基づき、その熱交換量のときに蒸気の生成効率を最大とする水位W1のデータを呼び出し、この水位W1となるように水ポンプ28の回転数を制御し、気液分離器16への給水量を変化させる。 In order to perform this control, the controller 15 includes a heat exchange amount between water and the refrigerant in the evaporator 20 and a water level W1 at which the steam generation efficiency is maximized at the heat exchange amount (that is, the evaporator 15). Data of the correlation with the flow rate of water supplied to 20) is obtained through experiments or the like and stored in advance. The data may be, for example, tabular data as shown in FIG. Thereby, the controller 15 calls the data of the water level W1 that maximizes the steam generation efficiency at the heat exchange amount based on the current heat exchange amount in the evaporator 20, and the water level is set so that the water level W1 is reached. The rotational speed of the pump 28 is controlled to change the amount of water supplied to the gas-liquid separator 16.
 熱交換量と水位W1との相関関係のデータは、より具体的には、熱交換量が増加した場合には、気液分離器16内の水位W1を高くし、熱交換量が減少した場合には、気液分離器16内の水位W1を低くするという内容である。換言すれば、熱交換量が所定値よりも増加した場合には、気液分離器16内の水位W1を所定水位よりも高くし、熱交換量が所定値よりも減少した場合には、気液分離器16内の水位W1を所定水位よりも低くするという内容であってもよい。 More specifically, the correlation data between the heat exchange amount and the water level W1 is obtained when the heat exchange amount increases, the water level W1 in the gas-liquid separator 16 increases, and the heat exchange amount decreases. The content is that the water level W1 in the gas-liquid separator 16 is lowered. In other words, when the heat exchange amount increases from a predetermined value, the water level W1 in the gas-liquid separator 16 is set higher than the predetermined water level, and when the heat exchange amount decreases from the predetermined value, The content of making the water level W1 in the liquid separator 16 lower than a predetermined water level may be sufficient.
 蒸発器20での熱交換量が増加した場合に、気液分離器16内の水位W1を高くすることで、蒸発器20への水の供給量を増やし、蒸発器20内で混合相を適正量に維持しつつ蒸気の生成を促進して蒸気の生成効率及び生成量を最大化する。一方、蒸発器20での熱交換量が減少した場合には、気液分離器16内の水位W1を低くすることで、蒸発器20への水の供給量を減らし、蒸発器20に過剰に水が供給されることを防止し、混合相を適正量に維持しつつ蒸気の生成を促進して蒸気の生成効率及び生成量を最大化する。 When the heat exchange amount in the evaporator 20 increases, the water level W1 in the gas-liquid separator 16 is increased to increase the amount of water supplied to the evaporator 20 so that the mixed phase is properly adjusted in the evaporator 20. While maintaining the amount, the generation of steam is promoted to maximize the efficiency and amount of steam generation. On the other hand, when the amount of heat exchange in the evaporator 20 decreases, the water level W1 in the gas-liquid separator 16 is lowered to reduce the amount of water supplied to the evaporator 20 and excessively increase the evaporator 20. Water is prevented from being supplied, and steam generation is promoted while maintaining a proper amount of the mixed phase to maximize steam generation efficiency and generation amount.
