JP2015096703A - Heat recovery power generation system - Google Patents

Heat recovery power generation system Download PDF

Info

Publication number
JP2015096703A
JP2015096703A JP2013236637A JP2013236637A JP2015096703A JP 2015096703 A JP2015096703 A JP 2015096703A JP 2013236637 A JP2013236637 A JP 2013236637A JP 2013236637 A JP2013236637 A JP 2013236637A JP 2015096703 A JP2015096703 A JP 2015096703A
Authority
JP
Japan
Prior art keywords
heat
cooling water
exhaust
power generation
generation system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013236637A
Other languages
Japanese (ja)
Inventor
小林 直樹
Naoki Kobayashi
小林  直樹
太一 舘石
Taichi Tateishi
太一 舘石
隆英 伊藤
Takahide Ito
隆英 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2013236637A priority Critical patent/JP2015096703A/en
Publication of JP2015096703A publication Critical patent/JP2015096703A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PROBLEM TO BE SOLVED: To provide a heat recovery power generation system which can return cooling water at a temperature appropriate to reliability of an engine to the engine while performing heat recovery from the cooling water to the maximum.SOLUTION: A heat recovery power generation system 1 comprises: a cooling water circulation flow passage 16 through which cooling water W for cooling a water-cooling jacket 15 circulates; an exhaust gas flow passage 12 for exhausting exhaust gas G of a diesel engine 11; a heat medium circulation flow passage 21 where a heat medium M circulates through a closed loop formed by a low temperature side evaporator 5 performing heat exchange between the cooling water W and the heat medium M and evaporating the heat medium M, an expander 23 expanding the heat medium M evaporated by the low temperature side evaporator 5 and obtaining rotation driving force and a condenser 8 liquefying the heat medium M caused to be a low pressure vapor phase in the expander 23; a generator 25 receiving the rotation driving force obtained by the expander 23 and performing power generation; and a high/low heat exchange 7 performing heat exchange between the exhaust gas G flowing through the exhaust gas flow passage 12 and the cooling water W flowing through the cooling water circulation flow passage 16.

Description

本発明は、水冷式のエンジンの排熱を回収して発電を行なうシステムに関する。   The present invention relates to a system for recovering exhaust heat from a water-cooled engine and generating electric power.

近年、地球温暖化対策のために化石燃料の代替エネルギーとして再生可能エネルギーの導入が図られており、太陽光発電システム、風力発電システム、マイクロ水力発電システムが注目されている。さらに、蒸気タービンを回転させるほどの熱量を持たない低温の熱源から低沸点の熱媒体(または、作動媒体)の熱サイクルへ熱を移動し、この循環サイクル内で熱媒体を用いた発電を行うバイナリ発電システムも注目されている。この低温の熱源としては、地熱発電に用いられる地熱水、工場排熱、エンジン排熱などが用いられる。   In recent years, renewable energy has been introduced as an alternative to fossil fuels as a countermeasure against global warming, and solar power generation systems, wind power generation systems, and micro hydropower generation systems have attracted attention. Furthermore, heat is transferred from a low-temperature heat source that does not have enough heat to rotate the steam turbine to a heat cycle of a low-boiling-point heat medium (or working medium), and power generation using the heat medium is performed in this circulation cycle. Binary power generation systems are also attracting attention. As this low-temperature heat source, geothermal water used for geothermal power generation, factory exhaust heat, engine exhaust heat, and the like are used.

エンジンの排熱を熱源とする発電システムは、例えば特許文献1及び特許文献2に記載されるように、エンジンの冷却に供された冷却水、排気ガス及びエンジンの過給機で圧縮された空気を熱源として用いる。つまり、この発電システムは、熱媒体の流路上に、冷却水と熱媒体の熱交換を行なう蒸発器と、排気ガスと熱媒体の熱交換を行なう蒸発器と、を設け、二つの蒸発器により熱媒体を効率よく蒸発させる。一般に、冷却水の方が排気ガスよりも温度が低いために、冷却水を低温側熱源と、また、排気ガスを高温側熱源と称することがある。   As described in, for example, Patent Document 1 and Patent Document 2, a power generation system that uses engine exhaust heat as a heat source includes cooling water, exhaust gas, and air compressed by an engine supercharger. Is used as a heat source. That is, this power generation system is provided with an evaporator for exchanging heat between the cooling water and the heat medium and an evaporator for exchanging heat between the exhaust gas and the heat medium on the flow path of the heat medium. Evaporates the heat medium efficiently. In general, since the temperature of the cooling water is lower than that of the exhaust gas, the cooling water may be referred to as a low temperature side heat source and the exhaust gas may be referred to as a high temperature side heat source.

特開2011−149332号公報JP 2011-149332 A 特開2011−106302号公報JP 2011-106302 A

エンジンの排熱を熱源とする発電システムにおいて、低温側熱源である冷却水は、エンジンの例えば水冷ジャケットを通る循環流路を流れており、当該蒸発器で熱媒体と熱交換した冷却水は水冷ジャケットに戻される。この蒸発器において、より多くの排熱を冷却水から回収して、熱媒体の蒸発に寄与することが望まれる。しかし、一方では、蒸発器を通過して水冷ジャケットに戻される冷却水は、エンジンの信頼性確保の観点から、温度が低下しすぎるのを避ける必要がある。
そこで本発明は、このような技術的課題に基づいてなされたもので、冷却水からの排熱回収を最大限に行ないつつエンジンの信頼性に応え得る温度の冷却水をエンジンに戻すことのできる排熱回収システムを提供することを目的とする。
In a power generation system that uses engine exhaust heat as a heat source, cooling water, which is a low-temperature heat source, flows through a circulation passage that passes through, for example, a water cooling jacket of the engine, and the cooling water that exchanges heat with the heat medium in the evaporator is water-cooled. Returned to the jacket. In this evaporator, it is desirable to recover more exhaust heat from the cooling water and contribute to the evaporation of the heat medium. However, on the other hand, it is necessary to avoid that the temperature of the cooling water that passes through the evaporator and is returned to the water cooling jacket is too low from the viewpoint of ensuring the reliability of the engine.
Therefore, the present invention has been made based on such a technical problem, and it is possible to return the cooling water having a temperature that can meet the reliability of the engine to the engine while maximizing the exhaust heat recovery from the cooling water. An object is to provide an exhaust heat recovery system.

