JP2010235395A - Apparatus for recovering carbon dioxide, and thermal power system with apparatus for recovering carbon dioxide - Google Patents

Apparatus for recovering carbon dioxide, and thermal power system with apparatus for recovering carbon dioxide Download PDF

Info

Publication number
JP2010235395A
JP2010235395A JP2009085453A JP2009085453A JP2010235395A JP 2010235395 A JP2010235395 A JP 2010235395A JP 2009085453 A JP2009085453 A JP 2009085453A JP 2009085453 A JP2009085453 A JP 2009085453A JP 2010235395 A JP2010235395 A JP 2010235395A
Authority
JP
Japan
Prior art keywords
carbon dioxide
absorption liquid
tower
regeneration tower
absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009085453A
Other languages
Japanese (ja)
Inventor
Hidefumi Araki
秀文 荒木
Tomoko Akiyama
朋子 穐山
Shigeo Hatamiya
重雄 幡宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2009085453A priority Critical patent/JP2010235395A/en
Publication of JP2010235395A publication Critical patent/JP2010235395A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Landscapes

  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for recovering carbon dioxide by which thermal energy supplied from the outside for regeneration of an absorbing liquid can be reduced. <P>SOLUTION: The apparatus for recovering carbon dioxide comprises: an absorption tower for absorbing carbon dioxide in exhaust gas into an absorption liquid; a regeneration tower for regenerating the absorption liquid by dissociating carbon dioxide from the absorption liquid which absorbs carbon dioxide; a piping system which circulates the absorption liquid therethrough between the absorption tower and the regeneration tower; a compressor which sucks gas including carbon dioxide from the regeneration tower and compresses the gas; a heat exchanger which cause the gas discharged from the compressor to exchange heat with the absorption liquid; a separator which separates condensed water produced by cooling the gas by means of the heat exchanger; a first piping path for supplying the absorption liquid held by the regeneration tower from the regeneration tower to the heat exchanger; a second piping path for returning the absorption liquid heated by heat exchange with the gas including carbon dioxide in the heat exchanger from the heat exchanger to the regeneration tower; and a third piping path for returning the condensed water separated by the separator from the separator to the regeneration tower. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、二酸化炭素回収装置および二酸化炭素回収装置を備えた火力発電システムに関する。   The present invention relates to a carbon dioxide recovery device and a thermal power generation system including the carbon dioxide recovery device.

地球温暖化防止の観点から、二酸化炭素排出量の削減が国際的に求められている。化石燃料の燃焼排ガスに含まれる二酸化炭素を分離、回収することは、二酸化炭素排出量の削減のための有効な手段の一つである。   From the viewpoint of preventing global warming, reduction of carbon dioxide emissions is required internationally. Separating and recovering carbon dioxide contained in fossil fuel combustion exhaust gas is one of the effective means for reducing carbon dioxide emissions.

特開2005−254212号公報には、二酸化炭素を含んだ燃焼排ガスと二酸化炭素の吸収液を気液接触させ、二酸化炭素を吸収液中に化学吸収して燃焼排ガスから分離する手段が開示されている。ここでは、吸収液としてアミン系溶液が提案されており、二酸化炭素を吸収した吸収液を再生塔で加熱し、二酸化炭素を吸収液から放散させて分離回収する技術が開示されている。   Japanese Patent Application Laid-Open No. 2005-254212 discloses a means for bringing a combustion exhaust gas containing carbon dioxide and a carbon dioxide absorption liquid into gas-liquid contact, and chemically absorbing carbon dioxide in the absorption liquid to separate it from the combustion exhaust gas. Yes. Here, an amine-based solution has been proposed as an absorbing liquid, and a technique is disclosed in which an absorbing liquid that has absorbed carbon dioxide is heated in a regeneration tower, and carbon dioxide is diffused from the absorbing liquid to be separated and recovered.

前記特開2005−254212号公報に記載された技術では、吸収液中に吸収した二酸化炭素を吸収液から解離させて除去する(吸収液の再生)には、吸収液を120℃前後に加熱する必要がある。   In the technique described in JP-A-2005-254212, in order to dissociate and remove carbon dioxide absorbed in the absorption liquid from the absorption liquid (regeneration of the absorption liquid), the absorption liquid is heated to around 120 ° C. There is a need.

一方、特開2008−29976号公報には、二酸化炭素を吸収した吸収液から二酸化炭素を放散させて吸収液を再生する再生塔内部を真空引き装置で吸引して低圧状態とし、55℃から70℃という比較的低温な条件で吸収液を再生する技術が開示されている。   On the other hand, in Japanese Patent Application Laid-Open No. 2008-29976, the inside of a regeneration tower that regenerates the absorbing liquid by releasing carbon dioxide from the absorbing liquid that has absorbed carbon dioxide is sucked into a low-pressure state by a vacuuming device. A technique for regenerating an absorbing solution under a relatively low temperature condition of ° C is disclosed.

特開2005−254212号公報JP-A-2005-254212 特開2008−29976号公報JP 2008-29976 A

再生塔で二酸化炭素を吸収した吸収液から二酸化炭素を解離させて除去して吸収液を再生する(再生)には、二酸化炭素の解離反応に必要な化学反応のエネルギーだけでなく、吸収液と水蒸気を気液接触させて二酸化炭素の解離を促進させるための、水蒸気の生成エネルギーが必要になり、トータルでは化学反応で必要なエネルギーの2倍以上の熱エネルギーが必要となる。   In order to regenerate the absorption liquid by dissociating and removing carbon dioxide from the absorption liquid that has absorbed carbon dioxide in the regeneration tower (regeneration), not only the energy of the chemical reaction necessary for the carbon dioxide dissociation reaction but also the absorption liquid In order to promote the dissociation of carbon dioxide by bringing water vapor into gas-liquid contact, the generation energy of water vapor is required. In total, heat energy more than twice that required for chemical reaction is required.

前記特開2005−254212号公報、及び特開2008−29976号公報に記載された技術では、必要な温度レベルの差異はあるものの、大量の熱エネルギーを必要としていることから、火力発電システムの二酸化炭素除去装置として前記構成の再生塔を使用した場合、火力発電システムの熱エネルギーを消費して利用できる排熱が減少するため、火力発電システムの発電効率が低下する要因となる。   The techniques described in Japanese Patent Application Laid-Open No. 2005-254212 and Japanese Patent Application Laid-Open No. 2008-29976 require a large amount of thermal energy, although there is a difference in necessary temperature level. When the regeneration tower having the above-described configuration is used as the carbon removal device, exhaust heat that can be used by consuming the thermal energy of the thermal power generation system is reduced, which causes a decrease in power generation efficiency of the thermal power generation system.

本発明の目的は、吸収液の再生に使用する熱エネルギーとして外部から供給する熱エネルギーの低減が可能な二酸化炭素回収装置を提供することにある。   An object of the present invention is to provide a carbon dioxide recovery device capable of reducing heat energy supplied from the outside as heat energy used for regeneration of an absorbing solution.

また、本発明の目的は、吸収液の再生に使用する熱エネルギーを外部から供給する二酸化炭素回収装置を備えた場合でも発電システムの発電効率低下の抑制が可能な二酸化炭素回収装置を備えた火力発電システムを提供することにある。   Another object of the present invention is to provide a thermal power plant equipped with a carbon dioxide recovery device that can suppress a decrease in power generation efficiency of the power generation system even when a carbon dioxide recovery device that supplies heat energy used for regeneration of the absorbing liquid from the outside is provided. It is to provide a power generation system.

本発明の二酸化炭素回収装置は、二酸化炭素を含む排ガスと二酸化炭素の吸収液を気液接触させて排ガス中の二酸化炭素を吸収液に吸収させる吸収塔と、前記吸収塔で二酸化炭素を吸収した吸収液から二酸化炭素を解離させてこの吸収液を再生する再生塔と、前記吸収塔で二酸化炭素を吸収した吸収液を該吸収塔から再生塔に供給すると共に前記再生塔で再生した吸収液を該再生塔から該吸収塔に供給するように前記吸収液を循環させる配管系統を有する二酸化炭素回収装置において、前記再生塔で解離した二酸化炭素を含むガスを該再生塔から吸入して圧縮する圧縮機と、前記圧縮機から吐出した二酸化炭素を含むガスを吸収液と熱交換する熱交換器と、前記熱交換器で二酸化炭素を含むガスを吸収液で冷却して生じた凝縮水を分離する分離器を備え、前記再生塔が保有する吸収液を該再生塔から前記熱交換器に供給する第1の配管経路を備えて該熱交換器にて二酸化炭素を含むガスと熱交換させ、前記熱交換器で二酸化炭素を含むガスとの熱交換で加熱された吸収液を該熱交換器から前記再生塔に戻す第2の配管経路を備え、前記分離器で分離した凝縮水を該分離器から前記再生塔に戻す第3の配管経路を備えていることを特徴とする。   In the carbon dioxide recovery device of the present invention, an absorption tower that makes gas-liquid contact between an exhaust gas containing carbon dioxide and an absorption liquid of carbon dioxide so that the absorption liquid absorbs carbon dioxide in the exhaust gas, and the absorption tower absorbs carbon dioxide. A regeneration tower that regenerates the absorption liquid by dissociating carbon dioxide from the absorption liquid, and supplies the absorption liquid that has absorbed carbon dioxide in the absorption tower from the absorption tower to the regeneration tower, and In a carbon dioxide recovery apparatus having a piping system for circulating the absorption liquid so as to be supplied from the regeneration tower to the absorption tower, compression for sucking and compressing a gas containing carbon dioxide dissociated in the regeneration tower from the regeneration tower A heat exchanger for exchanging heat with carbon dioxide gas containing carbon dioxide discharged from the compressor, and condensed water produced by cooling the gas containing carbon dioxide with the liquid absorber in the heat exchanger. Min A first piping path for supplying the absorption liquid held by the regeneration tower from the regeneration tower to the heat exchanger, and heat exchange with a gas containing carbon dioxide in the heat exchanger, A second piping path is provided for returning the absorbing liquid heated by heat exchange with the gas containing carbon dioxide in the exchanger to the regeneration tower from the heat exchanger, and condensed water separated by the separator is removed from the separator. A third piping path returning to the regeneration tower is provided.

