JP2002266656A - Gas turbine cogeneration system - Google Patents

Gas turbine cogeneration system

Info

Publication number
JP2002266656A
JP2002266656A JP2001063808A JP2001063808A JP2002266656A JP 2002266656 A JP2002266656 A JP 2002266656A JP 2001063808 A JP2001063808 A JP 2001063808A JP 2001063808 A JP2001063808 A JP 2001063808A JP 2002266656 A JP2002266656 A JP 2002266656A
Authority
JP
Japan
Prior art keywords
gas turbine
hot water
boiler
heat
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001063808A
Other languages
Japanese (ja)
Inventor
Hideo Kobayashi
英夫 小林
Hiroshi Tsukura
洋 津倉
Yasuo Yonezawa
泰夫 米澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NISHIYODO KUCHOKI KK
Meidensha Corp
IHI Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
NISHIYODO KUCHOKI KK
Meidensha Corp
IHI Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NISHIYODO KUCHOKI KK, Meidensha Corp, IHI Corp, Meidensha Electric Manufacturing Co Ltd filed Critical NISHIYODO KUCHOKI KK
Priority to JP2001063808A priority Critical patent/JP2002266656A/en
Publication of JP2002266656A publication Critical patent/JP2002266656A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a gas turbine cogeneration system capable of effectively making use of the hot water thought it is hardly utilized in a conventional system, and improving the combined efficiency of a plant. SOLUTION: The heat of an exhaust gas passed through a waste-heat recovery boiler 4 is further recovered in a hot water boiler 22 to produce the hot water, and the hot water is used as a driving heat source to produce the chilled water in an adsorption-type refrigerator 23, so that the chilled water is used for cooling an apparatus or the like, or the chilled water produced in the adsorption-type refrigerator 23 is guided to an intake cooler 24 to cool the intake of the gas turbine 1 in summer when a temperature is high and the intake temperature of the gas turbine 1 is raised.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ガスタービンで燃
料を燃やして発電機を駆動し、発電を行うと共に、ガス
タービンの排ガスの熱を排熱回収ボイラで回収して蒸気
を発生させ、熱エネルギーを有効に再利用するガスター
ビンコージェネレーションシステムに関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas turbine, which burns fuel to drive a generator to generate electric power. In addition, the heat of the exhaust gas of the gas turbine is recovered by an exhaust heat recovery boiler to generate steam. The present invention relates to a gas turbine cogeneration system that effectively reuses energy.

【0002】[0002]

【従来の技術】図3は従来のガスタービンコージェネレ
ーションシステムの一例を表わすものであって、1はガ
スタービン、2はガスタービン1によって駆動される発
電機、3はLPGや都市ガス等の燃料を圧縮するガス圧
縮機又は灯油やA重油等の液体燃料を昇圧させる燃料ポ
ンプ等の燃料圧縮機、4はガスタービン1の排ガスの熱
を回収して蒸気を発生させる排熱回収ボイラ、5は排熱
回収ボイラ4の下流側に一体に設けられたエコノマイ
ザ、6は燃料を燃焼させて蒸気を発生させる貫流、水管
等の一般的なボイラ、7はエコノマイザ5及び排熱回収
ボイラ4とボイラ6とにそれぞれボイラ給水を供給する
軟水タンク、8は排熱回収ボイラ4で発生した蒸気とボ
イラ6で発生した蒸気が導入される蒸気ヘッダ、9は蒸
気ヘッダ8から供給される蒸気を駆動熱源として冷水を
発生させる吸収式冷凍機、10は吸収式冷凍機9へ供給
する冷却水を冷却するための冷却塔である。
2. Description of the Related Art FIG. 3 shows an example of a conventional gas turbine cogeneration system, wherein 1 is a gas turbine, 2 is a generator driven by a gas turbine 1, and 3 is a fuel such as LPG or city gas. A gas compressor or a fuel compressor such as a fuel pump for increasing the pressure of a liquid fuel such as kerosene or heavy oil A; 4, an exhaust heat recovery boiler that recovers the heat of the exhaust gas from the gas turbine 1 to generate steam; An economizer integrally provided on the downstream side of the exhaust heat recovery boiler 4, a general boiler 6 such as a once-through, water pipe or the like for burning fuel to generate steam, and 7 an economizer 5 and the exhaust heat recovery boiler 4 and the boiler 6. A soft water tank for supplying boiler feed water to each of the steam generators, 8 is a steam header into which steam generated by the exhaust heat recovery boiler 4 and steam generated by the boiler 6 are introduced, and 9 is supplied from the steam header 8 Absorption refrigerating machine that generates a chilled water vapor as a driving heat source, 10 is a cooling tower for cooling the cooling water to be supplied to the absorption chiller 9.

【0003】前記ガスタービン1は、燃料圧縮機3から
供給される燃料を燃やす燃焼器1aと、該燃焼器1aで
発生した燃焼ガスによって駆動されるタービン1bと、
該タービン1bと同軸上に配設されるコンプレッサ1c
とを備えてなる構成を有している。
The gas turbine 1 has a combustor 1a for burning fuel supplied from a fuel compressor 3, a turbine 1b driven by combustion gas generated in the combustor 1a,
Compressor 1c arranged coaxially with turbine 1b
Are provided.