かかる目的のもとなされた本発明は、エンジンからの排熱を利用して発電する排熱回収発電システムであって、エンジンを冷却する冷却水が循環する冷却水循環流路と、エンジンに係る排熱ガスが流れる排熱ガス流路と、冷却水との間で熱交換を行い低沸点の熱媒体を気化させる第1蒸発器と、第1蒸発器で気化された熱媒体を膨張させて駆動力を得る駆動源と、駆動源において低圧の気相とされた熱媒体を液化させる凝縮器とが形成する閉回路を熱媒体が循環する熱媒体循環系統と、駆動源の駆動力を受けて発電を行う発電機と、排熱ガス流路を流れる排熱ガスと冷却水循環流路を流れる冷却水との間で熱交換する高低熱交換器と、を備えることを特徴とする。
本発明は、高低熱交換器において、排熱ガス流路を流れる排熱ガスと冷却水循環流路を流れる冷却水との間で熱交換することで、冷却水の温度を上げてからエンジンに戻すことができる。したがって、本発明の排熱回収発電システムは、エンジンの信頼性を確保することができる。
ここで、本発明における排熱ガスとしては、エンジンの燃焼ガス(排気ガス)と、エンジンの過給機で圧縮された空気の少なくとも一方を用いることができる。
The present invention made for this purpose is an exhaust heat recovery power generation system that generates power using exhaust heat from an engine, and includes a cooling water circulation passage through which cooling water for cooling the engine circulates, and an exhaust associated with the engine. A first evaporator for exchanging heat between the exhaust heat gas flow path through which the hot gas flows and the cooling water to vaporize the low boiling point heat medium, and the heat medium vaporized by the first evaporator is expanded and driven. A heat source circulation system in which the heat medium circulates in a closed circuit formed by a drive source for obtaining a force and a condenser for liquefying the low-temperature gas phase in the drive source; And a high / low heat exchanger for exchanging heat between the exhaust heat gas flowing through the exhaust heat gas flow path and the cooling water flowing through the cooling water circulation flow path.
In the high and low heat exchanger, the present invention performs heat exchange between the exhaust heat gas flowing through the exhaust heat gas flow path and the coolant flowing through the cooling water circulation flow path, thereby returning the temperature of the cooling water to the engine be able to. Therefore, the exhaust heat recovery power generation system of the present invention can ensure the reliability of the engine.
Here, as the exhaust heat gas in the present invention, at least one of engine combustion gas (exhaust gas) and air compressed by the engine supercharger can be used.

本発明の排熱回収発電システムにおいて、熱媒体循環流路は、第1蒸発器で蒸発気化された熱媒体と排熱ガスとの間で熱交換を行なう第2蒸発器を備えることが好ましい。
エンジンの冷却水よりも高い温度を有する排熱ガスを熱源として加えることにより、エンジンからの排熱を無駄なく利用しつつ、熱媒体をより高温に加熱することができる。
In the exhaust heat recovery power generation system of the present invention, it is preferable that the heat medium circulation flow path includes a second evaporator that performs heat exchange between the heat medium evaporated by the first evaporator and the exhaust heat gas.
By adding exhaust heat gas having a temperature higher than that of engine coolant as a heat source, the heat medium can be heated to a higher temperature while using exhaust heat from the engine without waste.

第2蒸発器を備える場合には、高低熱交換器に導かれ、冷却水との間で熱交換される排熱ガスは、第2蒸発器で熱交換される前のものにすることができるし、第2蒸発器で熱交換された後のものにすることもできる。
前者の場合には、排熱ガスが第2蒸発器において熱交換されていないので、後者よりも温度が高い。したがって、高低熱交換器において冷却水の温度を迅速に上げることができるので、例えば、冷却水の温度が相当に低くなるおそれがある場合には、第2蒸発器を通過する前の排熱ガスを利用するのが有効である。
また、後者の場合には、第1蒸発器で蒸発気化された熱媒体をさらに第2蒸発器において高温の排熱ガスと熱交換させるので、エンジンからより多くの排熱を回収して発電できる。
When the second evaporator is provided, the exhaust heat gas that is guided to the high and low heat exchanger and exchanges heat with the cooling water can be the one before the heat exchange with the second evaporator. However, it can also be the one after heat exchange in the second evaporator.
In the former case, the temperature of the exhaust heat gas is higher than that of the latter because heat is not exchanged in the second evaporator. Therefore, since the temperature of the cooling water can be quickly raised in the high and low heat exchanger, for example, when there is a possibility that the temperature of the cooling water is considerably lowered, the exhaust heat gas before passing through the second evaporator It is effective to use
In the latter case, the heat medium evaporated by the first evaporator is further heat-exchanged with the high-temperature exhaust heat gas in the second evaporator, so that more exhaust heat can be recovered from the engine to generate electric power. .

本発明の排熱回収発電システムにおいて、排熱ガス流路から分岐して流れる排熱ガスを利用する利用先を備えることが、排熱回収システムとしての価値を高めることができる。
この利用先としては、蒸気ボイラが掲げられ、排熱ガスから排熱を回収して、蒸気や温水を得ることができる。また、蒸気発生ボイラから出てきた排熱を更にヒートポンプの熱源として活用することもできる。
In the exhaust heat recovery power generation system of the present invention, it is possible to increase the value of the exhaust heat recovery system by providing a use destination that uses the exhaust heat gas flowing from the exhaust heat gas flow path.
As this usage destination, a steam boiler is used, and exhaust heat can be recovered from exhaust heat gas to obtain steam and hot water. Moreover, the exhaust heat which came out of the steam generation boiler can also be utilized as a heat source of a heat pump.

本発明の排熱回収発電システムによれば、高低熱交換器において、排熱ガス流路を流れる排熱ガス、典型的には排気ガスと冷却水循環流路を流れる冷却水との間で熱交換することで、冷却水の温度を上げてから水冷ジャケットに戻すことができる。したがって、本発明の排熱回収発電システムは、エンジンの信頼性を確保することができる。   According to the exhaust heat recovery power generation system of the present invention, heat exchange is performed between the exhaust heat gas flowing through the exhaust heat gas passage, typically between the exhaust gas and the cooling water flowing through the coolant circulation passage, in the high and low heat exchanger. By doing so, it is possible to return to the water cooling jacket after raising the temperature of the cooling water. Therefore, the exhaust heat recovery power generation system of the present invention can ensure the reliability of the engine.