また、本発明の二酸化炭素回収装置を備えた火力発電システムは、二酸化炭素を含む排ガスと二酸化炭素の吸収液を気液接触させて排ガス中の二酸化炭素を吸収液に吸収させる吸収塔と、前記吸収塔で二酸化炭素を吸収した吸収液から二酸化炭素を解離させてこの吸収液を再生する再生塔と、前記吸収塔で二酸化炭素を吸収した吸収液を該吸収塔から再生塔に供給すると共に前記再生塔で再生した吸収液を該再生塔から該吸収塔に供給するように前記吸収液を循環させる配管系統を有する二酸化炭素回収装置は、前記再生塔で解離した二酸化炭素を含むガスを該再生塔から吸入して圧縮する圧縮機と、前記圧縮機から吐出した二酸化炭素を含むガスを冷却する熱交換器と、前記熱交換器で二酸化炭素を含むガスを冷却して生じた凝縮水を分離する分離器を備え、前記再生塔が保有する吸収液を該再生塔から前記熱交換器に供給する第1の配管経路を備えて該熱交換器にて二酸化炭素を含むガスと熱交換させ、前記熱交換器で二酸化炭素を含むガスとの熱交換で加熱された吸収液を該熱交換器から前記再生塔に戻す第2の配管経路を備え、前記分離器で分離した凝縮水を該分離器から前記再生塔に戻す第3の配管経路を備えることによって構成し、
二酸化炭素を含む排ガスと二酸化炭素の吸収液を気液接触させて排ガス中の二酸化炭素を前記吸収液に吸収させる吸収塔と、前記吸収塔で二酸化炭素を吸収した前記吸収液から二酸化炭素を解離させてこの吸収液を再生する再生塔と、前記吸収塔から二酸化炭素を吸収した吸収液を再生塔に供給すると共に該再生塔で再生した吸収液を該吸収塔に供給して吸収液を循環させる配管系統を有する火力発電システムは、圧縮機と、圧縮機で圧縮した空気と燃料を燃焼して燃焼ガスを生成する燃焼器と、燃焼器で生成した燃焼ガスで駆動されるタービンと、タービンによって駆動されて発電する発電機と、タービンを駆動して該タービンから排出された排ガスから熱を回収して蒸気を生成する排熱回収ボイラとを備え、前記排熱回収ボイラから前記二酸化炭素回収装置に導く二酸化炭素を含む排ガスを冷却する冷却器をこの前記二酸化炭素回収装置の入口に配設したことを特徴とする。
Further, the thermal power generation system equipped with the carbon dioxide recovery device of the present invention is an absorption tower that makes gas-liquid contact between an exhaust gas containing carbon dioxide and an absorption liquid of carbon dioxide so that the absorption liquid absorbs carbon dioxide in the exhaust gas, A regeneration tower that regenerates the absorption liquid by dissociating carbon dioxide from the absorption liquid that has absorbed carbon dioxide in the absorption tower, and an absorption liquid that has absorbed carbon dioxide in the absorption tower is supplied from the absorption tower to the regeneration tower. The carbon dioxide recovery device having a piping system for circulating the absorption liquid so that the absorption liquid regenerated in the regeneration tower is supplied from the regeneration tower to the absorption tower, the gas containing carbon dioxide dissociated in the regeneration tower is regenerated. A compressor that sucks and compresses from the tower, a heat exchanger that cools the gas containing carbon dioxide discharged from the compressor, and condensed water generated by cooling the gas containing carbon dioxide in the heat exchanger are separated. Including a first piping path for supplying an absorption liquid held in the regeneration tower to the heat exchanger from the regeneration tower, and heat exchange with a gas containing carbon dioxide in the heat exchanger, A second piping path is provided for returning the absorption liquid heated by heat exchange with the gas containing carbon dioxide in the heat exchanger to the regeneration tower from the heat exchanger, and the condensed water separated by the separator is separated. Comprising a third piping path returning from the vessel to the regeneration tower,
An absorption tower that makes gas-liquid contact between an exhaust gas containing carbon dioxide and an absorption liquid of carbon dioxide so that the absorption liquid absorbs carbon dioxide in the exhaust gas, and dissociates carbon dioxide from the absorption liquid that has absorbed carbon dioxide in the absorption tower A regeneration tower for regenerating the absorption liquid, and supplying the absorption liquid that has absorbed carbon dioxide from the absorption tower to the regeneration tower and supplying the absorption liquid regenerated in the regeneration tower to the absorption tower to circulate the absorption liquid. A thermal power generation system having a piping system for causing a compressor, a combustor that burns air and fuel compressed by the compressor to generate combustion gas, a turbine driven by the combustion gas generated by the combustor, and a turbine A generator that generates power by being driven by a turbine, and an exhaust heat recovery boiler that generates steam by recovering heat from the exhaust gas discharged from the turbine by driving the turbine, from the exhaust heat recovery boiler A cooler for cooling the exhaust gas containing carbon dioxide leads to carbon monoxide recovery device is characterized in that disposed at the inlet of the said carbon dioxide recovery device.

本発明によれば、二酸化炭素を含む燃焼排ガスから二酸化炭素を分離回収する場合に、吸収液の再生に使用する熱エネルギーとして外部から供給する熱エネルギーの低減が可能な二酸化炭素回収装置が実現できる。   According to the present invention, when carbon dioxide is separated and recovered from combustion exhaust gas containing carbon dioxide, it is possible to realize a carbon dioxide recovery device capable of reducing the heat energy supplied from the outside as the heat energy used for regeneration of the absorbent. .

また、本発明によれば、吸収液の再生に使用する熱エネルギーを外部から供給する二酸化炭素回収装置を備えた場合でも、発電システムの発電効率低下の抑制が可能な二酸化炭素回収装置を備えた火力発電システムが実現できる。   In addition, according to the present invention, even when a carbon dioxide recovery device that supplies heat energy used for regeneration of the absorbing liquid from the outside is provided, the carbon dioxide recovery device that can suppress a decrease in power generation efficiency of the power generation system is provided. A thermal power generation system can be realized.

本発明の一実施例による二酸化炭素回収装置を備えた火力発電システムを示す概略系統図。1 is a schematic system diagram showing a thermal power generation system including a carbon dioxide recovery device according to an embodiment of the present invention. 図1に示した本発明の一実施例の二酸化炭素回収装置を備えた火力発電システムにおける二酸化炭素回収装置の再生塔における各種状態量の状況図。The situation figure of the various state quantities in the regeneration tower of the carbon dioxide recovery device in the thermal power generation system provided with the carbon dioxide recovery device of one example of the present invention shown in FIG. 本発明の一実施例による二酸化炭素回収装置の圧縮機における各種状態量の状況図。The situation figure of various state quantities in the compressor of the carbon dioxide recovery device by one example of the present invention. 本発明の一実施例による二酸化炭素回収装置の吸収液再加熱器における各種状態量の状況図。The situation figure of various state quantities in the absorption liquid reheater of the carbon dioxide recovery device by one example of the present invention. 本発明の一実施例による二酸化炭素回収装置の各機器における各種状態量の状況図。The situation figure of various state quantities in each apparatus of the carbon dioxide recovery device by one example of the present invention. 本発明の他の実施例による二酸化炭素回収装置を示す概略系統図。The schematic system diagram which shows the carbon dioxide recovery apparatus by the other Example of this invention. 図6に示した本発明の他の実施例の二酸化炭素回収装置を備えた火力発電システムにおける二酸化炭素回収装置の各機器における各種状態量の状況図。The situation figure of the various state quantity in each apparatus of the carbon dioxide recovery apparatus in the thermal power generation system provided with the carbon dioxide recovery apparatus of the other Example of this invention shown in FIG. 本発明の更に他の実施例の二酸化炭素回収装置を備えた火力発電システムにおける二酸化炭素回収装置を示す概略系統図。The schematic system diagram which shows the carbon dioxide recovery apparatus in the thermal power generation system provided with the carbon dioxide recovery apparatus of the further another Example of this invention.

次に本発明の実施例である二酸化炭素回収装置、および二酸化炭素回収装置を備えた火力発電システムについて図面を参照して以下に説明する。   Next, a carbon dioxide recovery device according to an embodiment of the present invention and a thermal power generation system including the carbon dioxide recovery device will be described below with reference to the drawings.

本発明の一実施例である二酸化炭素回収装置、および二酸化炭素回収装置を備えた火力発電システムについて図1を参照して説明する。   A carbon dioxide recovery device that is an embodiment of the present invention and a thermal power generation system including the carbon dioxide recovery device will be described with reference to FIG.

図1は、本発明の一実施例である二酸化炭素回収装置を備えた火力発電システムの概略系統図である。本実施例の火力発電システムは、ガスタービン装置と蒸気タービン装置を組み合わせたコンバインドサイクルである。   FIG. 1 is a schematic system diagram of a thermal power generation system provided with a carbon dioxide recovery device according to an embodiment of the present invention. The thermal power generation system of the present embodiment is a combined cycle in which a gas turbine device and a steam turbine device are combined.

ガスタービン装置は、空気3を圧縮して吐出する圧縮機2と、圧縮機2から吐出した空気と燃料(図示せず)とを混合燃焼する燃焼器4と、燃焼器4での燃焼で生成する燃焼ガスにより駆動されるタービン1が主要な機器である。圧縮機2とタービン1の軸は図示しない減速機を介してタービン1によって回転する発電機21に接続されており、発電機21で発電した電力を系統に送電可能となっている。   The gas turbine device is generated by a compressor 2 that compresses and discharges air 3, a combustor 4 that mixes and burns air discharged from the compressor 2 and fuel (not shown), and combustion in the combustor 4. The turbine 1 driven by the combustion gas is the main equipment. The shafts of the compressor 2 and the turbine 1 are connected to a generator 21 that is rotated by the turbine 1 via a reduction gear (not shown), and the electric power generated by the generator 21 can be transmitted to the system.

タービン1の排ガス5は、排ガスダクトを経由して排熱回収蒸気発生器12に熱源として導かれ、排熱回収蒸気発生器12にて排ガスとの熱交換によって発生した蒸気は、配管6を経由して蒸気タービン13に供給され、この蒸気タービン13を駆動する。   The exhaust gas 5 of the turbine 1 is guided as a heat source to the exhaust heat recovery steam generator 12 via the exhaust gas duct, and the steam generated by heat exchange with the exhaust gas in the exhaust heat recovery steam generator 12 passes through the pipe 6. Then, the steam turbine 13 is supplied to drive the steam turbine 13.

蒸気タービン13は発電機22を回転して発電し、発電機22で発電した電力を系統に送電可能となっている。また、蒸気タービン13から排出された蒸気は復水器14で冷却して復水となり、復水ポンプ15によって昇圧した復水が配管7を通じて排熱回収蒸気発生器12に戻る構成となっている。   The steam turbine 13 rotates the generator 22 to generate electric power, and the electric power generated by the generator 22 can be transmitted to the system. Further, the steam discharged from the steam turbine 13 is cooled by the condenser 14 to become condensed water, and the condensed water whose pressure has been increased by the condensed water pump 15 returns to the exhaust heat recovery steam generator 12 through the pipe 7. .

一方、排熱回収蒸気発生器12から排出される排ガス5は、排ガスダクト53を経由して排熱回収蒸気発生器12の下流側に設置された二酸化炭素回収装置10に導かれる構成となっている。   On the other hand, the exhaust gas 5 discharged from the exhaust heat recovery steam generator 12 is guided to the carbon dioxide recovery device 10 installed on the downstream side of the exhaust heat recovery steam generator 12 via the exhaust gas duct 53. Yes.

本実施例の火力発電システムに備えられた二酸化炭素回収装置10の主要構成要素は、二酸化炭素の吸収液である炭酸カリウム水溶液(以下、吸収液と称する)とタービン1から排出され排熱回収蒸気発生器12を経由して排ガスダクト53を通じて供給された排ガス5とを気液接触させて排ガス5に含まれた二酸化炭素を吸収液に吸収させる吸収塔81と、この吸収塔81の下流側で前記吸収塔81にて排ガス5中の二酸化炭素を吸収した吸収液(以下、リッチ溶液と称する)と配管38を通じて供給された水蒸気とを気液接触させて吸収液に吸収された二酸化炭素を解離させる再生塔82が設置されている。   The main components of the carbon dioxide recovery device 10 provided in the thermal power generation system of this embodiment are an aqueous potassium carbonate solution (hereinafter referred to as an absorption liquid) that is an absorption liquid of carbon dioxide and exhaust heat recovery steam discharged from the turbine 1. An absorption tower 81 that makes gas-liquid contact with the exhaust gas 5 supplied through the exhaust gas duct 53 via the generator 12 and absorbs carbon dioxide contained in the exhaust gas 5 in the absorption liquid, and on the downstream side of the absorption tower 81 The absorption liquid that has absorbed carbon dioxide in the exhaust gas 5 in the absorption tower 81 (hereinafter referred to as rich solution) and water vapor supplied through the pipe 38 are brought into gas-liquid contact to dissociate the carbon dioxide absorbed in the absorption liquid. A regeneration tower 82 is installed.

前記再生塔82にて吸収液から解離した二酸化炭素と水蒸気の混合ガス(以下、CO2リッチガス)は配管32を通じて該再生塔82から吸引され、前記CO2リッチガスを圧縮する複数の圧縮機60a、60bに供給される。   A mixed gas of carbon dioxide and water vapor (hereinafter referred to as CO2 rich gas) dissociated from the absorbing solution in the regeneration tower 82 is sucked from the regeneration tower 82 through a pipe 32 and is supplied to a plurality of compressors 60a and 60b that compress the CO2 rich gas. Supplied.

これらの圧縮機60a、60bで圧縮されたCO2リッチガスは配管33a、33bを通じて吸収液再加熱器83a、83bに順次供給され、前記吸収液再加熱器83a、83bでの熱交換によって冷却される。   The CO2 rich gas compressed by the compressors 60a and 60b is sequentially supplied to the absorption liquid reheaters 83a and 83b through the pipes 33a and 33b, and is cooled by heat exchange in the absorption liquid reheaters 83a and 83b.

前記吸収液再加熱器83a、83bを経たCO2リッチガスはCO2リッチガスをさらに低温まで冷却する冷却器85cで冷却される。   The CO2 rich gas that has passed through the absorption liquid reheaters 83a and 83b is cooled by a cooler 85c that cools the CO2 rich gas to a lower temperature.

吸収液再加熱器83a、83b及び冷却器85cによる冷却によってCO2リッチガスに含まれた湿分は凝縮する。そこで、前記吸収液再加熱器83a、83b及び冷却器85cで凝縮した凝縮水を含んだCO2リッチガスは、吸収液再加熱器83a、83b及び冷却器85cの下流側にそれぞれ設置した分離器61a、61b、61cに供給して、凝縮水をCO2リッチガスから分離させる。   The moisture contained in the CO2 rich gas is condensed by the cooling by the absorbent reheaters 83a and 83b and the cooler 85c. Therefore, the CO2 rich gas containing the condensed water condensed in the absorption liquid reheaters 83a and 83b and the cooler 85c is separated from the absorption liquid reheaters 83a and 83b and the cooler 85c, respectively. It supplies to 61b and 61c, and condensate water is isolate | separated from CO2 rich gas.

