JPH05123534A - Recovery of carbon dioxide in combustion exhaust gas - Google Patents

Recovery of carbon dioxide in combustion exhaust gas

Info

Publication number
JPH05123534A
JPH05123534A JP3264336A JP26433691A JPH05123534A JP H05123534 A JPH05123534 A JP H05123534A JP 3264336 A JP3264336 A JP 3264336A JP 26433691 A JP26433691 A JP 26433691A JP H05123534 A JPH05123534 A JP H05123534A
Authority
JP
Japan
Prior art keywords
exhaust gas
carbon dioxide
cooling
temperature
combustion exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3264336A
Other languages
Japanese (ja)
Other versions
JP2597056B2 (en
Inventor
Masumi Fujii
眞澄 藤井
Taiichirou Suda
泰一朗 須田
Zenji Hotta
善次 堀田
Kenji Kobayashi
賢治 小林
Kunihiko Yoshida
邦彦 吉田
Shigeru Shimojo
繁 下條
Mutsunori Karasaki
睦範 唐崎
Masaki Iijima
正樹 飯島
Toru Seto
徹 瀬戸
Shigeaki Mitsuoka
薫明 光岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Original Assignee
Kansai Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP3264336A priority Critical patent/JP2597056B2/en
Application filed by Kansai Electric Power Co Inc, Mitsubishi Heavy Industries Ltd filed Critical Kansai Electric Power Co Inc
Priority to EP96109819A priority patent/EP0733395B1/en
Priority to DE69228910T priority patent/DE69228910T2/en
Priority to DE69233289T priority patent/DE69233289T2/en
Priority to DK96109819T priority patent/DK0733395T3/en
Priority to EP96109820A priority patent/EP0733396B1/en
Priority to DK92117011T priority patent/DK0537593T3/en
Priority to EP92117011A priority patent/EP0537593B1/en
Priority to DK96109820T priority patent/DK0733396T3/en
Priority to DE69233766T priority patent/DE69233766D1/en
Priority to US07/957,185 priority patent/US5339633A/en
Priority to KR1019920018538A priority patent/KR960000012B1/en
Publication of JPH05123534A publication Critical patent/JPH05123534A/en
Priority to US08/808,154 priority patent/US6274108B1/en
Application granted granted Critical
Publication of JP2597056B2 publication Critical patent/JP2597056B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To efficiently recover carbon dioxide contained in combustion exhaust gas by adjusting the temp. of exhaust gas in a specific temp. range before bringing the exhaust gas into contact with a monoethanolamine aqueous solution. CONSTITUTION:Carbon dioxide contained in combustion exhaust gas is absorbed and recovered using a monoethanolamine aqueous solution as an absorbing solution. At this time, the temp. of the exhaust gas is adjusted to the temp. range of 50-80 deg.C in a cooling tower 1 to bring the exhaust gas into contact with the monoethanolamine aqueous solution in an absorbing tower 2. By this method, carbon dioxide can efficiently be absorbed and recovered. The high temp. exhaust gas can be cooled by humidifying cooling merely using water and it is unnecessary to use a heat exchanger for accelerating the cooling of cooling water required heretofore.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は燃焼排ガス中に含まれる
炭酸ガスを回収する方法に関し、更に詳しくは加湿冷却
法等により排ガスの温度を所定範囲に冷却し、吸収液と
してモノエタノールアミン水溶液を用いて燃焼ガス中に
含まれる炭酸ガスを吸収し、モノエタノールアミン水溶
液から炭酸ガスを回収する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for recovering carbon dioxide contained in combustion exhaust gas. More specifically, the temperature of exhaust gas is cooled to a predetermined range by a humidification cooling method or the like, and an aqueous monoethanolamine solution is used as an absorption liquid. The present invention relates to a method for absorbing carbon dioxide contained in combustion gas and recovering carbon dioxide from an aqueous monoethanolamine solution.