第1実施形態における排熱回収発電システムの概略構成を示す図である。It is a figure which shows schematic structure of the waste heat recovery electric power generation system in 1st Embodiment. 図1の排熱回収発電システムにおける高温側熱源の流れの違いを示し、(a)は排気ガスを冷却水の加熱に使用しない場合、(b)は使用する場合を示している。The difference in the flow of the high temperature side heat source in the exhaust heat recovery power generation system of FIG. 1 is shown, (a) shows the case where exhaust gas is not used for heating the cooling water, and (b) shows the case where it is used. 第2実施形態における排熱回収発電システムの概略構成を示す図である。It is a figure which shows schematic structure of the waste heat recovery electric power generation system in 2nd Embodiment. 第3実施形態における排熱回収発電システムの概略構成を示す図である。It is a figure which shows schematic structure of the waste heat recovery electric power generation system in 3rd Embodiment. 第4実施形態における排熱回収発電システムの概略構成を示す図である。It is a figure which shows schematic structure of the waste heat recovery electric power generation system in 4th Embodiment.

以下、添付図面に示す実施の形態に基づいてこの発明を詳細に説明する。
本実施形態にかかる、排熱回収発電システム1は、エンジン設備10と、熱媒体回路20と、復水設備30との3つの要素を備えており、エンジン設備10から提供される温度領域の異なる二つの熱源から排熱を回収して、熱媒体回路20に設けられる発電機25により発電を行なう。本実施形態は、排熱ガスとして、エンジンの燃焼ガスである排気ガスを用いる例について説明する。
Hereinafter, the present invention will be described in detail based on embodiments shown in the accompanying drawings.
The exhaust heat recovery power generation system 1 according to the present embodiment includes three elements of the engine equipment 10, the heat medium circuit 20, and the condensate equipment 30, and the temperature ranges provided from the engine equipment 10 are different. The exhaust heat is recovered from the two heat sources, and power is generated by the generator 25 provided in the heat medium circuit 20. This embodiment demonstrates the example which uses the exhaust gas which is a combustion gas of an engine as exhaust heat gas.

エンジン設備10は、水冷式のディーゼルエンジン11を主たる要素として備える。このディーゼルエンジン11としては、発電用のエンジン、船舶用の主機エンジンなどの種々の内燃機関を適用できる。
ディーゼルエンジン11には、排気ガス流路12が接続されており、排気ガスGは排気ガス流路12を通ってその末端から系外に排出される。ディーゼルエンジン11から排出される排気ガスGの温度は、例えば400℃程度とされる。排気ガス流路12は末端に到る途中で高温側蒸発器6に組み込まれており、排気ガス流路12を流れる排気ガスGは熱媒体回路20を循環する熱媒体と相互に熱交換される。
排気ガス流路12は、高温側蒸発器6より下流において分岐流路13aが分岐されている。排気ガス流路12を流れてきた排気ガスGは、分岐部分から流入し分岐流路13aを流れることもできる。ただし、分岐流路13aには排ガス制御弁V1が設けられており、この排ガス制御弁V1が開いているときに限り、排気ガスGは分岐流路13aを流れる。分岐流路13aは排ガス制御弁V1が設けられている位置よりも下流において高低熱交換器7に組み込まれており、分岐流路13aを通る排気ガスGは高低熱交換器7において冷却水Wと相互に熱交換される。
なお、本実施形態において、上流、下流は、当該流体の流れる向きによって特定されるものとする。
The engine equipment 10 includes a water-cooled diesel engine 11 as a main element. As the diesel engine 11, various internal combustion engines such as a power generation engine and a marine main engine can be applied.
An exhaust gas passage 12 is connected to the diesel engine 11, and the exhaust gas G passes through the exhaust gas passage 12 and is discharged out of the system from its end. The temperature of the exhaust gas G discharged from the diesel engine 11 is about 400 ° C., for example. The exhaust gas passage 12 is incorporated in the high temperature side evaporator 6 in the middle of reaching the end, and the exhaust gas G flowing through the exhaust gas passage 12 exchanges heat with the heat medium circulating in the heat medium circuit 20. .
In the exhaust gas passage 12, a branch passage 13 a is branched downstream from the high temperature side evaporator 6. The exhaust gas G that has flowed through the exhaust gas flow path 12 can also flow from the branch portion and flow through the branch flow path 13a. However, an exhaust gas control valve V1 is provided in the branch flow path 13a, and the exhaust gas G flows through the branch flow path 13a only when the exhaust gas control valve V1 is open. The branch flow path 13a is incorporated in the high and low heat exchanger 7 downstream of the position where the exhaust gas control valve V1 is provided, and the exhaust gas G passing through the branch flow path 13a is separated from the cooling water W in the high and low heat exchanger 7. They exchange heat with each other.
In the present embodiment, upstream and downstream are specified by the direction in which the fluid flows.

エンジン設備10は、ディーゼルエンジン11の水冷ジャケット15の内部を通過する冷却水循環流路16を備えている。水冷ジャケット15においてディーゼルエンジン11の冷却に供された冷却水Wは、冷却水循環流路16に設けられる循環ポンプP1の動作により、冷却水循環流路16を循環する。冷却に供された冷却水Wの温度は、例えば100℃程度とされる。
冷却水循環流路16は、循環ポンプP1よりも下流において低温側蒸発器5に組み込まれており、冷却水循環流路16を通る冷却水Wは熱媒体回路20を循環する熱媒体と相互に熱交換される。
冷却水循環流路16は、低温側蒸発器5よりも下流において高低熱交換器7に組み込まれており、冷却水循環流路16を通る冷却水Wは高低熱交換器7において排気ガスGと相互に熱交換される。
The engine equipment 10 includes a cooling water circulation passage 16 that passes through the inside of a water cooling jacket 15 of the diesel engine 11. The cooling water W provided for cooling the diesel engine 11 in the water cooling jacket 15 circulates through the cooling water circulation passage 16 by the operation of the circulation pump P1 provided in the cooling water circulation passage 16. The temperature of the cooling water W provided for cooling is, for example, about 100 ° C.
The cooling water circulation channel 16 is incorporated in the low temperature side evaporator 5 downstream of the circulation pump P1, and the cooling water W passing through the cooling water circulation channel 16 exchanges heat with the heat medium circulating in the heat medium circuit 20. Is done.
The cooling water circulation passage 16 is incorporated in the high and low heat exchanger 7 downstream of the low temperature side evaporator 5, and the cooling water W passing through the cooling water circulation passage 16 mutually communicates with the exhaust gas G in the high and low heat exchanger 7. Heat exchanged.