前記分離器61a、61b、でCO2リッチガスから分離した凝縮水は配管36a、36bを通じて集められ、配管38に合流して再生塔82に供給される。   The condensed water separated from the CO 2 rich gas by the separators 61a and 61b is collected through the pipes 36a and 36b, joined to the pipe 38, and supplied to the regeneration tower 82.

また、前記分離器61cでCO2リッチガスから分離した凝縮水は、配管36cを通じて流下し、配管37bを経由して配管38に合流して再生塔82に供給されるものと、配管37cを経由して冷却器85aを経てから配管38に合流して再生塔82に供給されるものとに分かれる。   The condensed water separated from the CO2 rich gas by the separator 61c flows down through the pipe 36c, joins the pipe 38 through the pipe 37b and is supplied to the regeneration tower 82, and passes through the pipe 37c. After passing through the cooler 85a, the refrigerant is divided into one that joins the pipe 38 and is supplied to the regeneration tower 82.

前記吸収塔81の上流側の排ガスダクト53は、タービン1から排出され排熱回収蒸気発生器12を経由した排ガス5を流下させて吸収塔81に供給するが、前記排ガスダクト53には吸収塔81に供給される排ガス5を冷却する冷却器85aが設置されている。   The exhaust gas duct 53 on the upstream side of the absorption tower 81 causes the exhaust gas 5 discharged from the turbine 1 and flowing through the exhaust heat recovery steam generator 12 to flow down to be supplied to the absorption tower 81. A cooler 85 a for cooling the exhaust gas 5 supplied to 81 is installed.

また、前記吸収塔81の下流側に設置された前記再生塔82にて二酸化炭素を放出させた後の吸収液(以下、リーン溶液と称する)を前記吸収塔81に供給する配管30には、該リーン溶液を冷却する冷却器85bが設置されている。   In addition, a pipe 30 that supplies an absorption liquid (hereinafter referred to as a lean solution) after releasing carbon dioxide in the regeneration tower 82 installed on the downstream side of the absorption tower 81 to the absorption tower 81 includes: A cooler 85b for cooling the lean solution is installed.

吸収塔81は、上部空間に散布ノズル(図示せず)が設置され、吸収塔81の内部を流動する排ガス5に対して吸収液を散布可能な構造となっている。吸収塔81は、内蔵する充填物の表面で排ガス5と吸収液を気液接触させることにより、排ガス5中の二酸化炭素を吸収液中に吸収する機能を有する。   The absorption tower 81 is provided with a spray nozzle (not shown) in an upper space, and has a structure capable of spraying an absorption liquid to the exhaust gas 5 flowing inside the absorption tower 81. The absorption tower 81 has a function of absorbing the carbon dioxide in the exhaust gas 5 into the absorption liquid by bringing the exhaust gas 5 and the absorption liquid into gas-liquid contact on the surface of the built-in packing.

吸収塔81の下部は、吸収液を貯蔵可能な容器となっており、この容器部分はポンプ92を備えた配管31によって前記吸収塔81の下流側に設置された再生塔82の充填物の上部の散布ノズル(図示せず)に接続され、前記吸収塔81の下部に貯蔵された吸収液を配管31を通じて再生塔82に供給している。吸収塔81の上部空間は、排ガスダクト54によりスタック(図示せず)に接続されている。   The lower part of the absorption tower 81 is a container capable of storing the absorption liquid, and this container part is the upper part of the packing of the regeneration tower 82 installed on the downstream side of the absorption tower 81 by the pipe 31 provided with the pump 92. The absorption liquid stored in the lower part of the absorption tower 81 is supplied to the regeneration tower 82 through the pipe 31. The upper space of the absorption tower 81 is connected to a stack (not shown) by an exhaust gas duct 54.

再生塔82には、充填物が内蔵されており、充填物の表面でリッチ溶液と水蒸気を気液接触させることにより、リッチ溶液中の二酸化炭素を解離させる機能を有している。   The regenerator 82 has a built-in packing, and has a function of dissociating carbon dioxide in the rich solution by bringing the rich solution and water vapor into gas-liquid contact on the surface of the packing.

再生塔82の下部空間は、ポンプ90と冷却器85bとを直列に配置した配管30が接続されており、冷却器85bの下流側となる配管30によって吸収塔81の上部空間の散布ノズル(図示せず)に接続され、前記再生塔82の下部に貯蔵されたリッチ溶液を配管30を通じて吸収塔81に供給している。   A pipe 30 in which a pump 90 and a cooler 85b are arranged in series is connected to the lower space of the regeneration tower 82, and a spray nozzle (see FIG. 5) in the upper space of the absorption tower 81 is connected by the pipe 30 downstream of the cooler 85b. The rich solution stored in the lower part of the regeneration tower 82 is supplied to the absorption tower 81 through the pipe 30.

さらに、再生塔82の下部空間は、配管によりポンプ91を備えた配管に接続され、該ポンプ91の出口配管は、並列に配設された配管37a、37b、37cに分岐され、それぞれの配管37a、37b、37cは吸収液再加熱器83a、83b、冷却器85dの被加熱側流体流路にそれぞれ接続されている。   Further, the lower space of the regeneration tower 82 is connected to a pipe provided with a pump 91 by a pipe, and the outlet pipe of the pump 91 is branched into pipes 37a, 37b, and 37c arranged in parallel, and each pipe 37a. , 37b, 37c are connected to the heated fluid passages of the absorption liquid reheaters 83a, 83b and the cooler 85d, respectively.

さらに、冷却器85dの下流側の配管37cは前記冷却器85aに接続されており、また、前記吸収液再加熱器83a、83b、冷却器85aの被加熱側流体流路の各出口配管は配管38にそれぞれ接続されて合流し、この配管38は再生塔82の下部空間に接続された構成となっている。   Further, a pipe 37c on the downstream side of the cooler 85d is connected to the cooler 85a, and each outlet pipe of the heated fluid flow path of the absorption liquid reheaters 83a and 83b and the cooler 85a is a pipe. The pipe 38 is connected to the lower space of the regeneration tower 82.

次に図1を用いて、本実施例による二酸化炭素回収装置を備えた火力発電システムの動作を説明する。   Next, operation | movement of the thermal power generation system provided with the carbon dioxide recovery apparatus by a present Example is demonstrated using FIG.

図1において、吸気ダクト3から吸い込まれた空気は、図示しない吸気フィルタによって煤塵などを除去されたあと、圧縮機2によって圧縮される。圧縮機2から吐出される圧縮空気は、燃焼器4に供給される。   In FIG. 1, air sucked from the intake duct 3 is compressed by the compressor 2 after dust and the like are removed by an unillustrated intake filter. The compressed air discharged from the compressor 2 is supplied to the combustor 4.

燃焼器4では、燃料とともに空気を燃焼させて高温の燃焼ガスを生成する。この高温の燃焼ガスは、タービン1に供給され、このタービン1の内部の図示しない静翼と動翼とを通過することにより、ブレイトンサイクルの膨張過程を経て、熱エネルギーが回転運動エネルギーに変換される。   In the combustor 4, air is combusted together with fuel to generate high-temperature combustion gas. This high-temperature combustion gas is supplied to the turbine 1, and passes through stationary blades and moving blades (not shown) inside the turbine 1, so that thermal energy is converted into rotational kinetic energy through a Brayton cycle expansion process. The

前記回転運動エネルギーは、タービン1の軸に連結された圧縮機2を駆動することに消費されるとともに、発電機21を駆動することにより、電気エネルギーとして取り出される。   The rotational kinetic energy is consumed in driving the compressor 2 connected to the shaft of the turbine 1 and is extracted as electric energy by driving the generator 21.

タービン1を駆動して該タービン1から排出された排ガス5は、排熱回収ボイラ12に流入し、該排熱回収ボイラ12にて復水器14から配管7を経由して供給された復水を加熱することにより水蒸気を発生する。   The exhaust gas 5 discharged from the turbine 1 by driving the turbine 1 flows into the exhaust heat recovery boiler 12, and the condensate supplied from the condenser 14 via the pipe 7 in the exhaust heat recovery boiler 12. Steam is generated by heating.

排熱回収ボイラ12で発生した水蒸気は、配管6により蒸気タービン13に供給され、蒸気タービン13を回転させ、発電機22により電気エネルギーとして取り出される。   The steam generated in the exhaust heat recovery boiler 12 is supplied to the steam turbine 13 through the pipe 6, rotates the steam turbine 13, and is taken out as electrical energy by the generator 22.

蒸気タービン13を経た水蒸気は、復水器14で凝縮して復水となり、復水ポンプ15により配管7を経由して排熱回収ボイラ12に給水として供給される。   The steam that has passed through the steam turbine 13 is condensed in the condenser 14 to become condensate, and is supplied as feed water to the exhaust heat recovery boiler 12 via the pipe 7 by the condensate pump 15.

一方、排熱回収ボイラ12によって熱を回収された排ガス5は、約100℃まで温度低下し、排熱回収ボイラ12から排ガスダクト53を経由して二酸化炭素回収装置10の冷却器85aに流入する。   On the other hand, the temperature of the exhaust gas 5 whose heat has been recovered by the exhaust heat recovery boiler 12 is lowered to about 100 ° C. and flows from the exhaust heat recovery boiler 12 into the cooler 85a of the carbon dioxide recovery device 10 via the exhaust gas duct 53. .

冷却器85aでは、リッチ溶液と排ガス5との熱交換によって排ガス5が約50℃まで冷却されるとともに、被加熱側流体であるリッチ溶液が約80℃まで加熱される。   In the cooler 85 a, the exhaust gas 5 is cooled to about 50 ° C. by heat exchange between the rich solution and the exhaust gas 5, and the rich solution that is the heated side fluid is heated to about 80 ° C.

冷却器85aで約50℃まで冷却された排ガス5は、二酸化炭素回収装置10を構成する吸収塔81に導入され、塔内の充填物表面で上方の散布ノズルから散布される温度約50℃の吸収液と気液接触する。吸収塔81の内部圧力は大気圧に近く約100kPaである。   The exhaust gas 5 cooled to about 50 ° C. by the cooler 85a is introduced into the absorption tower 81 constituting the carbon dioxide recovery device 10 and is sprayed from the upper spray nozzle on the surface of the packing in the tower at a temperature of about 50 ° C. Make gas-liquid contact with absorbent. The internal pressure of the absorption tower 81 is close to atmospheric pressure and is about 100 kPa.

本実施例の二酸化炭素回収装置10では、吸収塔81で排ガス5中の二酸化炭素を吸収する吸収液として炭酸カリウム水溶液を想定しており、排ガス5に含まれる約3体積パーセントの二酸化炭素は、大部分が吸収液に吸収される。この吸収液によって二酸化炭素が吸収されて除去された排ガス5は、吸収塔81から排ガスダクト54を通じて流下し、スタック(図示せず)を経由して大気中に排出される。   In the carbon dioxide recovery apparatus 10 of the present embodiment, an aqueous potassium carbonate solution is assumed as an absorption liquid that absorbs carbon dioxide in the exhaust gas 5 by the absorption tower 81, and about 3 volume percent of carbon dioxide contained in the exhaust gas 5 is Most of it is absorbed by the absorbent. The exhaust gas 5 that has been absorbed and removed by this absorption liquid flows down from the absorption tower 81 through the exhaust gas duct 54 and is discharged into the atmosphere via a stack (not shown).

吸収塔81の下部容器に収集された吸収液(リッチ溶液)は、排ガス5中の二酸化炭素を吸収する際の反応熱により温度が約60℃となり、ポンプ92で昇圧されて配管31を経由して吸収塔81の下流側に設置された再生塔82の充填物の上方空間に供給される。   The absorption liquid (rich solution) collected in the lower container of the absorption tower 81 has a temperature of about 60 ° C. due to the reaction heat when absorbing the carbon dioxide in the exhaust gas 5, and is pressurized by the pump 92 and passes through the pipe 31. And supplied to the upper space of the packing of the regeneration tower 82 installed on the downstream side of the absorption tower 81.

