JP6820639B1 - Carbon dioxide recovery system - Google Patents

Carbon dioxide recovery system Download PDF

Info

Publication number
JP6820639B1
JP6820639B1 JP2020545205A JP2020545205A JP6820639B1 JP 6820639 B1 JP6820639 B1 JP 6820639B1 JP 2020545205 A JP2020545205 A JP 2020545205A JP 2020545205 A JP2020545205 A JP 2020545205A JP 6820639 B1 JP6820639 B1 JP 6820639B1
Authority
JP
Japan
Prior art keywords
carbon dioxide
absorption
dioxide gas
absorption liquid
supplied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2020545205A
Other languages
Japanese (ja)
Other versions
JPWO2022018832A1 (en
Inventor
伊藤 信三
信三 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EUREKA ENGINEERING INC.
Original Assignee
EUREKA ENGINEERING INC.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EUREKA ENGINEERING INC. filed Critical EUREKA ENGINEERING INC.
Application granted granted Critical
Publication of JP6820639B1 publication Critical patent/JP6820639B1/en
Publication of JPWO2022018832A1 publication Critical patent/JPWO2022018832A1/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/12Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon dioxide with hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C9/00Aliphatic saturated hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K27/00Plants for converting heat or fluid energy into mechanical energy, not otherwise provided for
    • F01K27/02Plants modified to use their waste heat, other than that of exhaust, e.g. engine-friction heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combustion & Propulsion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Gas Separation By Absorption (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

排ガスに含まれる炭酸ガスを吸収液に吸収させて炭酸ガス含有吸収液を生成する吸収塔と、吸収塔から供給された炭酸ガス含有吸収液を加熱し炭酸ガスを放出させて再生吸収液にする再生塔と、再生塔から供給された再生吸収液を加熱用水蒸気で加熱して再生塔に戻すリボイラーと、前記再生吸収液と前記炭酸ガス含有吸収液との間で熱交換する熱交換器と、熱交換器から送出された再生吸収液を予冷する再生吸収液冷却器と、駆動用水蒸気によって再生器が加熱され、熱交換器で昇温された炭酸ガス含有吸収液が供給され吸収器の伝熱管および凝縮器の伝熱管を介して再生塔に送出し、熱交換器および再生吸収液冷却器で降温された再生吸収液が供給され蒸発器の伝熱管を介して吸収塔に吸収液として環流させる吸収式ヒートポンプと、再生塔から炭酸ガスとともに供給された水蒸気を凝縮させて炭酸ガスを分離する炭酸ガス分離器と、を備える炭酸ガス回収システム。An absorption tower that absorbs carbon dioxide gas contained in exhaust gas into an absorption liquid to generate a carbon dioxide gas-containing absorption liquid, and a carbon dioxide gas-containing absorption liquid supplied from the absorption tower are heated to release carbon dioxide gas to make a regenerated absorption liquid. A regeneration tower, a reboiler that heats the regeneration absorption liquid supplied from the regeneration tower with heating steam and returns it to the regeneration tower, and a heat exchanger that exchanges heat between the regeneration absorption liquid and the carbon dioxide gas-containing absorption liquid. , The regenerative absorption liquid cooler that precools the regenerated absorption liquid sent from the heat exchanger, and the regenerator is heated by the driving steam, and the carbon dioxide gas-containing absorbing liquid that has been heated by the heat exchanger is supplied to the absorber. It is sent to the regeneration tower via the heat transfer tube of the heat transfer tube and the condenser, and the regenerated absorption liquid cooled by the heat exchanger and the regeneration absorption liquid cooler is supplied to the absorption tower as an absorption liquid through the heat transfer tube of the evaporator. A carbon dioxide gas recovery system including an absorption heat pump that recirculates and a carbon dioxide gas separator that condenses water vapor supplied from the regeneration tower together with carbon dioxide gas to separate the carbon dioxide gas.

Description

本発明は、燃焼排ガスから炭酸ガスを回収するシステムに関する。 The present invention relates to a system for recovering carbon dioxide gas from combustion exhaust gas.

地球温暖化問題は深刻度を増しており、多量の二酸化炭素を排出する化石燃料を使用する火力発電等を制限する動きもある。しかし、火力発電等の化石燃料を使用する設備は稼働コストが安価であり、大気に放出される二酸化炭素の排出量を環境に悪影響を与えない程度に減少できれば有力な電力供給設備等になり得る。したがって、化石燃料の燃焼によって排出される二酸化炭素を回収して有効利用する「カーボンリサイクル技術」が社会の関心を集め、世界各地で研究・開発されている。
カーボンリサイクル技術は、炭酸ガス回収技術と炭酸ガス利用技術とで構成される。
炭酸ガス回収技術として、例えば特開2010−88982号公報に記載の二酸化炭素回収システム1は、燃焼排ガス2に含まれる二酸化炭素を吸収液に吸収させる吸収塔3と、吸収塔3から二酸化炭素を吸収した吸収液4aが供給され、二酸化炭素を吸収した吸収液4aから二酸化炭素ガスを放出させてこの吸収液4aを再生する再生塔6と、再生塔6からの吸収液4bを加熱して水蒸気を生成し、この水蒸気を再生塔6に供給するとともに加熱した吸収液を吸収塔3に供給するリボイラー19と、吸収塔3と再生塔6との間に配置され、吸収塔3から再生塔6に供給される二酸化炭素を吸収した吸収液4aを加熱する圧縮式ヒートポンプ40と、を備えている。
炭酸ガス利用技術として、例えば特開2011−241182号公報に記載のメタン合成装置1は、原料ガスの水素ガスと炭酸ガスを触媒が充填された反応器4にコンプレッサ2,3で供給し、メタン化反応させてメタンを合成している。
炭酸ガス利用技術は、種々開発されているが、利用は炭酸ガス回収技術と一体であり、エネルギー消費の少ない炭酸ガス回収技術が開発されない限り、実用化の進展は望めない。
The problem of global warming is becoming more serious, and there are moves to limit thermal power generation that uses fossil fuels that emit large amounts of carbon dioxide. However, equipment that uses fossil fuels such as thermal power generation has low operating costs, and if the amount of carbon dioxide emitted to the atmosphere can be reduced to the extent that it does not adversely affect the environment, it can become a powerful power supply equipment. .. Therefore, "carbon recycling technology" that recovers and effectively utilizes carbon dioxide emitted by burning fossil fuels has attracted public attention and is being researched and developed all over the world.
Carbon recycling technology consists of carbon dioxide recovery technology and carbon dioxide utilization technology.
As a carbon dioxide gas recovery technique, for example, the carbon dioxide recovery system 1 described in Japanese Patent Application Laid-Open No. 2010-88882 has an absorption tower 3 for absorbing carbon dioxide contained in combustion exhaust gas 2 into an absorption liquid and carbon dioxide from the absorption tower 3. The regenerating tower 6 to which the absorbed absorbing liquid 4a is supplied and carbon dioxide gas is released from the absorbing liquid 4a that has absorbed carbon dioxide to regenerate the absorbing liquid 4a, and the absorbing liquid 4b from the regenerating tower 6 are heated and steamed. Is arranged between the reboiler 19 and the absorption tower 3 and the regeneration tower 6 to supply the steam to the regeneration tower 6 and the heated absorption liquid to the absorption tower 3, and the absorption tower 3 to the regeneration tower 6 A compression type heat pump 40 for heating the absorbing liquid 4a that has absorbed carbon dioxide supplied to the vehicle is provided.
As a carbon dioxide gas utilization technique, for example, the methane synthesizer 1 described in Japanese Patent Application Laid-Open No. 2011-241182 supplies hydrogen gas and carbon dioxide gas as raw material gases to a reactor 4 filled with a catalyst by compressors 2 and 3, and methane. Methane is synthesized by a chemical reaction.
Various carbon dioxide gas utilization technologies have been developed, but their utilization is integrated with carbon dioxide gas recovery technology, and unless a carbon dioxide gas recovery technology with low energy consumption is developed, progress in practical use cannot be expected.