【0002】[0002]

【従来の技術】近年、地球の温暖化現象の原因の一つと
して、炭酸ガスによる温室効果が指摘され、地球環境を
守る上で国際的にもその対策が急務となってきた。炭酸
ガスの発生源としては化石燃料を燃焼させるあらゆる人
間の活動分野に及び、その排出規制が今後一層強化され
る傾向にある。従って大量の化石燃料を使用する火力発
電所などの動力発生設備を対象に、ボイラの燃焼排ガス
中の炭酸ガスの回収方法および回収された炭酸ガスを大
気へ放出することなく貯蔵する方法が精力的に研究され
ている。
2. Description of the Related Art In recent years, the greenhouse effect of carbon dioxide has been pointed out as one of the causes of the global warming phenomenon, and countermeasures against it have become urgent internationally in order to protect the global environment. Sources of carbon dioxide gas cover all human activity fields that burn fossil fuels, and their emission regulations are likely to be tightened in the future. Therefore, for power generation facilities such as thermal power plants that use large amounts of fossil fuels, the method of recovering carbon dioxide in the combustion exhaust gas of the boiler and the method of storing the recovered carbon dioxide without releasing it to the atmosphere are vigorous. Is being researched by.

【0003】[0003]

【発明が解決しようとする課題】ところで燃焼排ガス中
に含まれる炭酸ガスの吸収に約30重量%モノエタノー
ルアミン水溶液を用いた場合の大気圧8 vol%炭酸ガス
分圧下における飽和曲線は図3に示される通りである。
図3の横軸は温度(℃)を、縦軸はモノエタノールアミ
ン単位モル当りの炭酸ガスの吸収モル数を示す。図3か
ら容易に分かるように、接触させる炭酸ガスの温度が低
いほどモノエタノールアミン水溶液中に吸収される炭酸
ガス量は多くなる。さらにまた、モノエタノールアミン
水溶液による炭酸ガスの吸収は発熱を伴うものであり、
この点からもモノエタノールアミン水溶液と接触処理さ
せる排ガスは低温ほど好ましく、例えば30〜50℃程
度にまで排ガスの冷却を強化しなければならないとされ
ていた。このため、排ガス中の炭酸ガス回収装置として
は排ガスの冷却装置に費用がかかり、さらに回収装置の
操業時においても、排ガス冷却装置に使用する冷却水を
冷却させるため、熱交換器の運転などに多大の費用がか
かっていた。特に天然ガスを燃料とするボイラなどの排
ガスを処理する場合、石炭や重油を燃料とする排ガスと
は異なり、単に冷却水と接触させる加湿処理のみでは容
易に温度が下がらず、熱交換器で冷却を強化した水との
接触を必要とするなどの問題があった。
By the way, a saturation curve under atmospheric pressure of 8 vol% carbon dioxide partial pressure when about 30 wt% monoethanolamine aqueous solution is used for absorbing carbon dioxide contained in combustion exhaust gas is shown in FIG. As shown.
In FIG. 3, the horizontal axis represents temperature (° C.) and the vertical axis represents the number of moles of carbon dioxide gas absorbed per unit mole of monoethanolamine. As is easily understood from FIG. 3, the lower the temperature of the carbon dioxide gas to be contacted, the larger the amount of carbon dioxide gas absorbed in the aqueous monoethanolamine solution. Furthermore, the absorption of carbon dioxide gas by the monoethanolamine aqueous solution is accompanied by heat generation,
From this point as well, it is said that the temperature of the exhaust gas to be contact-treated with the monoethanolamine aqueous solution is lower, and the cooling of the exhaust gas must be strengthened to, for example, about 30 to 50 ° C. For this reason, as a carbon dioxide gas recovery device for the exhaust gas, the cooling device for the exhaust gas is expensive, and even when the recovery device is in operation, the cooling water used for the exhaust gas cooling device is cooled. It cost a lot of money. In particular, when treating exhaust gas from a boiler that uses natural gas as a fuel, unlike the exhaust gas that uses coal or heavy oil as a fuel, the temperature does not easily drop only by the humidification treatment that makes contact with cooling water, and the heat exchanger cools it. There was a problem such as the need for contact with water fortified.