【0004】前記吸収式冷凍機9は、図4に示される如
く、内部が真空状態に保持される容器11内に、被冷却
管12が配設され且つ冷媒としての水を滴下させて蒸発
させる蒸発器13と、冷却水流通管14が配設され且つ
臭化リチウム水溶液等の吸収液15を滴下させて冷媒を
吸収する吸収器16と、蒸気流通管17が配設され且つ
冷媒を吸収した吸収液15に熱を加えて冷媒蒸気を分離
させる再生器18と、冷却水流通管19が配設され且つ
冷媒蒸気を凝縮させて蒸発器13へ滴下させる凝縮器2
0とを形成し、蒸発器13において水を滴下させて被冷
却管12の表面で蒸発させることにより、その気化熱
(蒸発潜熱)で被冷却管12内に流通される水を冷却し
て冷水を発生させるようにし、吸収器16において吸収
液15を滴下させることにより、蒸発器13で蒸発させ
た冷媒を吸収し、吸収器16で冷媒を吸収した吸収液1
5を再生器18へ送り、該再生器18において冷媒を吸
収した吸収液15を蒸気で加熱して冷媒蒸気を分離さ
せ、該冷媒蒸気を凝縮器20で凝縮させて、これを蒸発
器13に供給して循環させると共に、再生器18で再生
した吸収液15を吸収器16へ戻すようにしたものであ
る。尚、図4中、21は再生器18で再生された吸収液
15と吸収器16で冷媒を吸収した吸収液15との熱交
換を行わせるための熱交換器である。
As shown in FIG. 4, the absorption refrigerator 9 has a pipe 11 to be cooled disposed in a vessel 11 whose inside is kept in a vacuum state, and allows water as a refrigerant to be dropped and evaporated. An evaporator 13, a cooling water flow pipe 14 are provided, and an absorber 16 for absorbing a refrigerant by dropping an absorbing liquid 15 such as an aqueous solution of lithium bromide, and a vapor flow pipe 17 are provided and absorbing the refrigerant. A regenerator 18 for applying heat to the absorbing liquid 15 to separate the refrigerant vapor, and a condenser 2 provided with a cooling water flow pipe 19 for condensing the refrigerant vapor and dropping it to the evaporator 13
0 is formed, and water is dropped in the evaporator 13 and evaporated on the surface of the cooled pipe 12, thereby cooling the water flowing through the cooled pipe 12 by the heat of vaporization (latent heat of vaporization) to produce cold water. Is generated, and the absorbent 15 is dropped in the absorber 16 to absorb the refrigerant evaporated in the evaporator 13 and absorb the refrigerant 1 in the absorber 16.
5 is sent to a regenerator 18, the absorbent 15 having absorbed the refrigerant in the regenerator 18 is heated with vapor to separate the refrigerant vapor, and the refrigerant vapor is condensed in a condenser 20, While supplying and circulating, the absorbent 15 regenerated by the regenerator 18 is returned to the absorber 16. In FIG. 4, reference numeral 21 denotes a heat exchanger for exchanging heat between the absorbent 15 regenerated by the regenerator 18 and the absorbent 15 absorbing the refrigerant in the absorber 16.

【0005】前述の如きガスタービンコージェネレーシ
ョンシステムにおいては、燃料圧縮機3で圧縮された燃
料がガスタービン1の燃焼器1aへ供給され、該燃焼器
1aにおいて燃料の燃焼が行われ、その燃焼ガスがター
ビン1bへ導入されて該タービン1bが駆動され、該タ
ービン1bの駆動により、発電機2が駆動され、発電が
行われると共に、余剰動力でコンプレッサ1cが駆動さ
れて空気の圧縮が行われ、該コンプレッサ1cで圧縮さ
れた空気が前記燃焼器1aへ燃焼用空気として供給され
る。
[0005] In the gas turbine cogeneration system as described above, the fuel compressed by the fuel compressor 3 is supplied to the combustor 1a of the gas turbine 1, and the combustion of the fuel is performed in the combustor 1a. Is introduced into the turbine 1b to drive the turbine 1b, and by driving the turbine 1b, the generator 2 is driven to generate electric power, and the compressor 1c is driven by the surplus power to compress the air, The air compressed by the compressor 1c is supplied to the combustor 1a as combustion air.

【0006】前記ガスタービン1のタービン1bから排
出される排ガスは、排熱回収ボイラ4及びエコノマイザ
5へ導かれ、該排熱回収ボイラ4及びエコノマイザ5に
おいて前記ガスタービン1の排ガスの熱が回収されて蒸
気が発生される一方、ボイラ6において燃料を燃焼させ
ることにより蒸気が発生され、前記排熱回収ボイラ4で
発生した蒸気と前記ボイラ6で発生した蒸気が蒸気ヘッ
ダ8を介して吸収式冷凍機9へ供給され、該吸収式冷凍
機9において蒸気を駆動熱源として冷水が発生され、工
場プロセス冷水として機器の冷却等に使用される。
Exhaust gas discharged from the turbine 1b of the gas turbine 1 is guided to an exhaust heat recovery boiler 4 and an economizer 5, where the heat of the exhaust gas of the gas turbine 1 is recovered in the exhaust heat recovery boiler 4 and the economizer 5. On the other hand, steam is generated by burning the fuel in the boiler 6, and the steam generated in the exhaust heat recovery boiler 4 and the steam generated in the boiler 6 are absorbed by the absorption refrigeration through the steam header 8. The cooling water is supplied to the cooling machine 9, and in the absorption refrigerator 9, cold water is generated using steam as a driving heat source, and is used as factory process cold water for cooling equipment.

