JP2011005368A - Co2 recovering apparatus and method - Google Patents

Co2 recovering apparatus and method Download PDF

Info

Publication number
JP2011005368A
JP2011005368A JP2009149032A JP2009149032A JP2011005368A JP 2011005368 A JP2011005368 A JP 2011005368A JP 2009149032 A JP2009149032 A JP 2009149032A JP 2009149032 A JP2009149032 A JP 2009149032A JP 2011005368 A JP2011005368 A JP 2011005368A
Authority
JP
Japan
Prior art keywords
regeneration
tower
amount
liquid
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009149032A
Other languages
Japanese (ja)
Inventor
Masaki Iijima
正樹 飯嶋
Yuji Tanaka
裕士 田中
Miki Sorimachi
美樹 反町
Masahiko Tatsumi
雅彦 辰巳
Yasuyuki Yagi
靖幸 八木
Koki Ogura
幸喜 小椋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Original Assignee
Kansai Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Mitsubishi Heavy Industries Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP2009149032A priority Critical patent/JP2011005368A/en
Priority to US12/649,928 priority patent/US8663363B2/en
Priority to CA2779621A priority patent/CA2779621C/en
Priority to CA2689453A priority patent/CA2689453C/en
Priority to CA2779625A priority patent/CA2779625C/en
Priority to AU2010200176A priority patent/AU2010200176B2/en
Priority to EP10151152.5A priority patent/EP2269713B1/en
Publication of JP2011005368A publication Critical patent/JP2011005368A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Landscapes

  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a COrecovering apparatus and method, wherein operation with less regeneration energy to be consumed when an absorbing liquid is regenerated can be conducted when a constant recovery rate is maintained.SOLUTION: The COrecovering apparatus includes: a COabsorption column 16 in which flue gas 12 containing COis brought into contact with a COabsorbing liquid 15 to remove COcontained in the flue gas 12; and a regeneration column 18 in which COcontained in a rich solution 17, in which COis absorbed in the COabsorption column 16, is removed to regenerate the rich solution, and is constituted so that a lean solution being the COabsorbing liquid 15, from which COis removed in the regeneration column 18, is reused in the COabsorption column 16, and further includes a control means for detecting the temperature of the flue gas to be introduced into the COabsorption column 16, decreasing or increasing a circulation rate of the COabsorbing liquid 15 according to a change in the detected temperature, and adjusting the amount of steam to be supplied to the regeneration column 18 according to the amount of the COabsorbing liquid 15 to be circulated.

Description

本発明は、CO2吸収液を再生する際の水蒸気を最適量にして、最適条件で一定のCO2回収量を維持することができるCO2回収装置及び方法に関する。 The present invention relates to a CO 2 recovery apparatus and method capable of maintaining a constant CO 2 recovery amount under an optimal condition by using an optimal amount of water vapor when regenerating a CO 2 absorbent.

近年、地球の温暖化現象の原因の一つとして、CO2による温室効果が指摘され、地球環境を守る上で国際的にもその対策が急務となってきた。CO2の発生源としては化石燃料を燃焼させるあらゆる人間の活動分野に及び、その排出抑制への要求が一層強まる傾向にある。これに伴い大量の化石燃料を使用する火力発電所などの動力発生設備を対象に、ボイラの燃焼排ガスをアミン系CO2吸収液と接触させ、燃焼排ガス中のCO2を除去、回収する方法及び回収されたCO2を大気へ放出することなく貯蔵する方法が精力的に研究されている。また、前記のようなCO2吸収液を用い、燃焼排ガスからCO2を除去・回収する工程としては、吸収塔において燃焼排ガスとCO2吸収液とを接触させる工程、CO2を吸収した吸収液を再生塔において加熱し、CO2を遊離させると共に吸収液を再生して再び吸収塔に循環して再使用するものが採用されている(例えば、特許文献1参照)。 In recent years, the greenhouse effect due to CO 2 has been pointed out as one of the causes of global warming, and countermeasures have become urgent internationally to protect the global environment. The source of CO 2 extends to all human activity fields that burn fossil fuels, and there is a tendency for the demand for emission control to become stronger. Along with this, for a power generation facility such as a thermal power plant that uses a large amount of fossil fuel, a method for removing the CO 2 in the combustion exhaust gas by bringing the combustion exhaust gas of the boiler into contact with the amine-based CO 2 absorbent and recovering it, and A method of storing the recovered CO 2 without releasing it to the atmosphere has been energetically studied. Moreover, as a process of removing and recovering CO 2 from the combustion exhaust gas using the CO 2 absorption liquid as described above, a process of bringing the combustion exhaust gas and the CO 2 absorption liquid into contact in an absorption tower, an absorption liquid that has absorbed CO 2 Is used in the regeneration tower to liberate CO 2 and regenerate the absorption liquid, which is then recycled to the absorption tower and reused (see, for example, Patent Document 1).