再生塔82は、該再生塔82と配管32を通じて連通した圧縮機60aの作用により、大気圧よりも低い約30kPaに調整されている。再生塔82では、容器の下部に収集されたリーン溶液の一部が、ポンプ91で昇圧されて配管37a、37b、37cを通じて吸収液再加熱器83a、83b、冷却器85dと冷却器85aにそれぞれ供給されている。   The regeneration tower 82 is adjusted to about 30 kPa, which is lower than the atmospheric pressure, by the action of the compressor 60 a communicating with the regeneration tower 82 through the pipe 32. In the regeneration tower 82, a part of the lean solution collected in the lower part of the container is pressurized by the pump 91 and passed through the pipes 37a, 37b, 37c to the absorbent reheaters 83a, 83b, the cooler 85d, and the cooler 85a, respectively. Have been supplied.

吸収液再加熱器83a、83bには圧縮機60a、60bから高温のCO2リッチガスが配管33a、33bを通じてそれぞれ供給されるので、前記吸収液再加熱器83a、83bでは、圧縮機60a、60bから吐出される高温のCO2リッチガスとリーン溶液との熱交換により、リーン溶液は約80℃まで加熱される。   Since the high temperature CO2 rich gas is supplied from the compressors 60a and 60b through the pipes 33a and 33b to the absorption liquid reheaters 83a and 83b, the absorption liquid reheaters 83a and 83b are discharged from the compressors 60a and 60b. The lean solution is heated to about 80 ° C. by heat exchange between the high temperature CO 2 rich gas and the lean solution.

配管37cに配設された冷却器85dでは、配管37cを流れるリーン溶液は冷却水により40℃まで冷却されるが、該冷却器85dの下流側に配設された冷却器85aで排ガス5と熱交換して前記リーン溶液は約80℃まで加熱される。   In the cooler 85d disposed in the pipe 37c, the lean solution flowing through the pipe 37c is cooled to 40 ° C. by the cooling water, but the exhaust gas 5 and the heat are heated in the cooler 85a disposed on the downstream side of the cooler 85d. In exchange, the lean solution is heated to about 80 ° C.

吸収液再加熱器83a、83b、および冷却器85aで約80℃まで加熱されたリーン溶液は、配管38で合流してから再生塔82の下部に戻される。   The lean solution heated to about 80 ° C. by the absorption liquid reheaters 83 a and 83 b and the cooler 85 a joins in the pipe 38 and then returns to the lower portion of the regeneration tower 82.

この時、再生塔82の圧力に対応する水蒸気の飽和温度は約70℃であり、配管38から戻されるリーン溶液の一部は再生塔82の内部で蒸発し、蒸発した蒸気は再生塔82の内部を上向きに流れ、上方から落下するリッチ溶液と充填物の表面で気液接触する。   At this time, the saturation temperature of the water vapor corresponding to the pressure in the regeneration tower 82 is about 70 ° C., a part of the lean solution returned from the pipe 38 evaporates inside the regeneration tower 82, and the evaporated vapor is in the regeneration tower 82. The rich solution that flows upward in the interior and falls from above is in gas-liquid contact with the surface of the filling.

この気液接触によってリッチ溶液は加熱され、リッチ溶液に吸収された二酸化炭素が解離するための熱エネルギーとなり、再生塔82内部で二酸化炭素が解離される。   The rich solution is heated by this gas-liquid contact, and becomes thermal energy for dissociating carbon dioxide absorbed in the rich solution, and carbon dioxide is dissociated inside the regeneration tower 82.

二酸化炭素が解離したリッチ溶液はリーン溶液に変化して再生塔82の下部に収集される。再生塔82の下部に収集されたリーン溶液の一部は、再びポンプ91によって昇圧され、配管37a、37bを通じて吸収液再加熱器83a、83bに供給され、配管37dを通じて冷却器85dと冷却器85aに供給される。   The rich solution from which carbon dioxide has been dissociated is changed into a lean solution and collected in the lower part of the regeneration tower 82. A part of the lean solution collected in the lower part of the regeneration tower 82 is again pressurized by the pump 91, supplied to the absorbent reheaters 83a and 83b through the pipes 37a and 37b, and the coolers 85d and 85a through the pipes 37d. To be supplied.

一方、再生塔82の下部に収集されたリーン溶液の別の一部は、ポンプ90によって昇圧され、配管30を通じて冷却器85bに供給され、冷却水と熱交換して約50℃に冷却される。そして50℃に冷却されたリーン溶液は、配管30を通じて吸収塔81の上部空間の散布ノズルに供給され、再び排ガス5中の二酸化炭素を吸収して二酸化炭素と水蒸気が混合したCO2リッチガスとなる。   On the other hand, another part of the lean solution collected in the lower part of the regeneration tower 82 is pressurized by the pump 90, supplied to the cooler 85b through the pipe 30, and cooled to about 50 ° C. through heat exchange with the cooling water. . The lean solution cooled to 50 ° C. is supplied to the spray nozzle in the upper space of the absorption tower 81 through the pipe 30 and again absorbs carbon dioxide in the exhaust gas 5 to become CO 2 rich gas in which carbon dioxide and water vapor are mixed.

再生塔82の上部に到達した、二酸化炭素と水蒸気を主成分とするCO2リッチガスは、配管32を通じて供給された圧縮機60aによって圧力30kPaから約170kPaまで昇圧する一方、温度は約60℃から約190℃まで昇温する。   The CO 2 rich gas mainly composed of carbon dioxide and water vapor reaching the upper part of the regeneration tower 82 is pressurized from a pressure of 30 kPa to about 170 kPa by the compressor 60a supplied through the pipe 32, while the temperature is about 60 ° C. to about 190 ° C. The temperature is raised to ° C.

約190℃のCO2リッチガスは、圧縮機60aから配管33aを通じて吸収液再加熱器83aに供給され、リーン溶液と熱交換して約70℃まで温度低下するとともに、リーン溶液を約80℃まで加熱する。   The CO 2 rich gas of about 190 ° C. is supplied from the compressor 60a to the absorbent reheater 83a through the pipe 33a, and heat-exchanges with the lean solution to lower the temperature to about 70 ° C. and heats the lean solution to about 80 ° C. .

吸収液再加熱器83aで約70℃まで冷却されたCO2リッチガスは、水蒸気の約70%が凝縮するので、吸収液再加熱器83aの下流側に設置した分離器61aにより凝縮水を分離捕集する。   Since about 70% of the water vapor is condensed in the CO2 rich gas cooled to about 70 ° C. by the absorbent reheater 83a, the condensed water is separated and collected by the separator 61a installed downstream of the absorbent reheater 83a. To do.

分離器61aにより分離捕集された凝縮水は、配管36aと配管38を経由して再生塔82の下部へ戻される。残りのCO2リッチガスは、分離器61aの下流側に設置された圧縮機60bに吸入され、圧力約170kPaから約1000kPaまで昇圧する一方、温度は約70℃から約200℃まで昇温する。   The condensed water separated and collected by the separator 61 a is returned to the lower part of the regeneration tower 82 via the pipe 36 a and the pipe 38. The remaining CO2-rich gas is sucked into the compressor 60b installed on the downstream side of the separator 61a, and the pressure is increased from about 170 kPa to about 1000 kPa, while the temperature is increased from about 70 ° C to about 200 ° C.

ここでCO2リッチガスを約1000kPaまで昇圧する理由は、水蒸気の露点温度を高くして、湿分を分離しやすくするためと、後に続く二酸化炭素の液化工程(図示せず)へ供給する圧力条件として適しているためである。   The reason why the CO2 rich gas is increased to about 1000 kPa is that the dew point temperature of water vapor is increased to facilitate separation of moisture, and the pressure condition for supplying to the subsequent carbon dioxide liquefaction step (not shown). It is because it is suitable.

約200℃のCO2リッチガスは、圧縮機60bから配管33bを通じて吸収液再加熱器83bに供給され、リーン溶液と熱交換して約70℃まで温度低下するとともに、リーン溶液を約80℃まで加熱する。   The CO 2 rich gas of about 200 ° C. is supplied from the compressor 60b to the absorbent reheater 83b through the pipe 33b, and heat-exchanges with the lean solution to lower the temperature to about 70 ° C. and heats the lean solution to about 80 ° C. .

吸収液再加熱器83bで約70℃まで冷却されたCO2リッチガスは、水蒸気の90%以上が凝縮するので、吸収液再加熱器83bの下流側に設置した分離器61bにより凝縮水を分離捕集する。   Since 90% or more of the water vapor is condensed in the CO2 rich gas cooled to about 70 ° C. by the absorbent reheater 83b, the condensed water is separated and collected by the separator 61b installed on the downstream side of the absorbent reheater 83b. To do.

分離器61bにより分離捕集された凝縮水は、配管36bと配管38を経由して再生塔82の下部へ戻される。残りのCO2リッチガスは分離器61bの下流側に設置された冷却器85cにより約40℃まで冷却され、冷却器85cの下流側に設置した分離器61cにより凝縮水を分離捕集する。   The condensed water separated and collected by the separator 61b is returned to the lower part of the regeneration tower 82 via the pipe 36b and the pipe 38. The remaining CO 2 rich gas is cooled to about 40 ° C. by a cooler 85c installed on the downstream side of the separator 61b, and condensed water is separated and collected by the separator 61c installed on the downstream side of the cooler 85c.

分離器61cにより分離捕集された凝縮水は、配管36cを経由して配管37bに合流し、吸収液再加熱器83bに供給され、約80℃まで加熱されてから配管38を経由して再生塔82の下部へ戻される。   The condensed water separated and collected by the separator 61c joins the pipe 37b through the pipe 36c, is supplied to the absorption liquid reheater 83b, is heated to about 80 ° C., and then is regenerated through the pipe 38. Returned to the bottom of the tower 82.

分離器61cにより凝縮水を分離した後のCO2リッチガスは、二酸化炭素濃度が約99%となり、後に続く二酸化炭素の液化工程(図示せず)へ送出される。   The CO2 rich gas after separating the condensed water by the separator 61c has a carbon dioxide concentration of about 99%, and is sent to the subsequent carbon dioxide liquefaction step (not shown).

次に、図2から図5を用いて、吸収液の再生に必要な熱利用の観点から、本実施例の二酸化炭素回収装置10の利点を説明する。これらの図2から図5は、再生塔82の塔内圧力を変化させた場合の、各機器における温度や圧力などの状態量を比較して示している。   Next, the advantages of the carbon dioxide recovery device 10 of the present embodiment will be described with reference to FIGS. 2 to 5 from the viewpoint of heat utilization necessary for the regeneration of the absorbing solution. These FIG. 2 to FIG. 5 show a comparison of state quantities such as temperature and pressure in each device when the pressure in the regeneration tower 82 is changed.

再生塔82の塔内圧力を変化させた場合、圧縮機60aの入口圧力も変化するが、圧縮機60b出口の圧力が常に約1000kPaとなるように、圧縮機60aと圧縮機60bの圧力比を連動させて計算した。   When the pressure inside the regeneration tower 82 is changed, the inlet pressure of the compressor 60a also changes, but the pressure ratio between the compressor 60a and the compressor 60b is set so that the pressure at the outlet of the compressor 60b is always about 1000 kPa. Calculated in conjunction.

図2は再生塔82における各種状態量の状況を示したものであり、図2(a)は、再生塔82の塔内圧力に対応する水蒸気の飽和温度の変化を示してある。同図に示すように、吸収液の温度は飽和温度より約8℃低く設定して運転しておき、吸収液再加熱器83によって飽和温度よりも高温に吸収液を加熱して、再生塔82の内部で水を蒸発させる計画とした。   FIG. 2 shows various state quantities in the regeneration tower 82, and FIG. 2 (a) shows the change in the saturation temperature of water vapor corresponding to the pressure in the regeneration tower 82. As shown in the figure, the temperature of the absorption liquid is set to be about 8 ° C. lower than the saturation temperature, and the absorption liquid is heated by the absorption liquid reheater 83 to a temperature higher than the saturation temperature. The plan was to evaporate the water inside.

この時、再生塔82内では、水蒸気の分圧は吸収液の温度の飽和圧力となり、水蒸気の分圧と二酸化炭素の分圧の状況は図2(b)に示したようになる。このような分圧のCO2リッチガスを再生塔82から圧縮機60aに吸い込む場合、二酸化炭素の質量あたりの水蒸気の蒸発量は、図2(c)に示したようになる。   At this time, in the regeneration tower 82, the partial pressure of water vapor becomes the saturation pressure of the temperature of the absorbing liquid, and the state of the partial pressure of water vapor and the partial pressure of carbon dioxide is as shown in FIG. When the partial pressure of CO2 rich gas is sucked into the compressor 60a from the regeneration tower 82, the amount of water vapor evaporated per mass of carbon dioxide is as shown in FIG.