【0007】前記吸収式冷凍機9において駆動熱源とし
て利用された蒸気は、水となって軟水タンク7へ送ら
れ、該軟水タンク7からボイラ給水として前記エコノマ
イザ5及び排熱回収ボイラ4とボイラ6とにそれぞれ供
給され、又、前記吸収式冷凍機9へ供給された冷却水は
冷却塔10で冷却され循環される。
The steam used as a driving heat source in the absorption refrigerator 9 is converted into water and sent to a soft water tank 7, from which the economizer 5, the exhaust heat recovery boiler 4 and the boiler 6 serve as boiler feed water. The cooling water supplied to the absorption refrigerator 9 is cooled by the cooling tower 10 and circulated.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、前述の
如き従来のガスタービンコージェネレーションシステム
では、排熱回収ボイラ4で熱が回収されたガスタービン
1の排ガスは大気へ排出されるのみで、ここから更にエ
ネルギーを取り出すことは行われていなかった。
However, in the conventional gas turbine cogeneration system as described above, the exhaust gas of the gas turbine 1 from which the heat is recovered by the exhaust heat recovery boiler 4 is only discharged to the atmosphere. No further energy extraction was done.

【0009】これは、前記排熱回収ボイラ4出口の排ガ
ス温度は、約150[℃]程度であるが、このレベルの
低温ガスから温水を取り出すことは、従来の場合、伝熱
面積が大きくなり装置が大型化してコストも嵩むことに
加え、得られる温水の温度も80[℃]程度でその後の
利用価値も低かったこと等から、敬遠されていたためで
ある。
The exhaust gas temperature at the outlet of the exhaust heat recovery boiler 4 is about 150 ° C., but extracting hot water from this level of low-temperature gas requires a large heat transfer area in the conventional case. This has been avoided because the size of the apparatus is increased and the cost is increased, and the temperature of the obtained hot water is about 80 [° C.] and its utility value is low.

【0010】このため、一つの試算では、2000[k
W]級のガスタービン1を用いたガスタービンコージェ
ネレーションシステムの場合、投入燃料エネルギーのお
よそ25[%]が発電に、およそ50[%]が排熱回収
ボイラ4による蒸気エネルギーに変換され、総合効率は
およそ75[%]程度と見込まれていた。
For this reason, in one trial calculation, 2000 [k
In the case of a gas turbine cogeneration system using a gas turbine 1 of the [W] class, about 25 [%] of the input fuel energy is converted into power generation, and about 50 [%] is converted into steam energy by the exhaust heat recovery boiler 4. The efficiency was expected to be about 75 [%].

【0011】尚、温水の温度が比較的高温(およそ90
〜100[℃]程度)であれば、冷水の製造も比較的安
価な吸収式冷凍機にて可能であるが、この型式では、温
水温度が80[℃]になると冷凍能力は、温水温度が比
較的高温(90〜100[℃])時の50[%]以下に
低下するため、臭化リチウムの溶液管理や機器の保守管
理にかかる費用を考慮した場合、ランニングメリットが
激減することになり吸収式冷凍機を採用することは困難
となっていた。
The temperature of the hot water is relatively high (approximately 90
100100 [° C.], cold water can be produced by a relatively inexpensive absorption refrigerator, but in this model, when the hot water temperature reaches 80 ° C., the refrigeration capacity is Since the temperature drops to 50% or less at a relatively high temperature (90 to 100 ° C.), the running merit will be drastically reduced in consideration of the cost of managing the solution of lithium bromide and the maintenance of the equipment. It has been difficult to adopt an absorption refrigerator.

【0012】本発明は、斯かる実情に鑑み、従来におい
て利用価値の低かった温水を有効に活用し得、プラント
総合効率向上を図り得るガスタービンコージェネレーシ
ョンシステムを提供しようとするものである。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a gas turbine cogeneration system capable of effectively utilizing hot water, which has conventionally been low in utility value, and improving the overall efficiency of a plant.

【0013】[0013]

【課題を解決するための手段】本発明は、燃料を燃やし
て発電機を駆動するガスタービンと、該ガスタービンの
排ガスの熱を回収して蒸気を発生させる排熱回収ボイラ
と、該排熱回収ボイラを通過した排ガスの熱を更に回収
して温水を発生させる温水ボイラと、該温水ボイラで発
生した温水を駆動熱源として冷水を発生させる吸着式冷
凍機とを備えたことを特徴とするガスタービンコージェ
ネレーションシステムにかかるものである。
SUMMARY OF THE INVENTION The present invention provides a gas turbine that burns fuel to drive a generator, an exhaust heat recovery boiler that recovers heat of exhaust gas from the gas turbine to generate steam, and an exhaust heat recovery boiler. A gas comprising: a hot water boiler that further collects heat of exhaust gas passing through a recovery boiler to generate hot water; and an adsorption refrigerator that generates cold water by using the hot water generated by the hot water boiler as a driving heat source. It relates to a turbine cogeneration system.