図5に従来のCO2回収装置の一例を示す。図5に示すように、従来のCO2回収装置100は、ボイラやガスタービン等の産業燃焼設備11から排出されたCO2とO2とを含有する排ガス12を冷却水13によって冷却する排ガス冷却装置14と、冷却されたCO2を含有する排ガス12とCO2を吸収するCO2吸収液(以下、「吸収液」ともいう。)15とを接触させて排ガス12からCO2を除去するCO2回収部16Aを有するCO2吸収塔16と、CO2を吸収したCO2吸収液(以下、「リッチ溶液」ともいう。)17からCO2を放出させてCO2吸収液を再生する再生塔18とを有する。
そして、このCO2回収装置100では、再生塔18でCO2を除去した再生CO2吸収液(以下、「リーン溶液」ともいう。)15はCO2吸収塔16でCO2吸収液として再利用する。
FIG. 5 shows an example of a conventional CO 2 recovery device. As shown in FIG. 5, a conventional CO 2 recovery apparatus 100 is an exhaust gas cooling system that cools an exhaust gas 12 containing CO 2 and O 2 discharged from an industrial combustion facility 11 such as a boiler or a gas turbine with cooling water 13. a device 14, CO 2 absorbing solution for absorbing the flue gas 12 and CO 2 containing the cooled CO 2 (hereinafter, also referred to as "absorbing solution".) 15 contacting the CO 2 removal from flue gas 12 CO and the CO 2 absorber 16 having two recovery portions 16A, CO 2 absorbent having absorbed CO 2 (hereinafter, "rich solution" also referred to.) regenerator 17 to release CO 2 from Play with CO 2 absorbing solution 18.
Then, in the CO 2 recovery apparatus 100, reproduction CO 2 absorbing solution was removed CO 2 in the regeneration tower 18 (hereinafter, also referred to as "lean solvent".) 15 reused as the CO 2 absorbing solution in the CO 2 absorber 16 To do.

この従来のCO2回収装置を用いたCO2回収方法では、まず、CO2を含んだボイラやガスタービン等の産業燃焼設備からの排ガス12は、排ガス送風機20により昇圧された後、排ガス冷却装置14に送られ、ここで冷却水13により冷却され、CO2吸収塔16に送られる。 In the CO 2 recovery method using this conventional CO 2 recovery device, first, exhaust gas 12 from an industrial combustion facility such as a boiler or a gas turbine containing CO 2 is pressurized by an exhaust gas blower 20, and then an exhaust gas cooling device. 14, where it is cooled by cooling water 13 and sent to a CO 2 absorption tower 16.

前記CO2吸収塔16において、排ガス12はアミン系溶液をベースとするCO2吸収液15と向流接触し、排ガス12中のCO2は、化学反応によりCO2吸収液15に吸収される。
CO2回収部16AでCO2が除去された後のCO2除去排ガスは、CO2吸収塔16内の水洗部16Bでノズルから供給されるCO2吸収液を含む循環する凝縮水19と気液接触して、CO2除去排ガスに同伴するCO2吸収液15が回収され、その後CO2が除去された排ガス21は系外に放出される。
また、CO2を吸収したCO2吸収液17であるリッチ溶液は、リッチソルベントポンプ22により昇圧され、リッチ/リーンソルベント熱交換器23において、再生塔18で再生されたCO2吸収液15であるリーン溶液により加熱され、再生塔18に供給される。
In the CO 2 absorption tower 16, the flue gas 12 is CO 2 absorbent 15 and then countercurrent contact based on amine-based solution, CO 2 in the flue gas 12 is absorbed by the CO 2 absorbent 15 by a chemical reaction.
CO CO 2 flue gas after CO 2 is removed in 2 recovery unit 16A, and the condensed water 19 circulating containing CO 2 absorbing liquid supplied from the nozzle at the water washing section 16B in the CO 2 absorber 16 gas-liquid contact with, CO 2 absorbent 15 accompanying the CO 2 flue gas is recovered, then the exhaust gas 21 from which CO 2 has been removed is released out of the system.
Further, the rich solution is CO 2 absorbing liquid 17 that has absorbed CO 2, is boosted by a rich solvent pump 22, in the rich / lean solvent heat exchanger 23, is CO 2 absorbent 15 that is reproduced by the regenerator 18 It is heated by the lean solution and supplied to the regeneration tower 18.