図3は圧縮機60aと60bにおける各種状態量の状況を示したものであり、図3(a)に示すように、圧縮機60b出口の圧力が常に約1000kPaとなるように、圧縮機60aと60bの圧力比を変化させる。これらの圧縮機の圧力比は、必ずしも同一である必要は無いが、本実施例では圧縮機60aと60bの圧力比が同一になると仮定した。また、圧縮機60aおよび60bが吸入する流量は、二酸化炭素の質量あたりに換算すると図3(b)のようになる。   FIG. 3 shows the status of various state quantities in the compressors 60a and 60b. As shown in FIG. 3A, the compressor 60a and the compressor 60a are arranged so that the pressure at the outlet of the compressor 60b is always about 1000 kPa. The pressure ratio of 60b is changed. The pressure ratios of these compressors are not necessarily the same, but in this embodiment, it is assumed that the pressure ratios of the compressors 60a and 60b are the same. Further, the flow rates sucked by the compressors 60a and 60b are as shown in FIG. 3B when converted to the mass of carbon dioxide.

圧縮機60aの流量変化は、前記図2(c)の蒸発量を反映しており、再生塔82の塔内圧力が低いほど流量が少なくなっている。一方、下流側の圧縮機60bの流量は、圧縮機60aの流量から図4(c)に後述する流量吸収液再加熱器83aの凝縮量を差し引いたものであり、圧縮機60aの場合と同様、塔内圧力が低いほどの圧縮機60bの流量が少なくなっている。   The change in the flow rate of the compressor 60a reflects the evaporation amount shown in FIG. 2C, and the flow rate decreases as the pressure in the regeneration tower 82 decreases. On the other hand, the flow rate of the compressor 60b on the downstream side is obtained by subtracting the condensation amount of the flow rate absorption liquid reheater 83a described later in FIG. 4C from the flow rate of the compressor 60a, and is the same as in the case of the compressor 60a. The flow rate of the compressor 60b decreases as the pressure in the tower decreases.

これら圧縮機60aおよび60bの動力は、圧縮する流体の流量と圧力比に応じて決まるので、図3(c)に示すように、圧縮機60aも60bも、塔内圧力が低いほど圧力比が大きいことから、低圧力領域で動力が大きくなっている。   The power of these compressors 60a and 60b is determined according to the flow rate and pressure ratio of the fluid to be compressed. Therefore, as shown in FIG. Since it is large, the power is large in the low pressure region.

図4は吸収液再加熱器83a、83bにおける各種状態量の状況を示したものであり、図4(a)には、吸収液再加熱器83aのガス出入り口温度を示してある。入口ガス温度は、再生塔82内部のガス温度と圧縮機60aの圧力比によって決まり、塔内圧力が低い方が高温となっている。一方、吸収液再加熱器83aの出口ガス温度は、吸収液再加熱器83aの被加熱側流体である再生塔82の吸収液の温度によって決まる。   FIG. 4 shows the state of various state quantities in the absorbent reheaters 83a and 83b, and FIG. 4 (a) shows the gas inlet / outlet temperature of the absorbent reheater 83a. The inlet gas temperature is determined by the gas temperature inside the regeneration tower 82 and the pressure ratio of the compressor 60a. The lower the pressure in the tower, the higher the temperature. On the other hand, the outlet gas temperature of the absorbent reheater 83a is determined by the temperature of the absorbent in the regeneration tower 82, which is the heated fluid of the absorbent reheater 83a.

図4(b)は、同様に吸収液再加熱器83bのガス出入り口温度を示してある。入口ガス温度は、圧縮機60bの圧力比の影響により、塔内圧力が低い方が高温となっている。出口ガス温度は、同様に吸収液再加熱器83bの被加熱側流体である再生塔82の吸収液の温度によって決まる。   FIG. 4B similarly shows the gas inlet / outlet temperature of the absorbent reheater 83b. The inlet gas temperature is higher when the pressure in the tower is lower due to the effect of the pressure ratio of the compressor 60b. Similarly, the outlet gas temperature is determined by the temperature of the absorption liquid in the regeneration tower 82 which is the heated fluid of the absorption liquid reheater 83b.

図4(a)、(b)の吸収液再加熱器83aと83bのガス出口温度と、前記図2(c)の蒸発量から、吸収液再加熱器83aと83bにおける水蒸気の凝縮量は図4(c)のようになる。   From the gas outlet temperatures of the absorption liquid reheaters 83a and 83b in FIGS. 4A and 4B and the evaporation amount in FIG. 2C, the amount of water vapor condensed in the absorption liquid reheaters 83a and 83b is shown in FIG. As shown in 4 (c).

再生塔82の塔内圧力が低い場合、塔内での水蒸気の蒸発量は少ないが、吸収液再加熱器83aの出口ガス温度が低くなる。一方、塔内圧力が高い場合、水蒸気の蒸発量は増加するが、吸収液再加熱器83aの出口ガス温度は高くなる。これらの相乗効果により、吸収液再加熱器83aでの凝縮量は、塔内圧力によらずほぼ一定となった。   When the pressure in the regeneration tower 82 is low, the amount of water vapor evaporated in the tower is small, but the outlet gas temperature of the absorbent reheater 83a is low. On the other hand, when the pressure in the tower is high, the amount of water vapor evaporated increases, but the outlet gas temperature of the absorbent reheater 83a increases. Due to these synergistic effects, the amount of condensation in the absorption liquid reheater 83a is almost constant regardless of the pressure in the tower.

一方、蒸発量から吸収液再加熱器83aでの凝縮量を差し引いたものが、吸収液再加熱器83bへ流入する水蒸気量であるので、塔内圧力が高いほど吸収液再加熱器83bへ流入する蒸気量は多くなる。   On the other hand, since the amount of water vapor flowing into the absorption liquid reheater 83b is obtained by subtracting the amount of condensation in the absorption liquid reheater 83a from the evaporation amount, the flow into the absorption liquid reheater 83b increases as the pressure in the tower increases. The amount of steam to be increased.

さらに、吸収液再加熱器83bでは圧力が上昇して露点温度が上昇しているため、流入した水蒸気の大部分が凝縮し、塔内圧力が高い場合に吸収液再加熱器83bの凝縮量が増加する。冷却器85cでは、残りの水蒸気が蒸発する。   Further, since the pressure increases in the absorption liquid reheater 83b and the dew point temperature increases, most of the water vapor that has flowed in condenses, and the amount of condensation in the absorption liquid reheater 83b increases when the pressure in the tower is high. To increase. In the cooler 85c, the remaining water vapor evaporates.

図5は再生塔82、吸収液再加熱器83a、83b及び冷却器85aにおける各種熱量及び排ガス温度の状況を示したものであり、再生塔82で吸収液から二酸化炭素を放出させ、吸収液を再生するために必要な熱量を図5(a)に示す。吸収液から二酸化炭素を解離させる化学反応のエネルギーと、再生塔82内で水蒸気を蒸発させるために必要なエネルギーに大別され、化学反応に必要なエネルギーは塔内圧力に依存しないが、蒸発エネルギーは前記図2(c)の蒸発量に比例して変化する。   FIG. 5 shows various calorific values and exhaust gas temperature conditions in the regeneration tower 82, the absorption liquid reheaters 83a and 83b, and the cooler 85a. In the regeneration tower 82, carbon dioxide is released from the absorption liquid, The amount of heat required for regeneration is shown in FIG. The energy of the chemical reaction for dissociating carbon dioxide from the absorption liquid and the energy required for evaporating water vapor in the regeneration tower 82 are roughly divided. The energy required for the chemical reaction does not depend on the pressure in the tower, but the evaporation energy. Changes in proportion to the amount of evaporation in FIG.

一方、図5(b)には、吸収液再加熱器83a、83bでCO2リッチガスを冷却、凝縮させて回収できる熱量と、冷却器85aで排ガスから回収できる熱量を示した。CO2リッチガスが冷却される過程の潜熱と顕熱の大きさを比較すると、水蒸気の凝縮で放出される潜熱が圧倒的に大きく、吸収液再加熱器83aおよび83bで回収できる熱量は、前記図4(c)で説明した水蒸気の凝縮量にほぼ対応している。   On the other hand, FIG. 5B shows the amount of heat that can be recovered by cooling and condensing the CO2 rich gas by the absorption liquid reheaters 83a and 83b, and the amount of heat that can be recovered from the exhaust gas by the cooler 85a. Comparing the magnitude of latent heat and sensible heat in the process of cooling the CO2 rich gas, the latent heat released by the condensation of water vapor is overwhelmingly large, and the amount of heat that can be recovered by the absorption liquid reheaters 83a and 83b is shown in FIG. It almost corresponds to the amount of water vapor condensation described in (c).

図5(b)に、吸収液の再生に必要な熱利用を全てまかなうために必要な、冷却器85aでの回収熱量を併記した。冷却器85aで、これだけの熱量を回収するためには、図5(c)で示した温度の排ガスを冷却器85aに供給する必要がある。   FIG. 5B also shows the amount of heat recovered by the cooler 85a, which is necessary to cover all heat utilization necessary for regeneration of the absorbing solution. In order for the cooler 85a to recover this amount of heat, it is necessary to supply the exhaust gas having the temperature shown in FIG. 5C to the cooler 85a.

再生塔82の塔内圧力が高い場合には、圧縮機で発生する熱量が少ないため、必要な排ガス温度がより高温となっている。しかし、火力発電システムから、110℃程度の排ガスを取り出して利用することは比較的容易であり、本実施例により外部からの熱源なしに再生塔82において吸収液を再生することが可能となる。   When the pressure in the regeneration tower 82 is high, the amount of heat generated by the compressor is small, so that the necessary exhaust gas temperature is higher. However, it is relatively easy to take out and use the exhaust gas of about 110 ° C. from the thermal power generation system, and according to this embodiment, it is possible to regenerate the absorbing liquid in the regeneration tower 82 without an external heat source.

なお、本実施例では、吸収塔81あるいは再生塔82として充填物式を例示したが、これらの機器で必要な基本作用は気液接触であり、棚段式、スプレイ式など一般に知られた方式式から任意に選定可能である。   In this embodiment, the packing type is exemplified as the absorption tower 81 or the regeneration tower 82, but the basic action necessary for these devices is gas-liquid contact, and a generally known system such as a shelf type or a spray type is used. It can be arbitrarily selected from the formula.

また、冷却器85aあるいは吸収液再加熱器83として、それぞれ単独の熱交換器により被加熱側流体と加熱側流体の熱交換を想定したが、水などの中間媒体を利用した二次ループを構成して熱交換する方式も可能である。   Further, as the cooler 85a or the absorption liquid reheater 83, heat exchange between the heated fluid and the heated fluid is assumed by a single heat exchanger, but a secondary loop using an intermediate medium such as water is configured. Thus, a method of exchanging heat is also possible.

さらに、本実施例では吸収液として炭酸カリウム水溶液を想定したが、MEA(モノエタノールアミン)水溶液など、他の吸収液でも実施可能である。吸収液の種類により、吸収あるいは再生に必要な温度条件、必要な熱量などが異なるので、選定した吸収液に合わせてシステム運転条件を設計すればよい。その場合、圧縮機動力を最小化する再生塔82の塔内圧力も、本実施例とは異なることは言うまでも無い。   Furthermore, in this embodiment, an aqueous potassium carbonate solution is assumed as the absorbing solution, but other absorbing solutions such as an MEA (monoethanolamine) aqueous solution can be used. The temperature conditions necessary for absorption or regeneration, the amount of heat required, and the like differ depending on the type of the absorbing solution, and the system operating conditions may be designed according to the selected absorbing solution. In this case, it goes without saying that the pressure in the regeneration tower 82 that minimizes the compressor power is also different from that of the present embodiment.

また、本実施例では、二酸化炭素回収装置10を備える火力発電システムとして、ガスタービンと蒸気タービンを組み合わせたコンバインドサイクルを例示したが、ガスタービンと増湿塔、再生熱交換器などを組み合わせたHATサイクルでも実施可能である。その場合、ガスタービンの排ガスが約20%の湿分を含んでおり、排ガスの保有する潜熱エネルギーが多いことから、冷却器85aで回収できる熱量が多くなり、吸収液の再生がさらに容易になる利点がある。   In the present embodiment, a combined cycle in which a gas turbine and a steam turbine are combined is illustrated as a thermal power generation system including the carbon dioxide recovery device 10, but a HAT in which a gas turbine, a humidification tower, a regenerative heat exchanger, and the like are combined. It can also be implemented in cycles. In that case, since the exhaust gas of the gas turbine contains about 20% moisture and the exhaust gas has a large amount of latent heat energy, the amount of heat that can be recovered by the cooler 85a increases and the regeneration of the absorption liquid is further facilitated. There are advantages.