特開2010−88982号公報JP-A-2010-88882 特開2011−241182号公報Japanese Unexamined Patent Publication No. 2011-241182

従来の二酸化炭素回収システムは、再生吸収液を加熱し、再生吸収液に含まれる水から高温の水蒸気を生成するために多量の加熱用水蒸気をリボイラーに供給する必要があり、年間稼働経費の50%近くを熱エネルギー(再生エネルギー)が占める。炭酸ガス回収量1トン当たりの熱エネルギーは、石炭火力発電の排ガス(炭酸ガス含有率約15Vol.%)を対象とする場合、約2.5GJ/t−CO2)と算定されている。さらに、冷却塔、ブロア、ポンプ等の補機用電力費も約25%を占めており、熱エネルギー費と電力費が年間稼働経費の75%近くになるエネルギー多消費型のシステムである。A conventional carbon capture system needs to heat the reboiler and supply a large amount of steam for heating to the reboiler in order to generate high-temperature steam from the water contained in the reboiler, and the annual operating cost is 50. Thermal energy (regenerated energy) accounts for nearly%. The thermal energy per ton of carbon dioxide recovered is calculated to be about 2.5 GJ / t-CO 2 when the exhaust gas of coal-fired power generation (carbon dioxide content of about 15 Vol.%) Is targeted. Furthermore, the power cost for auxiliary equipment such as cooling towers, blowers, and pumps accounts for about 25%, and the heat energy cost and power cost are close to 75% of the annual operating cost, which is an energy-intensive system.

本発明は、地球温暖化の防止に役立つエネルギー消費の少ない炭酸ガス回収システムを提供することを目的とする。 An object of the present invention is to provide a carbon dioxide gas recovery system with low energy consumption, which is useful for preventing global warming.

排ガスが供給され、前記排ガスに含まれる炭酸ガスを吸収液に吸収させて炭酸ガス含有吸収液を生成する吸収塔と、前記吸収塔から前記炭酸ガス含有吸収液が供給され、前記炭酸ガス含有吸収液を高温の水蒸気で加熱し前記炭酸ガスを放出させて再生吸収液にする再生塔と、前記再生塔から前記再生吸収液が供給され、前記再生吸収液を加熱用水蒸気で加熱して前記再生吸収液に含まれる水の一部を前記高温の水蒸気にして前記再生塔に戻すリボイラーと、前記再生塔から送出された前記再生吸収液と前記吸収塔から送出された前記炭酸ガス含有吸収液との間で熱交換する熱交換器と、前記熱交換器から送出された前記再生吸収液を予冷する再生吸収液冷却器と、冷媒を吸収した吸収液が再生器において駆動用水蒸気で加熱されることによって前記冷媒が蒸発され、蒸発した前記冷媒が凝縮器で凝縮され、凝縮された前記冷媒が低圧の蒸発器で蒸発され、蒸発した前記冷媒が吸収器で前記吸収液に吸収される吸収式ヒートポンプであって、前記熱交換器で昇温された前記炭酸ガス含有吸収液が供給され、前記吸収器の伝熱管および前記凝縮器の伝熱管を介して前記再生塔に送出し、前記熱交換器および前記再生吸収液冷却器で降温された前記再生吸収液が供給され、前記蒸発器の伝熱管を介して前記吸収塔に前記吸収液として環流させる吸収式ヒートポンプと、前記再生塔から前記炭酸ガスとともに供給された水蒸気を凝縮させて前記炭酸ガスを分離する炭酸ガス分離器と、を備える炭酸ガス回収システムである。 An absorption tower in which exhaust gas is supplied and the carbon dioxide gas contained in the exhaust gas is absorbed by the absorption liquid to generate a carbon dioxide gas-containing absorption liquid, and the carbon dioxide gas-containing absorption liquid is supplied from the absorption tower to absorb the carbon dioxide gas. A regeneration tower that heats the liquid with high-temperature steam to release the carbon dioxide gas to form a regeneration absorption liquid, and the regeneration absorption liquid is supplied from the regeneration tower, and the regeneration absorption liquid is heated by the heating steam to heat the regeneration. A revolver that converts a part of the water contained in the absorption liquid into the high-temperature steam and returns it to the regeneration tower, the regeneration absorption liquid sent from the regeneration tower, and the carbon dioxide gas-containing absorption liquid sent out from the absorption tower. A heat exchanger that exchanges heat between the heat exchangers, a regenerated absorbent cooler that precools the regenerated absorbent sent from the heat exchanger, and an absorbent that has absorbed the refrigerant are heated by driving steam in the regenerator. As a result, the refrigerant is evaporated, the evaporated refrigerant is condensed in the condenser, the condensed refrigerant is evaporated in the low pressure evaporator, and the evaporated refrigerant is absorbed in the absorption liquid by the absorber. a heat pump, the carbon dioxide-containing absorbing solution which has been heated by the heat exchanger is supplied, the sent to the regenerator through the heat transfer tube and the condenser heat transfer tubes of the absorber, the heat exchanger the regenerated absorbent solution is cooled by the vessel and the regenerated absorbent solution cooler is supplied, the absorption heat pump to circulate as the absorbing solution to the absorption tower through the heat transfer tubes of the evaporator, the carbonate from the regenerator It is a carbon dioxide gas recovery system including a carbon dioxide gas separator that condenses the water vapor supplied together with the gas and separates the carbon dioxide gas.

本発明の炭酸ガス回収システムは、吸収塔と再生塔との間に熱交換器、吸収式ヒートポンプおよび再生吸収液冷却器を設け、吸収塔から再生塔に送流される加熱の必要な炭酸ガス含有吸収液と再生塔から吸収塔に環流される冷却の必要な再生吸収液との間で熱交換器で熱交換させた後に、炭酸ガス含有吸収液を吸収式ヒートポンプの吸収器と凝縮器で加熱し、再生吸収液を再生吸収液冷却器で予冷してから吸収式ヒートポンプの蒸発器で冷却する。
吸収式ヒートポンプは圧縮式ヒートポンプに較べて昇温幅を大きくすることができる。この特性を利用した本発明の炭酸ガス回収システムでは、再生吸収液を再生吸収液冷却器で予冷してから吸収式ヒートポンプの蒸発器で冷却することで、再生塔に流入する炭酸ガス含有吸収液の温度を高く維持した状態で、吸収塔に吸収液として環流する再生吸収液の温度を低くすることができる。吸収液は温度が低いほど炭酸ガス吸収能力が向上し、単位流量当たりの炭酸ガスの吸収量が多くなる。従って、吸収液の温度を低くすることにより、所定流量の炭酸ガスを回収するために吸収塔と再生塔との間で循環する吸収液の流量を減らすことができ、リボイラーで再生吸収液を加熱するために必要な熱エネルギーや吸収液を循環させるためのエネルギーを低減することができる。
また、吸収式ヒートポンプを二重効用吸収式ヒートポンプとした場合、二重効用吸収式ヒートポンプは、圧縮式ヒートポンプに比して一次エネルギーベースでの成績係数(COP)が高いので、地球温暖化防止に貢献することができる。
The carbon dioxide gas recovery system of the present invention is provided with a heat exchanger, an absorption heat pump and a regeneration absorption chiller between the absorption tower and the regeneration tower, and contains carbon dioxide gas that requires heating and is sent from the absorption tower to the regeneration tower. After heat exchange between the absorption liquid and the regenerative absorption liquid that needs to be cooled and is recirculated from the regeneration tower to the absorption tower, the carbon dioxide gas-containing absorption liquid is heated by the absorber and condenser of the absorption heat pump. Then, the regenerated absorption liquid is precooled by the regenerative absorption liquid cooler and then cooled by the evaporator of the absorption heat pump.
The absorption heat pump can have a larger temperature rise range than the compression heat pump. In the carbon dioxide gas recovery system of the present invention utilizing this characteristic, the regenerated absorption liquid is precooled by the regenerated absorption liquid cooler and then cooled by the evaporator of the absorption heat pump, so that the carbon dioxide gas-containing absorbing liquid flowing into the regenerating tower is cooled. The temperature of the regenerated absorption liquid recirculated as the absorption liquid in the absorption tower can be lowered while the temperature of the above is maintained high. The lower the temperature of the absorbing liquid, the better the carbon dioxide absorption capacity, and the larger the amount of carbon dioxide absorbed per unit flow rate. Therefore, by lowering the temperature of the absorption liquid, the flow rate of the absorption liquid circulating between the absorption tower and the regeneration tower in order to recover the carbon dioxide gas of a predetermined flow rate can be reduced, and the regeneration absorption liquid is heated by the reboiler. It is possible to reduce the heat energy required for this and the energy for circulating the absorbing liquid.
In addition, when the absorption heat pump is a double-effect absorption heat pump, the double-effect absorption heat pump has a higher coefficient of performance (COP) on a primary energy basis than the compression heat pump, so it can prevent global warming. Can contribute.