【0014】又、本発明は、燃料を燃やして発電機を駆
動するガスタービンと、該ガスタービンの排ガスの熱を
回収して蒸気を発生させる排熱回収ボイラと、該排熱回
収ボイラを通過した排ガスの熱を更に回収して温水を発
生させる温水ボイラと、該温水ボイラで発生した温水を
駆動熱源として冷水を発生させる吸着式冷凍機と、該吸
着式冷凍機で発生した冷水によりガスタービンの吸気を
冷却する吸気冷却器とを備えたことを特徴とするガスタ
ービンコージェネレーションシステムにかかるものであ
る。
Further, the present invention provides a gas turbine for burning a fuel to drive a generator, an exhaust heat recovery boiler for recovering heat of exhaust gas from the gas turbine to generate steam, and passing through the exhaust heat recovery boiler. A hot water boiler that further collects the heat of the exhaust gas generated to generate hot water, an adsorption refrigerator that generates cold water using the hot water generated by the hot water boiler as a driving heat source, and a gas turbine that uses the cold water generated by the adsorption refrigerator. And a suction cooler for cooling the intake air of the gas turbine.

【0015】上記手段によれば、以下のような作用が得
られる。
According to the above means, the following effects can be obtained.

【0016】ガスタービンで燃料が燃やされて発電機が
駆動され、発電が行われると共に、ガスタービンの排ガ
スの熱が排熱回収ボイラで回収されて蒸気が発生され、
排熱回収ボイラを通過した排ガスの熱が温水ボイラで更
に回収されて温水が発生され、温水ボイラで発生した温
水を駆動熱源として吸着式冷凍機で冷水が発生され、吸
着式冷凍機で発生した冷水を機器の冷却等に使用するこ
とが可能となる。
The fuel is burned by the gas turbine to drive the generator to generate power, and the heat of the exhaust gas of the gas turbine is recovered by the waste heat recovery boiler to generate steam.
The heat of the exhaust gas passing through the exhaust heat recovery boiler is further recovered by the hot water boiler to generate hot water, and the hot water generated by the hot water boiler is used as a driving heat source to generate cold water by the adsorption refrigerator and generated by the adsorption refrigerator. Cold water can be used for cooling equipment and the like.

【0017】又、特に気温が高くガスタービンの吸気温
度が上昇してしまう夏季には、吸着式冷凍機で発生した
冷水により吸気冷却器でガスタービンの吸気を冷却し、
吸気温度を低下させ、吸気の重量流量を増加させ、ガス
タービンの出力を向上させることが可能となる。
In addition, especially in summer when the temperature of the gas is high and the temperature of the intake air of the gas turbine rises, the intake air of the gas turbine is cooled by the intake cooler by the cold water generated by the adsorption refrigerator.
It is possible to lower the intake air temperature, increase the weight flow rate of the intake air, and improve the output of the gas turbine.

【0018】この結果、従来、無駄に大気中へ捨てられ
てしまっていた熱エネルギーを回収して冷水を発生さ
せ、該冷水を機器の冷却やガスタービンの吸気冷却等に
使用することにより、プラントにおける総合効率を向上
させることが可能となる。
As a result, by recovering thermal energy that has been conventionally wasted into the atmosphere to generate cold water, the cold water is used for cooling equipment and cooling the intake air of a gas turbine. , It is possible to improve the overall efficiency.

【0019】[0019]

【発明の実施の形態】以下、本発明の実施の形態を図示
例と共に説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0020】図1は本発明を実施する形態の一例であっ
て、図中、図3と同一の符号を付した部分は同一物を表
わしており、基本的な構成は図3に示す従来のものと同
様であるが、本図示例の特徴とするところは、図1に示
す如く、排熱回収ボイラ4を通過した排ガスの熱を更に
回収して温水を発生させる温水ボイラ22と、該温水ボ
イラ22で発生した温水を駆動熱源として冷水を発生さ
せる吸着式冷凍機23とを追加装備し、更に、気温が高
くガスタービン1の吸気温度が上昇してしまう夏季のた
めに、前記吸着式冷凍機23で発生した冷水によりガス
タービン1の吸気を冷却する吸気冷却器24を具備した
点にある。
FIG. 1 shows an example of an embodiment of the present invention. In the figure, the portions denoted by the same reference numerals as those in FIG. 3 represent the same components. As shown in FIG. 1, the hot water boiler 22 further collects the heat of the exhaust gas passing through the exhaust heat recovery boiler 4 to generate hot water. An adsorption chiller 23 that generates cold water using hot water generated by the boiler 22 as a driving heat source is additionally provided. Further, in summer when the air temperature is high and the intake temperature of the gas turbine 1 rises, the adsorption refrigeration is required. In that it has an intake air cooler 24 that cools the intake air of the gas turbine 1 with the cold water generated by the machine 23.