本実施例によれば、二酸化炭素を含む燃焼排ガスから二酸化炭素を分離回収する場合に、吸収液の再生に使用する熱エネルギーとして外部から供給する熱エネルギーの低減が可能な二酸化炭素回収装置が実現できる。   According to this embodiment, when carbon dioxide is separated and recovered from combustion exhaust gas containing carbon dioxide, a carbon dioxide recovery device capable of reducing the heat energy supplied from the outside as the heat energy used for the regeneration of the absorbent is realized. it can.

また、本実施例によれば、吸収液の再生に使用する熱エネルギーを外部から供給する二酸化炭素回収装置を備えた場合でも、発電システムの発電効率低下の抑制が可能な二酸化炭素回収装置を備えた火力発電システムが実現できる。   In addition, according to this embodiment, the carbon dioxide recovery device that can suppress the reduction in power generation efficiency of the power generation system is provided even when the carbon dioxide recovery device that supplies heat energy used for regeneration of the absorbing liquid from the outside is provided. A thermal power generation system can be realized.

次に本発明の他の実施例である二酸化炭素回収装置、および二酸化炭素回収装置を備えた火力発電システムについて図6を参照して説明する。   Next, a carbon dioxide recovery device according to another embodiment of the present invention and a thermal power generation system including the carbon dioxide recovery device will be described with reference to FIG.

図6に示した本実施例の二酸化炭素回収装置、および二酸化炭素回収装置を備えた火力発電システムは、図1に示した先の実施例の二酸化炭素回収装置、および二酸化炭素回収装置を備えた火力発電システムと基本的な構成は同じであるので、両者に共通した構成の説明は省略し、相違する構成についてのみ下記に説明する。   The carbon dioxide recovery device of the present embodiment shown in FIG. 6 and the thermal power generation system including the carbon dioxide recovery device include the carbon dioxide recovery device and the carbon dioxide recovery device of the previous embodiment shown in FIG. Since the basic configuration is the same as that of the thermal power generation system, the description of the configuration common to both is omitted, and only the configuration that is different will be described below.

図6において、本実施例の火力発電システムに備えられた二酸化炭素回収装置では、二酸化炭素回収装置10における再生塔82からのCO2リッチガスを圧縮する圧縮機が、圧縮機60aのみである点が先の実施例のものとは相違している。   In FIG. 6, in the carbon dioxide recovery device provided in the thermal power generation system of the present embodiment, the compressor 60a is the only compressor that compresses the CO2 rich gas from the regeneration tower 82 in the carbon dioxide recovery device 10. This is different from that of the embodiment.

本実施例における二酸化炭素回収装置10の圧縮機60aの圧力比と圧縮動力をそれぞれ図7(a)および図7(b)に示す。   The pressure ratio and the compression power of the compressor 60a of the carbon dioxide recovery device 10 in this embodiment are shown in FIGS. 7 (a) and 7 (b), respectively.

図7(a)、図7(b)に示したように、途中の冷却なしに圧縮機60aによって約1000kPaまで圧縮しているために、圧縮機60aの圧縮動力は前記実施例の圧縮機60aの約1.6倍から約2倍となっている。また、再生塔82で必要な排熱を賄うための、冷却器85aの入口排ガス温度を図7(c)に示す。   As shown in FIGS. 7 (a) and 7 (b), the compressor 60a compresses to about 1000 kPa without cooling in the middle, so the compression power of the compressor 60a is the compressor 60a of the above embodiment. From 1.6 times to 2 times. In addition, FIG. 7C shows the exhaust gas temperature at the inlet of the cooler 85a to cover the exhaust heat necessary for the regeneration tower 82.

図7(c)に示したように、圧縮機60aでの昇圧に伴い発生する熱が大きいため、冷却器85aの入口排ガス温度は図5(c)に示した前記実施例の冷却器85aの入口排ガス温度よりも数℃程度、低温となっている。   As shown in FIG. 7 (c), since the heat generated with the pressure increase in the compressor 60a is large, the inlet exhaust gas temperature of the cooler 85a is the same as that of the cooler 85a of the embodiment shown in FIG. 5 (c). The temperature is about several degrees Celsius lower than the inlet exhaust gas temperature.

排ガス温度が数℃変化するよりも、圧縮機動力が約1.6倍から約2倍変化する方が、プラント熱効率への影響が大きいため、二酸化炭素回収装置のプラント熱効率としては前記実施例1よりも低くなる。しかし、圧縮機や熱交換器の数を削減でき、二酸化炭素回収装置のプラント建設費の低減の観点からは先の実施例の二酸化炭素回収装置よりも低減できる利点がある。   Since the influence on the plant thermal efficiency is larger when the compressor power is changed from about 1.6 times to about 2 times than when the exhaust gas temperature is changed by several degrees C., the plant thermal efficiency of the carbon dioxide recovery apparatus is the above-described first embodiment. Lower than. However, the number of compressors and heat exchangers can be reduced, and there is an advantage that the carbon dioxide recovery device of the previous embodiment can be reduced from the viewpoint of reducing the plant construction cost of the carbon dioxide recovery device.

本実施例によれば、二酸化炭素を含む燃焼排ガスから二酸化炭素を分離回収する場合に、吸収液の再生に使用する熱エネルギーとして外部から供給する熱エネルギーの低減が可能な二酸化炭素回収装置が実現できる。   According to this embodiment, when carbon dioxide is separated and recovered from combustion exhaust gas containing carbon dioxide, a carbon dioxide recovery device capable of reducing the heat energy supplied from the outside as the heat energy used for the regeneration of the absorbent is realized. it can.

また、本実施例によれば、吸収液の再生に使用する熱エネルギーを外部から供給する二酸化炭素回収装置を備えた場合でも、発電システムの発電効率低下の抑制が可能な二酸化炭素回収装置を備えた火力発電システムが実現できる。   In addition, according to this embodiment, the carbon dioxide recovery device that can suppress the reduction in power generation efficiency of the power generation system is provided even when the carbon dioxide recovery device that supplies heat energy used for regeneration of the absorbing liquid from the outside is provided. A thermal power generation system can be realized.

次に本発明の更に他の実施例である二酸化炭素回収装置、および二酸化炭素回収装置を備えた火力発電システムについて図8を参照して説明する。   Next, a carbon dioxide recovery device that is still another embodiment of the present invention and a thermal power generation system including the carbon dioxide recovery device will be described with reference to FIG.

図8に示した本実施例の二酸化炭素回収装置、および二酸化炭素回収装置を備えた火力発電システムは、図1に示した先の実施例の二酸化炭素回収装置、および二酸化炭素回収装置を備えた火力発電システムと基本的な構成は同じであるので、両者に共通した構成の説明は省略し、相違する構成についてのみ下記に説明する。   The thermal power generation system including the carbon dioxide recovery device and the carbon dioxide recovery device of the present embodiment shown in FIG. 8 includes the carbon dioxide recovery device and the carbon dioxide recovery device of the previous embodiment shown in FIG. Since the basic configuration is the same as that of the thermal power generation system, the description of the configuration common to both is omitted, and only the configuration that is different will be described below.

図8において、本実施例の火力発電システムに備えられた二酸化炭素回収装置10では、二酸化炭素回収装置10の入口に設置され、ガスタービンの排ガス5を冷却する冷却器85aの被加熱側流体として、河川水56などの冷却水を利用するように構成している点が先の実施例のものとは相違している。   In FIG. 8, in the carbon dioxide recovery device 10 provided in the thermal power generation system of the present embodiment, it is installed at the inlet of the carbon dioxide recovery device 10 and is used as the heated fluid of the cooler 85a that cools the exhaust gas 5 of the gas turbine. The point that the cooling water such as the river water 56 is used is different from that of the previous embodiment.

そして前記冷却器85aに河川水56などの冷却水を利用することに伴って、再生塔82からリーン溶液の一部を分岐して冷却器85aに供給する配管37cと、この分岐した配管37cに設置された冷却器85dとが設置されていない点で先の実施例のものとは相違している。   Along with the use of cooling water such as river water 56 for the cooler 85a, a part of the lean solution is branched from the regeneration tower 82 and supplied to the cooler 85a, and the branched pipe 37c is supplied to the branch pipe 37c. It differs from the previous embodiment in that the installed cooler 85d is not installed.

更に、本実施例の二酸化炭素回収装置10では、再生塔82からリーン溶液を昇圧して供給する配管37cから新たに分岐して配管38に至る配管37dを配設し、この配管37dに吸収液再加熱器83cを設置して、前記吸収液再加熱器83cにて配管37c、配管37dを通じて再生塔82から導入したリーン溶液を、排熱回収ボイラなどから抽気した水蒸気55によって加熱するように構成した点でも先の実施例のものとは相違している。   Further, in the carbon dioxide recovery apparatus 10 of the present embodiment, a pipe 37d that is newly branched from the pipe 37c that pressurizes and supplies the lean solution from the regeneration tower 82 and reaches the pipe 38 is disposed, and the pipe 37d has an absorbing liquid. A reheater 83c is installed, and the lean solution introduced from the regeneration tower 82 through the pipe 37c and the pipe 37d in the absorption liquid reheater 83c is heated by the steam 55 extracted from an exhaust heat recovery boiler or the like. This is also different from the previous embodiment.

本実施例の二酸化炭素回収装置10では、冷却器85aの冷却水として比較的温度が安定した外部の冷却水56を利用して排ガスダクト53から流下する排ガス5を冷却するため、吸収塔81の運転条件がより安定となる。   In the carbon dioxide recovery device 10 of the present embodiment, the external cooling water 56 having a relatively stable temperature is used as the cooling water for the cooler 85a to cool the exhaust gas 5 flowing down from the exhaust gas duct 53. Operating conditions become more stable.

外部の冷却水56としては、河川水、海水と熱交換した冷却水、またはクーリングタワーで冷却した冷却水が用いられる。   As the external cooling water 56, river water, cooling water exchanged with seawater, or cooling water cooled by a cooling tower is used.

一方、図示しない排熱回収ボイラ12などから抽気した水蒸気55を前記吸収液再加熱器83cの加熱源として消費するため、プラント熱効率としては前記実施例1のものよりは低くなる。   On the other hand, since the steam 55 extracted from the exhaust heat recovery boiler 12 (not shown) or the like is consumed as a heating source of the absorption liquid reheater 83c, the plant thermal efficiency is lower than that of the first embodiment.

上記した構成の本実施例では、熱交換器の数を更に低減できるので、火力発電システムの設備コストを低減することが可能となる。   In the present embodiment having the above-described configuration, the number of heat exchangers can be further reduced, so that the equipment cost of the thermal power generation system can be reduced.

本実施例によれば、二酸化炭素を含む燃焼排ガスから二酸化炭素を分離回収する場合に、吸収液の再生に使用する熱エネルギーとして外部から供給する熱エネルギーの低減が可能な二酸化炭素回収装置が実現できる。   According to this embodiment, when carbon dioxide is separated and recovered from combustion exhaust gas containing carbon dioxide, a carbon dioxide recovery device capable of reducing the heat energy supplied from the outside as the heat energy used for the regeneration of the absorbent is realized. it can.

また、本実施例によれば、吸収液の再生に使用する熱エネルギーを外部から供給する二酸化炭素回収装置を備えた場合でも、発電システムの発電効率低下の抑制が可能な二酸化炭素回収装置を備えた火力発電システムが実現できる。   In addition, according to this embodiment, the carbon dioxide recovery device that can suppress the reduction in power generation efficiency of the power generation system is provided even when the carbon dioxide recovery device that supplies heat energy used for regeneration of the absorbing liquid from the outside is provided. A thermal power generation system can be realized.

本発明は二酸化炭素回収装置、および二酸化炭素回収装置を備えた火力発電システムに利用できる。   The present invention can be used in a carbon dioxide recovery device and a thermal power generation system including the carbon dioxide recovery device.