【0004】[0004]

【課題を解決するための手段】本発明者らは燃焼排ガス
中に含まれる炭酸ガスを吸収・回収する場合の排ガス温
度に関する上記の事情の下に、排ガス温度とモノエタノ
ールアミン水溶液への炭酸ガスの吸収量との関係を鋭意
検討した結果、驚くべきことに排ガス温度が30〜50
℃よりも高温の方がむしろ吸収量が大きくなることを見
い出し、本発明を完成させるに至った。
Under the above circumstances regarding the exhaust gas temperature when absorbing and recovering the carbon dioxide gas contained in the combustion exhaust gas, the present inventors have considered the exhaust gas temperature and the carbon dioxide gas in the monoethanolamine aqueous solution. As a result of diligent examination of the relationship with the absorption amount of the exhaust gas, the temperature of the exhaust gas was surprisingly 30 to 50.
It was found that the absorption amount was higher at a temperature higher than 0 ° C, and the present invention was completed.

【0005】すなわち、本発明の第一は吸収液としてモ
ノエタノールアミン水溶液を用いて燃焼排ガス中に含ま
れる炭酸ガスを吸収して回収する方法において、該排ガ
ス温度を50℃を超え80℃以下の範囲に調節した後、
モノエタノールアミン水溶液と接触させることを特徴と
する炭酸ガスの回収方法である。
That is, the first aspect of the present invention is a method for absorbing and recovering carbon dioxide gas contained in combustion exhaust gas by using an aqueous monoethanolamine solution as an absorption liquid, and the exhaust gas temperature is higher than 50 ° C. and lower than 80 ° C. After adjusting to the range,
It is a method for recovering carbon dioxide gas, which is characterized in that it is brought into contact with an aqueous monoethanolamine solution.

【0006】また本発明の第二は第一の発明を加湿冷却
法により行なうものである。
A second aspect of the present invention is to carry out the first aspect of the present invention by a humidification cooling method.

【0007】更に本発明の第三は高温度の燃焼排ガスを
熱交換器を有しない冷却水供給手段による加湿冷却によ
り冷却する工程、加湿冷却された排ガス中に含まれる炭
酸ガスをモノエタノールアミン水溶液を用いて吸収する
吸収工程およびモノエタノールアミン水溶液から炭酸ガ
スを回収する工程を具備することを特徴とする燃焼排ガ
ス中の炭酸ガスの回収方法である。以下、本発明を詳細
に説明する。
Further, the third aspect of the present invention is to cool the combustion exhaust gas of high temperature by humidification cooling by a cooling water supply means having no heat exchanger, the carbon dioxide gas contained in the humidified and cooled exhaust gas is a monoethanolamine aqueous solution. A method for recovering carbon dioxide gas in a combustion exhaust gas, comprising: an absorption step for absorbing carbon dioxide gas by using the above method and a step for recovering carbon dioxide gas from an aqueous monoethanolamine solution. Hereinafter, the present invention will be described in detail.

【0008】[0008]

【作用】本発明の方法において使用する燃焼ガス中に含
まれる炭酸ガスを吸収・回収する設備としては図1の如
きものが例示できる。図1では主要設備のみ示し、付属
設備は省略した。
As the equipment for absorbing and recovering carbon dioxide gas contained in the combustion gas used in the method of the present invention, the equipment as shown in FIG. 1 can be exemplified. In FIG. 1, only the main equipment is shown and the auxiliary equipment is omitted.

【0009】本発明の炭酸ガス回収方法においては、排
ガス温度を50℃を超え80℃以下の範囲に、特に好ま
しくは55〜80℃に調整した後、モノエタノールアミ
ン水溶液と接触させることが必要である。50℃を超え
80℃以下の範囲に調節する方法としては図1の冷却塔
1の如き設備による加湿冷却によることが好ましいが、
特にこれに限定されるわけではない。ボイラ等により発
生し煙突より排出される燃焼排ガスは通常100〜15
0℃でライン5により燃焼ガス冷却塔1に導入され、ポ
ンプ12によりライン13を循環する水と向流接触して
加湿冷却される。
In the carbon dioxide recovery method of the present invention, it is necessary to adjust the exhaust gas temperature to a range of more than 50 ° C. and 80 ° C. or less, particularly preferably 55 to 80 ° C., and then contacting it with an aqueous monoethanolamine solution. is there. As a method for adjusting the temperature in the range of more than 50 ° C. and 80 ° C. or less, it is preferable to use humidification cooling with equipment such as the cooling tower 1 in FIG.
It is not particularly limited to this. The combustion exhaust gas generated by the boiler or the like and discharged from the chimney is usually 100 to 15
It is introduced into the combustion gas cooling tower 1 through a line 5 at 0 ° C., and is subjected to countercurrent contact with water circulating in a line 13 by a pump 12 to be humidified and cooled.