 水位W1の制御の指標となる蒸発器20での水と冷媒との間の熱交換量の具体的なパラメータとしては、例えば、蒸発器20への冷媒からの入力熱量Qが用いられる。冷媒からの入力熱量Qが得られれば、この入力熱量Qにおける蒸発器20への最適な水の供給流量が決まるため、この供給流量が得られる水位W1となるように水ポンプ28を制御することになる。なお、入力熱量Qは、例えば、冷媒サイクル装置14の圧縮機40での吸入圧力Pと吸入温度Tと回転数rpmとを測定することにより(図1参照)、当該圧縮機40の排除容積は既知のため、コントローラ15で蒸発器20への冷媒循環量を演算でき、この冷媒循環量から推定することができる。 As a specific parameter of the amount of heat exchange between the water and the refrigerant in the evaporator 20 serving as an index for controlling the water level W1, for example, an input heat quantity Q from the refrigerant to the evaporator 20 is used. If the input heat quantity Q from the refrigerant is obtained, the optimum water supply flow rate to the evaporator 20 at this input heat quantity Q is determined, so the water pump 28 is controlled so that the water level W1 at which this supply flow rate is obtained. become. The input heat quantity Q is determined, for example, by measuring the suction pressure P, the suction temperature T, and the rotation speed rpm at the compressor 40 of the refrigerant cycle device 14 (see FIG. 1). Since it is known, the controller 15 can calculate the refrigerant circulation amount to the evaporator 20 and can estimate it from the refrigerant circulation amount.
 コントローラ15に記憶される入力熱量Qと水位W1との相関関係のデータは、例えば、図3に示すように、入力熱量Qが30kWの場合は、水位W1を3段階で最も高いレベル3とし、入力熱量Qが20kWの場合は、水位W1を3段階で中間のレベル2とし、15kWの場合は、水位W1を3段階で最も低いレベル1とする、といった内容である。水位W1のレベル1~3とは、例えば、気液分離器16の高さを100%とした場合に、レベル3は37%、レベル2は24%、レベル1は10%というように設定される。コントローラ15は、この相関関係のデータに基づき、そのときの入力熱量Qに応じて、気液分離器16内の水位W1が所望のレベル1~3となるように水ポンプ28の回転数を制御することになる。 The data of the correlation between the input heat quantity Q and the water level W1 stored in the controller 15 is, for example, as shown in FIG. 3, when the input heat quantity Q is 30 kW, the water level W1 is set to the highest level 3 in three stages, When the input heat quantity Q is 20 kW, the water level W1 is set to an intermediate level 2 in three stages, and when it is 15 kW, the water level W1 is set to the lowest level 1 in three stages. Levels 1 to 3 of the water level W1 are set to 37% for level 3, 24% for level 2, and 10% for level 1 when the height of the gas-liquid separator 16 is 100%, for example. The Based on the correlation data, the controller 15 controls the rotational speed of the water pump 28 so that the water level W1 in the gas-liquid separator 16 becomes a desired level 1 to 3 according to the input heat quantity Q at that time. Will do.
 なお、水位W1の制御の指標となる蒸発器20での水と冷媒との間の熱交換量の具体的なパラメータとしては、入力熱量Qに代えて、蒸気送出配管30から送り出される蒸気の流量Fを用いてもよい。流量Fは、例えば、蒸気送出配管30に流量計(FC)34を設置することにより測定できる(図2中の2点鎖線で示す流量計34参照)。 In addition, as a specific parameter of the heat exchange amount between the water and the refrigerant in the evaporator 20 serving as an index for controlling the water level W1, instead of the input heat quantity Q, the flow rate of the steam sent out from the steam delivery pipe 30 F may be used. The flow rate F can be measured, for example, by installing a flow meter (FC) 34 in the steam delivery pipe 30 (see the flow meter 34 indicated by a two-dot chain line in FIG. 2).