1:タービン、2:圧縮機、3:吸気ダクト、4:燃焼器、5:排ガス、10:二酸化炭素回収装置、12:排熱回収ボイラ、13:蒸気タービン、14:復水器、15:ポンプ、21、22:発電機、30、31、32、33a、33b、36a、36b、36c、37a、37b、37c、37d、38:配管、53、53:排ガスダクト、55:水蒸気、56:外部の冷却水、81:吸収塔、82:再生塔、83a、83b、83c:吸収液再加熱器、85a、85b:冷却器、90、91、92:ポンプ。   1: turbine, 2: compressor, 3: intake duct, 4: combustor, 5: exhaust gas, 10: carbon dioxide recovery device, 12: exhaust heat recovery boiler, 13: steam turbine, 14: condenser, 15: Pump, 21, 22: Generator, 30, 31, 32, 33a, 33b, 36a, 36b, 36c, 37a, 37b, 37c, 37d, 38: Piping, 53, 53: Exhaust gas duct, 55: Water vapor, 56: External cooling water, 81: absorption tower, 82: regeneration tower, 83a, 83b, 83c: absorption liquid reheater, 85a, 85b: cooler, 90, 91, 92: pump.

Claims (8)

二酸化炭素を含む排ガスと二酸化炭素の吸収液を気液接触させて排ガス中の二酸化炭素を吸収液に吸収させる吸収塔と、前記吸収塔で二酸化炭素を吸収した吸収液から二酸化炭素を解離させてこの吸収液を再生する再生塔と、前記吸収塔で二酸化炭素を吸収した吸収液を該吸収塔から再生塔に供給すると共に前記再生塔で再生した吸収液を該再生塔から該吸収塔に供給するように前記吸収液を循環させる配管系統を有する二酸化炭素回収装置において、
前記再生塔で解離した二酸化炭素を含むガスを該再生塔から吸入して圧縮する圧縮機と、前記圧縮機から吐出した二酸化炭素を含むガスを吸収液と熱交換する熱交換器と、前記熱交換器で二酸化炭素を含むガスを吸収液で冷却して生じた凝縮水を分離する分離器を備え、
前記再生塔が保有する吸収液を該再生塔から前記熱交換器に供給する第1の配管経路を備えて該熱交換器にて二酸化炭素を含むガスと熱交換させ、前記熱交換器で二酸化炭素を含むガスとの熱交換で加熱された吸収液を該熱交換器から前記再生塔に戻す第2の配管経路を備え、前記分離器で分離した凝縮水を該分離器から前記再生塔に戻す第3の配管経路を備えていることを特徴とする二酸化炭素回収装置。
An absorption tower that makes gas-liquid contact between an exhaust gas containing carbon dioxide and an absorption liquid of carbon dioxide so that the absorption liquid absorbs carbon dioxide in the exhaust gas, and carbon dioxide is dissociated from the absorption liquid that has absorbed carbon dioxide in the absorption tower. A regeneration tower that regenerates the absorption liquid, and an absorption liquid that has absorbed carbon dioxide in the absorption tower is supplied from the absorption tower to the regeneration tower, and an absorption liquid regenerated in the regeneration tower is supplied from the regeneration tower to the absorption tower. In the carbon dioxide recovery device having a piping system for circulating the absorption liquid,
A compressor that sucks and compresses a gas containing carbon dioxide dissociated in the regeneration tower, compresses the gas containing carbon dioxide discharged from the compressor with an absorbing liquid, and the heat A separator for separating condensed water produced by cooling a gas containing carbon dioxide with an absorbing liquid in an exchanger,
A first piping path is provided for supplying the absorption liquid held by the regeneration tower from the regeneration tower to the heat exchanger, and heat exchange with a gas containing carbon dioxide is performed in the heat exchanger, and the heat exchanger performs carbon dioxide oxidation. A second piping path is provided for returning the absorption liquid heated by heat exchange with the gas containing carbon from the heat exchanger to the regeneration tower, and condensed water separated by the separator is transferred from the separator to the regeneration tower. A carbon dioxide recovery device comprising a third piping path to be returned.
請求項1に記載された二酸化炭素回収装置において、
前記圧縮機は直列に配設された複数の圧縮機によって構成され、前記熱交換器は前記複数の圧縮機の下流側にそれぞれ配設されて該圧縮機から吐出した二酸化炭素を含むガスを冷却する複数の熱交換器によって構成され、前記分離器は前記複数の熱交換器の下流側にそれぞれ配設されて該熱交換器で二酸化炭素を含むガスを冷却して生じた凝縮水を分離する複数の分離器によって構成され、前記第1の配管経路は前記再生塔が保有する吸収液を前記複数の熱交換器に順次供給するように分岐して配設されており、前記第2の配管経路は前記複数の熱交換器で二酸化炭素を含むガスと熱交換して加熱された吸収液を前記再生塔に戻すように配設されており、前記第3の配管経路は前記分離器で分離した凝縮水を該分離器から前記再生塔に戻すように配設されていることを特徴とする二酸化炭素回収装置。
In the carbon dioxide recovery device according to claim 1,
The compressor is constituted by a plurality of compressors arranged in series, and the heat exchanger is arranged on the downstream side of the plurality of compressors to cool a gas containing carbon dioxide discharged from the compressor. A plurality of heat exchangers, and the separators are respectively disposed on the downstream side of the plurality of heat exchangers, and the condensed water generated by cooling the gas containing carbon dioxide in the heat exchangers is separated. The second pipe is constituted by a plurality of separators, and the first pipe path is branched to sequentially supply the absorption liquid held in the regeneration tower to the plurality of heat exchangers. The path is arranged to return the absorption liquid heated by exchanging heat with the gas containing carbon dioxide in the plurality of heat exchangers to the regeneration tower, and the third piping path is separated by the separator The condensed water is returned from the separator to the regeneration tower. Carbon dioxide recovery apparatus characterized by being arranged to.
請求項1に記載された二酸化炭素回収装置において、
前記第1の配管経路から分岐して吸収液を前記第2の配管経路に供給する第4の配管経路が配設され、この第4の配管経路に別の熱交換器を設置して該第4の配管経路を流下する吸収液を更に加熱するように構成したことを特徴とする二酸化炭素回収装置。
In the carbon dioxide recovery device according to claim 1,
A fourth piping path that branches from the first piping path and supplies the absorbing liquid to the second piping path is disposed, and another heat exchanger is installed in the fourth piping path. A carbon dioxide recovery apparatus, characterized in that the absorption liquid flowing down the four piping paths is further heated.
請求項1に記載された二酸化炭素回収装置において、
前記二酸化炭素回収装置の入口に配設された冷却器に冷却媒体として河川水を供給するように構成し、前記第4の配管経路に設置された別の熱交換器の加熱源として前記排熱回収ボイラで生成した蒸気を供給するように構成したことを特徴とする二酸化炭素回収装置。
In the carbon dioxide recovery device according to claim 1,
River water is supplied as a cooling medium to a cooler disposed at the inlet of the carbon dioxide recovery device, and the exhaust heat is used as a heat source for another heat exchanger installed in the fourth piping path. A carbon dioxide recovery device configured to supply steam generated by a recovery boiler.
二酸化炭素を含む排ガスと二酸化炭素の吸収液を気液接触させて排ガス中の二酸化炭素を吸収液に吸収させる吸収塔と、前記吸収塔で二酸化炭素を吸収した吸収液から二酸化炭素を解離させてこの吸収液を再生する再生塔と、前記吸収塔で二酸化炭素を吸収した吸収液を該吸収塔から再生塔に供給すると共に前記再生塔で再生した吸収液を該再生塔から該吸収塔に供給するように前記吸収液を循環させる配管系統を有する二酸化炭素回収装置は、前記再生塔で解離した二酸化炭素を含むガスを該再生塔から吸入して圧縮する圧縮機と、前記圧縮機から吐出した二酸化炭素を含むガスを冷却する熱交換器と、前記熱交換器で二酸化炭素を含むガスを冷却して生じた凝縮水を分離する分離器を備え、前記再生塔が保有する吸収液を該再生塔から前記熱交換器に供給する第1の配管経路を備えて該熱交換器にて二酸化炭素を含むガスと熱交換させ、前記熱交換器で二酸化炭素を含むガスとの熱交換で加熱された吸収液を該熱交換器から前記再生塔に戻す第2の配管経路を備え、前記分離器で分離した凝縮水を該分離器から前記再生塔に戻す第3の配管経路を備えることによって構成し、
二酸化炭素を含む排ガスと二酸化炭素の吸収液を気液接触させて排ガス中の二酸化炭素を前記吸収液に吸収させる吸収塔と、前記吸収塔で二酸化炭素を吸収した前記吸収液から二酸化炭素を解離させてこの吸収液を再生する再生塔と、前記吸収塔から二酸化炭素を吸収した吸収液を再生塔に供給すると共に該再生塔で再生した吸収液を該吸収塔に供給して吸収液を循環させる配管系統を有する火力発電システムは、圧縮機と、圧縮機で圧縮した空気と燃料を燃焼して燃焼ガスを生成する燃焼器と、燃焼器で生成した燃焼ガスで駆動されるタービンと、タービンによって駆動されて発電する発電機と、タービンを駆動して該タービンから排出された排ガスから熱を回収して蒸気を生成する排熱回収ボイラとを備え、前記排熱回収ボイラから前記二酸化炭素回収装置に導く二酸化炭素を含む排ガスを冷却する冷却器を前記二酸化炭素回収装置の入口に配設したことを特徴とする二酸化炭素回収装置を備えた火力発電システム。
An absorption tower that makes gas-liquid contact between an exhaust gas containing carbon dioxide and an absorption liquid of carbon dioxide so that the absorption liquid absorbs carbon dioxide in the exhaust gas, and carbon dioxide is dissociated from the absorption liquid that has absorbed carbon dioxide in the absorption tower. A regeneration tower that regenerates the absorption liquid, and an absorption liquid that has absorbed carbon dioxide in the absorption tower is supplied from the absorption tower to the regeneration tower, and an absorption liquid regenerated in the regeneration tower is supplied from the regeneration tower to the absorption tower. The carbon dioxide recovery device having a piping system for circulating the absorption liquid so as to suck and compress the gas containing carbon dioxide dissociated in the regeneration tower from the regeneration tower, and discharged from the compressor A heat exchanger that cools the gas containing carbon dioxide; and a separator that separates condensed water generated by cooling the gas containing carbon dioxide in the heat exchanger; From the tower An absorption liquid provided with a first piping path to be supplied to the heat exchanger, heat exchanged with a gas containing carbon dioxide in the heat exchanger, and heated by heat exchange with the gas containing carbon dioxide in the heat exchanger A second piping path that returns the heat exchanger to the regeneration tower, and a third piping path that returns the condensed water separated by the separator to the regeneration tower,
An absorption tower that makes gas-liquid contact between an exhaust gas containing carbon dioxide and an absorption liquid of carbon dioxide so that the absorption liquid absorbs carbon dioxide in the exhaust gas, and dissociates carbon dioxide from the absorption liquid that has absorbed carbon dioxide in the absorption tower A regeneration tower for regenerating the absorption liquid, and supplying the absorption liquid that has absorbed carbon dioxide from the absorption tower to the regeneration tower and supplying the absorption liquid regenerated in the regeneration tower to the absorption tower to circulate the absorption liquid. A thermal power generation system having a piping system for causing a compressor, a combustor that burns air and fuel compressed by the compressor to generate combustion gas, a turbine driven by the combustion gas generated by the combustor, and a turbine A generator that generates power by being driven by a turbine, and an exhaust heat recovery boiler that generates steam by recovering heat from the exhaust gas discharged from the turbine by driving the turbine, from the exhaust heat recovery boiler Thermal power generation system provided with a carbon dioxide recovery apparatus, wherein a cooler that is disposed at the inlet of the carbon dioxide recovery apparatus for cooling the exhaust gas containing carbon dioxide leads to carbon dioxide recovery apparatus.
請求項5に記載された二酸化炭素回収装置を備えた火力発電システムにおいて、
前記圧縮機は直列に配設された複数の圧縮機によって構成され、前記熱交換器は前記複数の圧縮機の下流側にそれぞれ配設されて該圧縮機から吐出した二酸化炭素を含むガスを冷却する複数の熱交換器によって構成され、前記分離器は前記複数の熱交換器の下流側にそれぞれ配設されて該熱交換器で二酸化炭素を含むガスを冷却して生じた凝縮水を分離する複数の分離器によって構成され、前記第1の配管経路は前記再生塔が保有する吸収液を前記複数の熱交換器に順次供給するように分岐して配設されており、前記第2の配管経路は前記複数の熱交換器で二酸化炭素を含むガスと熱交換して加熱された吸収液を前記再生塔に戻すように配設されており、前記第3の配管経路は前記分離器で分離した凝縮水を該分離器から前記再生塔に戻すように配設されていることを特徴とする二酸化炭素回収装置を備えた火力発電システム。
In the thermal power generation system provided with the carbon dioxide recovery device according to claim 5,
The compressor is constituted by a plurality of compressors arranged in series, and the heat exchanger is arranged on the downstream side of the plurality of compressors to cool a gas containing carbon dioxide discharged from the compressor. A plurality of heat exchangers, and the separators are respectively disposed on the downstream side of the plurality of heat exchangers, and the condensed water generated by cooling the gas containing carbon dioxide in the heat exchangers is separated. The second pipe is constituted by a plurality of separators, and the first pipe path is branched to sequentially supply the absorption liquid held in the regeneration tower to the plurality of heat exchangers. The path is arranged to return the absorption liquid heated by exchanging heat with the gas containing carbon dioxide in the plurality of heat exchangers to the regeneration tower, and the third piping path is separated by the separator The condensed water is returned from the separator to the regeneration tower. Thermal power generation system provided with a carbon dioxide recovery apparatus, characterized in that disposed on the.
請求項5に記載された二酸化炭素回収装置を備えた火力発電システムにおいて、
前記第1の配管経路から分岐して吸収液を前記第2の配管経路に供給する第4の配管経路が配設され、この第4の配管経路に別の熱交換器を設置して該第4の配管経路を流下する吸収液を更に加熱するように構成したことを特徴とする二酸化炭素回収装置を備えた火力発電システム。
In the thermal power generation system provided with the carbon dioxide recovery device according to claim 5,
A fourth piping path that branches from the first piping path and supplies the absorbing liquid to the second piping path is disposed, and another heat exchanger is installed in the fourth piping path. A thermal power generation system provided with a carbon dioxide recovery device, characterized in that the absorption liquid flowing down the four piping paths is further heated.
請求項5に記載された二酸化炭素回収装置を備えた火力発電システムにおいて、
前記二酸化炭素回収装置の入口に配設された冷却器に冷却媒体として外部の冷却水を供給するように構成し、前記第4の配管経路に設置された別の熱交換器の加熱源として前記排熱回収ボイラで生成した蒸気を供給するように構成したことを特徴とする二酸化炭素回収装置を備えた火力発電システム。
In the thermal power generation system provided with the carbon dioxide recovery device according to claim 5,
It is configured to supply external cooling water as a cooling medium to a cooler disposed at the inlet of the carbon dioxide recovery device, and as a heating source of another heat exchanger installed in the fourth piping path A thermal power generation system equipped with a carbon dioxide recovery device, characterized in that steam generated by an exhaust heat recovery boiler is supplied.
JP2009085453A 2009-03-31 2009-03-31 Apparatus for recovering carbon dioxide, and thermal power system with apparatus for recovering carbon dioxide Pending JP2010235395A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009085453A JP2010235395A (en) 2009-03-31 2009-03-31 Apparatus for recovering carbon dioxide, and thermal power system with apparatus for recovering carbon dioxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009085453A JP2010235395A (en) 2009-03-31 2009-03-31 Apparatus for recovering carbon dioxide, and thermal power system with apparatus for recovering carbon dioxide