【0010】本発明では従来技術のように冷却塔1によ
り排ガスを30〜50℃まで冷却させる必要がなく、5
0℃を超え80℃以下の範囲に冷却すれば十分であり、
ライン13には従来必須とされて設置されていた熱交換
器は特に不要であり、単に液体状にある水を循環させれ
ばよい。水は河川水のみならず海水であってもよい。加
湿冷却により失われる水は図示しない供給源からライン
15によりライン13に補充される。冷却塔1は単に水
と排ガスを接触させればよく、塔内に特に充填材等はな
くてもよい。冷却塔1の出口の排ガス温度の調節はポン
プ12による循環水量によって行うことができる。
In the present invention, unlike the prior art, it is not necessary to cool the exhaust gas to 30 to 50 ° C. by the cooling tower 1, and
It suffices to cool it in the range above 0 ° C and below 80 ° C.
The heat exchanger, which is conventionally required and installed in the line 13, is not particularly required, and water in liquid form may simply be circulated. The water may be not only river water but also seawater. Water lost by the humidification cooling is replenished in the line 13 by the line 15 from a supply source (not shown). The cooling tower 1 only needs to bring water and exhaust gas into contact with each other, and there is no particular need for a filler or the like in the tower. The temperature of the exhaust gas at the outlet of the cooling tower 1 can be adjusted by the amount of circulating water by the pump 12.

【0011】加湿冷却により50℃を超え80℃以下の
範囲に冷却された排ガスはライン6により吸収塔2に導
入される。吸収塔2の上部にはライン9により濃度20
〜30重量%前後のモノエタノールアミン水溶液が供給
される。該モノエタノールアミン水溶液は燃焼ガスと向
流接触させられ塔の下部からライン7により炭酸ガスを
吸収したモノエタノールアミン水溶液としてモノエタノ
ールアミン水溶液再生塔3に送られる。吸収塔2の上部
からはライン8により炭酸ガスを吸収された残りの燃焼
ガスが大気へ放出される。
The exhaust gas cooled by humidification to a temperature above 50 ° C. and below 80 ° C. is introduced into absorption tower 2 via line 6. At the upper part of the absorption tower 2, the concentration of 20
About 30% by weight of monoethanolamine aqueous solution is supplied. The monoethanolamine aqueous solution is brought into countercurrent contact with the combustion gas and is sent from the lower part of the tower to the monoethanolamine aqueous solution regeneration tower 3 as a monoethanolamine aqueous solution absorbing carbon dioxide by a line 7. From the upper part of the absorption tower 2, the remaining combustion gas, which has absorbed carbon dioxide gas, is released to the atmosphere through the line 8.

【0012】モノエタノールアミン水溶液再生塔3では
リボイラ14を通して蒸気による加熱によりモノエタノ
ールアミン水溶液が再生され、ライン9により吸収塔2
へ戻される。炭酸ガスはライン10により回収工程へ導
かれる。
In the monoethanolamine aqueous solution regeneration tower 3, the monoethanolamine aqueous solution is regenerated by heating with steam through the reboiler 14, and the absorption tower 2 is regenerated by the line 9.
Returned to. The carbon dioxide gas is guided to the recovery process by the line 10.

【0013】なおこの炭酸ガスの吸収・回収システムの
操業中に、モノエタノールアミンは排気ガスに同伴した
り劣化物となり徐々に系外へ失われる。従ってこれを補
充するため、例えばライン7の途中にタンク4からモノ
エタノールアミンの原液が供給され、同様にタンク11
により希釈水が系内に供給される。
During operation of this carbon dioxide absorption / recovery system, monoethanolamine is accompanied by exhaust gas or becomes a deteriorated product and gradually lost to the outside of the system. Therefore, in order to replenish this, for example, a stock solution of monoethanolamine is supplied from the tank 4 in the middle of the line 7, and similarly, the tank 11
The dilution water is supplied into the system by.