次に、熱媒体回路20の構成について説明する。
熱媒体回路20は、閉回路をなす熱媒体循環流路21を備えており、熱媒体Mを循環させるための循環ポンプP2が設けられている。この循環ポンプP2により、熱媒体Mは、高温側蒸発器6、低温側蒸発器5及び凝縮器8において、熱交換するように循環される。
熱媒体循環流路21には、ペンタン(沸点:36.07℃)、フロン系のR245fa(沸点:58.80℃)、イソブタン(沸点:−12℃)などの沸点の低い熱媒体Mが循環される。
Next, the configuration of the heat medium circuit 20 will be described.
The heat medium circuit 20 includes a heat medium circulation passage 21 that forms a closed circuit, and a circulation pump P2 for circulating the heat medium M is provided. By the circulation pump P2, the heat medium M is circulated so as to exchange heat in the high temperature side evaporator 6, the low temperature side evaporator 5, and the condenser 8.
A heat medium M having a low boiling point such as pentane (boiling point: 36.07 ° C.), chlorofluorocarbon R245fa (boiling point: 58.80 ° C.), isobutane (boiling point: −12 ° C.) circulates in the heat medium circulation passage 21. Is done.

熱媒体循環流路21は、循環ポンプP2より下流において、低温側蒸発器5及び高温側蒸発器6にこの順番で組み込まれている。したがって、熱媒体循環流路21を流れる熱媒体Mは、低温側蒸発器5において冷却水循環流路16を通る冷却水Wと相互に熱交換され、次いで、高温側蒸発器6において排気ガス流路12を流れる排気ガスGと相互に熱交換される。低温側蒸発器5及び高温側蒸発器6を順に通過して熱交換された熱媒体Mは、蒸気となって下流に向けて流れる。
熱媒体循環流路21は、高温側蒸発器6よりも下流に、蒸気の膨張力によりタービンが回転駆動される膨張器23を備えている。膨張器23には動力の伝達が可能に発電機25を接続しており、膨張器23に蒸気が流入することで、発電機25により発電が行なわれ、図示しない電力線を介して外部に供給される。
熱媒体循環流路21は、膨張器23よりも下流において、凝縮器8に組み込まれており、熱媒体循環流路21を流れる熱媒体Mは、凝縮器8において復水設備30を循環する冷却水Wと相互に熱交換され、凝縮液化される。
The heat medium circulation passage 21 is incorporated in this order into the low temperature side evaporator 5 and the high temperature side evaporator 6 downstream of the circulation pump P2. Therefore, the heat medium M flowing through the heat medium circulation flow path 21 is mutually heat-exchanged with the cooling water W passing through the cooling water circulation flow path 16 in the low temperature side evaporator 5, and then the exhaust gas flow path in the high temperature side evaporator 6. Heat exchange with the exhaust gas G flowing through the cylinder 12 is performed. The heat medium M that has passed through the low-temperature side evaporator 5 and the high-temperature side evaporator 6 in order and exchanged heat flows into the downstream as steam.
The heat medium circulation flow path 21 includes an expander 23 on which the turbine is rotationally driven by the expansion force of steam downstream of the high temperature side evaporator 6. A power generator 25 is connected to the expander 23 so that power can be transmitted. When steam flows into the expander 23, power is generated by the power generator 25 and supplied to the outside via a power line (not shown). The
The heat medium circulation channel 21 is incorporated in the condenser 8 downstream of the expander 23, and the heat medium M flowing through the heat medium circulation channel 21 is cooled by circulating through the condensate facility 30 in the condenser 8. Heat is exchanged with water W to be condensed and liquefied.

次に、復水設備30は、冷却水Hが循環する冷却水循環流路31と、冷却水循環流路31に設けられる冷却塔33と、を備える。
冷却水Hは冷却水循環流路31を循環して流れる過程で、凝縮器8において熱媒体回路20の熱媒体Mと熱交換された後に、冷却塔33で冷却されるというサイクルを繰り返して、熱媒体Mの凝縮液化を行なう。
Next, the condensate facility 30 includes a cooling water circulation passage 31 through which the cooling water H circulates, and a cooling tower 33 provided in the cooling water circulation passage 31.
In the process in which the cooling water H circulates in the cooling water circulation flow path 31, heat is exchanged with the heat medium M of the heat medium circuit 20 in the condenser 8, and then the cooling water 33 is cooled in the cooling tower 33. The medium M is condensed and liquefied.