再生塔18の上部から内部に放出されたリッチ溶液は、吸熱反応を生じて、大部分のCO2を放出する。再生塔18内で一部または大部分のCO2を放出したCO2吸収液はセミリーン溶液と呼称される。このセミリーン溶液は、再生塔18下部に至る頃には、ほぼ全てのCO2が除去されたCO2吸収液15となる。このリーン溶液は再生過熱器24で水蒸気25により過熱され、再生塔18内部に水蒸気を供給している。
一方、再生塔18の頭頂部からは塔内においてリッチ溶液およびセミリーン溶液から放出された水蒸気を伴ったCO2ガス26が導出され、コンデンサ27により水蒸気が凝縮され、分離ドラム28にて水が分離され、CO2ガス26が系外に放出されて別途回収される。この回収されたCO2ガス26は、石油増進回収法(EOR:Enhanced Oil Recovery)を用いて油田中に圧入するか、帯水層へ貯留し、温暖化対策を図っている。
分離ドラム28にて分離された水は凝縮水循環ポンプ29にて再生塔18の上部に供給される。再生されたCO2吸収液(リーン溶液)15は、リッチ/リーンソルベント熱交換器23にてリッチ溶液17により冷却され、つづいてリーンソルベントポンプ30にて昇圧され、さらにリーンソルベントクーラ31にて冷却された後、CO2吸収塔16に供給される。
The rich solution released from the upper part of the regeneration tower 18 generates an endothermic reaction and releases most of the CO 2 . The CO 2 absorbing solution that has released a part or most of CO 2 in the regeneration tower 18 is called a semi-lean solution. This semi-lean solution becomes the CO 2 absorbent 15 from which almost all CO 2 has been removed by the time it reaches the lower part of the regeneration tower 18. This lean solution is superheated by the steam 25 in the regeneration superheater 24 to supply steam to the inside of the regeneration tower 18.
On the other hand, CO 2 gas 26 accompanied with water vapor released from the rich solution and the semi-lean solution is led out from the top of the regeneration tower 18, the water vapor is condensed by the condenser 27, and the water is separated by the separation drum 28. Then, the CO 2 gas 26 is discharged out of the system and collected separately. The recovered CO 2 gas 26 is injected into an oil field using an enhanced oil recovery (EOR) method or stored in an aquifer to take measures against global warming.
The water separated by the separation drum 28 is supplied to the upper part of the regeneration tower 18 by the condensed water circulation pump 29. The regenerated CO 2 absorbing solution (lean solution) 15 is cooled by the rich solution 17 in the rich / lean solvent heat exchanger 23, subsequently pressurized by the lean solvent pump 30, and further cooled by the lean solvent cooler 31. And then supplied to the CO 2 absorption tower 16.

なお、図5中、符号11aは排ガス12の煙道であり、11bは煙突、32は水蒸気凝縮水である。前記CO2回収装置は、既設の排ガス源からCO2を回収するために後付で設けられる場合と、新設排ガス源に同時付設される場合とがある。煙突11bには開閉可能な扉を設置し、CO2回収装置の運転時は閉止する。また排ガス源は稼動しているが、CO2回収装置の運転を停止した際は開放するように設定する。 In addition, in FIG. 5, the code | symbol 11a is the flue of the waste gas 12, 11b is a chimney, 32 is water vapor | steam condensed water. The CO 2 recovery device may be retrofitted for recovering CO 2 from an existing exhaust gas source, or may be simultaneously attached to a new exhaust gas source. The chimney 11b is provided with a door that can be opened and closed, and is closed when the CO 2 recovery device is in operation. Moreover, although the exhaust gas source is operating, it is set to be opened when the operation of the CO 2 recovery device is stopped.

特開平3−193116号公報Japanese Patent Laid-Open No. 3-193116

ところで、長期間に亙ってCO2回収の運転を継続していく際には、一定の回収量を維持する際に、吸収液を再生する際の再生エネルギーの消費が少ない運転が切望されている。 By the way, when CO 2 recovery operation is continued over a long period of time, an operation that consumes less regenerative energy when regenerating the absorbing liquid is desired when maintaining a certain recovery amount. Yes.