第1の実施形態に係る炭酸ガス回収システムの全体構成を示すブロック図である。It is a block diagram which shows the whole structure of the carbon dioxide gas recovery system which concerns on 1st Embodiment. 第2の実施形態に係る炭酸ガス回収システムの全体構成を示すブロック図である。It is a block diagram which shows the whole structure of the carbon dioxide gas recovery system which concerns on 2nd Embodiment.

1.第1実施形態の構成
第1実施形態に係る炭酸ガス回収システム1aは、図1に示すように、吸収塔10と、再生塔30と、リボイラー40と、熱交換器50と、再生吸収液冷却器55と、二重効用吸収式ヒートポンプ60と、炭酸ガス分離器46と、を備え、炭化水素製造システム70が併設されている。
1. 1. Configuration of First Embodiment As shown in FIG. 1, the carbon dioxide gas recovery system 1a according to the first embodiment includes an absorption tower 10, a regeneration tower 30, a reboiler 40, a heat exchanger 50, and a regeneration absorption liquid cooling system. A vessel 55, a dual-effect absorption heat pump 60, a carbon dioxide gas separator 46, and a hydrocarbon production system 70 are installed side by side.

吸収塔10は、例えば両端を球面状端部で閉塞された直立円筒体で、下方側面に排ガス入口11、上方側面に吸収液入口12が設けられ、入口11と入口12との間には充填材13が充填されている。入口11から供給されて上昇する排ガスと入口12から供給されて下降する吸収液とは充填材13内で対向接触し、吸収液は排ガスから炭酸ガスを吸収して炭酸ガス含有吸収液となり、底部の貯留部14に一時滞留した後に吸収塔10の下面に形成された炭酸ガス含有吸収液出口15から流出する。吸収塔10には充填材13の上方に水洗部16が形成され、水洗部16に対向して側面に洗浄水入口17、出口18が設けられている。充填材13を通過中に炭酸ガスを吸収液に吸収・除去された排ガスは、水洗部16で水洗された後に吸収塔10の上面に形成された排ガス出口19から煙突を経由して外気に放出される。吸収液は公知で、アミン化合物を水に溶かしたアミン化合物水溶液を用いる。 The absorption tower 10 is, for example, an upright cylindrical body whose both ends are closed by spherical ends. An exhaust gas inlet 11 is provided on a lower side surface and an absorption liquid inlet 12 is provided on an upper side surface, and the space between the inlet 11 and the inlet 12 is filled. The material 13 is filled. The exhaust gas supplied from the inlet 11 and rising and the absorbing liquid supplied from the inlet 12 and falling come into contact with each other in the filler 13, and the absorbing liquid absorbs carbon dioxide gas from the exhaust gas to become a carbon dioxide-containing absorbing liquid, and becomes a bottom portion. After temporarily staying in the storage unit 14, it flows out from the carbon dioxide gas-containing absorption liquid outlet 15 formed on the lower surface of the absorption tower 10. A washing portion 16 is formed above the filler 13 in the absorption tower 10, and a washing water inlet 17 and an outlet 18 are provided on the side surface facing the washing portion 16. The exhaust gas that has been absorbed and removed by the absorbing liquid while passing through the filler 13 is discharged to the outside air from the exhaust gas outlet 19 formed on the upper surface of the absorption tower 10 after being washed with water by the water washing unit 16. Will be done. The absorption liquid is known, and an aqueous amine compound solution in which an amine compound is dissolved in water is used.

火力発電所等から排出される排ガスは、排ガス冷却塔20に供給される。排ガス冷却塔20には排ガスクーラ21で冷却される冷却水がポンプ22によって循環され、排ガスは排ガス冷却塔20の下方に形成された入口23から冷却塔20に流入する。排ガスは冷却塔20内で冷却水によって冷却され、頂部に形成された出口24から排ガスブロワ25によって吸引され、入口11から吸収塔10に流入する。 The exhaust gas discharged from the thermal power plant or the like is supplied to the exhaust gas cooling tower 20. Cooling water cooled by the exhaust gas cooler 21 is circulated in the exhaust gas cooling tower 20 by a pump 22, and the exhaust gas flows into the cooling tower 20 from an inlet 23 formed below the exhaust gas cooling tower 20. The exhaust gas is cooled by the cooling water in the cooling tower 20, is sucked by the exhaust gas blower 25 from the outlet 24 formed at the top, and flows into the absorption tower 10 from the inlet 11.

吸収塔10の出口15からポンプ51によって汲み出された炭酸ガス含有吸収液は、熱交換器50および吸収式ヒートポンプ60において加熱され再生塔30に炭酸ガス含有吸収液入口31から供給される。再生塔30は、例えば両端を球面状端部で閉塞された直立円筒体で、上方側面に入口31および凝縮水入口32、下方側面に高温再生吸収液入口33、上面に炭酸ガス出口34、下面に再生吸収液出口35、36が形成されている。 The carbon dioxide-containing absorbing liquid pumped out from the outlet 15 of the absorption tower 10 by the pump 51 is heated by the heat exchanger 50 and the absorption heat pump 60 and supplied to the regeneration tower 30 from the carbon dioxide-containing absorbing liquid inlet 31. The regeneration tower 30 is, for example, an upright cylindrical body whose both ends are closed by spherical ends, and has an inlet 31 and a condensed water inlet 32 on the upper side surface, a high temperature regeneration absorption liquid inlet 33 on the lower side surface, a carbon dioxide gas outlet 34 on the upper surface, and a lower surface. Regenerative absorption liquid outlets 35 and 36 are formed in the above.

再生塔30の底部には再生吸収液を一時貯留する貯留部37が設けられ、再生吸収液はポンプ38によって貯留部37から出口35を通って汲み出され、リボイラー40に供給される。再生吸収液は、リボイラー40で加熱用水蒸気によって高温に加熱され、再生吸収液に含まれる水の一部が高温の水蒸気になった状態で入口33から再生塔30に戻される。リボイラー40には、背圧蒸気タービン発電機41の背圧蒸気タービン42から加熱用水蒸気が供給される。 A storage unit 37 for temporarily storing the regenerated absorption liquid is provided at the bottom of the regeneration tower 30, and the regenerated absorption liquid is pumped from the storage unit 37 through the outlet 35 by the pump 38 and supplied to the reboiler 40. The reboiler 40 is heated to a high temperature by steam for heating, and the reboiler is returned to the regeneration tower 30 from the inlet 33 in a state where a part of the water contained in the reboiler becomes high temperature steam. The reboiler 40 is supplied with steam for heating from the back pressure steam turbine 42 of the back pressure steam turbine generator 41.