Publications (1)

Publication Number Publication Date
JP2010235395A true JP2010235395A (en) 2010-10-21

Family

ID=43090102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009085453A Pending JP2010235395A (en) 2009-03-31 2009-03-31 Apparatus for recovering carbon dioxide, and thermal power system with apparatus for recovering carbon dioxide

Country Status (1)

Country Link
JP (1) JP2010235395A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011213494A (en) * 2010-03-31 2011-10-27 Nippon Steel Engineering Co Ltd Carbon dioxide gas recovery apparatus
CN102476020A (en) * 2010-11-30 2012-05-30 现代自动车株式会社 Apparatus for regenerating carbon dioxide absorption solution
JP2012143699A (en) * 2011-01-11 2012-08-02 Babcock Hitachi Kk Exhaust gas treating system
JP2012192403A (en) * 2011-03-17 2012-10-11 Mitsubishi Heavy Ind Ltd Co2 recovery apparatus
JP2012223661A (en) * 2011-04-14 2012-11-15 Mitsubishi Heavy Ind Ltd Carbon dioxide recovery system, and method for recovery of moisture containing carbon dioxide gas
JP2013000729A (en) * 2011-06-21 2013-01-07 Toshiba Corp Apparatus and method for recovering carbon dioxide
CN103007719A (en) * 2013-01-16 2013-04-03 哈尔滨工业大学 Double-circulation ammonia process type smoke decarbonization device
CN103363537A (en) * 2013-06-03 2013-10-23 华中科技大学 Oxygen-enriched combustion flue gas purification device
CN103717847A (en) * 2011-07-29 2014-04-09 西门子公司 Method and fossil-fuel-fired power plant for recovering a condensate
EP2722095A1 (en) * 2012-10-22 2014-04-23 BP Alternative Energy International Limited Separation of components from a gas mixture
WO2014087943A1 (en) * 2012-12-03 2014-06-12 株式会社Ihi Carbon dioxide recovery device
JP2014108909A (en) * 2012-12-03 2014-06-12 Ihi Corp Carbon dioxide recovery apparatus
WO2014175338A1 (en) 2013-04-26 2014-10-30 株式会社Ihi Device for recovering and method for recovering carbon dioxide
CN104971596A (en) * 2015-07-24 2015-10-14 中国神华能源股份有限公司 Demercuration system and method for pulverized coal oxygen-enriched combustion smoke
KR101746235B1 (en) 2011-08-29 2017-06-13 한국전력공사 Energy saving method and apparatus for carbon dioxide capture in power plant
CN108176199A (en) * 2018-03-20 2018-06-19 中石化石油工程技术服务有限公司 Oil and gas station regeneration gas seals equipment up for safekeeping
WO2024090105A1 (en) * 2022-10-26 2024-05-02 三菱重工業株式会社 Carbon dioxide recovery system and carbon dioxide recovery method
WO2024171621A1 (en) * 2023-02-13 2024-08-22 三菱重工業株式会社 Carbon dioxide recovery system and operation method therefor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05123534A (en) * 1991-10-14 1993-05-21 Kansai Electric Power Co Inc:The Recovery of carbon dioxide in combustion exhaust gas
JPH05184868A (en) * 1992-01-17 1993-07-27 Kansai Electric Power Co Inc:The Method for removing carbon dioxide in combustion exhaust gas
JPH09509608A (en) * 1994-02-15 1997-09-30 クヴェルナー エーエスエー Method for removing and preventing carbon dioxide (CO 2) from exhaust gas generated from heat engine to the atmosphere
JP2008062165A (en) * 2006-09-06 2008-03-21 Mitsubishi Heavy Ind Ltd Co2 recovery apparatus and method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05123534A (en) * 1991-10-14 1993-05-21 Kansai Electric Power Co Inc:The Recovery of carbon dioxide in combustion exhaust gas
JPH05184868A (en) * 1992-01-17 1993-07-27 Kansai Electric Power Co Inc:The Method for removing carbon dioxide in combustion exhaust gas
JPH09509608A (en) * 1994-02-15 1997-09-30 クヴェルナー エーエスエー Method for removing and preventing carbon dioxide (CO 2) from exhaust gas generated from heat engine to the atmosphere
JP2008062165A (en) * 2006-09-06 2008-03-21 Mitsubishi Heavy Ind Ltd Co2 recovery apparatus and method

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011213494A (en) * 2010-03-31 2011-10-27 Nippon Steel Engineering Co Ltd Carbon dioxide gas recovery apparatus
CN102476020A (en) * 2010-11-30 2012-05-30 现代自动车株式会社 Apparatus for regenerating carbon dioxide absorption solution
KR101304886B1 (en) 2010-11-30 2013-09-06 기아자동차주식회사 System for regenerating CO2 absorption solution
JP2012143699A (en) * 2011-01-11 2012-08-02 Babcock Hitachi Kk Exhaust gas treating system
JP2012192403A (en) * 2011-03-17 2012-10-11 Mitsubishi Heavy Ind Ltd Co2 recovery apparatus
JP2012223661A (en) * 2011-04-14 2012-11-15 Mitsubishi Heavy Ind Ltd Carbon dioxide recovery system, and method for recovery of moisture containing carbon dioxide gas
US9400106B2 (en) 2011-04-14 2016-07-26 Mitsubishi Heavy Industries, Ltd. CO2 recovery system and recovery method for moisture containing CO2 gas
US9050555B2 (en) 2011-04-14 2015-06-09 Mitsubishi Heavy Industries, Ltd. CO2 recovery system and recovery method for moisture containing CO2 gas
JP2013000729A (en) * 2011-06-21 2013-01-07 Toshiba Corp Apparatus and method for recovering carbon dioxide
CN103717847A (en) * 2011-07-29 2014-04-09 西门子公司 Method and fossil-fuel-fired power plant for recovering a condensate
KR101746235B1 (en) 2011-08-29 2017-06-13 한국전력공사 Energy saving method and apparatus for carbon dioxide capture in power plant
EP2722095A1 (en) * 2012-10-22 2014-04-23 BP Alternative Energy International Limited Separation of components from a gas mixture
JP2014108389A (en) * 2012-12-03 2014-06-12 Ihi Corp Carbon dioxide recovery apparatus
JP2014108909A (en) * 2012-12-03 2014-06-12 Ihi Corp Carbon dioxide recovery apparatus
WO2014087943A1 (en) * 2012-12-03 2014-06-12 株式会社Ihi Carbon dioxide recovery device
CN103007719A (en) * 2013-01-16 2013-04-03 哈尔滨工业大学 Double-circulation ammonia process type smoke decarbonization device
WO2014175338A1 (en) 2013-04-26 2014-10-30 株式会社Ihi Device for recovering and method for recovering carbon dioxide
EP2990091A4 (en) * 2013-04-26 2016-12-21 Ihi Corp Device for recovering and method for recovering carbon dioxide
CN103363537B (en) * 2013-06-03 2014-08-27 华中科技大学 Oxygen-enriched combustion flue gas purification device
CN103363537A (en) * 2013-06-03 2013-10-23 华中科技大学 Oxygen-enriched combustion flue gas purification device
CN104971596A (en) * 2015-07-24 2015-10-14 中国神华能源股份有限公司 Demercuration system and method for pulverized coal oxygen-enriched combustion smoke
CN108176199A (en) * 2018-03-20 2018-06-19 中石化石油工程技术服务有限公司 Oil and gas station regeneration gas seals equipment up for safekeeping
WO2024090105A1 (en) * 2022-10-26 2024-05-02 三菱重工業株式会社 Carbon dioxide recovery system and carbon dioxide recovery method
WO2024171621A1 (en) * 2023-02-13 2024-08-22 三菱重工業株式会社 Carbon dioxide recovery system and operation method therefor

Similar Documents

Publication Publication Date Title
JP2010235395A (en) Apparatus for recovering carbon dioxide, and thermal power system with apparatus for recovering carbon dioxide
EP3310455B1 (en) Integrated process for co2 capture from internal combustion engines of mobile sources and use in thermal power production cycle
CN108136321B (en) For CO2Method and apparatus for trapping
CA2771516C (en) Co2 recovery apparatus
US20120312020A1 (en) Regeneration of Capture Medium
US20130312386A1 (en) Combined cycle power plant with co2 capture plant
US9447996B2 (en) Carbon dioxide removal system using absorption refrigeration
JP6064770B2 (en) Carbon dioxide recovery method and recovery apparatus
CN114768488A (en) Coal-fired unit flue gas carbon dioxide entrapment system
WO2013114937A1 (en) Carbon dioxide recovery system
JP2012037180A (en) Thermal power generation system with co2 removing facility
US20100071878A1 (en) System and method for cooling using system exhaust
RU2273741C1 (en) Gas-steam plant
KR101146557B1 (en) Co? collecting apparatus
JP5976817B2 (en) Heat recovery system and heat recovery method
WO2021131459A1 (en) Exhaust gas processing equipment and gas turbine plant
JP2010209721A (en) Carbon dioxide recovery type gas turbine plant
JP4929227B2 (en) Gas turbine system using high humidity air
WO2014129391A1 (en) Co2 recovery system and co2 recovery method
KR20120013588A (en) Co2 collecting apparatus
JP5584040B2 (en) CO2 recovery steam turbine system and operation method thereof
RU2575519C2 (en) Heat integration at co2 capture
KR20240118743A (en) Methods for capturing CO2 from flue gas of district heating plants
WO2022271035A1 (en) Heat recovery in a co2 capture plant
WO2018200526A1 (en) Process for carbon dioxide recapture with improved energy recapture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121016

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130423