【0021】尚、図1中、25は吸着式冷凍機23へ供
給する冷却水を冷却するための冷却塔である。
In FIG. 1, reference numeral 25 denotes a cooling tower for cooling the cooling water supplied to the adsorption refrigerator 23.

【0022】前記吸着式冷凍機23は、図2に示す如
く、内部が真空状態に保持される容器26内に、被冷却
管27が配設され且つ冷媒としての水を滴下させて蒸発
させる蒸発器28と、シリカゲル等の固体吸着剤29で
覆われた伝熱管30が配設され且つ冷媒を固体吸着剤2
9に吸着する吸着器と固体吸着剤29から冷媒を放出す
る再生器とに交互に切り換えられる吸着剤熱交換器3
1,32と、冷却水流通管33が配設され且つ冷媒蒸気
を凝縮させて凝縮水配管34から蒸発器28へ滴下させ
る凝縮器35とを形成し、蒸発器28において水を滴下
させて被冷却管27の表面で蒸発させることにより、そ
の気化熱(蒸発潜熱)で被冷却管27内に流通される水
を冷却して冷水を発生させる一方、吸着剤熱交換器3
1,32の伝熱管30にそれぞれ冷却水と温水を一定時
間毎に交互に切り換えて供給することにより、吸着剤熱
交換器31(又は吸着剤熱交換器32)を吸着器として
作用させ固体吸着剤29に蒸発器28で蒸発させた冷媒
(水蒸気)を吸着させると共に、吸着剤熱交換器32
(又は吸着剤熱交換器31)を再生器として作用させ固
体吸着剤29から冷媒を放出させ、該冷媒を凝縮器35
で凝縮させて、これを凝縮水配管34から蒸発器28に
供給して循環させるようにしたものであり、優れた低温
特性を有している。
As shown in FIG. 2, the adsorption type refrigerator 23 is provided with a pipe 27 to be cooled in a vessel 26 whose inside is kept in a vacuum state, and evaporates by dropping water as a refrigerant. And a heat transfer tube 30 covered with a solid adsorbent 29 such as silica gel.
Adsorbent heat exchanger 3 alternately switched between an adsorber adsorbing at 9 and a regenerator discharging refrigerant from solid adsorbent 29
1 and 32, and a condenser 35 provided with a cooling water flow pipe 33 for condensing the refrigerant vapor and dropping it from the condensed water pipe 34 to the evaporator 28 are formed. By evaporating on the surface of the cooling pipe 27, the heat of vaporization (latent heat of evaporation) cools the water flowing through the pipe to be cooled 27 to generate cold water, while the adsorbent heat exchanger 3
The cooling water and the hot water are alternately supplied to the heat transfer tubes 30 at regular intervals, respectively, so that the adsorbent heat exchanger 31 (or the adsorbent heat exchanger 32) acts as an adsorber and solid adsorption is performed. The refrigerant (water vapor) evaporated by the evaporator 28 is adsorbed on the adsorbent 29 and the adsorbent heat exchanger 32
(Or the adsorbent heat exchanger 31) acts as a regenerator to release the refrigerant from the solid adsorbent 29.
And is supplied from the condensed water pipe 34 to the evaporator 28 and circulated, and has excellent low-temperature characteristics.

【0023】次に、上記図示例の作動を説明する。Next, the operation of the illustrated example will be described.

【0024】図1に示すガスタービンコージェネレーシ
ョンシステムにおいては、ガスタービン1で燃料が燃や
されて発電機2が駆動され、発電が行われると共に、ガ
スタービン1の排ガスの熱が排熱回収ボイラ4で回収さ
れて蒸気が発生され、排熱回収ボイラ4を通過した排ガ
スの熱が温水ボイラ22で更に回収されて80[℃]レ
ベルの温水が発生され、温水ボイラ22で発生した温水
を駆動熱源として吸着式冷凍機23で冷水(3〜12
[℃]レベル)が発生される。尚、温水ボイラ22の出
口の排ガス温度は、約90[℃]程度となる。
In the gas turbine cogeneration system shown in FIG. 1, the fuel is burned in the gas turbine 1 to drive the generator 2 to generate electric power, and the heat of the exhaust gas from the gas turbine 1 is transferred to the exhaust heat recovery boiler 4. To generate steam, and the heat of the exhaust gas passing through the exhaust heat recovery boiler 4 is further recovered by the hot water boiler 22 to generate hot water at a level of 80 ° C., and the hot water generated by the hot water boiler 22 is used as a driving heat source. As cold water (3-12
[° C.] level) is generated. The exhaust gas temperature at the outlet of the hot water boiler 22 is about 90 [° C.].