背圧蒸気タービン発電機41において、後述する炭化水素製造システム70で生成された、高温高圧水蒸気が背圧蒸気タービン42に供給されてタービンを回転させ、出力軸に連結された発電機43を駆動する。発電機43は背圧蒸気タービン42によって駆動されて電力を出力する。高温高圧水蒸気はタービンを回転させた後に背圧蒸気として背圧蒸気タービン42から排出され、リボイラー40に加熱用水蒸気として供給される。 In the back pressure steam turbine generator 41, high temperature and high pressure steam generated by the hydrocarbon production system 70 described later is supplied to the back pressure steam turbine 42 to rotate the turbine and drive the generator 43 connected to the output shaft. To do. The generator 43 is driven by the back pressure steam turbine 42 to output electric power. The high-temperature and high-pressure steam is discharged from the back pressure steam turbine 42 as back pressure steam after rotating the turbine, and is supplied to the reboiler 40 as heating steam.

再生塔30は、炭酸ガス含有吸収液が、吸収塔10から熱交換器50および二重効用吸収式ヒートポンプ60を経由して上部の入口31から供給される。炭酸ガス含有吸収液は、再生塔30内を下降する間に上昇する高温の水蒸気で加熱されて炭酸ガスを放出し、再生吸収液になって底部の貯留部37に滞留する。リボイラー40は、貯留部37から再生吸収液が供給され、再生吸収液を加熱用水蒸気で加熱して再生吸収液に含まれる水の一部を高温の水蒸気にした状態で再生塔30の下部に入口33から戻す。リボイラー40から戻された高温の再生吸収液は貯留部37に環流し、高温の水蒸気は再生塔30内を頂部に向かって上昇する。下降する炭酸ガス含有吸収液は上昇する高温の水蒸気と向流接触し、高温に加熱されて炭酸ガスを放出する。このように、再生塔30は、吸収塔10から炭酸ガス含有吸収液が供給され、炭酸ガス含有吸収液を高温の水蒸気で加熱し炭酸ガスを放出させて再生吸収液にする。 In the regeneration tower 30, the carbon dioxide-containing absorption liquid is supplied from the absorption tower 10 from the upper inlet 31 via the heat exchanger 50 and the double-effect absorption heat pump 60. The carbon dioxide-containing absorption liquid is heated by high-temperature steam that rises while descending in the regeneration tower 30 to release carbon dioxide gas, becomes a regeneration absorption liquid, and stays in the storage portion 37 at the bottom. In the reboiler 40, the reboiler 40 is supplied with the rebirth absorption liquid from the storage unit 37, and the reboiler is heated with steam for heating to make a part of the water contained in the reboiler into high-temperature steam at the lower part of the reboiler 30. Return from entrance 33. The high-temperature regenerated absorption liquid returned from the reboiler 40 is recirculated to the storage portion 37, and the high-temperature water vapor rises in the regenerated tower 30 toward the top. The descending carbon dioxide-containing absorbent comes into countercurrent contact with the rising high-temperature water vapor and is heated to a high temperature to release carbon dioxide. In this way, the regeneration tower 30 is supplied with the carbon dioxide gas-containing absorption liquid from the absorption tower 10, and heats the carbon dioxide gas-containing absorption liquid with high-temperature steam to release the carbon dioxide gas to obtain the regeneration absorption liquid.

再生塔30内で炭酸ガス含有吸収液から放出された炭酸ガスは、水蒸気とともに出口34からクーラー45を経由して炭酸ガス分離器46に供給される。炭酸ガス分離器46は、再生塔30から炭酸ガスとともに供給された水蒸気を凝縮させて炭酸ガスを分離し、回収した炭酸ガスを炭化水素製造システム70に供給する。水蒸気が凝縮した凝縮水は炭酸ガス分離器46の底部に形成された出口48から再生塔30に入口32を通って戻される。 The carbon dioxide gas released from the carbon dioxide gas-containing absorbing liquid in the regeneration tower 30 is supplied to the carbon dioxide gas separator 46 from the outlet 34 via the cooler 45 together with water vapor. The carbon dioxide gas separator 46 condenses the water vapor supplied together with the carbon dioxide gas from the regeneration tower 30 to separate the carbon dioxide gas, and supplies the recovered carbon dioxide gas to the hydrocarbon production system 70. The condensed water in which water vapor is condensed is returned from the outlet 48 formed at the bottom of the carbon dioxide gas separator 46 to the regeneration tower 30 through the inlet 32.

吸収塔10と再生塔30との間には熱交換器50、二重効用吸収式ヒートポンプ60および再生吸収液冷却器55が配置されている。熱交換器50は公知であり、吸収塔10からポンプ51によって汲み出された炭酸ガス含有吸収液と、再生塔30からポンプ52によって汲み出された再生吸収液との間で熱交換し、炭酸ガス含有吸収液を昇温させ、再生吸収液を降温させる。熱交換器50で炭酸ガス含有吸収液に熱移動して降温した再生吸収液は再生吸収液冷却器55でさらに予冷される。熱交換器50で昇温された炭酸ガス含有吸収液は、二重効用吸収式ヒートポンプ60の吸収器63の伝熱管64および凝縮器65の伝熱管66を介して再生塔30に入口31から流入する。再生吸収液冷却器55で予冷された再生吸収液は、二重効用吸収式ヒートポンプ60の蒸発器67の伝熱管68を介して吸収塔10に吸収液として入口12から流入する。 A heat exchanger 50, a dual-effect absorption heat pump 60, and a regeneration absorption chiller 55 are arranged between the absorption tower 10 and the regeneration tower 30. The heat exchanger 50 is known, and heat exchange is performed between the carbon dioxide gas-containing absorption liquid pumped from the absorption tower 10 by the pump 51 and the regeneration absorption liquid pumped from the regeneration tower 30 by the pump 52 to carbon dioxide. The temperature of the gas-containing absorption liquid is raised and the temperature of the regenerated absorption liquid is lowered. The regenerated absorption liquid that has been cooled by heat transfer to the carbon dioxide gas-containing absorbing liquid in the heat exchanger 50 is further precooled by the regenerated absorbing liquid cooler 55. The carbon dioxide gas-containing absorbent liquid heated by the heat exchanger 50 flows into the regeneration tower 30 from the inlet 31 via the heat transfer tube 64 of the absorber 63 of the dual-effect absorption heat pump 60 and the heat transfer tube 66 of the condenser 65. To do. The regenerated absorption liquid precooled by the regenerative absorption liquid cooler 55 flows into the absorption tower 10 as an absorption liquid from the inlet 12 via the heat transfer tube 68 of the evaporator 67 of the dual-effect absorption heat pump 60.

二重効用吸収式ヒートポンプ60は公知であり、冷媒を吸収する性質を有する、例えば臭化リチウム水溶液(以下、吸収液と言う。)が、高温再生器61、低温再生器62、吸収器63を循環する。吸収液は、高温再生器61において駆動用水蒸気で加熱されることによって吸収した冷媒(水)が蒸発され、その後、低温再生器62において高温再生器61で生じた冷媒蒸気(水蒸気)で加熱され、冷媒をさらに蒸発されて濃縮される。蒸発した冷媒は凝縮器65で凝縮され、低圧の蒸発器67で蒸発され、吸収器63で吸収液に吸収される。これにより、炭酸ガス含有吸収液は、吸収器63で吸収液が冷媒蒸気を吸収するときの発熱、および凝縮器65での冷媒蒸気の凝縮熱によって加熱され昇温する。再生吸収液は、蒸発器67での冷媒の蒸発のために蒸発熱を奪われて冷却され降温する。 The double-effect absorption heat pump 60 is known, and for example, a lithium bromide aqueous solution (hereinafter referred to as an absorption liquid) having a property of absorbing a refrigerant causes the high temperature regenerator 61, the low temperature regenerator 62, and the absorber 63. It circulates. The absorbent liquid is heated by the driving steam in the high temperature regenerator 61 to evaporate the refrigerant (water) absorbed, and then heated by the refrigerant vapor (steam) generated in the high temperature regenerator 61 in the low temperature regenerator 62. , The refrigerant is further evaporated and concentrated. The evaporated refrigerant is condensed by the condenser 65, evaporated by the low-pressure evaporator 67, and absorbed by the absorbent liquid by the absorber 63. As a result, the carbon dioxide-containing absorbing liquid is heated and heated by the heat generated when the absorbing liquid absorbs the refrigerant vapor in the absorber 63 and the heat of condensation of the refrigerant vapor in the condenser 65. The regenerated absorption liquid is cooled and cooled by taking away heat of vaporization due to evaporation of the refrigerant in the evaporator 67.