本発明は、上記問題に鑑みてなされたものであって、一定の回収量を維持する際に、吸収液を再生する際の再生エネルギーの消費が少ない運転することができるCO2回収装置及び方法を提供することを課題とする。 The present invention was made in view of the above problems, a constant in maintaining recovery amount, CO 2 recovery apparatus and method which can be operated consumes less regeneration energy in reproducing absorbing liquid It is an issue to provide.

上述した課題を解決し、目的を達成するための本発明の第1の発明は、CO2を含有する排ガスとCO2吸収液とを接触させて前記排ガス中のCO2を除去するCO2吸収塔と、前記CO2吸収塔でCO2を吸収したリッチ溶液中のCO2を除去し、再生する再生塔とを具備し、前記再生塔でCO2を除去したリーン溶液であるCO2吸収液を前記CO2吸収塔で再利用するCO2回収装置であって、前記CO2吸収塔に導入するガス温度を検出し、その検出温度の変化に応じて、CO2吸収液の循環率を減少又は増加させ、その循環量に応じた前記再生塔における水蒸気量を調整する制御を行う制御手段とを具備することを特徴とするCO2回収装置にある。 To solve the above problems, a first invention of the present invention for achieving the object, CO 2 absorption by contacting the exhaust gas and the CO 2 absorbing solution containing CO 2 to remove CO 2 in the flue gas and towers, the CO 2 and CO 2 in the absorption tower to remove CO 2 rich solution that has absorbed, comprising a regenerator for regeneration, CO 2 absorbing liquid is a lean solution obtained by removing CO 2 in the regeneration tower a CO 2 recovery system to reuse in the CO 2 absorption tower, to detect the gas temperature to be introduced into the CO 2 absorption tower, in accordance with a change in the detected temperature, reducing the circulation rate of the CO 2 absorbing solution or increase, in the CO 2 recovery apparatus characterized by comprising a control means for performing control for adjusting the water vapor content in the regeneration tower in accordance with the circulation rate.

第2の発明は、CO2を含有する排ガスとCO2吸収液とを接触させて前記排ガス中のCO2を除去するCO2吸収塔と、前記CO2吸収塔でCO2を吸収したリッチ溶液中のCO2を除去し、再生する再生塔とを具備し、前記再生塔でCO2を除去したリーン溶液であるCO2吸収液を前記CO2吸収塔で再利用するCO2回収方法であって、前記CO2吸収塔に導入するガス温度を検出し、その検出温度の変化に応じて、CO2吸収液の循環率を減少又は増加させ、その循環量に応じた前記再生塔における水蒸気量を調整する制御を行うことを特徴とするCO2回収方法にある。 A second invention is a rich solution that has absorbed the CO 2 absorption tower for contacting the exhaust gas and the CO 2 absorbing solution containing CO 2 to remove CO 2 in the flue gas, the CO 2 in the CO 2 absorption tower the CO 2 is removed in, comprising a regenerator for regeneration, there in the CO 2 recovery method for reusing CO 2 absorbing liquid is a lean solution obtained by removing CO 2 in the regeneration tower in the CO 2 absorption tower Detecting the temperature of the gas introduced into the CO 2 absorption tower, reducing or increasing the circulation rate of the CO 2 absorbent according to the change in the detected temperature, and the amount of water vapor in the regeneration tower according to the circulation amount The present invention resides in a CO 2 recovery method characterized by performing control for adjusting the pressure.

本発明によれば、排ガスの導入温度を低下させた場合には、その低下した温度に応じた、吸収液の循環量とすると共に、その循環量に応じて再生塔における水蒸気の消費を調整することで、一日あたりのCO2回収量を所定値に維持しつつ、エネルギー効率が最適な運転をすることができる。 According to the present invention, when the introduction temperature of the exhaust gas is lowered, the absorption liquid circulation amount corresponding to the lowered temperature is set, and the water vapor consumption in the regeneration tower is adjusted according to the circulation amount. Thus, it is possible to perform an operation with optimum energy efficiency while maintaining the CO 2 recovery amount per day at a predetermined value.

図1は、本発明の実施例に係るCO2回収装置の概略図である。FIG. 1 is a schematic view of a CO 2 recovery apparatus according to an embodiment of the present invention. 図2は、吸収量の流量とCO2回収量との関係図である。FIG. 2 is a graph showing the relationship between the absorption flow rate and the CO 2 recovery amount. 図3は、水蒸気供給量のCO2回収量との関係図である。FIG. 3 is a graph showing the relationship between the steam supply amount and the CO 2 recovery amount. 図4は導入するガス温度(T1)の基準値との差(℃)と再生塔での再生エネルギー比との関係図である。FIG. 4 is a graph showing the relationship between the difference (° C.) from the reference value of the introduced gas temperature (T 1 ) and the regeneration energy ratio in the regeneration tower. 図5は、従来のCO2回収装置の一例を示す図である。FIG. 5 is a diagram showing an example of a conventional CO 2 recovery device.