 蒸気送出配管30から送り出される蒸気の流量Fが得られれば、この流量Fと蒸発器20に循環供給される水の流量とを一致させるように、気液分離器16内の水位W1を制御すればよい。この場合、コントローラ15は、流量Fと水位W1との相関関係のデータに基づき、蒸気の流量Fが増加した場合には、水位W1を上げる制御を行って循環する水の量を増やす一方、蒸気の流量Fが減少した場合には、水位W1を下げる制御を行い、蒸発器20に過剰に水が供給されることを防止し、混合相を適正量に維持する制御を行う。 If the flow rate F of the steam sent out from the steam delivery pipe 30 is obtained, the water level W1 in the gas-liquid separator 16 is controlled so that the flow rate F and the flow rate of the water circulated and supplied to the evaporator 20 are matched. That's fine. In this case, when the flow rate F of the steam increases based on the correlation data between the flow rate F and the water level W1, the controller 15 performs control to increase the water level W1 to increase the amount of water that is circulated. When the flow rate F decreases, control is performed to lower the water level W1, to prevent excessive water from being supplied to the evaporator 20, and to maintain the mixed phase at an appropriate amount.
 以上のように、本実施形態に係る蒸気生成装置10及び蒸気生成ヒートポンプ12では、蒸発器20での蒸気の出口となる接続口20bが、気液分離器16内に貯留された水の水面となる水位W1よりも低位置となるように、蒸発器20と気液分離器16の高さ方向の位置関係を規定している。 As described above, in the steam generation device 10 and the steam generation heat pump 12 according to the present embodiment, the connection port 20b serving as the steam outlet in the evaporator 20 has the water surface stored in the gas-liquid separator 16 and the water surface. The positional relationship in the height direction between the evaporator 20 and the gas-liquid separator 16 is defined so as to be lower than the water level W1.
 このように、蒸発器20と気液分離器16との間に高低差を設けたことにより、気液分離器16内の水位W1を変化させるだけで、気液分離器16から蒸発器20へと下部配管24を介して循環供給される水の流量を変化させることができる。これにより、蒸発器20での負荷(熱交換量)が変化した場合にも、蒸発器20での熱交換効率を最適に制御して蒸気の生成効率を向上させ、生成される蒸気量も増加することができ、さらに蒸発器20の小型化も可能となる。しかも、蒸気生成装置10では、上記した従来技術のように蒸発器20への水の流量を変化させる循環ポンプも不要であるため、装置を小型で簡素な構成とすることができ、コストも低減できる。 Thus, by providing a height difference between the evaporator 20 and the gas-liquid separator 16, the gas-liquid separator 16 can be changed to the evaporator 20 only by changing the water level W <b> 1 in the gas-liquid separator 16. And the flow rate of the water circulated through the lower pipe 24 can be changed. As a result, even when the load (heat exchange amount) in the evaporator 20 changes, the heat exchange efficiency in the evaporator 20 is optimally controlled to improve the steam generation efficiency, and the amount of steam generated is also increased. In addition, the evaporator 20 can be downsized. Moreover, since the steam generation apparatus 10 does not require a circulation pump for changing the flow rate of water to the evaporator 20 as in the above-described prior art, the apparatus can be made small and simple, and the cost can be reduced. it can.
 なお、本発明は、上記した実施形態に限定されるものではなく、本発明の主旨を逸脱しない範囲で自由に変更できることは勿論である。 It should be noted that the present invention is not limited to the above-described embodiment, and it is needless to say that the present invention can be freely changed without departing from the gist of the present invention.
 10 蒸気生成装置
 12 蒸気生成ヒートポンプ
 14 冷媒サイクル装置
 15 コントローラ
 20 蒸発器
 22 上部配管
 24 下部配管
 26 給水配管
 28 水ポンプ
 30 蒸気送出配管
 32 水位センサ
 34 流量計
 40 圧縮機
 42 冷媒凝縮器
 44 膨張弁
 46 冷媒蒸発器
DESCRIPTION OF SYMBOLS 10 Steam generation apparatus 12 Steam generation heat pump 14 Refrigerant cycle apparatus 15 Controller 20 Evaporator 22 Upper piping 24 Lower piping 26 Water supply piping 28 Water pump 30 Steam delivery piping 32 Water level sensor 34 Flow meter 40 Compressor 42 Refrigerant condenser 44 Expansion valve 46 Refrigerant evaporator