【0014】上述のように、冷却塔1では単に高温排ガ
スと水とを接触させることにより、加湿冷却され50℃
を超え80℃以下の範囲まで排ガスは冷却される。モノ
エタノールアミン水溶液の炭酸ガス飽和曲線が図3のよ
うな傾向を示すにも拘らず、このような比較的高温の排
ガスをモノエタノールアミン水溶液と接触させても、低
温排ガスを接触させる場合よりも炭酸ガスの吸収能力が
高くなる原因としては、炭酸ガスのモノエタノールアミ
ン水溶液への吸収速度が大きく関与しているものと推定
される。
As described above, in the cooling tower 1, the hot exhaust gas and water are simply brought into contact with each other to be humidified and cooled to 50 ° C.
The exhaust gas is cooled to a temperature range exceeding 80 ° C and below 80 ° C. Even though the carbon dioxide saturation curve of the monoethanolamine aqueous solution shows the tendency as shown in FIG. 3, even if such a relatively high temperature exhaust gas is contacted with the monoethanolamine aqueous solution, it is more than the case where the low temperature exhaust gas is contacted. It is presumed that the rate of absorption of carbon dioxide into the monoethanolamine aqueous solution is largely responsible for the increase in carbon dioxide absorption capacity.

【0015】排ガスを単に加湿して冷却するのみで比較
的高温のままモノエタノールアミン水溶液と接触できる
ことにより、ライン13には循環水の冷却用熱交換器が
不要となり、その設備費および操業費が大幅に節減でき
ることとなる。本発明の方法は、例えば天然ガス、重
油、石炭等を燃料とする排ガスに適用できる。以下、実
施例により本発明を具体的に説明する。
Since the exhaust gas can be contacted with the monoethanolamine aqueous solution at a relatively high temperature simply by humidifying and cooling the exhaust gas, a heat exchanger for cooling the circulating water is not required in the line 13, and the equipment cost and operating cost thereof are reduced. You will be able to save a lot. The method of the present invention can be applied to, for example, exhaust gas using natural gas, heavy oil, coal or the like as a fuel. Hereinafter, the present invention will be specifically described with reference to examples.

【0016】[0016]

【実施例】図2には図1の装置を用いて加湿冷却により
冷却された燃焼排ガス温度とモノエタノールアミン水溶
液による炭酸ガス吸収量との関係を調べた結果を示し
た。図2の横軸および縦軸の単位は図3と同じである。
なお、排ガスの加湿冷却による冷却温度は循環水量によ
り調節した。
EXAMPLE FIG. 2 shows the results of investigating the relationship between the combustion exhaust gas temperature cooled by humidification cooling and the carbon dioxide absorption amount by the monoethanolamine aqueous solution using the apparatus of FIG. The units of the horizontal axis and the vertical axis in FIG. 2 are the same as those in FIG.
The cooling temperature of the exhaust gas by humidification cooling was adjusted by the amount of circulating water.

【0017】実験条件は以下の通りである。 (1)排ガス組成( vol%) 炭酸ガス 8.55 酸 素 2.41 窒 素 71.77 水蒸気 17.27 (2)ライン5の排ガス温度:100℃ (3)ライン9のモノエタノールアミン水溶液濃度:3
0重量%
The experimental conditions are as follows. (1) Exhaust gas composition (vol%) Carbon dioxide 8.55 Oxygen 2.41 Nitrogen 71.77 Steam 17.27 (2) Exhaust gas temperature in line 5: 100 ° C (3) Concentration of monoethanolamine aqueous solution in line 9 : 3
0% by weight

【0018】図2から、炭酸ガスの吸収量は温度と共に
上昇し、約70℃程度でほぼ最高値となることが分か
る。これにより、従来30〜50℃とされていた冷却温
度まで冷却する必要のないことが分かる。
It can be seen from FIG. 2 that the absorption amount of carbon dioxide gas increases with temperature and reaches a maximum value at about 70 ° C. From this, it is understood that it is not necessary to cool to the cooling temperature which was conventionally set to 30 to 50 ° C.