以下に、本発明にかかるCO2回収装置の実施例を図面に基づいて詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。 Embodiments of a CO 2 recovery device according to the present invention will be described below in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.

本発明による実施例に係るCO2回収装置について、図1を参照して説明する。
図1は、本発明の実施例に係るCO2回収装置の構成を示す概略図である。図中、前記図5に示したCO2回収装置と同一構成には同一符号を付して重複した説明は省略する。
図1に示すように、本発明の実施例に係るCO2回収装置10は、CO2を含有する排ガス12とCO2吸収液15とを接触させて前記排ガス12中のCO2を除去するCO2吸収塔16と、前記CO2吸収塔16でCO2を吸収したリッチ溶液17中のCO2を除去し、再生する再生塔18とを具備し、前記再生塔18でCO2を除去したリーン溶液であるCO2吸収液15を前記CO2吸収塔16で再利用するCO2回収装置であって、前記CO2吸収塔16に導入するガス温度(T(例えば40℃前後))を検出し、その検出温度の変化に応じて、CO2吸収液15の循環率を減少又は増加させ、その循環量に応じた前記再生塔18における水蒸気量を調整する制御を行う制御手段とを具備するものである。なお、CO2吸収塔16の底部液溜まりには液レベルを計測するレベル計41が設置され、必要に応じてCO2吸収液を補給液42として供給するようにしている。
A CO 2 recovery apparatus according to an embodiment of the present invention will be described with reference to FIG.
FIG. 1 is a schematic diagram showing the configuration of a CO 2 recovery apparatus according to an embodiment of the present invention. In the figure, the same components as those of the CO 2 recovery apparatus shown in FIG.
As shown in FIG. 1, CO 2 recovery apparatus 10 according to an embodiment of the present invention comprises contacting the flue gas 12 and the CO 2 absorbing liquid 15 containing CO 2 to remove CO 2 in the flue gas 12 by CO and 2 absorber 16, the CO 2 absorption tower 16 CO 2 in rich solvent 17 that has absorbed CO 2 in removed, comprises a regenerator 18 to be reproduced, lean removing the CO 2 in the regenerator 18 A CO 2 recovery device that reuses the CO 2 absorbent 15 as a solution in the CO 2 absorption tower 16, and detects the gas temperature (T 1 (for example, around 40 ° C.)) introduced into the CO 2 absorption tower 16. And a control means for performing control for reducing or increasing the circulation rate of the CO 2 absorbent 15 according to the change in the detected temperature and adjusting the water vapor amount in the regeneration tower 18 according to the circulation amount. Is. A level meter 41 for measuring the liquid level is installed in the bottom liquid reservoir of the CO 2 absorption tower 16 so that the CO 2 absorbing liquid is supplied as the replenishing liquid 42 as necessary.

これにより、CO2回収量を一定とする場合において、水蒸気の消費量をできるだけ少なくすることができる。 Thereby, in the case where the CO 2 recovery amount is constant, the consumption amount of water vapor can be reduced as much as possible.

ここで、本実施例によれば、図示しない温度計により前記排ガスの入口温度(T1)を計測し、その計測したガス温度が設定値よりも5℃低下したとき(例えば初期設定値が43℃の場合、実測値が38℃のとき)には、循環率100%を10%減少させて循環率90%とする制御を図示しない制御装置により行う。そして、その循環量に応じた前記再生塔18における水蒸気量を調整する(例えば10%の循環率が減少する場合には、水蒸気量を3%程度減少させる)制御を図示しない制御装置で行う。 Here, according to the present embodiment, the exhaust gas inlet temperature (T 1 ) is measured by a thermometer (not shown), and when the measured gas temperature falls by 5 ° C. from the set value (for example, the initial set value is 43). In the case of ° C., when the actual measurement value is 38 ° C.), the control to reduce the circulation rate 100% by 10% to the circulation rate 90% is performed by a control device (not shown). Then, control for adjusting the amount of water vapor in the regeneration tower 18 according to the amount of circulation (for example, when the circulation rate of 10% decreases, the amount of water vapor is reduced by about 3%) is performed by a control device (not shown).