Claims (5)

  1.  水を貯留する気液分離器と、冷媒が流通する蒸発器とを備え、前記気液分離器と前記蒸発器の上部及び下部をそれぞれ上部配管と下部配管で連通することにより、気液分離器内の水を前記下部配管を介して蒸発器に供給すると共に前記冷媒との熱交換によって蒸発させ、該蒸発器で生成した蒸気を前記上部配管を介して気液分離器に供給すると共に、該気液分離器から送り出すサーモサイフォン回路を形成した蒸気生成装置であって、
     前記蒸発器での蒸気の出口が、前記気液分離器内に貯留された水の水面よりも低位置となるように、前記蒸発器と前記気液分離器の高さ方向の位置関係を規定したことを特徴とする蒸気生成装置。
    A gas-liquid separator comprising a gas-liquid separator for storing water and an evaporator through which a refrigerant circulates, and an upper pipe and a lower pipe communicating with the gas-liquid separator and the upper and lower parts, respectively. The water inside is supplied to the evaporator through the lower pipe and evaporated by heat exchange with the refrigerant, and the vapor generated by the evaporator is supplied to the gas-liquid separator through the upper pipe, and A steam generator that forms a thermosiphon circuit that is sent out from a gas-liquid separator,
    The positional relationship in the height direction of the evaporator and the gas-liquid separator is defined so that the outlet of the vapor in the evaporator is positioned lower than the water level of the water stored in the gas-liquid separator. A steam generator characterized by the above.
  2.  請求項1記載の蒸気生成装置において、
     前記下部配管又は前記気液分離器には、内部に水を供給するための給水配管が接続されており、
     前記蒸発器での水と冷媒との間の熱交換量に基づき、前記給水配管からの給水量を変化させ、前記気液分離器内の水位を制御することを特徴とする蒸気生成装置。
    The steam generator according to claim 1, wherein
    A water supply pipe for supplying water to the inside is connected to the lower pipe or the gas-liquid separator,
    A steam generating device characterized in that, based on a heat exchange amount between water and refrigerant in the evaporator, a water supply amount from the water supply pipe is changed to control a water level in the gas-liquid separator.
  3.  請求項2記載の蒸気生成装置において、
     前記熱交換量として、前記蒸発器への前記冷媒からの入力熱量を用いることを特徴とする蒸気生成装置。
    The steam generator according to claim 2, wherein
    The steam generation apparatus characterized by using an amount of heat input from the refrigerant to the evaporator as the amount of heat exchange.
  4.  請求項2記載の蒸気生成装置において、
     前記熱交換量として、前記気液分離器から送り出される蒸気の流量を用いることを特徴とする蒸気生成装置。
    The steam generator according to claim 2, wherein
    The steam generation apparatus characterized by using a flow rate of steam sent out from the gas-liquid separator as the heat exchange amount.
  5.  水を貯留する気液分離器と、冷媒が流通する蒸発器とを有し、前記気液分離器と前記蒸発器の上部及び下部をそれぞれ上部配管と下部配管で連通することにより、気液分離器内の水を前記下部配管を介して蒸発器に供給すると共に前記冷媒との熱交換によって蒸発させ、該蒸発器で生成した蒸気を前記上部配管を介して気液分離器に供給すると共に、該気液分離器から送り出すサーモサイフォン回路を形成した蒸気生成装置と、
     圧縮機と、該圧縮機の吐出側に接続される冷媒凝縮器と、該冷媒凝縮器の出口側に接続される膨張弁と、該膨張弁の出口側に接続される冷媒蒸発器とを有し、前記冷媒を循環させる冷媒サイクル装置と、
     を備えた蒸気生成ヒートポンプであって、
     前記蒸発器として前記冷媒サイクル装置の冷媒凝縮器を用い、
     前記蒸発器での蒸気の出口が、前記気液分離器内に貯留された水の水面よりも低位置となるように、前記蒸発器と前記気液分離器の高さ方向の位置関係を規定したことを特徴とする蒸気生成ヒートポンプ。
    A gas-liquid separator that stores water and an evaporator through which a refrigerant flows, and the upper and lower parts of the gas-liquid separator and the evaporator communicate with each other by an upper pipe and a lower pipe, respectively. While supplying water in the vessel to the evaporator through the lower pipe and evaporating by heat exchange with the refrigerant, supplying the vapor generated in the evaporator to the gas-liquid separator through the upper pipe, A steam generator that forms a thermosiphon circuit that is fed from the gas-liquid separator;
    A compressor, a refrigerant condenser connected to the discharge side of the compressor, an expansion valve connected to the outlet side of the refrigerant condenser, and a refrigerant evaporator connected to the outlet side of the expansion valve. And a refrigerant cycle device for circulating the refrigerant;
    A steam generating heat pump comprising:
    Using the refrigerant condenser of the refrigerant cycle device as the evaporator,
    The positional relationship in the height direction of the evaporator and the gas-liquid separator is defined so that the outlet of the vapor in the evaporator is positioned lower than the water level of the water stored in the gas-liquid separator. A steam generation heat pump characterized by that.
PCT/JP2014/077218 2013-10-31 2014-10-10 Vapor generation device and vapor generation heat pump WO2015064347A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015544909A JP5967315B2 (en) 2013-10-31 2014-10-10 Steam generating apparatus and steam generating heat pump