【0019】[0019]

【発明の効果】以上詳細に述べたごとく、本発明によ
り、燃焼排ガスを50℃を超え80℃以下の範囲まで冷
却し、モノエタノールアミン水溶液と接触させることに
より、効率よく炭酸ガスを吸収させることができるよう
になった。また、高温排ガスの冷却には単に水により加
湿冷却によることができ、従来必要とされていた冷却水
の冷却強化のための熱交換器等を使用する必要がなくな
った。
As described above in detail, according to the present invention, the combustion exhaust gas is cooled to a range of more than 50 ° C. and 80 ° C. or less and brought into contact with an aqueous monoethanolamine solution to efficiently absorb carbon dioxide gas. Is now possible. Further, the high-temperature exhaust gas can be cooled simply by humidification with water, and it is no longer necessary to use a heat exchanger or the like which has been conventionally required for strengthening cooling of cooling water.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の炭酸ガス回収方法で使用する回収設備
の一実施例の説明図。
FIG. 1 is an explanatory diagram of an embodiment of a recovery facility used in the carbon dioxide recovery method of the present invention.

【図2】実施例で図1の装置を使用して得られた排ガス
接触温度(横軸)とモノエタノールアミン水溶液への吸
収量(縦軸:単位は溶液中のモノエタノールアミン1モ
ル当りの炭酸ガスのモル数)との関係を示す図表。
FIG. 2 is an exhaust gas contact temperature (horizontal axis) obtained by using the apparatus of FIG. 1 in Example and an absorption amount in an aqueous monoethanolamine solution (vertical axis: unit per 1 mol of monoethanolamine in the solution). Chart showing the relationship with the number of moles of carbon dioxide).

【図3】モノエタノールアミン水溶液の炭酸ガス飽和曲
線を示す図表。
FIG. 3 is a chart showing a carbon dioxide saturation curve of a monoethanolamine aqueous solution.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 堀田 善次 大阪市北区中之島3丁目3番22号 関西電 力株式会社内 (72)発明者 小林 賢治 大阪市北区中之島3丁目3番22号 関西電 力株式会社内 (72)発明者 吉田 邦彦 尼崎市若王子3丁目11番20号 関西電力株 式会社総合技術研究所内 (72)発明者 下條 繁 尼崎市若王子3丁目11番20号 関西電力株 式会社総合技術研究所内 (72)発明者 唐崎 睦範 東京都千代田区丸の内二丁目5番1号 三 菱重工業株式会社本社内 (72)発明者 飯島 正樹 東京都千代田区丸の内二丁目5番1号 三 菱重工業株式会社本社内 (72)発明者 瀬戸 徹 広島市西区観音新町四丁目6番22号 三菱 重工業株式会社広島研究所内 (72)発明者 光岡 薫明 広島市西区観音新町四丁目6番22号 三菱 重工業株式会社広島研究所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Zenji Hotta 3-3-22 Nakanoshima, Kita-ku, Osaka City Kansai Electric Power Co., Inc. (72) Kenji Kobayashi 3-22-3 Nakanoshima, Kita-ku, Osaka Kansai Denryoku Co., Ltd. (72) Inventor Kunihiko Yoshida 3-11-20 Wakaoji, Amagasaki City Kansai Electric Power Co., Inc. Research Institute of Technology (72) Inventor Shigeru Shimojo 3-11-20 Wakaoji, Amagasaki Kansai Electric Power Co., Inc. (72) Inventor Mutsunori Karazaki 2-5-1 Marunouchi, Chiyoda-ku, Tokyo Sanryo Heavy Industries Co., Ltd. (72) Inventor Masaki Iijima 2-5-1 Marunouchi, Chiyoda-ku, Tokyo Hishi Heavy Industries Ltd. (72) Inventor Toru Seto 4-6-22 Kannon Shinmachi, Nishi-ku, Hiroshima City Mitsubishi Heavy Industries Ltd. Hiroshima Research Institute (72) Inventor Hikari KaoruAkira Hiroshima Nishi-ku Kan'onshin-cho, chome No. 6 No. 22 Mitsubishi Heavy Industries, Ltd. Hiroshima within the Institute