図2は吸収量の流量とCO2回収量との関係図である。
図2中、基準条件(A)は、入口の導入ガス温度を1(導入ガス温度基準条件)とした場合であり、低下条件(B)は、導入ガス温度が5℃低下した場合(吸収液の循環量が0.9倍となる)である。これは温度が低い場合には、CO2の吸収率が向上することによる。
よって、CO2回収量を所定条件(例えば100t/日)に維持する場合には、吸収液の循環流量が0.9倍となり、吸収液流量を10%減少すれば良いことがわかる。
FIG. 2 is a relationship diagram between the absorption flow rate and the CO 2 recovery amount.
In FIG. 2, the reference condition (A) is when the inlet gas temperature at the inlet is 1 (inlet gas temperature reference condition), and the lowering condition (B) is when the inlet gas temperature is lowered by 5 ° C. (absorbing liquid). The circulation amount of the gas is 0.9 times). This is because the absorption rate of CO 2 is improved when the temperature is low.
Therefore, it is understood that when the CO 2 recovery amount is maintained at a predetermined condition (for example, 100 t / day), the circulating flow rate of the absorbing liquid is 0.9 times and the absorbing liquid flow rate may be reduced by 10%.

図3は水蒸気供給量のCO2回収量との関係図である。
図3中、基準条件(A)は、導入ガス温度を1(導入ガス温度基準条件)とした場合であり、低下条件(B)は、導入ガス温度が5℃低下した場合(循環量が0.9倍となる)である。
よって、CO2回収量を所定条件(例えば100t/日)に維持する場合には、循環量を0.9倍とし、水蒸気供給量を0.97倍(3%減少)すれば良いことがわかる。
図4はこれらの関係をまとめたものであり、導入排ガスのガス温度(T1)の基準値との差(℃)と再生塔での再生エネルギー比との関係図である。
図4によれば、排ガス導入温度を計測し、その計測温度と基準温度との差が広がるほど、再生エネルギー比が低下する関係がある。
よって、例えば排ガス12の入口ガス温度(T1)が5℃低下する場合には、CO2回収量を所定条件(例えば100t/日)に維持する場合には、0.97倍となることがわかる。
FIG. 3 is a graph showing the relationship between the steam supply amount and the CO 2 recovery amount.
In FIG. 3, the reference condition (A) is the case where the introduction gas temperature is 1 (introduction gas temperature reference condition), and the reduction condition (B) is the case where the introduction gas temperature is reduced by 5 ° C. (circulation amount is 0). .9 times).
Therefore, it is understood that when the CO 2 recovery amount is maintained at a predetermined condition (for example, 100 t / day), the circulation amount is 0.9 times and the water vapor supply amount is 0.97 times (3% decrease). .
FIG. 4 summarizes these relationships, and is a relationship diagram between the difference (° C.) from the reference value of the gas temperature (T 1 ) of the introduced exhaust gas and the regeneration energy ratio in the regeneration tower.
According to FIG. 4, the exhaust gas introduction temperature is measured, and there is a relationship in which the regeneration energy ratio decreases as the difference between the measured temperature and the reference temperature increases.
Therefore, for example, when the inlet gas temperature (T 1 ) of the exhaust gas 12 is reduced by 5 ° C., it is 0.97 times when the CO 2 recovery amount is maintained at a predetermined condition (for example, 100 t / day). Recognize.

これにより、温度が低い場合には、CO2再生塔18において無駄な水蒸気を供給することなく、適切な水蒸気量で再生が可能となり、回収CO2あたりの水蒸気の消費量を最低にすることができる。 As a result, when the temperature is low, it is possible to regenerate with an appropriate amount of water vapor without supplying wasteful water vapor in the CO 2 regeneration tower 18, and the consumption of water vapor per recovered CO 2 can be minimized. it can.

この結果、一日あたりのCO2回収量を所定値に維持しつつ、エネルギー効率が最適な運転をすることができる。 As a result, it is possible to perform an operation with optimum energy efficiency while maintaining the CO 2 recovery amount per day at a predetermined value.

以上のように、本発明に係るCO2回収装置及び方法は、最適条件で一定のCO2回収量を維持でき、一日あたりのCO2回収量を所定値に常に維持することができ、長期間に亙ってのガス中のCO2処理に用いるのに適している。 As described above, the CO 2 recovery apparatus and method according to the present invention can maintain a constant CO 2 recovery amount under optimum conditions, and can always maintain the CO 2 recovery amount per day at a predetermined value. Suitable for use in CO 2 treatment in gas over time.