次に、以上説明した構成の排熱回収発電システム1の動作について、図2(a),(b)をも参照して説明する。なお、図2において、高温側蒸発器6を通過する前の排気ガスをG1、通過した後の排気ガスをG2と区別し、低温側蒸発器5を通過する前の冷却水をW1、通過した後の冷却水をW2と区別している。
エンジン設備10の冷却水循環流路16を流れる冷却水Wは、低温側蒸発器5へと導かれる。低温側蒸発器5では、熱媒体回路20を循環する熱媒体Mと冷却水Wとが熱交換され、熱媒体Mが蒸発気化される。なお、低温側蒸発器5へと導かれる冷却水W1の温度は100℃程度であれば、低沸点の熱媒体Mを蒸発気化させることができる。
低温側蒸発器5を通過した熱媒体Mは、次に、高温側蒸発器6に導かれる。高温側蒸発器6には冷却水W1よりも温度の高い排気ガスG1が導かれるので、熱媒体Mは高温側蒸発器6において排気ガスG1の排熱を回収してさらに高温となって膨張器23に導かれ、発電機25の発電に供される。
膨張器23で仕事をした熱媒体Mは、凝縮器8に導かれ、復水設備30の循環流路31を循環する冷却水Hにより凝縮液化される。
熱媒体回路20は、熱媒体Mが以上説明したサイクルを繰り返しながら、発電機25により発電を行なう。
Next, the operation of the exhaust heat recovery power generation system 1 having the above-described configuration will be described with reference to FIGS. 2 (a) and 2 (b). In FIG. 2, the exhaust gas before passing through the high temperature side evaporator 6 is distinguished from G1, and the exhaust gas after passing through is distinguished from G2, and the cooling water before passing through the low temperature side evaporator 5 is passed through W1. The subsequent cooling water is distinguished from W2.
The cooling water W flowing through the cooling water circulation passage 16 of the engine equipment 10 is guided to the low temperature side evaporator 5. In the low temperature side evaporator 5, the heat medium M circulating in the heat medium circuit 20 and the cooling water W are heat-exchanged, and the heat medium M is evaporated. In addition, if the temperature of the cooling water W1 led to the low temperature side evaporator 5 is about 100 ° C., the low boiling point heat medium M can be evaporated.
The heat medium M that has passed through the low temperature side evaporator 5 is then guided to the high temperature side evaporator 6. Since the exhaust gas G1 having a temperature higher than that of the cooling water W1 is guided to the high temperature side evaporator 6, the heat medium M recovers the exhaust heat of the exhaust gas G1 in the high temperature side evaporator 6 and becomes an even higher temperature. 23 to be used for power generation by the generator 25.
The heat medium M that has worked in the expander 23 is guided to the condenser 8 and condensed and liquefied by the cooling water H that circulates in the circulation flow path 31 of the condensate facility 30.
The heat medium circuit 20 generates power with the generator 25 while repeating the cycle described above by the heat medium M.

熱媒体Mが以上のサイクルを繰り返す過程で、エンジン設備10においては、低温側蒸発器5において熱媒体Mを蒸発気化させた冷却水W2は冷却水循環流路16を水冷ジャケット15に向けて戻る。この冷却水W2は、ディーゼルエンジン11の信頼性を確保するために、温度が低くなりすぎるのを避けなければならない。一例として、水冷ジャケット15に戻る冷却水W2は、85℃以上の温度を有していることが望まれる。一方で、低温側蒸発器5においては、冷却水W1から回収する排熱を多くすることが、排熱回収の効率の点で望まれる。そこで本実施形態は、この相反する要求に応えるために、高低熱交換器7を設ける。   In the process in which the heat medium M repeats the above cycle, in the engine equipment 10, the cooling water W <b> 2 obtained by evaporating and evaporating the heat medium M in the low temperature side evaporator 5 returns the cooling water circulation channel 16 toward the water cooling jacket 15. In order to ensure the reliability of the diesel engine 11, the cooling water W <b> 2 must avoid the temperature becoming too low. As an example, it is desirable that the cooling water W2 returning to the water cooling jacket 15 has a temperature of 85 ° C. or higher. On the other hand, in the low temperature side evaporator 5, it is desired in terms of the efficiency of exhaust heat recovery to increase the exhaust heat recovered from the cooling water W1. Therefore, in the present embodiment, the high and low heat exchanger 7 is provided in order to meet the conflicting requirements.

高低熱交換器7は、低温側蒸発器5を通過した冷却水W2と高温側蒸発器6を通過した排気ガスG2が相互に熱交換される。冷却水W2の温度は100℃未満であるのに対して、排気ガスG2の温度は100℃を優に超える150℃〜200℃程度であるから、冷却水W2が高低熱交換器7を通過するとそれまでよりも高い85℃以上の温度にして水冷ジャケット15に戻すことができる。したがって、本実施形態によると、低温側蒸発器5において冷却水W1からの排熱回収を最大限に行ったとしても、冷却水W2をディーゼルエンジン11の信頼性を確保できる程度の温度に回復させて水冷ジャケット15に戻すことができる。   In the high-low heat exchanger 7, the cooling water W <b> 2 that has passed through the low-temperature side evaporator 5 and the exhaust gas G <b> 2 that has passed through the high-temperature side evaporator 6 are mutually heat-exchanged. While the temperature of the cooling water W2 is less than 100 ° C., the temperature of the exhaust gas G2 is about 150 ° C. to 200 ° C., which easily exceeds 100 ° C. Therefore, when the cooling water W2 passes through the high and low heat exchanger 7 It can be returned to the water cooling jacket 15 at a temperature of 85 ° C. or higher, which is higher than before. Therefore, according to the present embodiment, even when exhaust heat recovery from the cooling water W1 is performed to the maximum in the low temperature side evaporator 5, the cooling water W2 is recovered to a temperature that can ensure the reliability of the diesel engine 11. Can be returned to the water-cooled jacket 15.

本実施形態において、高低熱交換器7による排気ガスG1と冷却水W2の熱交換は、常に行うことができるが、排ガス制御弁V1の開閉を制御することで、選択的に行うこともできる。例えば、高低熱交換器7と水冷ジャケット15の間の冷却水循環流路16に冷却水W2の温度を検出する温度センサ17を設ける。通常は、図2(a)に示すように排ガス制御弁V1を閉じておくが、この温度センサ17で検出された温度が例えば85℃未満になると、その検知結果を受けて、図2(b)に示すように排ガス制御弁V1を開き、高温側蒸発器6を通過した排気ガスG2を高低熱交換器7に導くことにより、冷却水W2を85℃以上に復帰させる。温度センサ17の検出結果が85℃以上であれば、排ガス制御弁V1を閉じたままにする。
以上のように、水冷ジャケット15に戻される冷却水W2の温度を検出し、その結果に基づいて排気ガスG2を高低熱交換器7に導くようにすれば、ディーゼルエンジン11の信頼性確保に必要な冷却水W2の温度をより確実に得ることができる。
In the present embodiment, the heat exchange between the exhaust gas G1 and the cooling water W2 by the high / low heat exchanger 7 can always be performed, but can also be selectively performed by controlling the opening and closing of the exhaust gas control valve V1. For example, a temperature sensor 17 that detects the temperature of the cooling water W <b> 2 is provided in the cooling water circulation passage 16 between the high / low heat exchanger 7 and the water cooling jacket 15. Normally, the exhaust gas control valve V1 is closed as shown in FIG. 2 (a). When the temperature detected by the temperature sensor 17 is lower than 85 ° C., for example, the detection result is received and FIG. ), The exhaust gas control valve V1 is opened, and the exhaust gas G2 that has passed through the high-temperature side evaporator 6 is guided to the high-low heat exchanger 7, thereby returning the cooling water W2 to 85 ° C. or higher. If the detection result of the temperature sensor 17 is 85 ° C. or higher, the exhaust gas control valve V1 is kept closed.
As described above, if the temperature of the cooling water W2 returned to the water cooling jacket 15 is detected and the exhaust gas G2 is guided to the high-low heat exchanger 7 based on the result, it is necessary to ensure the reliability of the diesel engine 11. The temperature of the cooling water W2 can be obtained more reliably.