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-227043 2013-10-31
JP2013227043 2013-10-31

Publications (1)

Publication Number Publication Date
WO2015064347A1 true WO2015064347A1 (en) 2015-05-07

Family

ID=53003957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/077218 WO2015064347A1 (en) 2013-10-31 2014-10-10 Vapor generation device and vapor generation heat pump

Country Status (2)

Country Link
JP (1) JP5967315B2 (en)
WO (1) WO2015064347A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106287622A (en) * 2016-08-21 2017-01-04 侴乔力 Vertical tube rises film condensing source heat pump and drives steam boiler
JP2017020716A (en) * 2015-07-10 2017-01-26 富士電機株式会社 Heat pump type steam generating device and method for operating the heat pump type steam generating device
KR101878234B1 (en) * 2016-12-05 2018-07-16 한국에너지기술연구원 Vapor injection applied heat pump system for making highly dried hot steam
JP2020098037A (en) * 2018-12-17 2020-06-25 富士電機株式会社 Steam generation device
CN112729882A (en) * 2020-11-24 2021-04-30 合肥通用机械研究院有限公司 Performance evaluation method and test device for high-temperature heat pump type steam generator set

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7135618B2 (en) * 2018-09-07 2022-09-13 富士電機株式会社 Steam generating heat pump device
CN112963816B (en) * 2021-02-26 2023-01-06 楚天华通医药设备有限公司 Pure steam generating device and working method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007232357A (en) * 2006-02-01 2007-09-13 Kansai Electric Power Co Inc:The Heat pump type steam and warm water generator
JP2008064422A (en) * 2006-09-11 2008-03-21 Ebara Refrigeration Equipment & Systems Co Ltd High temperature regenerator and absorption refrigerating machine
JP2011242018A (en) * 2010-05-14 2011-12-01 Fuji Electric Co Ltd Heat pump steam generator
JP2012021717A (en) * 2010-07-15 2012-02-02 Fuji Electric Co Ltd Heat pump type steam generating device
JP2012047439A (en) * 2010-07-27 2012-03-08 Fuji Electric Co Ltd Heat pump steam generator
JP2012167852A (en) * 2011-02-14 2012-09-06 Fuji Electric Co Ltd Heat pump type vapor generator
JP2012247156A (en) * 2011-05-30 2012-12-13 Toyo Eng Works Ltd Steam generating method using heat pump

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007232357A (en) * 2006-02-01 2007-09-13 Kansai Electric Power Co Inc:The Heat pump type steam and warm water generator
JP2008064422A (en) * 2006-09-11 2008-03-21 Ebara Refrigeration Equipment & Systems Co Ltd High temperature regenerator and absorption refrigerating machine
JP2011242018A (en) * 2010-05-14 2011-12-01 Fuji Electric Co Ltd Heat pump steam generator
JP2012021717A (en) * 2010-07-15 2012-02-02 Fuji Electric Co Ltd Heat pump type steam generating device
JP2012047439A (en) * 2010-07-27 2012-03-08 Fuji Electric Co Ltd Heat pump steam generator
JP2012167852A (en) * 2011-02-14 2012-09-06 Fuji Electric Co Ltd Heat pump type vapor generator
JP2012247156A (en) * 2011-05-30 2012-12-13 Toyo Eng Works Ltd Steam generating method using heat pump

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017020716A (en) * 2015-07-10 2017-01-26 富士電機株式会社 Heat pump type steam generating device and method for operating the heat pump type steam generating device
CN106287622A (en) * 2016-08-21 2017-01-04 侴乔力 Vertical tube rises film condensing source heat pump and drives steam boiler
CN106287622B (en) * 2016-08-21 2023-05-19 侴乔力 Vertical tube rising film condensing source heat pump driven steam boiler
KR101878234B1 (en) * 2016-12-05 2018-07-16 한국에너지기술연구원 Vapor injection applied heat pump system for making highly dried hot steam
JP2020098037A (en) * 2018-12-17 2020-06-25 富士電機株式会社 Steam generation device
JP7192471B2 (en) 2018-12-17 2022-12-20 富士電機株式会社 steam generator
CN112729882A (en) * 2020-11-24 2021-04-30 合肥通用机械研究院有限公司 Performance evaluation method and test device for high-temperature heat pump type steam generator set
CN112729882B (en) * 2020-11-24 2022-11-29 合肥通用机械研究院有限公司 Performance evaluation method and testing device for high-temperature heat pump type steam generating unit

Also Published As

Publication number Publication date
JPWO2015064347A1 (en) 2017-03-09
JP5967315B2 (en) 2016-08-10

Similar Documents

Publication Publication Date Title
JP5967315B2 (en) Steam generating apparatus and steam generating heat pump
CA2863530C (en) Method and apparatus of producing and utilizing thermal energy in a combined heat and power plant
KR101222331B1 (en) Heat-pump hot water apparatus
JP5605991B2 (en) Steam generator
JP3915770B2 (en) Heat pump water heater
JP5788235B2 (en) Steam generator
CN102713459A (en) Heat pump system
JP2002106959A (en) Heat pump water heater
JP2009092258A (en) Refrigerating cycle device
JP5605557B2 (en) Heat pump steam generator
JP2013079739A (en) Device using heater
JP2011075257A (en) Heat pump type water heater
JP5802514B2 (en) Heat pump water heater
JP5560515B2 (en) Steam production system and startup control method for steam production system
JP2010169364A (en) Thermosiphon type steam generator
JP4950004B2 (en) Heat pump type water heater
JP5929464B2 (en) Heat pump and heat pump activation method
JP5721408B2 (en) Hot spring water supply system and hot spring water supply method
US20200292221A1 (en) Phase-change cooling system and method for controlling the same
JP5092677B2 (en) Absorption refrigeration system
JP2005164161A (en) Absorption refrigerator and solution level control method for its regenerator
JP2008281256A (en) Water heater
JP2017138067A (en) Refrigeration cycle device
JP5950064B1 (en) Heat pump steam generator
JP2013040725A (en) Device using heater

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14858319

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015544909

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: IDP00201601429

Country of ref document: ID

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14858319

Country of ref document: EP

Kind code of ref document: A1