10 CO2回収装置
12 CO2を含有する排ガス
15 CO2吸収液(リーン溶液)
16 CO2吸収塔
17 CO2を吸収したCO2吸収液(リッチ溶液)
18 再生塔
41 液レベル計
42 補給液
Exhaust gas 15 CO 2 absorbing solution containing 10 CO 2 recovering apparatus 12 CO 2 (lean solution)
16 CO 2 absorption tower 17 CO 2 absorbs the CO 2 absorbing solution (rich solution)
18 Regeneration tower 41 Liquid level meter 42 Replenisher

Claims (2)

CO2を含有する排ガスとCO2吸収液とを接触させて前記排ガス中のCO2を除去するCO2吸収塔と、前記CO2吸収塔でCO2を吸収したリッチ溶液中のCO2を除去し、再生する再生塔とを具備し、前記再生塔でCO2を除去したリーン溶液であるCO2吸収液を前記CO2吸収塔で再利用するCO2回収装置であって、
前記CO2吸収塔に導入するガス温度を検出し、
その検出温度の変化に応じて、CO2吸収液の循環率を減少又は増加させ、その循環量に応じた前記再生塔における水蒸気量を調整する制御を行う制御手段とを具備することを特徴とするCO2回収装置。
Removing the CO 2 absorption tower for contacting the exhaust gas and the CO 2 absorbing solution for removing CO 2 in the flue gas, the CO 2 rich solution that has absorbed CO 2 in the CO 2 absorption tower containing CO 2 And a regeneration tower for regenerating, and a CO 2 recovery device for reusing the CO 2 absorption liquid, which is a lean solution obtained by removing CO 2 in the regeneration tower, in the CO 2 absorption tower,
Detecting the temperature of the gas introduced into the CO 2 absorption tower,
Characterized by comprising control means for performing control to reduce or increase the circulation rate of the CO 2 absorbing liquid according to the change in the detected temperature and adjust the amount of water vapor in the regeneration tower according to the circulation amount. CO 2 recovery device.
CO2を含有する排ガスとCO2吸収液とを接触させて前記排ガス中のCO2を除去するCO2吸収塔と、前記CO2吸収塔でCO2を吸収したリッチ溶液中のCO2を除去し、再生する再生塔とを具備し、前記再生塔でCO2を除去したリーン溶液であるCO2吸収液を前記CO2吸収塔で再利用するCO2回収方法であって、
前記CO2吸収塔に導入するガス温度を検出し、その検出温度の変化に応じて、CO2吸収液の循環率を減少又は増加させ、その循環量に応じた前記再生塔における水蒸気量を調整する制御を行うことを特徴とするCO2回収方法。
Removing the CO 2 absorption tower for contacting the exhaust gas and the CO 2 absorbing solution for removing CO 2 in the flue gas, the CO 2 rich solution that has absorbed CO 2 in the CO 2 absorption tower containing CO 2 And a regeneration tower for regeneration, and a CO 2 recovery method for reusing a CO 2 absorbent, which is a lean solution obtained by removing CO 2 in the regeneration tower, in the CO 2 absorber tower,
The temperature of the gas introduced into the CO 2 absorption tower is detected, and the circulation rate of the CO 2 absorption liquid is decreased or increased according to the change in the detected temperature, and the amount of water vapor in the regeneration tower is adjusted according to the circulation amount. CO 2 recovery method characterized by performing control to perform.
JP2009149032A 2009-06-17 2009-06-23 Co2 recovering apparatus and method Pending JP2011005368A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2009149032A JP2011005368A (en) 2009-06-23 2009-06-23 Co2 recovering apparatus and method
US12/649,928 US8663363B2 (en) 2009-06-17 2009-12-30 CO2 recovering apparatus and method
CA2779621A CA2779621C (en) 2009-06-17 2009-12-30 Co2 recovering apparatus and method
CA2689453A CA2689453C (en) 2009-06-17 2009-12-30 Co2 recovering apparatus and method
CA2779625A CA2779625C (en) 2009-06-17 2009-12-30 Co2 recovering apparatus and method
AU2010200176A AU2010200176B2 (en) 2009-06-17 2010-01-15 CO2 recovering apparatus and method
EP10151152.5A EP2269713B1 (en) 2009-06-17 2010-01-20 CO2 recovering method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009149032A JP2011005368A (en) 2009-06-23 2009-06-23 Co2 recovering apparatus and method

Publications (1)

Publication Number Publication Date
JP2011005368A true JP2011005368A (en) 2011-01-13