炭酸ガス回収システム1aは、公知の炭化水素製造システム70が併設されている。炭化水素製造システム70は、水素化反応触媒が充填された反応管71に水素化反応に適した温度と圧力の水素ガスと炭酸ガスが所定のモル比で供給され、水素ガスと炭酸ガスが水素化反応触媒下で水素化反応して炭化水素を含む高温の反応ガスを生成して送出する。炭酸ガスは炭酸ガス分離器46から供給される。水素ガスは、CO2フリー水素ガスを用いると地球温暖化防止に役立つ。
反応ガスは、反応管71に接続された公知のガス水分離装置72に供給され、合成炭化水素ガスと水に分離され、合成炭化水素ガスは利用箇所に送出され、水は排出溝に排出される。反応管71は内部を水素化反応に適した温度に維持するために、反応管冷却装置73によって冷却水で冷却され、反応管冷却装置73から高温高圧の水蒸気が送出され、高圧水蒸気の一部は、二重効用吸収式ヒートポンプ60の高温再生器61に駆動用水蒸気として供給されるとともに、他部は背圧蒸気タービン発電機41の背圧蒸気タービン42に供給される。
A known hydrocarbon production system 70 is attached to the carbon dioxide gas recovery system 1a. In the hydrocarbon production system 70, hydrogen gas and carbon dioxide gas having a temperature and pressure suitable for the hydrogenation reaction are supplied to a reaction tube 71 filled with a hydrogenation reaction catalyst in a predetermined molar ratio, and hydrogen gas and carbon dioxide gas are hydrogenated. A high-temperature reaction gas containing hydrocarbons is generated and sent out by hydrogenation reaction under a hydrogenation reaction catalyst. The carbon dioxide gas is supplied from the carbon dioxide gas separator 46. Hydrogen gas helps prevent global warming when CO 2 free hydrogen gas is used.
The reaction gas is supplied to a known gas-water separator 72 connected to the reaction tube 71, separated into synthetic hydrocarbon gas and water, the synthetic hydrocarbon gas is sent to the utilization site, and the water is discharged to the discharge groove. To. The reaction tube 71 is cooled by cooling water by the reaction tube cooling device 73 in order to maintain the inside at a temperature suitable for the hydrogenation reaction, and high-temperature and high-pressure steam is sent out from the reaction tube cooling device 73 to part of the high-pressure steam. Is supplied as driving steam to the high temperature regenerator 61 of the double-effect absorption heat pump 60, and the other part is supplied to the back pressure steam turbine 42 of the back pressure steam turbine generator 41.

2.第1実施形態の作動および効果
火力発電所等から排出された排ガスは、排ガス冷却塔20に流入し冷却水によって冷却された後に吸収塔10に下方の入口11から流入して上昇する。吸収塔10には上方の入口12から吸収液が流入して下降する。吸収塔10内を上昇する排ガスと下降する吸収液とは充填材13内で対向接触し、吸収液は排ガスから炭酸ガスを吸収して炭酸ガス含有吸収液となり、底部の貯留部14に一時滞留する。炭酸ガスを吸収・除去された排ガスは、水洗部16で水洗された後に煙突から放出される。
2. 2. Operation and Effect of First Embodiment The exhaust gas discharged from the thermal power plant or the like flows into the exhaust gas cooling tower 20 and is cooled by the cooling water, and then flows into the absorption tower 10 from the lower inlet 11 and rises. The absorption liquid flows into the absorption tower 10 from the upper inlet 12 and descends. The exhaust gas rising in the absorption tower 10 and the absorbing liquid falling are in opposite contact with each other in the filler 13, and the absorbing liquid absorbs carbon dioxide gas from the exhaust gas to become a carbon dioxide-containing absorbing liquid, which temporarily stays in the storage portion 14 at the bottom. To do. The exhaust gas that has absorbed and removed carbon dioxide gas is washed with water by the flush unit 16 and then discharged from the chimney.

貯留部14に滞留された炭酸ガス含有吸収液はポンプ51によって汲み出され、熱交換器50および二重効用吸収式ヒートポンプ60において加熱された後に、再生塔30に上方の入口31から流入し底部に向かって下降する。再生塔30の下部には、高温の水蒸気を含む再生吸収液がリボイラー40から供給され、水蒸気が再生塔30内を上昇する。再生塔30内を下降する炭酸ガス含有吸収液は、上昇する高温の水蒸気と向流接触して高温に加熱され、炭酸ガスを放出して再生吸収液に再生され、貯留部37に落下して滞留する。 The carbon dioxide gas-containing absorption liquid retained in the storage unit 14 is pumped out by the pump 51, heated by the heat exchanger 50 and the double-effect absorption heat pump 60, and then flows into the regeneration tower 30 from the upper inlet 31 and bottom. It descends toward. A reboiler 40 supplies a regenerative absorption liquid containing high-temperature steam to the lower part of the regeneration tower 30, and the steam rises in the regeneration tower 30. The carbon dioxide-containing absorbing liquid descending in the regeneration tower 30 comes into countercurrent contact with the rising high-temperature steam and is heated to a high temperature, releases carbon dioxide gas, is regenerated into the regenerated absorption liquid, and falls into the storage unit 37. Stay.

リボイラー40は、再生吸収液を貯留部37から供給され、加熱用水蒸気で加熱して再生吸収液に含まれる水の一部を高温の水蒸気に蒸発させた状態で高温の再生吸収液を再生塔30に戻す。炭化水素製造システム70の反応管冷却装置73から、例えば0.8MPaの高温高圧の水蒸気が背圧蒸気タービン発電機41の背圧蒸気タービン42に供給され、背圧蒸気タービン42が発電機43を駆動した後に排出する、例えば0.2MPaの背圧蒸気がリボイラー40に加熱用水蒸気として供給され、凝縮後に反応管冷却装置73に戻される。このように、高温高圧の水蒸気が背圧蒸気タービン42を駆動した後に排出される背圧蒸気を加熱用水蒸気として無駄なく利用することができる。 The reboiler 40 supplies the regenerated absorption liquid from the storage unit 37, heats it with steam for heating, and evaporates a part of the water contained in the regenerated absorption liquid into high temperature steam, and regenerates the high temperature regenerated absorption liquid. Return to 30. From the reaction tube cooling device 73 of the hydrocarbon production system 70, for example, high temperature and high pressure steam of 0.8 MPa is supplied to the back pressure steam turbine 42 of the back pressure steam turbine generator 41, and the back pressure steam turbine 42 uses the generator 43. Back pressure steam of, for example, 0.2 MPa, which is discharged after being driven, is supplied to the reboiler 40 as steam for heating, and is returned to the reaction tube cooling device 73 after condensation. In this way, the back pressure steam discharged after the high temperature and high pressure steam drives the back pressure steam turbine 42 can be used as the heating steam without waste.

高温の水蒸気で加熱されて昇温した炭酸ガス含有吸収液から放出された炭酸ガスは、水蒸気とともにクーラー45を経由して炭酸ガス分離器46に供給される。炭酸ガス分離器46は、水蒸気を凝縮させて分離した炭酸ガスを炭化水素製造システム70に供給する。凝縮水は炭酸ガス分離器46から再生塔30に戻される。 The carbon dioxide gas released from the carbon dioxide gas-containing absorbing liquid heated by the high-temperature steam is supplied to the carbon dioxide gas separator 46 together with the steam via the cooler 45. The carbon dioxide gas separator 46 supplies the carbon dioxide gas separated by condensing water vapor to the hydrocarbon production system 70. The condensed water is returned from the carbon dioxide gas separator 46 to the regeneration tower 30.