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 吸収液としてモノエタノールアミン水溶
液を用いて燃焼排ガス中に含まれる炭酸ガスを吸収して
回収する方法において、該排ガス温度を50℃を超え8
0℃以下の範囲に調節した後、モノエタノールアミン水
溶液と接触させることを特徴とする炭酸ガスの回収方
法。
1. A method for absorbing and recovering carbon dioxide gas contained in a combustion exhaust gas by using an aqueous monoethanolamine solution as an absorption liquid, wherein the exhaust gas temperature exceeds 50 ° C.
A method for recovering carbon dioxide, which comprises contacting with an aqueous monoethanolamine solution after adjusting the temperature to 0 ° C. or less.
【請求項2】 加湿冷却法により高温度の燃焼排ガス温
度を50℃を超え80℃以下の範囲に調節することを特
徴とする請求項1に記載の炭酸ガスの回収方法。
2. The method for recovering carbon dioxide according to claim 1, wherein the temperature of the combustion exhaust gas at a high temperature is adjusted to a range higher than 50 ° C. and lower than 80 ° C. by a humidification cooling method.
【請求項3】 高温度の燃焼排ガスを熱交換器を有しな
い冷却水供給手段による加湿冷却により冷却する工程、
加湿冷却された該排ガス中に含まれる炭酸ガスをモノエ
タノールアミン水溶液を用いて吸収する吸収工程および
モノエタノールアミン水溶液から炭酸ガスを回収する工
程を具備することを特徴とする燃焼排ガス中の炭酸ガス
の回収方法。
3. A step of cooling high temperature combustion exhaust gas by humidification cooling by a cooling water supply means having no heat exchanger,
Carbon dioxide gas in combustion exhaust gas, comprising an absorption step of absorbing carbon dioxide gas contained in the humidified and cooled exhaust gas using an aqueous monoethanolamine solution and a step of recovering carbon dioxide gas from the aqueous monoethanolamine solution. Recovery method.
JP3264336A 1991-10-09 1991-10-14 Method for recovering carbon dioxide from flue gas Expired - Lifetime JP2597056B2 (en)

Priority Applications (13)

Application Number Priority Date Filing Date Title
JP3264336A JP2597056B2 (en) 1991-10-14 1991-10-14 Method for recovering carbon dioxide from flue gas
EP92117011A EP0537593B1 (en) 1991-10-09 1992-10-06 Recovery of carbon dioxide from combustion exhaust gas
DE69233289T DE69233289T2 (en) 1991-10-09 1992-10-06 Recovery of carbon dioxide from combustion exhaust gas
DK96109819T DK0733395T3 (en) 1991-10-09 1992-10-06 Extraction of carbon dioxide from combustion exhaust gas
EP96109820A EP0733396B1 (en) 1991-10-09 1992-10-06 Recovery of carbon dioxide from combustion exhaust gas
DK92117011T DK0537593T3 (en) 1991-10-09 1992-10-06 Carbon dioxide recovery from combustion exhaust gases
EP96109819A EP0733395B1 (en) 1991-10-09 1992-10-06 Recovery of carbon dioxide from combustion exhaust gas
DK96109820T DK0733396T3 (en) 1991-10-09 1992-10-06 Extraction of carbon dioxide from exhaust gas from combustion
DE69233766T DE69233766D1 (en) 1991-10-09 1992-10-06 Recovery of carbon dioxide from combustion exhaust gas
DE69228910T DE69228910T2 (en) 1991-10-09 1992-10-06 Recovery of carbon dioxide from combustion exhaust gas
US07/957,185 US5339633A (en) 1991-10-09 1992-10-07 Recovery of carbon dioxide from combustion exhaust gas
KR1019920018538A KR960000012B1 (en) 1991-10-09 1992-10-09 Recovery of carbon dioxide from combustion exhaust gas
US08/808,154 US6274108B1 (en) 1991-10-09 1997-02-28 Recovery of carbon dioxide from combustion exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3264336A JP2597056B2 (en) 1991-10-14 1991-10-14 Method for recovering carbon dioxide from flue gas