Family

ID=43562679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009149032A Pending JP2011005368A (en) 2009-06-17 2009-06-23 Co2 recovering apparatus and method

Country Status (1)

Country Link
JP (1) JP2011005368A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013159552A (en) * 2012-02-06 2013-08-19 General Electric Co <Ge> System and method for capturing carbon dioxide
JP2014517181A (en) * 2011-03-22 2014-07-17 エクソンモービル アップストリーム リサーチ カンパニー System and method for carbon dioxide capture and power generation in a low emission turbine system
JP5595045B2 (en) * 2008-02-22 2014-09-24 三菱重工業株式会社 CO2 recovery device and CO2 recovery method
JP2015223555A (en) * 2014-05-28 2015-12-14 株式会社Ihi Method and apparatus for recovering carbon dioxide
WO2023068281A1 (en) 2021-10-21 2023-04-27 三菱重工業株式会社 Co2 recovery system, and co2 recovery method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04265115A (en) * 1990-01-08 1992-09-21 Lyondell Petrochem Co Device and method for treating acidic gas
JPH10165761A (en) * 1996-12-16 1998-06-23 Kansai Electric Power Co Inc:The Control method for flue gas decarboxylation equipment
JPH10202053A (en) * 1997-01-27 1998-08-04 Mitsubishi Heavy Ind Ltd Method of reducing amine mist in decarbonation column
WO2001005489A1 (en) * 1999-07-19 2001-01-25 Ebara Corporation Apparatus and method for cleaning acidic gas
WO2009104744A1 (en) * 2008-02-22 2009-08-27 三菱重工業株式会社 Apparatus for recovering co2 and method of recovering co2

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04265115A (en) * 1990-01-08 1992-09-21 Lyondell Petrochem Co Device and method for treating acidic gas
JPH10165761A (en) * 1996-12-16 1998-06-23 Kansai Electric Power Co Inc:The Control method for flue gas decarboxylation equipment
JPH10202053A (en) * 1997-01-27 1998-08-04 Mitsubishi Heavy Ind Ltd Method of reducing amine mist in decarbonation column
WO2001005489A1 (en) * 1999-07-19 2001-01-25 Ebara Corporation Apparatus and method for cleaning acidic gas
WO2009104744A1 (en) * 2008-02-22 2009-08-27 三菱重工業株式会社 Apparatus for recovering co2 and method of recovering co2

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5595045B2 (en) * 2008-02-22 2014-09-24 三菱重工業株式会社 CO2 recovery device and CO2 recovery method
JP2014517181A (en) * 2011-03-22 2014-07-17 エクソンモービル アップストリーム リサーチ カンパニー System and method for carbon dioxide capture and power generation in a low emission turbine system
JP2013159552A (en) * 2012-02-06 2013-08-19 General Electric Co <Ge> System and method for capturing carbon dioxide
JP2015223555A (en) * 2014-05-28 2015-12-14 株式会社Ihi Method and apparatus for recovering carbon dioxide
WO2023068281A1 (en) 2021-10-21 2023-04-27 三菱重工業株式会社 Co2 recovery system, and co2 recovery method

Similar Documents

Publication Publication Date Title
JP5383338B2 (en) CO2 recovery device and CO2 recovery method
JP5383339B2 (en) Concentration management method for CO2 absorbent used in CO2 recovery equipment
JP5922451B2 (en) CO2 recovery device
JP5173941B2 (en) CO2 recovery device
JP5021917B2 (en) CO2 recovery apparatus and method
JP5134578B2 (en) CO2 recovery apparatus and method
JP5638262B2 (en) CO2 recovery apparatus and CO2 recovery method
WO2013132962A1 (en) Degradation product-concentration measurement device, and acidic gas removal device
CA2779621A1 (en) Co2 recovering apparatus and method
KR20130023484A (en) Energy saving method and apparatus for carbon dioxide capture in power plant
JP2014034014A (en) Co2 recovery system, and co2 recovery method
JP5237204B2 (en) CO2 recovery apparatus and method
JP2011005368A (en) Co2 recovering apparatus and method
JP5591083B2 (en) CO2 recovery system
JP5707894B2 (en) Carbon dioxide recovery method and recovery apparatus
CA2785287C (en) Heat recovery system and heat recovery method of co2 recovery unit
JP5737916B2 (en) CO2 recovery system
JP2011000528A (en) Co2 recovering device and co2 recovering method
JP2011005367A (en) Co2 recovering apparatus and method
Yonekawa et al. CO 2 recovery apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120918

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130205