熱交換器50の低温側には、例えば50℃の炭酸ガス含有吸収液が吸収塔10の貯留部14から供給され、高温側には、例えば120℃の再生吸収液が再生塔30の貯留部37から供給される。熱交換器50を通過する間に、炭酸ガス含有吸収液は、例えば80℃に昇温され、再生吸収液は、例えば80℃に降温される。 For example, a carbon dioxide gas-containing absorbing liquid at 50 ° C. is supplied from the storage unit 14 of the absorption tower 10 to the low temperature side of the heat exchanger 50, and a regenerated absorption liquid at 120 ° C. It is supplied from 37. While passing through the heat exchanger 50, the carbon dioxide-containing absorption liquid is heated to, for example, 80 ° C., and the regenerated absorption liquid is cooled to, for example, 80 ° C.

降温された再生吸収液は再生吸収液冷却器55で、例えば40℃にさらに予冷された後に、二重効用吸収式ヒートポンプ60の蒸発器67で、例えば30℃に冷却され、吸収塔10に吸収液として環流する。昇温された炭酸ガス含有吸収液は、二重効用吸収式ヒートポンプ60の吸収器63および凝縮器65で、例えば90℃に昇温されて再生塔30流入する。二重効用吸収式ヒートポンプ60では、炭化水素製造システム70の反応管冷却装置73から、例えば0.8MPaの高圧水蒸気が駆動用水蒸気として高温再生器61に供給され、冷媒を蒸発させて吸収液を濃縮し、凝縮後に反応管冷却装置73に戻される The cooled regenerated absorption liquid is cooled to, for example, 30 ° C. by the evaporator 67 of the dual-effect absorption heat pump 60 after being further precooled to, for example, 40 ° C. by the regenerative absorption liquid cooler 55, and absorbed by the absorption tower 10. It recirculates as a liquid. The heated carbon dioxide gas-containing absorbing liquid is heated to, for example, 90 ° C. and flows into the regeneration tower 30 by the absorber 63 and the condenser 65 of the dual-effect absorption heat pump 60. In the dual-effect absorption heat pump 60, high-pressure steam of, for example, 0.8 MPa is supplied to the high-temperature regenerator 61 as driving steam from the reaction tube cooling device 73 of the hydrocarbon production system 70 to evaporate the refrigerant to produce an absorption liquid. It is concentrated and returned to the reaction tube cooling device 73 after condensation.

炭酸ガス分離器46から送出された炭酸ガスは、炭化水素製造システム70に送出され、反応管71で水素ガスと水素化反応して炭化水素を含む高温の反応ガスに化学変化する。反応ガスは、ガス水分離装置72に供給され、合成炭化水素ガスと水に分離され、合成炭化水素ガスとして利用箇所に送出される。 The carbon dioxide gas sent out from the carbon dioxide gas separator 46 is sent out to the hydrocarbon production system 70 and undergoes a hydrogenation reaction with hydrogen gas in the reaction tube 71 to chemically change into a high-temperature reaction gas containing hydrocarbons. The reaction gas is supplied to the gas-water separation device 72, separated into a synthetic hydrocarbon gas and water, and sent to a utilization site as a synthetic hydrocarbon gas.

第1実施形態に係る炭酸ガス回収システム1aによれば、熱交換器50で降温された再生吸収液を再生吸収液冷却器55でさらに予冷した後に、圧縮式ヒートポンプに較べて昇温幅を大きくすることができる二重効用吸収式ヒートポンプ60の蒸発器67に供給することで、再生塔30に流入する炭酸ガス含有吸収液の温度を高く維持した状態で、吸収塔10に吸収液として環流する再生吸収液の温度を低くすることができる。これにより、吸収液の単位流量当たりの炭酸ガス吸収量が多くなり、吸収塔10と再生塔30との間で循環する吸収液の流量を減らすことができ、リボイラー40で再生吸収液を加熱するために必要な熱エネルギーや吸収液を循環させるためのエネルギーを低減することができる。さらに、二重効用吸収式ヒートポンプ60は圧縮式ヒートポンプに比して一次エネルギーベースでの成績係数(COP)が高いので、地球温暖化防止に貢献することができる。
第1実施形態に係る炭酸ガス回収システム1aは、炭酸ガス回収と炭化水素製造を有機的に融合したシステムであり、地球温暖化防止に寄与することができる。
According to the carbon dioxide gas recovery system 1a according to the first embodiment, after the regenerated absorption liquid cooled by the heat exchanger 50 is further precooled by the regenerative absorption liquid cooler 55, the temperature rise range is larger than that of the compression heat pump. By supplying the heat pump 60 to the evaporator 67 of the dual-effect absorption heat pump 60, the carbon dioxide gas-containing absorption liquid flowing into the regeneration tower 30 is recirculated as the absorption liquid to the absorption tower 10 while maintaining a high temperature. The temperature of the regenerated absorption liquid can be lowered. As a result, the amount of carbon dioxide gas absorbed per unit flow rate of the absorption liquid increases, the flow rate of the absorption liquid circulating between the absorption tower 10 and the regeneration tower 30 can be reduced, and the reboiler 40 heats the regeneration absorption liquid. It is possible to reduce the heat energy required for this and the energy for circulating the absorbing liquid. Further, since the double-effect absorption heat pump 60 has a higher coefficient of performance (COP) on a primary energy basis than the compression heat pump, it can contribute to the prevention of global warming.
The carbon dioxide gas recovery system 1a according to the first embodiment is a system that organically integrates carbon dioxide gas recovery and hydrocarbon production, and can contribute to the prevention of global warming.

4.第2実施形態
第2実施形態に係る炭酸ガス回収システム1bは、炭酸ガス回収システム1bにコジェネレーションシステム80が併設されている点のみが第1実施形態と異なるので、相違点について説明し、第1実施形態と同じ構成要素には同一の参照番号を付して説明を省略する。
4. The second embodiment The carbon dioxide gas recovery system 1b according to the second embodiment is different from the first embodiment only in that the carbon dioxide gas recovery system 1b is provided with the cogeneration system 80. Therefore, the differences will be described. The same components as those in the first embodiment are designated by the same reference numbers, and the description thereof will be omitted.

炭酸ガス回収システム1bはコジェネレーションシステム80が併設されている。コジェネレーションシステム80は、ガスタービン発電機81、排熱回収ボイラー82で構成される。ガスタービン発電機81は、燃料の燃焼によってガスタービンが駆動され、発電機が回転されて電力を送出する。ガスタービンから排出される排ガスは排熱回収ボイラー82で、高温高圧の水蒸気を生成する。 A cogeneration system 80 is attached to the carbon dioxide gas recovery system 1b. The cogeneration system 80 includes a gas turbine generator 81 and an exhaust heat recovery boiler 82. In the gas turbine generator 81, the gas turbine is driven by the combustion of fuel, and the generator is rotated to transmit electric power. The exhaust gas discharged from the gas turbine is an exhaust heat recovery boiler 82, which generates high-temperature and high-pressure steam.

排熱回収ボイラー82で生成された高温高圧の水蒸気は、二重効用吸収式ヒートポンプ60の高温再生器61に駆動用水蒸気として供給されるとともに、背圧タービン発電機41の背圧タービン42を駆動した後に、リボイラー40に加熱用水蒸気として供給され、凝縮後に排熱回収ボイラー61に戻される。炭酸ガス分離器46から送出された炭酸ガスは、炭酸ガス利用箇所83で使用される。
第2実施形態に係る炭酸ガス回収システム1bは、第1実施形態と同様の効果を奏する
The high-temperature and high-pressure steam generated by the exhaust heat recovery boiler 82 is supplied as driving steam to the high-temperature regenerator 61 of the dual-effect absorption type heat pump 60, and also drives the back pressure turbine 42 of the back pressure turbine generator 41. After that, it is supplied to the reboiler 40 as steam for heating, and after condensation, it is returned to the exhaust heat recovery boiler 61. The carbon dioxide gas delivered from the carbon dioxide gas separator 46 is used at the carbon dioxide gas utilization point 83.
The carbon dioxide gas recovery system 1b according to the second embodiment has the same effect as that of the first embodiment.