Publications (2)

Publication Number Publication Date
JPH05123534A true JPH05123534A (en) 1993-05-21
JP2597056B2 JP2597056B2 (en) 1997-04-02

Family

ID=17401762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3264336A Expired - Lifetime JP2597056B2 (en) 1991-10-09 1991-10-14 Method for recovering carbon dioxide from flue gas

Country Status (1)

Country Link
JP (1) JP2597056B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001097906A (en) * 1998-12-07 2001-04-10 Mitsubishi Heavy Ind Ltd Method for producing methanol
US6607202B1 (en) * 1998-05-08 2003-08-19 R. T. Palmer Ltd. Orthotic walker
JP2010235395A (en) * 2009-03-31 2010-10-21 Hitachi Ltd Apparatus for recovering carbon dioxide, and thermal power system with apparatus for recovering carbon dioxide

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5592123A (en) * 1978-12-28 1980-07-12 Shell Int Research Method of removing acidic gas and its device
JPH03193116A (en) * 1989-12-25 1991-08-22 Mitsubishi Heavy Ind Ltd Removal of co2 combustion exhaust gas

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5592123A (en) * 1978-12-28 1980-07-12 Shell Int Research Method of removing acidic gas and its device
JPH03193116A (en) * 1989-12-25 1991-08-22 Mitsubishi Heavy Ind Ltd Removal of co2 combustion exhaust gas

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6607202B1 (en) * 1998-05-08 2003-08-19 R. T. Palmer Ltd. Orthotic walker
JP2001097906A (en) * 1998-12-07 2001-04-10 Mitsubishi Heavy Ind Ltd Method for producing methanol
JP2010235395A (en) * 2009-03-31 2010-10-21 Hitachi Ltd Apparatus for recovering carbon dioxide, and thermal power system with apparatus for recovering carbon dioxide

Also Published As

Publication number Publication date
JP2597056B2 (en) 1997-04-02

Similar Documents

Publication Publication Date Title
EP0537593B1 (en) Recovery of carbon dioxide from combustion exhaust gas
US7892509B2 (en) System and method for recovering CO2
JP5383338B2 (en) CO2 recovery device and CO2 recovery method
US6596248B2 (en) Method for removing carbon dioxide from exhaust gas
US8647421B2 (en) CO2 recovery apparatus
EP2520353B1 (en) Carbon dioxide capture system and method
JP2012516226A (en) Method and apparatus for separating carbon dioxide from exhaust gas from fossil fuel power plant equipment
JP2006506568A (en) Low exhaust thermal power generator
JP2013000694A (en) Co2 recovery equipment
JPH05184867A (en) Method for recovering carbon dioxide in combustion exhaust gas
JPH05245339A (en) Method for removing carbon dioxide and sulfur compounds in combustion exhaust gas
CN107743416B (en) Acid gas collecting system and acid gas collecting method using the same
JP5707894B2 (en) Carbon dioxide recovery method and recovery apparatus
JPH05123534A (en) Recovery of carbon dioxide in combustion exhaust gas
JP2544554B2 (en) Method for removing CO2 in combustion exhaust gas
JP2011005368A (en) Co2 recovering apparatus and method
JP2011005367A (en) Co2 recovering apparatus and method
JPH07232033A (en) Method for removing carbon dioxide in combustion exhaust gas
JPH05184865A (en) Method for removing carbon dioxide in combustion exhaust gas
JP2647581B2 (en) Power generation device with carbon dioxide recovery device and power generation method
JP2022027600A (en) Process and system for pretreating gaseous effluent for post-combustion co2 capture
KR102533169B1 (en) Carbon dioxide capture device with improved energy efficiency
JP2014205102A (en) Method and apparatus for recovering carbon dioxide in gas to be treated
JP2597055B2 (en) Method and apparatus for recovering carbon dioxide from combustion gas
Tsujiuchi et al. CO 2 recovery unit and CO 2 recovery method

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19960528

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19961105

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080109

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100109

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110109

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110109

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 15

EXPY Cancellation because of completion of term