【0025】ここで、特に気温が高くガスタービン1の
吸気温度がおよそ30[℃]程度まで上昇してしまう夏
季には、吸着式冷凍機23で発生した冷水を吸気冷却器
24へ導入することにより、該吸気冷却器24でガスタ
ービン1の吸気を冷却し、吸気温度をおよそ15[℃]
程度まで低下させ、吸気の重量流量を増加させ、ガスタ
ービン1の出力を向上させることが可能となる。
Here, particularly in summer, when the temperature is high and the intake temperature of the gas turbine 1 rises to about 30 ° C., the cold water generated in the adsorption refrigerator 23 is introduced into the intake cooler 24. As a result, the intake air cooler 24 cools the intake air of the gas turbine 1 and reduces the intake air temperature to approximately 15 ° C.
To the extent, the weight flow rate of the intake air can be increased, and the output of the gas turbine 1 can be improved.

【0026】又、夏季以外の季節には、吸着式冷凍機2
3で発生した冷水を吸気冷却器24へ導入せずに、工場
プロセス冷水として機器の冷却等に使用することが可能
となる。そのため、ボイラ6による蒸気生成、吸収式冷
凍機9による冷水製造のための燃料が、この分節約でき
る。
In addition, in the seasons other than summer, the adsorption refrigerator 2
The cooling water generated in step 3 can be used as factory process cold water for cooling equipment and the like without being introduced into the intake air cooler 24. Therefore, fuel for steam generation by the boiler 6 and cold water production by the absorption chiller 9 can be saved correspondingly.

【0027】一方、前記吸着式冷凍機23は、冷媒とし
て水を利用し、ノン・フロン冷媒で地球環境に優しく、
装置構造が簡潔で寿命も長く、しかも、吸収式冷凍機9
のように吸収液15として臭化リチウム等を使用しない
ので、保守管理に手間が掛からず、保守費用も安く済
む。又、前記吸着式冷凍機23の起動はガスタービン1
と略同時にできるため、負荷変動等にも迅速に対応可能
となる。
On the other hand, the adsorptive refrigerator 23 uses water as a refrigerant, is a non-fluorocarbon refrigerant and is environmentally friendly,
The device structure is simple, the life is long, and the absorption refrigerator 9
As described above, since lithium bromide or the like is not used as the absorbing liquid 15, the maintenance management is not troublesome, and the maintenance cost can be reduced. Further, the startup of the adsorption refrigerator 23 is performed by the gas turbine 1.
Can be performed at substantially the same time, so that it is possible to quickly respond to load fluctuations and the like.

【0028】一つの試算では、2000[kW]級のガ
スタービン1を用いたガスタービンコージェネレーショ
ンシステムの場合、投入燃料エネルギーのおよそ25
[%]が発電に、およそ50[%]が排熱回収ボイラ4
による蒸気エネルギーに変換され、更に温水エネルギー
として8〜10[%]利用可能となり、総合効率はおよ
そ85[%]程度が期待でき、又、夏季におけるガスタ
ービン1の吸気冷却により、ガスタービン1の出力は約
200〜300[kW](定格出力の10〜15
[%])増加させることが可能となり、更に又、重油換
算エネルギーは年間200[kl]程度の削減が期待で
きると共に、排出CO2は年間150[ton]程度の
削減が期待できる。尚、燃料単価をベースにした経済性
試算においてもかなりのコスト削減が期待できる。
According to one estimation, in the case of a gas turbine cogeneration system using a 2000 [kW] class gas turbine 1, approximately 25% of the input fuel energy is used.
[%] Is for power generation, and about 50 [%] is for waste heat recovery boiler 4
Is converted to steam energy, and can be used as hot water energy at a rate of 8 to 10%. The overall efficiency can be expected to be about 85%. Output is about 200 to 300 [kW] (10 to 15 of rated output)
[%]) It is possible to increase, addition, heavy oil conversion energy with can be expected reduction in per year 200 [kl], CO 2 emissions can be expected to reduce the per year 0.99 [ton]. It should be noted that considerable cost reduction can also be expected in economic trials based on fuel unit prices.

【0029】この結果、従来、無駄に大気中へ捨てられ
てしまっていた熱エネルギーを回収して冷水を発生さ
せ、該冷水を、夏季にはガスタービン1の吸気冷却に、
又、それ以外の季節には機器の冷却等に使用することに
より、プラントにおける総合効率を向上させることが可
能となる。
As a result, heat energy that has been conventionally wasted into the atmosphere is recovered to generate cold water, and the cold water is used for cooling the intake air of the gas turbine 1 in summer.
In other seasons, it is possible to improve the overall efficiency of the plant by using it for cooling equipment and the like.

【0030】こうして、従来において利用価値の低かっ
た温水を有効に活用し得、プラント総合効率向上を図り
得る。
[0030] In this manner, the hot water, which has conventionally had a low utility value, can be effectively used, and the overall plant efficiency can be improved.

【0031】尚、本発明のガスタービンコージェネレー
ションシステムは、上述の図示例にのみ限定されるもの
ではなく、本発明の要旨を逸脱しない範囲内において種
々変更を加え得ることは勿論である。
It should be noted that the gas turbine cogeneration system of the present invention is not limited to the illustrated example described above, and it goes without saying that various modifications can be made without departing from the spirit of the present invention.

【0032】[0032]

【発明の効果】以上、説明したように本発明のガスター
ビンコージェネレーションシステムによれば、従来にお
いて利用価値の低かった温水を有効に活用し得、プラン
ト総合効率向上を図り得るという優れた効果を奏し得
る。
As described above, according to the gas turbine cogeneration system of the present invention, it is possible to effectively use hot water, which has conventionally been low in utility value, and to improve the overall efficiency of the plant. I can play.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を実施する形態の一例の全体概要構成図
である。
FIG. 1 is an overall schematic configuration diagram of an example of an embodiment of the present invention.

【図2】本発明を実施する形態の一例における吸着式冷
凍機の概略構造図である。
FIG. 2 is a schematic structural view of an adsorption refrigerator according to an example of an embodiment of the present invention.

【図3】従来のガスタービンコージェネレーションシス
テムの一例を表わす全体概要構成図である。
FIG. 3 is an overall schematic configuration diagram illustrating an example of a conventional gas turbine cogeneration system.

【図4】吸収式冷凍機の概略構造図である。FIG. 4 is a schematic structural view of an absorption refrigerator.

【符号の説明】[Explanation of symbols]

1 ガスタービン 2 発電機 4 排熱回収ボイラ 22 温水ボイラ 23 吸着式冷凍機 24 吸気冷却器 DESCRIPTION OF SYMBOLS 1 Gas turbine 2 Generator 4 Exhaust heat recovery boiler 22 Hot water boiler 23 Adsorption type refrigerator 24 Inlet cooler

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F02G 5/04 F02G 5/04 K F22B 1/18 F22B 1/18 D F24H 1/00 631 F24H 1/00 631A F25B 27/02 F25B 27/02 J (72)発明者 小林 英夫 東京都江東区豊洲二丁目1番1号 石川島 播磨重工業株式会社東京第一工場内 (72)発明者 津倉 洋 東京都品川区大崎二丁目1番17号 株式会 社明電舎内 (72)発明者 米澤 泰夫 京都府八幡市岩田南野1の1 西淀空調機 株式会社内──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) F02G 5/04 F02G 5/04 K F22B 1/18 F22B 1/18 D F24H 1/00 631 F24H 1/00 631A F25B 27/02 F25B 27/02 J (72) Inventor Hideo Kobayashi 2-1-1, Toyosu, Koto-ku, Tokyo Ishikawajima-Harima Heavy Industries, Ltd. Tokyo First Factory (72) Inventor Hiroshi Tsukura Osaki, Shinagawa-ku, Tokyo 2-1-1-17 Inside Meidensha Co., Ltd. (72) Inventor Yasuo Yonezawa 1-1, Minamino, Iwata, Yawata City, Kyoto Nishiyodo Air Conditioner Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 燃料を燃やして発電機を駆動するガスタ
ービンと、 該ガスタービンの排ガスの熱を回収して蒸気を発生させ
る排熱回収ボイラと、 該排熱回収ボイラを通過した排ガスの熱を更に回収して
温水を発生させる温水ボイラと、 該温水ボイラで発生した温水を駆動熱源として冷水を発
生させる吸着式冷凍機とを備えたことを特徴とするガス
タービンコージェネレーションシステム。
1. A gas turbine that drives a generator by burning fuel, an exhaust heat recovery boiler that recovers heat of exhaust gas of the gas turbine to generate steam, and heat of exhaust gas that passes through the exhaust heat recovery boiler. A gas turbine cogeneration system comprising: a hot water boiler that further collects water to generate hot water; and an adsorption refrigerator that generates cold water by using the hot water generated by the hot water boiler as a driving heat source.
【請求項2】 燃料を燃やして発電機を駆動するガスタ
ービンと、 該ガスタービンの排ガスの熱を回収して蒸気を発生させ
る排熱回収ボイラと、 該排熱回収ボイラを通過した排ガスの熱を更に回収して
温水を発生させる温水ボイラと、 該温水ボイラで発生した温水を駆動熱源として冷水を発
生させる吸着式冷凍機と、 該吸着式冷凍機で発生した冷水によりガスタービンの吸
気を冷却する吸気冷却器とを備えたことを特徴とするガ
スタービンコージェネレーションシステム。
2. A gas turbine that drives a generator by burning fuel, an exhaust heat recovery boiler that recovers heat of exhaust gas of the gas turbine to generate steam, and heat of exhaust gas that passes through the exhaust heat recovery boiler. A hot water boiler that further collects and generates hot water, an adsorption refrigerator that generates cold water by using the hot water generated by the hot water boiler as a driving heat source, and cools the gas turbine intake by the cold water generated by the adsorption refrigerator. A gas turbine cogeneration system, comprising:
JP2001063808A 2001-03-07 2001-03-07 Gas turbine cogeneration system Pending JP2002266656A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001063808A JP2002266656A (en) 2001-03-07 2001-03-07 Gas turbine cogeneration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001063808A JP2002266656A (en) 2001-03-07 2001-03-07 Gas turbine cogeneration system

Publications (1)

Publication Number Publication Date
JP2002266656A true JP2002266656A (en) 2002-09-18

Family

ID=18922736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001063808A Pending JP2002266656A (en) 2001-03-07 2001-03-07 Gas turbine cogeneration system

Country Status (1)

Country Link
JP (1) JP2002266656A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007285298A (en) * 2006-04-18 2007-11-01 General Electric Co <Ge> Gas turbine intake control system and method
JP2008185031A (en) * 2007-01-29 2008-08-14 General Electric Co <Ge> Integrated plant cooling system
JP2010048446A (en) * 2008-08-20 2010-03-04 Ntn Corp Hybrid air cycle refrigerating and cooling unit
US7732635B2 (en) 2006-04-07 2010-06-08 Nippon Shokubai Co., Ltd. Method for producing organic acid
KR100976226B1 (en) 2008-07-23 2010-08-17 한국전력공사 Microturbine CHP heating and cooling system including microturbine inlet air cooling equipment
KR101038249B1 (en) * 2008-10-29 2011-06-01 (주)엑서지엔지니어링 Air cooling apparustus for gas turbine
CN105019956A (en) * 2015-07-14 2015-11-04 中国能源建设集团广东省电力设计研究院有限公司 Gas-steam combined cycle power generation waste heat utilization system
GB2534941A (en) * 2015-01-30 2016-08-10 Carillion Energy Services Ltd Service supply systems
KR20170102793A (en) * 2015-01-08 2017-09-12 칭화 유니버시티 Gas-steam combined cycle centralized heat supply device and heat supply method
KR101832474B1 (en) 2013-05-02 2018-02-26 지멘스 악티엔게젤샤프트 Thermal water treatment for stig power station concepts
CN111023617A (en) * 2019-12-28 2020-04-17 郑晓昱 Device and method for cooling dead steam cooling water based on refrigeration mode

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7732635B2 (en) 2006-04-07 2010-06-08 Nippon Shokubai Co., Ltd. Method for producing organic acid
JP2007285298A (en) * 2006-04-18 2007-11-01 General Electric Co <Ge> Gas turbine intake control system and method
JP2008185031A (en) * 2007-01-29 2008-08-14 General Electric Co <Ge> Integrated plant cooling system
KR100976226B1 (en) 2008-07-23 2010-08-17 한국전력공사 Microturbine CHP heating and cooling system including microturbine inlet air cooling equipment
JP2010048446A (en) * 2008-08-20 2010-03-04 Ntn Corp Hybrid air cycle refrigerating and cooling unit
KR101038249B1 (en) * 2008-10-29 2011-06-01 (주)엑서지엔지니어링 Air cooling apparustus for gas turbine
KR101832474B1 (en) 2013-05-02 2018-02-26 지멘스 악티엔게젤샤프트 Thermal water treatment for stig power station concepts
KR20170102793A (en) * 2015-01-08 2017-09-12 칭화 유니버시티 Gas-steam combined cycle centralized heat supply device and heat supply method
KR102071105B1 (en) 2015-01-08 2020-03-02 칭화 유니버시티 Gas-steam combined cycle centralized heat supply device and heat supply method
GB2534941A (en) * 2015-01-30 2016-08-10 Carillion Energy Services Ltd Service supply systems
CN105019956A (en) * 2015-07-14 2015-11-04 中国能源建设集团广东省电力设计研究院有限公司 Gas-steam combined cycle power generation waste heat utilization system
CN111023617A (en) * 2019-12-28 2020-04-17 郑晓昱 Device and method for cooling dead steam cooling water based on refrigeration mode

Similar Documents

Publication Publication Date Title
Wang et al. Solar driven air conditioning and refrigeration systems corresponding to various heating source temperatures
US7762103B2 (en) Absorption cooling system
JP6820639B1 (en) Carbon dioxide recovery system
CN103352761A (en) Waste heat utilization based gas turbine inlet air cooling device
CN113818934B (en) Adjustable combined cooling and power system and process and operation method thereof
CN109682110B (en) Miniature distributed combined cooling heating power device for sectional solution absorption and control method thereof
CN102322705B (en) Circulating device combining diffusing absorption-type refrigeration and vapor compression refrigeration
JP2002266656A (en) Gas turbine cogeneration system
CN114322354B (en) Absorption type circulating refrigeration system and process thereof
JP2005315127A (en) Gas turbine
JP2004190885A (en) Absorption compression refrigerating machine and refrigerating system
KR101038249B1 (en) Air cooling apparustus for gas turbine
CN201973952U (en) Lithium bromide absorption evaporative condensation water chiller
CN100447502C (en) Two-stage generator of lithium bromide refrigerator by utilizing waste heat using heat pipe
CN111023619B (en) Green heat pump refrigerating and heating device and method
JP2007322028A (en) Absorption type refrigerating system
CN107289665A (en) Regional Energy supply system
CN113091349A (en) High-efficient absorption heat pump
JP2008020094A (en) Absorption type heat pump device
JP2004190886A (en) Absorption refrigerating machine and absorption refrigerating system
JP2010096414A (en) Ammonia absorption refrigeration type power generating device
JP2005147447A (en) Ammonia-water non-azeotropic mixture medium circulation system
CN217423663U (en) Smoke type lithium bromide absorption type second-class heat pump unit
CN215002381U (en) High-efficient absorption heat pump
KR200356600Y1 (en) Gas Turbine Inlet Air Cooling System in Combined Cycle Power Plant