以上の通りであり、本実施形態の排熱回収発電システム1は、以下の作用・効果を奏する。
エンジン設備10は、高温側蒸発器6と低温側蒸発器5を直列に接続し、ディーゼルエンジン11から排出される高温熱源(排気ガスG)と低温熱源(冷却水W)の各々から排熱を回収するので、ディーゼルエンジン11から得られる排熱を効率よく使って発電を行うことができる。
As described above, the exhaust heat recovery power generation system 1 of the present embodiment has the following operations and effects.
The engine equipment 10 connects the high temperature side evaporator 6 and the low temperature side evaporator 5 in series, and exhausts heat from each of the high temperature heat source (exhaust gas G) and the low temperature heat source (cooling water W) discharged from the diesel engine 11. Since it collect | recovers, it can generate electric power using the exhaust heat obtained from the diesel engine 11 efficiently.

次に、排気ガスG2を利用して加熱された冷却水W2が水冷ジャケット15に戻るので、ディーゼルエンジン11の信頼性を確保することができる。
この際、排ガス制御弁V1の開閉を制御して、冷却水W2の温度に基づいて排気ガスG2を高低熱交換器7に導くようにすれば、ディーゼルエンジン11の信頼性確保に必要な温度に冷却水W2をより確実に維持することができる。
Next, since the cooling water W2 heated using the exhaust gas G2 returns to the water cooling jacket 15, the reliability of the diesel engine 11 can be ensured.
At this time, if the exhaust gas G2 is guided to the high-low heat exchanger 7 based on the temperature of the cooling water W2 by controlling the opening and closing of the exhaust gas control valve V1, the temperature is required to ensure the reliability of the diesel engine 11. The cooling water W2 can be maintained more reliably.

以上、本発明の好適な実施形態を説明したが、いくつかの変更例を説明する。
始めに、図3に示す排熱回収発電システム2について説明する。
この排熱回収発電システム2は、分岐流路13bが分岐する位置が排熱回収発電システム1と相違し、高温側蒸発器6よりも上流で分岐流路13bが排気ガス流路12から分岐されている。排熱回収発電システム2の他の構成は、排熱回収発電システム1と同じであるから、図3に図1と同じ符号を付して、各々の説明は省略する。
Although the preferred embodiments of the present invention have been described above, several modifications will be described.
First, the exhaust heat recovery power generation system 2 shown in FIG. 3 will be described.
The exhaust heat recovery power generation system 2 is different from the exhaust heat recovery power generation system 1 in that the branch flow path 13b branches, and the branch flow path 13b is branched from the exhaust gas flow path 12 upstream of the high temperature side evaporator 6. ing. Since the other configuration of the exhaust heat recovery power generation system 2 is the same as that of the exhaust heat recovery power generation system 1, the same reference numerals as those in FIG.

排熱回収発電システム2は、前述した作用・効果に加えて、以下の作用・効果を奏する。
排熱回収発電システム2は、高温側蒸発器6を通過する前の排気ガスG1を高低熱交換器7に導いて冷却水W2と熱交換する。この排気ガスG1は、高温側蒸発器6において熱交換されていないので、排気ガスG2よりも、例えば400℃程度と温度が高い。したがって、高低熱交換器7において冷却水W2の温度を迅速に上げることができるので、例えば、冷却水W2の温度が相当に低くなるおそれがある場合には、高温側蒸発器6を通過する前の排気ガスG1を利用する排熱回収発電システム2が有効である。
The exhaust heat recovery power generation system 2 has the following actions and effects in addition to the actions and effects described above.
The exhaust heat recovery power generation system 2 guides the exhaust gas G1 before passing through the high temperature side evaporator 6 to the high and low heat exchanger 7 to exchange heat with the cooling water W2. Since the exhaust gas G1 is not heat exchanged in the high temperature side evaporator 6, the temperature is higher than the exhaust gas G2, for example, about 400 ° C. Therefore, since the temperature of the cooling water W2 can be quickly raised in the high / low heat exchanger 7, for example, when there is a possibility that the temperature of the cooling water W2 becomes considerably low, before passing through the high temperature side evaporator 6 The exhaust heat recovery power generation system 2 using the exhaust gas G1 is effective.

次に、図4に示す排熱回収発電システム3について説明する。
この排熱回収発電システム3は、排熱回収発電システム2の構成に加えて、排気ガス流路12から分岐される分岐流路13cを備えている。この分岐流路13cは、排気ガスG1からの排熱を、熱媒体Mとの熱交換及び冷却水W2との熱交換以外の目的で利用するために設けられている。この排気ガスG1の排熱を利用する設備類としては、蒸気ボイラ9が掲げられる。この蒸気ボイラ9を設けることにより、排気ガスG1から熱を回収して、蒸気や温水を得ることができるので、排熱回収発電システム3は排熱回収発電システム1よりもエネルギーの有効利用を図ることができる。
Next, the exhaust heat recovery power generation system 3 shown in FIG. 4 will be described.
This exhaust heat recovery power generation system 3 includes a branch flow path 13 c branched from the exhaust gas flow path 12 in addition to the configuration of the exhaust heat recovery power generation system 2. This branch flow path 13c is provided in order to use the exhaust heat from the exhaust gas G1 for purposes other than heat exchange with the heat medium M and heat exchange with the cooling water W2. A steam boiler 9 is listed as equipment that uses the exhaust heat of the exhaust gas G1. By providing the steam boiler 9, heat can be recovered from the exhaust gas G <b> 1 and steam and hot water can be obtained. Therefore, the exhaust heat recovery power generation system 3 is more effective than the exhaust heat recovery power generation system 1. be able to.