第1および第2実施形態に係る炭酸ガス回収システム1a、1bでは、吸収式ヒートポンプとして二重効用吸収式ヒートポンプ60を用いたが、一重効用吸収式ヒートポンプを用いても良い。一重効用吸収式ヒートポンプも圧縮式ヒートポンプに較べて昇温幅が大きいので、再生塔30に流入する炭酸ガス含有吸収液の温度を高く維持した状態で、吸収塔10に吸収液として環流する再生吸収液の温度を低くすることができる。 In the carbon dioxide gas recovery systems 1a and 1b according to the first and second embodiments, the double-effect absorption heat pump 60 is used as the absorption heat pump, but a single-effect absorption heat pump may be used. Since the single-effect absorption heat pump also has a larger temperature rise range than the compression heat pump, it recycles as an absorption liquid to the absorption tower 10 while maintaining a high temperature of the carbon dioxide gas-containing absorption liquid flowing into the regeneration tower 30. The temperature of the liquid can be lowered.

1a,1b:炭酸ガス回収システム、10:吸収塔、20:排ガス冷却塔、30:再生塔 、40:リボイラー、41:背圧タービン発電機、42:背圧タービン、46:炭酸ガ ス分離器、50:熱交換器、55:再生吸収液冷却器、60:二重効用吸収式ヒートポ ンプ、61:高温再生器(再生器)、63:吸収器、65:凝縮器:67:蒸発器、6 4,66,68:伝熱管、70:炭化水素製造システム、71:反応管、73:反応管 冷却装置、80:コジェネレーションシステム、81:ガスタービン発電機、82:排 熱回収ボイラー 1a, 1b: Carbon dioxide gas recovery system, 10: Absorption tower, 20: Exhaust gas cooling tower, 30: Regeneration tower, 40: Reboiler, 41: Back pressure turbine generator, 42: Back pressure turbine, 46: Carbon dioxide gas separator , 50: Heat exchanger, 55: Regeneration absorption chiller, 60: Double-effect absorption heat pump, 61: High temperature regenerator (regenerator), 63: Absorber, 65: Condenser: 67: Evaporator, 6 4,66,68: Heat transfer tube, 70: Hydrocarbon production system, 71: Reaction tube, 73: Reaction tube cooling device, 80: Cogeneration system, 81: Gas turbine generator, 82: Exhaust heat recovery boiler

Claims (3)

排ガスが供給され、前記排ガスに含まれる炭酸ガスを吸収液に吸収させて炭酸ガス含有吸収液を生成する吸収塔と、
前記吸収塔から前記炭酸ガス含有吸収液が供給され、前記炭酸ガス含有吸収液を高温の水蒸気で加熱し前記炭酸ガスを放出させて再生吸収液にする再生塔と、
前記再生塔から前記再生吸収液が供給され、前記再生吸収液を加熱用水蒸気で加熱して前記再生吸収液に含まれる水の一部を前記高温の水蒸気にして前記再生塔に戻すリボイラーと、
前記再生塔から送出された前記再生吸収液と前記吸収塔から送出された前記炭酸ガス含有吸収液との間で熱交換する熱交換器と、
前記熱交換器から送出された前記再生吸収液を予冷する再生吸収液冷却器と、
冷媒を吸収した吸収液が再生器において駆動用水蒸気で加熱されることによって前記冷媒が蒸発され、蒸発した前記冷媒が凝縮器で凝縮され、凝縮された前記冷媒が低圧の蒸発器で蒸発され、蒸発した前記冷媒が吸収器で前記吸収液に吸収される吸収式ヒートポンプであって、前記熱交換器で昇温された前記炭酸ガス含有吸収液が供給され、前記吸収器の伝熱管および前記凝縮器の伝熱管を介して前記再生塔に送出し、前記熱交換器および前記再生吸収液冷却器で降温された前記再生吸収液が供給され、前記蒸発器の伝熱管を介して前記吸収塔に前記吸収液として環流させる吸収式ヒートポンプと、
前記再生塔から前記炭酸ガスとともに供給された水蒸気を凝縮させて前記炭酸ガスを分離する炭酸ガス分離器と、
を備える炭酸ガス回収システム。
An absorption tower to which exhaust gas is supplied and the carbon dioxide gas contained in the exhaust gas is absorbed by the absorption liquid to generate a carbon dioxide gas-containing absorption liquid.
A regeneration tower in which the carbon dioxide-containing absorption liquid is supplied from the absorption tower and the carbon dioxide-containing absorption liquid is heated with high-temperature steam to release the carbon dioxide gas to form a regeneration absorption liquid.
A reboiler in which the regeneration absorption liquid is supplied from the regeneration tower, the regeneration absorption liquid is heated with steam for heating, and a part of water contained in the regeneration absorption liquid is converted into the high temperature steam and returned to the regeneration tower.
A heat exchanger that exchanges heat between the regenerated absorption liquid delivered from the regeneration tower and the carbon dioxide gas-containing absorption liquid delivered from the absorption tower.
A regenerative absorption liquid cooler that precools the regenerated absorption liquid sent from the heat exchanger, and
The refrigerant that has absorbed the refrigerant is heated by the driving steam in the regenerator to evaporate the refrigerant, the evaporated refrigerant is condensed in the condenser, and the condensed refrigerant is evaporated in the low pressure evaporator. a absorption heat pump the evaporated the refrigerant is absorbed into the absorbing solution in the absorber, the carbon dioxide-containing absorbing solution which has been heated by the heat exchanger is supplied, the absorber heat transfer tube and said condenser through the heat transfer tubes of the vessel and sent to the regenerator, wherein the regenerated absorbent liquid which is cooled by the heat exchanger and the regenerated absorbent solution cooler is supplied to said absorption tower through the heat transfer tubes of the evaporator An absorption heat pump that recirculates as the absorption liquid, and
A carbon dioxide gas separator that separates the carbon dioxide gas by condensing the water vapor supplied together with the carbon dioxide gas from the regeneration tower.
A carbon dioxide recovery system equipped with.
水素ガスと炭酸ガスとを水素化反応触媒下で水素化反応させて炭化水素を含む反応ガスを生成して送出する反応管と、前記反応管を冷却して高圧水蒸気を生成する反応管冷却装置を備えた炭化水素製造システムが併設され、
前記炭酸ガス分離器から送出された前記炭酸ガスが前記反応管に供給され、
前記吸収式ヒートポンプが二重効用吸収式ヒートポンプであり、
前記反応管冷却装置で生成された前記高圧水蒸気の一部が前記駆動用水蒸気として前記二重効用吸収式ヒートポンプに供給されて前記再生器を加熱し、
前記高圧水蒸気の他部が背圧タービン発電機の背圧タービンを介して前記加熱用水蒸気として前記リボイラーに供給されて前記再生吸収液を加熱する、
請求項1に記載された炭酸ガス回収システム。
A reaction tube in which hydrogen gas and carbon dioxide gas are hydrogenated under a hydrogenation reaction catalyst to generate and send out a reaction gas containing hydrocarbons, and a reaction tube cooling device that cools the reaction tube to generate high-pressure steam. A hydrocarbon production system equipped with
The carbon dioxide gas delivered from the carbon dioxide gas separator is supplied to the reaction tube, and the carbon dioxide gas is supplied to the reaction tube.
The absorption heat pump is a double-effect absorption heat pump.
A part of the high-pressure steam generated by the reaction tube cooling device is supplied to the dual-effect absorption heat pump as the driving steam to heat the regenerator.
The other part of the high-pressure steam is supplied to the reboiler as the heating steam via the back pressure turbine of the back pressure turbine generator to heat the regenerated absorption liquid.
The carbon dioxide gas recovery system according to claim 1.
発電機を駆動するガスタービンと、前記ガスタービンの排熱から高圧水蒸気を生成する排熱回収ボイラーを備えたガスタービンコジェネレーションシステムが併設され、
前記吸収式ヒートポンプが二重効用吸収式ヒートポンプであり、
前記排熱回収ボイラーで生成された高圧水蒸気の一部が前記駆動用水蒸気として前記二重効用吸収式ヒートポンプに供給されて前記再生器を加熱し、
前記高圧水蒸気の他部が背圧タービン発電機の背圧タービンを介して前記加熱用水蒸気として前記リボイラーに供給されて前記再生吸収液を加熱する、
請求項1に記載された炭酸ガス回収システム。
A gas turbine that drives a generator and a gas turbine cogeneration system equipped with an exhaust heat recovery boiler that generates high-pressure steam from the exhaust heat of the gas turbine are installed side by side.
The absorption heat pump is a double-effect absorption heat pump.
A part of the high-pressure steam generated by the exhaust heat recovery boiler is supplied to the dual-effect absorption heat pump as the driving steam to heat the regenerator.
The other part of the high-pressure steam is supplied to the reboiler as the heating steam via the back pressure turbine of the back pressure turbine generator to heat the regenerated absorption liquid.
The carbon dioxide gas recovery system according to claim 1.
JP2020545205A 2020-07-21 2020-07-21 Carbon dioxide recovery system Expired - Fee Related JP6820639B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/028328 WO2022018832A1 (en) 2020-07-21 2020-07-21 Carbon dioxide gas recovery system