排熱回収発電システム3は、排気ガス流路12に排ガス制御弁V2を、分岐流路13cに排ガス制御弁V3を設け、排ガス制御弁V1とともに、開閉を調整することで、排気ガスG1の利用対象を以下のように選択することができる。例えば、V1,V2を閉じ、V3を開くと、排気ガスG1は蒸気ボイラ9において蒸気、温水の生成に供される。また、V2を閉じ、V1,V3を開くと、排気ガスGは、高低熱交換器7において冷却水W2との熱交換に供されるとともに、蒸気ボイラ9において蒸気、温水の生成に供される。さらに、V3を閉じ、V1,V2を開くと、排気ガスG1は、高温側蒸発器6において熱媒体Mとの熱交換に供されるとともに、高低熱交換器7において冷却水W2との熱交換に供される。
なお、排ガス制御弁V1の開閉については、温度センサ17の検出結果を反映させることができる。
The exhaust heat recovery power generation system 3 is provided with an exhaust gas control valve V2 in the exhaust gas flow path 12 and an exhaust gas control valve V3 in the branch flow path 13c, and adjusts opening and closing together with the exhaust gas control valve V1, thereby using the exhaust gas G1. The object can be selected as follows. For example, when V1 and V2 are closed and V3 is opened, the exhaust gas G1 is used for generating steam and hot water in the steam boiler 9. When V2 is closed and V1 and V3 are opened, the exhaust gas G is used for heat exchange with the cooling water W2 in the high-low heat exchanger 7 and is also used for generating steam and hot water in the steam boiler 9. . Further, when V3 is closed and V1 and V2 are opened, the exhaust gas G1 is used for heat exchange with the heat medium M in the high temperature side evaporator 6 and heat exchange with the cooling water W2 in the high and low heat exchanger 7. To be served.
Note that the detection result of the temperature sensor 17 can be reflected in the opening and closing of the exhaust gas control valve V1.

排熱回収発電システム3に適用した蒸気ボイラ9は、図5に示すように、図1に示したエンジン設備10に適用することができる。この排熱回収発電システム4においても、以上説明した作用・効果を享受することができる。   The steam boiler 9 applied to the exhaust heat recovery power generation system 3 can be applied to the engine equipment 10 shown in FIG. 1, as shown in FIG. The exhaust heat recovery power generation system 4 can also enjoy the functions and effects described above.

本発明の主旨を逸脱しない限り、上記実施形態で挙げた構成を取捨選択したり、他の構成に適宜変更することが可能である。
例えば、上述した実施形態は高温熱源(排熱ガス)としてエンジンの排気ガスGを用いる例について説明したが、本発明はこれに限定されない。例えば、エンジンに設けられる過給機によって圧縮された空気を高温熱源として利用することもできる。
また、上述した実施形態は、復水設備30として冷却塔33を用いているが、膨張器23を通過した熱媒体Mを凝縮液化できるのであれば、その手段を問わない。例えば、ディーゼルエンジン11が船舶の推進用主機として用いられる場合には、海水を取り込んで熱媒体Mを凝縮液化することもできる。
Unless departing from the gist of the present invention, the configuration described in the above embodiment can be selected or changed to another configuration as appropriate.
For example, although the above-described embodiment has described an example in which the exhaust gas G of the engine is used as the high-temperature heat source (exhaust heat gas), the present invention is not limited to this. For example, air compressed by a supercharger provided in the engine can be used as a high-temperature heat source.
Moreover, although embodiment mentioned above uses the cooling tower 33 as the condensate equipment 30, if the heat medium M which passed the expander 23 can be condensed and liquefied, the means will not ask | require. For example, when the diesel engine 11 is used as a main engine for marine propulsion, seawater can be taken in and the heat medium M can be condensed.

1,2,3,4 排熱回収発電システム
5 低温側蒸発器
6 高温側蒸発器
7 高低熱交換器
8 凝縮器
9 蒸気ボイラ
10 エンジン設備
11 ディーゼルエンジン
12 排気ガス流路
13a,13b,13c 分岐流路
15 水冷ジャケット
16 冷却水循環流路
17 温度センサ
20 熱媒体回路
21 熱媒体循環流路
23 膨張器
25 発電機
30 復水設備
31 冷却水循環流路
33 冷却塔
V1,V2,V3 排ガス制御弁
P1,P2 循環ポンプ
M 熱媒体
G,G1,G2 排気ガス
W,W1,W2 冷却水
1, 2, 3, 4 Waste heat recovery power generation system 5 Low temperature side evaporator 6 High temperature side evaporator 7 High and low heat exchanger 8 Condenser 9 Steam boiler 10 Engine equipment 11 Diesel engine 12 Exhaust gas passages 13a, 13b, 13c Branch Flow path 15 Water cooling jacket 16 Cooling water circulation path 17 Temperature sensor 20 Heat medium circuit 21 Heat medium circulation path 23 Inflator 25 Generator 30 Condensation equipment 31 Cooling water circulation path 33 Cooling towers V1, V2, V3 Exhaust gas control valve P1 , P2 Circulation pump M Heat medium G, G1, G2 Exhaust gas W, W1, W2 Cooling water

Claims (5)

エンジンからの排熱を利用して発電する排熱回収発電システムであって、
前記エンジンを冷却する冷却水が循環する冷却水循環流路と、
前記エンジンに係る排熱ガスが流れる排熱ガス流路と、
前記冷却水との間で熱交換を行い低沸点の熱媒体を気化させる第1蒸発器と、前記第1蒸発器で気化された前記熱媒体を膨張させて駆動力を得る駆動源と、前記駆動源において低圧の気相とされた前記熱媒体を液化させる凝縮器とが形成する閉回路を前記熱媒体が循環する熱媒体循環系統と、
前記駆動源の駆動力を受けて発電を行う発電機と、
前記排熱ガス流路を流れる前記排熱ガスと、前記冷却水循環流路を流れる前記冷却水との間で熱交換する高低熱交換器と、
を備えることを特徴とする排熱回収発電システム。
An exhaust heat recovery power generation system that generates power using exhaust heat from an engine,
A cooling water circulation passage through which cooling water for cooling the engine circulates;
An exhaust gas flow path through which exhaust gas related to the engine flows;
A first evaporator that exchanges heat with the cooling water to vaporize a low boiling point heat medium, a drive source that obtains a driving force by expanding the heat medium vaporized in the first evaporator, and A heat medium circulation system in which the heat medium circulates in a closed circuit formed by a condenser that liquefies the heat medium in a low-pressure gas phase in a drive source;
A generator for generating power by receiving the driving force of the driving source;
A high and low heat exchanger for exchanging heat between the exhaust heat gas flowing through the exhaust heat gas flow path and the cooling water flowing through the cooling water circulation flow path;
An exhaust heat recovery power generation system comprising:
前記熱媒体循環流路は、
前記第1蒸発器で蒸発気化された前記熱媒体と前記排熱ガスとの間で熱交換を行なう第2蒸発器を備える、
請求項1に記載の排熱回収発電システム。
The heat medium circulation channel is
A second evaporator that exchanges heat between the heat medium evaporated by the first evaporator and the exhaust heat gas;
The exhaust heat recovery power generation system according to claim 1.
前記高低熱交換器は、
前記第2蒸発器で熱交換された後の前記排熱ガスが導かれて前記冷却水との間で熱交換する、
請求項2に記載の排熱回収発電システム。
The high and low heat exchanger is
The exhaust heat gas after being heat-exchanged by the second evaporator is guided to exchange heat with the cooling water;
The exhaust heat recovery power generation system according to claim 2.
前記高低熱交換器は、
前記第2蒸発器で熱交換される前の前記排熱ガスが導かれて前記冷却水との間で熱交換する、
請求項2に記載の排熱回収発電システム。
The high and low heat exchanger is
The exhaust heat gas before being heat exchanged in the second evaporator is guided to exchange heat with the cooling water,
The exhaust heat recovery power generation system according to claim 2.
前記排熱ガス流路から分岐して流れる前記排熱ガスを利用する利用先を備える、
請求項1〜4のいずれか一項に記載の排熱回収発電システム。
Provided with a use destination that uses the exhaust heat gas flowing from the exhaust heat gas flow path,
The exhaust heat recovery power generation system according to any one of claims 1 to 4.
JP2013236637A 2013-11-15 2013-11-15 Heat recovery power generation system Pending JP2015096703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013236637A JP2015096703A (en) 2013-11-15 2013-11-15 Heat recovery power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013236637A JP2015096703A (en) 2013-11-15 2013-11-15 Heat recovery power generation system

Publications (1)

Publication Number Publication Date
JP2015096703A true JP2015096703A (en) 2015-05-21

Family

ID=53374101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013236637A Pending JP2015096703A (en) 2013-11-15 2013-11-15 Heat recovery power generation system

Country Status (1)

Country Link
JP (1) JP2015096703A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104912608A (en) * 2015-06-22 2015-09-16 沈阳航空航天大学 Vehicle engine heating and electricity union system based on reheating type organic Rankine cycle technique
CN105783300A (en) * 2016-04-28 2016-07-20 郑成勋 Thermodynamics circulation system achieving heat circulation through environment working media and application
CN106865666A (en) * 2015-10-21 2017-06-20 笹仓机械工程有限公司 Make water system
CN108252803A (en) * 2018-02-07 2018-07-06 广西玉柴机器股份有限公司 Twin-six diesel engine
CN109681343A (en) * 2019-01-28 2019-04-26 南通大学 A kind of boat diesel engine jacket water residual heat using device
JP2020125702A (en) * 2019-02-04 2020-08-20 株式会社日立製作所 Cogeneration system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104912608A (en) * 2015-06-22 2015-09-16 沈阳航空航天大学 Vehicle engine heating and electricity union system based on reheating type organic Rankine cycle technique
CN106865666A (en) * 2015-10-21 2017-06-20 笹仓机械工程有限公司 Make water system
CN106865666B (en) * 2015-10-21 2021-04-16 笹仓机械工程有限公司 Water making system
CN105783300A (en) * 2016-04-28 2016-07-20 郑成勋 Thermodynamics circulation system achieving heat circulation through environment working media and application
CN108252803A (en) * 2018-02-07 2018-07-06 广西玉柴机器股份有限公司 Twin-six diesel engine
CN108252803B (en) * 2018-02-07 2022-04-01 广西玉柴机器股份有限公司 V-type 12-cylinder diesel engine
CN109681343A (en) * 2019-01-28 2019-04-26 南通大学 A kind of boat diesel engine jacket water residual heat using device
JP2020125702A (en) * 2019-02-04 2020-08-20 株式会社日立製作所 Cogeneration system
JP7033094B2 (en) 2019-02-04 2022-03-09 株式会社日立製作所 Cogeneration system
US11506115B2 (en) 2019-02-04 2022-11-22 Hitachi, Ltd. Cogeneration system

Similar Documents

Publication Publication Date Title
CA2652243C (en) A method and system for generating power from a heat source
JP6086726B2 (en) Power generation system and power generation method
JP2015096703A (en) Heat recovery power generation system
RU2673959C2 (en) System and method for energy regeneration of wasted heat
JP2012149541A (en) Exhaust heat recovery power generating apparatus and marine vessel
WO2011136118A1 (en) Exhaust heat recovery power generation device and vessel provided therewith
JP2011106459A (en) Combined cycle power plant with integrated organic rankine cycle device
JP2010540837A (en) Cascade type organic Rankine cycle (ORC) system using waste heat from reciprocating engine
JP2009221961A (en) Binary power generating system
JP2013180625A (en) Exhaust heat recovery type ship propulsion device, and operation method therefor
JP6021526B2 (en) COOLING WATER SUPPLY SYSTEM AND BINARY POWER GENERATOR HAVING THE SAME
MX2014011444A (en) System and method for recovery of waste heat from dual heat sources.
KR102011859B1 (en) Energy saving system for using waste heat of ship
US8474262B2 (en) Advanced tandem organic rankine cycle
JP5592305B2 (en) Power generator
EP3112622B1 (en) Binary power generation system and binary power generation method
JP6382127B2 (en) Heat exchanger, energy recovery device, and ship
JP2011074897A (en) Fluid machine driving system
JP2018021485A (en) Multistage rankine cycle system, internal combustion engine and operation method of multistage rankine cycle system
US9540961B2 (en) Heat sources for thermal cycles
JP2019090352A (en) Industrial facility
JP2016151191A (en) Power generation system
JP2002122006A (en) Power generation equipment utilizing low-temperature exhaust heat
KR20140085003A (en) Energy saving system for using waste heat of ship
KR20140086203A (en) Energy saving system for using waste heat of ship