Publications (2)

Publication Number Publication Date
JP6820639B1 true JP6820639B1 (en) 2021-01-27
JPWO2022018832A1 JPWO2022018832A1 (en) 2022-01-27

Family

ID=74200227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020545205A Expired - Fee Related JP6820639B1 (en) 2020-07-21 2020-07-21 Carbon dioxide recovery system

Country Status (2)

Country Link
JP (1) JP6820639B1 (en)
WO (2) WO2022018832A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116212593A (en) * 2023-04-18 2023-06-06 河北正元氢能科技有限公司 Cryogenic carbon dioxide trapping device for urea production
WO2023136065A1 (en) * 2022-01-14 2023-07-20 三菱重工エンジニアリング株式会社 Carbon dioxide recovery system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114570164B (en) * 2022-03-31 2022-12-30 四川益能康生环保科技有限公司 CO 2 Or SO 2 Pressure swing regeneration energy-saving process for organic amine solution of trapping system
KR102586953B1 (en) * 2022-09-23 2023-10-06 겟에스씨알 주식회사 Carbon Dioxide Capture Storage System and Method Including Bypass Line
CN115608118B (en) * 2022-12-05 2023-03-28 安徽普泛能源技术有限公司 Composite absorption tower and absorption type carbon capture pressure increasing system and process
CN116045542B (en) * 2023-03-21 2023-07-25 安徽普泛能源技术有限公司 Double-tower refrigerating system and operation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58124176A (en) * 1982-01-20 1983-07-23 株式会社日立製作所 Double effect absorption type heat pump
JPH11207102A (en) * 1998-01-28 1999-08-03 Mitsubishi Heavy Ind Ltd Wastewater evaporation/concentration equipment
JP2010088982A (en) * 2008-10-06 2010-04-22 Toshiba Corp Carbon dioxide recovering system
CN102824818A (en) * 2012-08-24 2012-12-19 中国石油化工股份有限公司 Device for reducing energy consumption of flue gas CO2 capturing system and increasing CO2 recovery rate
CN103657381A (en) * 2013-11-25 2014-03-26 中石化石油工程设计有限公司 Flue gas pretreatment and carbon dioxide collecting, purifying and recycling device
JP2016023897A (en) * 2014-07-23 2016-02-08 国立大学法人岐阜大学 Absorption type heat pump device with heat supply means for regenerating amine absorbent

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1046519B (en) * 1974-11-08 1980-07-31 Vetrocoke Cokapuania Spa Removing impurities from gas streams - with two-column absorption appts to improve energy consumption
JPS597487B2 (en) * 1974-12-24 1984-02-18 フアン ヘツク フランシス Sansei Kitaijiyokiyonimochiil Senjiyouekinokairiyo Saiseihou
JPS60159568A (en) * 1984-01-28 1985-08-21 三菱重工業株式会社 Absorbing solution

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58124176A (en) * 1982-01-20 1983-07-23 株式会社日立製作所 Double effect absorption type heat pump
JPH11207102A (en) * 1998-01-28 1999-08-03 Mitsubishi Heavy Ind Ltd Wastewater evaporation/concentration equipment
JP2010088982A (en) * 2008-10-06 2010-04-22 Toshiba Corp Carbon dioxide recovering system
CN102824818A (en) * 2012-08-24 2012-12-19 中国石油化工股份有限公司 Device for reducing energy consumption of flue gas CO2 capturing system and increasing CO2 recovery rate
CN103657381A (en) * 2013-11-25 2014-03-26 中石化石油工程设计有限公司 Flue gas pretreatment and carbon dioxide collecting, purifying and recycling device
JP2016023897A (en) * 2014-07-23 2016-02-08 国立大学法人岐阜大学 Absorption type heat pump device with heat supply means for regenerating amine absorbent

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023136065A1 (en) * 2022-01-14 2023-07-20 三菱重工エンジニアリング株式会社 Carbon dioxide recovery system
CN116212593A (en) * 2023-04-18 2023-06-06 河北正元氢能科技有限公司 Cryogenic carbon dioxide trapping device for urea production

Also Published As

Publication number Publication date
JPWO2022018832A1 (en) 2022-01-27
WO2022018890A1 (en) 2022-01-27
WO2022018832A1 (en) 2022-01-27

Similar Documents

Publication Publication Date Title
JP6820639B1 (en) Carbon dioxide recovery system
US9662607B2 (en) CO2 recovery unit and CO2 recovery method
JP4885449B2 (en) Low exhaust thermal power generator
ES2769047T3 (en) Procedure and plant for CO2 capture
CN114768488B (en) Coal-fired unit flue gas carbon dioxide entrapment system
WO2014175338A1 (en) Device for recovering and method for recovering carbon dioxide
JP6064770B2 (en) Carbon dioxide recovery method and recovery apparatus
CN102451605A (en) Carbon dioxide recovery method and carbon- dioxide-recovery-type steam power generation system
JP2004323339A (en) Method and system for recovering carbon dioxide
JP5639814B2 (en) Thermal power generation system with CO2 removal equipment
JP2010235395A (en) Apparatus for recovering carbon dioxide, and thermal power system with apparatus for recovering carbon dioxide
JP2010266154A (en) Carbon dioxide liquefying apparatus
JP2010266155A (en) Carbon dioxide liquefying apparatus
JP2010240629A (en) Carbon dioxide recovery system
WO2013114937A1 (en) Carbon dioxide recovery system
KR101146557B1 (en) Co? collecting apparatus
JP4929227B2 (en) Gas turbine system using high humidity air
KR101071919B1 (en) High efficient Gas Compression System using Absorption refrigeration
JP6921370B1 (en) Double-effect chemical absorption type carbon dioxide recovery system
JP2005195283A (en) Method of absorbing co2 in by-product gas using waste heat of circulating refrigerant of stave cooler
JP2018080696A (en) Power generation system, condenser-absorber and power generation method
KR20120013588A (en) Co2 collecting apparatus
JP2753347B2 (en) Steam turbine system and energy supply system
KR101695029B1 (en) Apparatus of heat recovery from CO2 capture apparatus using dry regenerable sorbents for power plant
WO2024150398A1 (en) Green power and carbon-neutral equivalent natural gas production system using beccs

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200902

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200902

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201223

R150 Certificate of patent or registration of utility model

Ref document number: 6820639

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees