JP2011000528A - Co2 recovering device and co2 recovering method - Google Patents

Co2 recovering device and co2 recovering method Download PDF

Info

Publication number
JP2011000528A
JP2011000528A JP2009144588A JP2009144588A JP2011000528A JP 2011000528 A JP2011000528 A JP 2011000528A JP 2009144588 A JP2009144588 A JP 2009144588A JP 2009144588 A JP2009144588 A JP 2009144588A JP 2011000528 A JP2011000528 A JP 2011000528A
Authority
JP
Japan
Prior art keywords
exhaust gas
amount
solution
absorption
recovery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009144588A
Other languages
Japanese (ja)
Inventor
Masaki Iijima
正樹 飯嶋
Yuji Tanaka
裕士 田中
Miki Sorimachi
美樹 反町
Masahiko Tatsumi
雅彦 辰巳
Yasuyuki Yagi
靖幸 八木
Koki Ogura
幸喜 小椋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Original Assignee
Kansai Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Mitsubishi Heavy Industries Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP2009144588A priority Critical patent/JP2011000528A/en
Priority to CA2689453A priority patent/CA2689453C/en
Priority to CA2779625A priority patent/CA2779625C/en
Priority to US12/649,928 priority patent/US8663363B2/en
Priority to CA2779621A priority patent/CA2779621C/en
Priority to AU2010200176A priority patent/AU2010200176B2/en
Priority to EP10151152.5A priority patent/EP2269713B1/en
Publication of JP2011000528A publication Critical patent/JP2011000528A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Abstract

PROBLEM TO BE SOLVED: To provide a COrecovering device which can make an optimal operation when the COrecovery rate is kept constant, as well as a COrecovering method.SOLUTION: This COrecovering device comprises a COabsorption column 16 which removes COof an exhaust gas 12 by bringing the exhaust gas 12 containing COinto contact with a COabsorbing solution 15 and a regeneration column 18 which regenerates the COabsorbing solution 15 by removing COof a rich solution 17 which has absorbed COat the COabsorption column 16. That is, the COrecovering device reuses the COabsorbing solution 15 at the COabsorption column 16 as a lean solution with no COleft by removal using the regeneration column 18. In addition, the COrecovering device has a control means which measures the COconcentration (I) and the exhaust gas amount, then determines the exhaust gas amount when a target COrecovery rate is set in accordance with the COconcentration and decides the absorbing solution circulation amount according to the exhaust gas amount, and finally, performs a control process to decide the water vapor amount according to the decided absorbing solution circulation amount.

Description

本発明は、最適条件で一定のCO2回収率を常に維持することができるCO2回収装置及び方法に関する。 The present invention relates to a CO 2 recovery apparatus and method that can always maintain a constant CO 2 recovery rate under optimum conditions.

近年、地球の温暖化現象の原因の一つとして、CO2による温室効果が指摘され、地球環境を守る上で国際的にもその対策が急務となってきた。CO2の発生源としては化石燃料を燃焼させるあらゆる人間の活動分野に及び、その排出抑制への要求が一層強まる傾向にある。これに伴い大量の化石燃料を使用する火力発電所などの動力発生設備を対象に、ボイラの燃焼排ガスをアミン系CO2吸収液と接触させ、燃焼排ガス中のCO2を除去、回収する方法及び回収されたCO2を大気へ放出することなく貯蔵する方法が精力的に研究されている。また、前記のようなCO2吸収液を用い、燃焼排ガスからCO2を除去・回収する工程としては、吸収塔において燃焼排ガスとCO2吸収液とを接触させる工程、CO2を吸収した吸収液を再生塔において加熱し、CO2を遊離させると共に吸収液を再生して再び吸収塔に循環して再使用するものが採用されている(例えば、特許文献1参照)。 In recent years, the greenhouse effect due to CO 2 has been pointed out as one of the causes of global warming, and countermeasures have become urgent internationally to protect the global environment. The source of CO 2 extends to all human activity fields that burn fossil fuels, and there is a tendency for the demand for emission control to become stronger. Along with this, for a power generation facility such as a thermal power plant that uses a large amount of fossil fuel, a method for removing the CO 2 in the combustion exhaust gas by bringing the combustion exhaust gas of the boiler into contact with the amine-based CO 2 absorbent and recovering it, and A method of storing the recovered CO 2 without releasing it to the atmosphere has been energetically studied. Moreover, as a process of removing and recovering CO 2 from the combustion exhaust gas using the CO 2 absorption liquid as described above, a process of bringing the combustion exhaust gas and the CO 2 absorption liquid into contact in an absorption tower, an absorption liquid that has absorbed CO 2 Is used in the regeneration tower to liberate CO 2 and regenerate the absorption liquid, which is then recycled to the absorption tower and reused (see, for example, Patent Document 1).

図1にCO2回収装置の一例を示す。図1に示すように、CO2回収装置10は、ボイラやガスタービン等の産業燃焼設備11から排出されたCO2とO2とを含有する排ガス12を冷却水13によって冷却する排ガス冷却装置14と、冷却されたCO2を含有する排ガス12とCO2を吸収するCO2吸収液(以下、「吸収液」ともいう。)15とを接触させて排ガス12からCO2を除去するCO2回収部16Aを有するCO2吸収塔16と、CO2を吸収したCO2吸収液(以下、「リッチ溶液」ともいう。)17からCO2を放出させてCO2吸収液を再生する再生塔18とを有する。
そして、このCO2回収装置100では、再生塔18でCO2を除去した再生CO2吸収液(以下、「リーン溶液」ともいう。)15はCO2吸収塔16でCO2吸収液として再利用する。
FIG. 1 shows an example of a CO 2 recovery device. As shown in FIG. 1, a CO 2 recovery device 10 is an exhaust gas cooling device 14 that cools an exhaust gas 12 containing CO 2 and O 2 discharged from an industrial combustion facility 11 such as a boiler or a gas turbine with cooling water 13. If, CO 2 absorbing solution for absorbing the flue gas 12 and CO 2 containing the cooled CO 2 (hereinafter, also referred to as "absorbing solution".) 15 contacting the CO 2 removal from flue gas 12 CO 2 recovery and the CO 2 absorber 16 having a part 16A, CO 2 absorbent having absorbed CO 2 (hereinafter, also referred to as "rich solvent".) 17 to release CO 2 from the regenerator 18 to regenerate the CO 2 absorbing solution Have
Then, in the CO 2 recovery apparatus 100, reproduction CO 2 absorbing solution was removed CO 2 in the regeneration tower 18 (hereinafter, also referred to as "lean solvent".) 15 reused as the CO 2 absorbing solution in the CO 2 absorber 16 To do.

この従来のCO2回収装置を用いたCO2回収方法では、まず、CO2を含んだボイラやガスタービン等の産業燃焼設備からの排ガス12は、排ガス送風機20により昇圧された後、排ガス冷却装置14に送られ、ここで冷却水13により冷却され、CO2吸収塔16に送られる。 In the CO 2 recovery method using this conventional CO 2 recovery device, first, exhaust gas 12 from an industrial combustion facility such as a boiler or a gas turbine containing CO 2 is pressurized by an exhaust gas blower 20, and then an exhaust gas cooling device. 14, where it is cooled by cooling water 13 and sent to a CO 2 absorption tower 16.

前記CO2吸収塔16において、排ガス12はアミン系溶液をベースとするCO2吸収液15と向流接触し、排ガス12中のCO2は、化学反応によりCO2吸収液15に吸収される。
CO2回収部16AでCO2が除去された後のCO2除去排ガスは、CO2吸収塔16内の水洗部16Bでノズルから供給されるCO2吸収液を含む循環する凝縮水19と気液接触して、CO2除去排ガスに同伴するCO2吸収液15が回収され、その後CO2が除去された排ガス21は系外に放出される。
また、CO2を吸収したCO2吸収液17であるリッチ溶液は、リッチソルベントポンプ22により昇圧され、リッチ/リーンソルベント熱交換器23において、再生塔18で再生されたCO2吸収液15であるリーン溶液により加熱され、再生塔18に供給される。
In the CO 2 absorption tower 16, the flue gas 12 is CO 2 absorbent 15 and then countercurrent contact based on amine-based solution, CO 2 in the flue gas 12 is absorbed by the CO 2 absorbent 15 by a chemical reaction.
CO CO 2 flue gas after CO 2 is removed in 2 recovery unit 16A, and the condensed water 19 circulating containing CO 2 absorbing liquid supplied from the nozzle at the water washing section 16B in the CO 2 absorber 16 gas-liquid contact with, CO 2 absorbent 15 accompanying the CO 2 flue gas is recovered, then the exhaust gas 21 from which CO 2 has been removed is released out of the system.
Further, the rich solution is CO 2 absorbing liquid 17 that has absorbed CO 2, is boosted by a rich solvent pump 22, in the rich / lean solvent heat exchanger 23, is CO 2 absorbent 15 that is reproduced by the regenerator 18 It is heated by the lean solution and supplied to the regeneration tower 18.

再生塔18の上部から内部に放出されたリッチ溶液は、吸熱反応を生じて、大部分のCO2を放出する。再生塔18内で一部または大部分のCO2を放出したCO2吸収液はセミリーン溶液と呼称される。このセミリーン溶液は、再生塔18下部に至る頃には、ほぼ全てのCO2が除去されたCO2吸収液15となる。このリーン溶液は再生過熱器24で水蒸気25により過熱され、再生塔18内部に水蒸気を供給している。
一方、再生塔18の頭頂部からは塔内においてリッチ溶液およびセミリーン溶液から放出された水蒸気を伴ったCO2ガス26が導出され、コンデンサ27により水蒸気が凝縮され、分離ドラム28にて水が分離され、CO2ガス26が系外に放出されて別途回収される。この回収されたCO2ガス26は、石油増進回収法(EOR:Enhanced Oil Recovery)を用いて油田中に圧入するか、帯水層へ貯留し、温暖化対策を図っている。
分離ドラム28にて分離された水は凝縮水循環ポンプ29にて再生塔18の上部に供給される。再生されたCO2吸収液(リーン溶液)15は、リッチ/リーンソルベント熱交換器23にてリッチ溶液17により冷却され、つづいてリーンソルベントポンプ30にて昇圧され、さらにリーンソルベントクーラ31にて冷却された後、CO2吸収塔16に供給される。なお、CO2吸収塔16の底部液溜まりには液レベルを計測するレベル計41が設置され、必要に応じてCO2吸収液を補給液42として供給するようにしている。
The rich solution released from the upper part of the regeneration tower 18 generates an endothermic reaction and releases most of the CO 2 . The CO 2 absorbing solution that has released a part or most of CO 2 in the regeneration tower 18 is called a semi-lean solution. This semi-lean solution becomes the CO 2 absorbent 15 from which almost all CO 2 has been removed by the time it reaches the lower part of the regeneration tower 18. This lean solution is superheated by the steam 25 in the regeneration superheater 24 to supply steam to the inside of the regeneration tower 18.
On the other hand, CO 2 gas 26 accompanied with water vapor released from the rich solution and the semi-lean solution is led out from the top of the regeneration tower 18, the water vapor is condensed by the condenser 27, and the water is separated by the separation drum 28. Then, the CO 2 gas 26 is discharged out of the system and collected separately. The recovered CO 2 gas 26 is injected into an oil field using an enhanced oil recovery (EOR) method or stored in an aquifer to take measures against global warming.
The water separated by the separation drum 28 is supplied to the upper part of the regeneration tower 18 by the condensed water circulation pump 29. The regenerated CO 2 absorbing solution (lean solution) 15 is cooled by the rich solution 17 in the rich / lean solvent heat exchanger 23, subsequently pressurized by the lean solvent pump 30, and further cooled by the lean solvent cooler 31. And then supplied to the CO 2 absorption tower 16. A level meter 41 for measuring the liquid level is installed in the bottom liquid reservoir of the CO 2 absorption tower 16 so that the CO 2 absorbing liquid is supplied as the replenishing liquid 42 as necessary.

なお、図1中、符号11aは排ガス12の煙道であり、11bは煙突、32は水蒸気凝縮水である。前記CO2回収装置は、既設の排ガス源からCO2を回収するために後付で設けられる場合と、新設排ガス源に同時付設される場合とがある。煙突11bには開閉可能な扉を設置し、CO2回収装置の運転時は閉止する。また排ガス源は稼動しているが、CO2回収装置の運転を停止した際は開放するように設定する。 In addition, in FIG. 1, the code | symbol 11a is the flue of the waste gas 12, 11b is a chimney, 32 is water vapor | steam condensed water. The CO 2 recovery device may be retrofitted for recovering CO 2 from an existing exhaust gas source, or may be simultaneously attached to a new exhaust gas source. The chimney 11b is provided with a door that can be opened and closed, and is closed when the CO 2 recovery device is in operation. Moreover, although the exhaust gas source is operating, it is set to be opened when the operation of the CO 2 recovery device is stopped.

特開平3−193116号公報Japanese Patent Laid-Open No. 3-193116

ところで、近年の地球温暖化対策として、排出するCO2の回収率を一定に維持することが求められており、長期間に亙ってCO2回収の運転を継続していく際には、一定の回収率(例えばCO回収率(90%))を常に維持しつつ、最適な運転となることが切望されている。 By the way, as a measure against global warming in recent years, it is required to maintain a constant CO 2 emission recovery rate. When CO 2 recovery operation is continued over a long period of time, the CO 2 recovery operation is constant. It is eagerly desired to achieve an optimal operation while constantly maintaining the recovery rate (for example, CO 2 recovery rate (90%)).

本発明は、上記問題に鑑みてなされたものであって、一定のCO2回収率を常に維持しつつ最適な運転をすることができるCO2回収装置及び方法を提供することを課題とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a CO 2 recovery apparatus and method that can perform an optimal operation while always maintaining a constant CO 2 recovery rate.

上述した課題を解決し、目的を達成するための本発明の第1の発明は、CO2を含有する排ガスとCO2吸収液とを接触させて前記排ガス中のCO2を除去するCO2吸収塔と、前記CO2吸収塔でCO2を吸収したリッチ溶液中のCO2を除去し、再生する再生塔と、前記再生塔でCO2を除去したリーン溶液であるCO2吸収液を前記CO2吸収塔で再利用するCO2回収装置であって、CO2濃度及び排ガス量を計測し、その排ガス量とCO2濃度に応じて目標CO2回収率を達成するために、吸収液循環量を決定し、該決定した吸収液循環量に応じた水蒸気量を決定する制御を行う制御手段を有することを特徴とするCO2回収装置にある。 To solve the above problems, a first invention of the present invention for achieving the object, CO 2 absorption by contacting the exhaust gas and the CO 2 absorbing solution containing CO 2 to remove CO 2 in the flue gas A column, a regeneration tower that removes CO 2 in the rich solution that has absorbed CO 2 by the CO 2 absorption tower, and regenerates the CO 2 absorbent that is a lean solution from which CO 2 has been removed by the regeneration tower. 2 CO 2 recovery device to be reused in the absorption tower, measuring the CO 2 concentration and exhaust gas amount, and in order to achieve the target CO 2 recovery rate according to the exhaust gas amount and CO 2 concentration, the absorption liquid circulation rate It determines, in the CO 2 recovery apparatus, characterized in that it comprises a control means for performing control to determine the amount of water vapor corresponding to the absorption liquid circulation amount the determined.

第2の発明は、CO2を含有する排ガスとCO2吸収液とを接触させて前記排ガス中のCO2を除去するCO2吸収塔と、前記CO2吸収塔でCO2を吸収したリッチ溶液中のCO2を除去し、再生する再生塔と、前記再生塔でCO2を除去したリーン溶液であるCO2吸収液を前記CO2吸収塔で再利用するCO2回収方法であって、CO2濃度及び排ガス量を計測し、その排ガス量とCO2濃度に応じて目標CO2回収率を達成するために、該決定した吸収液循環量に応じた水蒸気量を決定することを特徴とするCO2回収方法にある。 A second invention is a rich solution that has absorbed the CO 2 absorption tower for contacting the exhaust gas and the CO 2 absorbing solution containing CO 2 to remove CO 2 in the flue gas, the CO 2 in the CO 2 absorption tower the CO 2 is removed in, a regenerator and, CO 2 recovery method of the CO 2 absorbing liquid is a lean solution obtained by removing CO 2 in the regeneration tower is reused in the CO 2 absorption tower to play, CO 2) Measure the concentration and the amount of exhaust gas, and determine the amount of water vapor according to the determined absorption liquid circulation rate in order to achieve the target CO 2 recovery rate according to the exhaust gas amount and CO 2 concentration It is in the CO 2 recovery method.

本発明によれば、一日あたりのCO2回収率を所定値に設定し、これに応じたエネルギー効率が最適な運転をすることができる。 According to the present invention, the CO 2 recovery rate per day can be set to a predetermined value, and the operation with the optimum energy efficiency can be performed.

図1は、CO2回収装置の一例を示す図である。FIG. 1 is a diagram illustrating an example of a CO 2 recovery device. 図2は、CO2回収装置の吸収塔と再生塔とを模式的に示す図である。FIG. 2 is a diagram schematically showing an absorption tower and a regeneration tower of the CO 2 recovery apparatus.

以下に、本発明にかかるCO2回収装置の実施例を図面に基づいて詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。 Embodiments of a CO 2 recovery device according to the present invention will be described below in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.

本発明による実施例に係るCO2回収装置について、図1を参照して説明する。
図1は、従来技術で説明したCO2回収装置の構成を示す概略図である。
図1に示すように、本発明の実施例に係るCO2回収装置10は、CO2を含有する排ガス12とCO2吸収液15とを接触させて前記排ガス12中のCO2を除去するCO2吸収塔16と、前記CO2吸収塔16でCO2を吸収したリッチ溶液17中のCO2を除去し、再生する再生塔18と、前記再生塔18でCO2を除去したリーン溶液であるCO2吸収液15を前記CO2吸収塔16で再利用するCO2回収装置であって、CO2濃度(I)及び排ガス量(II)とを計測し、その排ガス量とCO2濃度に応じて目標CO2回収率を達成するために、吸収液循環量(III)を決定し、該決定した吸収液循環量(III)に応じた水蒸気量(IV)を決定する制御を行う制御手段を有するものである。
ここで、排ガス12は全量を系内に引き込むことを前提としている。また、吸収液の濃度は常に一定に保つことを条件としている。
A CO 2 recovery apparatus according to an embodiment of the present invention will be described with reference to FIG.
FIG. 1 is a schematic diagram showing the configuration of the CO 2 recovery apparatus described in the prior art.
As shown in FIG. 1, CO 2 recovery apparatus 10 according to an embodiment of the present invention comprises contacting the flue gas 12 and the CO 2 absorbing liquid 15 containing CO 2 to remove CO 2 in the flue gas 12 by CO 2 is an absorption tower 16, a regeneration tower 18 that removes CO 2 from the rich solution 17 that has absorbed CO 2 by the CO 2 absorption tower 16 and regenerates it, and a lean solution that has CO 2 removed by the regeneration tower 18. A CO 2 recovery device for reusing the CO 2 absorbing liquid 15 in the CO 2 absorption tower 16, measuring the CO 2 concentration (I) and the exhaust gas amount (II), and depending on the exhaust gas amount and the CO 2 concentration In order to achieve the target CO 2 recovery rate, control means for determining the absorption liquid circulation amount (III) and performing control for determining the water vapor amount (IV) according to the determined absorption liquid circulation amount (III) is provided. It is what you have.
Here, it is assumed that the exhaust gas 12 is entirely drawn into the system. Further, it is a condition that the concentration of the absorbing solution is always kept constant.

これにより、地球温暖化対策の一環としてCO2回収率を一定(90%)に維持する場合において、最適な運転を確保することができ、水蒸気の消費量をできるだけ最適化させることができる。 As a result, when maintaining the CO 2 recovery rate constant (90%) as a part of global warming countermeasures, it is possible to ensure optimal operation and optimize the water vapor consumption as much as possible.

ここで、排ガス中のCO2濃度は、ボイラ11の燃焼条件により変動する。
そこで、表1に示すように、基準の場合には、(A)ガス中のCO2濃度が一定とする場合には、目標CO2回収率(90%)とする場合の排ガス量(II)を求め、求めた排ガス量に応じた吸収液循環量(III)を決定し、求めた吸収液循環量(III)に応じた水蒸気量(IV)を決定する制御を行うようにしている。
Here, the CO 2 concentration in the exhaust gas varies depending on the combustion conditions of the boiler 11.
Therefore, as shown in Table 1, in the case of the standard, (A) when the CO 2 concentration in the gas is constant, the amount of exhaust gas when the target CO 2 recovery rate (90%) is set (II) Control is performed to determine the amount of circulated absorption liquid (III) corresponding to the determined amount of exhaust gas, and to determine the amount of water vapor (IV) corresponding to the determined amount of circulated absorbent (III).

そして、排ガス中のCO2濃度が基準よりも0.95倍と低下した場合には、吸収液循環量は基準と同じ(1.0倍)とし、これに応じた水蒸気量は基準の0.99倍に変更する制御を行うようにしている。この結果、目標のCO2回収率(90%)を維持する場合には、水蒸気量を1%減少して運転することができ、エネルギーの削減を図ることができる。 When the CO 2 concentration in the exhaust gas is lowered by 0.95 times from the standard, the absorption liquid circulation rate is the same as the standard (1.0 times), and the water vapor amount corresponding to this is 0. The control for changing to 99 times is performed. As a result, when the target CO 2 recovery rate (90%) is maintained, the operation can be performed with the steam amount reduced by 1%, and the energy can be reduced.

これに対し、排ガス中のCO2濃度が基準よりも1.1倍増加した場合には、吸収液循環量は基準の1.04倍とし、これに応じた水蒸気量は基準の1.06倍に変更する制御を行うようにしている。この結果、水蒸気量は6%増加するが、目標のCO2回収率(90%)を維持することができる。 On the other hand, when the CO 2 concentration in the exhaust gas is increased 1.1 times from the standard, the circulating amount of the absorbing liquid is 1.04 times the standard, and the amount of water vapor corresponding to this is 1.06 times the standard. The control to change to is done. As a result, the amount of water vapor increases by 6%, but the target CO 2 recovery rate (90%) can be maintained.

さらに、排ガスの流量が変動する場合について考慮すると、表1に示すように、(B)排ガスの流量が基準よりも0.95倍低下した場合には、吸収液循環量は基準の0.94倍とし、これに応じた水蒸気量は基準の0.94倍に変更する制御を行うようにしている。この結果、目標のCO2回収率(90%)を維持する場合には、水蒸気量を6%減少して運転することができ、エネルギーの削減を図ることができる。 Further, considering the case where the flow rate of the exhaust gas fluctuates, as shown in Table 1, when the flow rate of the exhaust gas is reduced by 0.95 times from the standard, the absorption liquid circulation amount is 0.94 of the standard. The amount of water vapor corresponding to this is controlled to be changed to 0.94 times the standard. As a result, when the target CO 2 recovery rate (90%) is maintained, the operation can be performed with the water vapor amount reduced by 6%, and the energy can be reduced.

これに対し、排ガスの流量が基準よりも1.1倍増加した場合には、吸収液循環量は基準の1.1倍とし、これに応じた水蒸気量は基準の1.1倍に変更する制御を行うようにしている。この結果、水蒸気量は10%増加するが、目標のCO2回収率(90%)を維持することができる。 On the other hand, when the flow rate of the exhaust gas increases 1.1 times from the standard, the absorption liquid circulation amount is 1.1 times the standard, and the water vapor amount corresponding to this is changed to 1.1 times the standard. Control is performed. As a result, the amount of water vapor increases by 10%, but the target CO 2 recovery rate (90%) can be maintained.

よって、排ガス中のCO2濃度の変動と共に排ガス流量の変動が重なった場合には、それらを掛け合わせた変更の制御が必要となる。 Therefore, when fluctuations in the exhaust gas flow rate overlap with fluctuations in the CO 2 concentration in the exhaust gas, it is necessary to control the change by multiplying them.

また、吸収塔に導入する導入ガスの温度を考慮すると、表1に示すように(C)導入ガス温度が5℃低下した場合には、循環量を0.91倍とし、水蒸気供給量を0.97倍と3%減少する制御をすれば良いことがわかる。
一方、吸収塔に導入する導入ガスの温度を考慮すると、導入ガス温度が5℃上昇した場合には、循環量1.09倍とし、水蒸気供給量を1.03倍と3%増加する制御をすれば良いことがわかる。
Further, considering the temperature of the introduced gas introduced into the absorption tower, as shown in Table 1, when the temperature of the introduced gas (C) decreases by 5 ° C., the circulation rate is 0.91 times and the steam supply rate is 0. It can be seen that it is sufficient to perform control that decreases by 97% and 3%.
On the other hand, when the temperature of the introduced gas introduced into the absorption tower is taken into account, when the introduced gas temperature rises by 5 ° C., the circulation rate is set to 1.09 times, and the water vapor supply rate is increased to 1.03 times and 3%. You can see that

Figure 2011000528
Figure 2011000528

この結果、一日あたりのCO2回収率を目標値(例えば90%)に維持するための、最適な運転をすることができる。この結果、一日のCO2回収率を厳守できるといいう要求に常に応じることができ、温暖化対策に寄与することができる。 As a result, an optimum operation for maintaining the CO 2 recovery rate per day at a target value (for example, 90%) can be performed. As a result, it is possible to always meet the demand that the daily CO 2 recovery rate can be strictly observed, and to contribute to measures against global warming.

また、CO2回収装置の吸収塔と再生塔とを模式的に示す図2に示すように、CO2吸収塔16と、CO2再生塔18との間を吸収液が循環しているので、吸収塔に導入された吸収液が一巡するまでに時間がかかることとなる。
よって、[A]吸収塔16の充填部を通過する時間(例えば9分)、[B]吸収塔液溜まり部を通過する時間(例えば16分)、[C]熱交換器23を通過する時間(例えば1分)、[D]再生塔18の充填部を通過する時間(例えば3分)、[E]再生塔18の液溜まり部を通過する時間(例えば5分)、[F]配管を通過する時間(例えば6分)の合計の時間の時間遅れの制御が必要となる。
Further, as shown in FIG. 2 schematically showing the absorption tower and the regeneration tower of the CO 2 recovery apparatus, the absorption liquid circulates between the CO 2 absorption tower 16 and the CO 2 regeneration tower 18. It takes time for the absorption liquid introduced into the absorption tower to complete a circuit.
Therefore, [A] time to pass through the packed part of the absorption tower 16 (for example, 9 minutes), [B] time to pass through the absorption tower liquid reservoir (for example, 16 minutes), [C] time to pass through the heat exchanger 23 (For example, 1 minute), [D] time for passing through the packed part of the regeneration tower 18 (for example, 3 minutes), [E] time for passing through the liquid reservoir of the regeneration tower 18 (for example, 5 minutes), [F] piping It is necessary to control the time delay of the total time of passage (for example, 6 minutes).

よって、制御は時間遅れを考慮して制御とすることで最適な運転とすることができる。   Therefore, the control can be performed optimally by considering the time delay.

以上のように、本発明に係るCO2回収装置及び方法は、一日あたりのCO2回収率を常に達成することができ、長期間に亙ってのガス中のCO2処理に用いるのに適している。 As described above, the CO 2 recovery apparatus and method according to the present invention can always achieve a CO 2 recovery rate per day and can be used for CO 2 treatment in gas over a long period of time. Is suitable.

10 CO2回収装置
12 CO2を含有する排ガス
15 CO2吸収液(リーン溶液)
16 CO2吸収塔
17 CO2を吸収したCO2吸収液(リッチ溶液)
18 再生塔
41 液レベル計
42 補給液
Exhaust gas 15 CO 2 absorbing solution containing 10 CO 2 recovering apparatus 12 CO 2 (lean solution)
16 CO 2 absorption tower 17 CO 2 absorbs the CO 2 absorbing solution (rich solution)
18 Regeneration tower 41 Liquid level meter 42 Replenisher

Claims (2)

CO2を含有する排ガスとCO2吸収液とを接触させて前記排ガス中のCO2を除去するCO2吸収塔と、前記CO2吸収塔でCO2を吸収したリッチ溶液中のCO2を除去し、再生する再生塔とを具備し、前記再生塔でCO2を除去したリーン溶液であるCO2吸収液を前記CO2吸収塔で再利用するCO2回収装置であって、
CO2濃度及び排ガス量を計測し、その排ガス量とCO2濃度に応じて目標CO2回収率を達成するために、吸収液循環量を決定し、該決定した吸収液循環量に応じた水蒸気量を決定する制御を行う制御手段を有することを特徴とするCO2回収装置。
Removing the CO 2 absorption tower for contacting the exhaust gas and the CO 2 absorbing solution for removing CO 2 in the flue gas, the CO 2 rich solution that has absorbed CO 2 in the CO 2 absorption tower containing CO 2 And a regeneration tower for regenerating, and a CO 2 recovery device for reusing the CO 2 absorption liquid, which is a lean solution obtained by removing CO 2 in the regeneration tower, in the CO 2 absorption tower,
In order to measure the CO 2 concentration and the amount of exhaust gas, and to achieve the target CO 2 recovery rate according to the amount of exhaust gas and the CO 2 concentration, the amount of absorption liquid circulation is determined, and the water vapor corresponding to the determined amount of absorption liquid circulation A CO 2 recovery device comprising control means for performing control for determining the amount.
CO2を含有する排ガスとCO2吸収液とを接触させて前記排ガス中のCO2を除去するCO2吸収塔と、前記CO2吸収塔でCO2を吸収したリッチ溶液中のCO2を除去し、再生する再生塔と、前記再生塔でCO2を除去したリーン溶液であるCO2吸収液を前記CO2吸収塔で再利用するCO2回収方法であって、
CO2濃度及び排ガス量を計測し、その排ガス量とCO2濃度に応じて目標CO2回収率を達成するために、該決定した吸収液循環量に応じた水蒸気量を決定することを特徴とするCO2回収方法。
Removing the CO 2 absorption tower for contacting the exhaust gas and the CO 2 absorbing solution for removing CO 2 in the flue gas, the CO 2 rich solution that has absorbed CO 2 in the CO 2 absorption tower containing CO 2 A CO 2 recovery method in which a regeneration tower to be regenerated and a CO 2 absorption liquid, which is a lean solution obtained by removing CO 2 in the regeneration tower, are reused in the CO 2 absorption tower,
It measures CO 2 concentration and exhaust gas amount, and determines the water vapor amount according to the determined absorption liquid circulation amount in order to achieve the target CO 2 recovery rate according to the exhaust gas amount and CO 2 concentration. CO 2 recovery method.
JP2009144588A 2009-06-17 2009-06-17 Co2 recovering device and co2 recovering method Pending JP2011000528A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2009144588A JP2011000528A (en) 2009-06-17 2009-06-17 Co2 recovering device and co2 recovering method
CA2689453A CA2689453C (en) 2009-06-17 2009-12-30 Co2 recovering apparatus and method
CA2779625A CA2779625C (en) 2009-06-17 2009-12-30 Co2 recovering apparatus and method
US12/649,928 US8663363B2 (en) 2009-06-17 2009-12-30 CO2 recovering apparatus and method
CA2779621A CA2779621C (en) 2009-06-17 2009-12-30 Co2 recovering apparatus and method
AU2010200176A AU2010200176B2 (en) 2009-06-17 2010-01-15 CO2 recovering apparatus and method
EP10151152.5A EP2269713B1 (en) 2009-06-17 2010-01-20 CO2 recovering method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009144588A JP2011000528A (en) 2009-06-17 2009-06-17 Co2 recovering device and co2 recovering method

Publications (1)

Publication Number Publication Date
JP2011000528A true JP2011000528A (en) 2011-01-06

Family

ID=43558954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009144588A Pending JP2011000528A (en) 2009-06-17 2009-06-17 Co2 recovering device and co2 recovering method

Country Status (1)

Country Link
JP (1) JP2011000528A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013114488A1 (en) 2012-02-03 2013-08-08 三菱重工業株式会社 Co2 recovery device
JP2014004525A (en) * 2012-06-25 2014-01-16 Toshiba Corp Carbon dioxide recovery apparatus and method for operating the same
JP2015136687A (en) * 2014-01-24 2015-07-30 三菱重工業株式会社 Co2 recovery apparatus and co2 recovery method
US9950296B2 (en) 2014-09-22 2018-04-24 Kabushiki Kaisha Toshiba Carbon dioxide separation and capture apparatus and method of controlling operation of carbon dioxide separation and capture apparatus
CN112473322A (en) * 2019-09-12 2021-03-12 株式会社东芝 Carbon dioxide recovery system and method for operating same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10165761A (en) * 1996-12-16 1998-06-23 Kansai Electric Power Co Inc:The Control method for flue gas decarboxylation equipment

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10165761A (en) * 1996-12-16 1998-06-23 Kansai Electric Power Co Inc:The Control method for flue gas decarboxylation equipment

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013114488A1 (en) 2012-02-03 2013-08-08 三菱重工業株式会社 Co2 recovery device
US9186620B2 (en) 2012-02-03 2015-11-17 Mitsubishi Heavy Industries, Ltd. CO2 recovery device
JP2014004525A (en) * 2012-06-25 2014-01-16 Toshiba Corp Carbon dioxide recovery apparatus and method for operating the same
JP2015136687A (en) * 2014-01-24 2015-07-30 三菱重工業株式会社 Co2 recovery apparatus and co2 recovery method
WO2015111454A1 (en) * 2014-01-24 2015-07-30 三菱重工業株式会社 Co2 recovery apparatus and co2 recovery process
AU2015210213B2 (en) * 2014-01-24 2017-12-14 Mitsubishi Heavy Industries, Ltd. CO2 recovery apparatus and CO2 recovery process
US10427093B2 (en) 2014-01-24 2019-10-01 Mitsubishi Heavy Industries Engineering, Ltd. CO2 recovery apparatus and CO2 recovery process
US9950296B2 (en) 2014-09-22 2018-04-24 Kabushiki Kaisha Toshiba Carbon dioxide separation and capture apparatus and method of controlling operation of carbon dioxide separation and capture apparatus
CN112473322A (en) * 2019-09-12 2021-03-12 株式会社东芝 Carbon dioxide recovery system and method for operating same
US11559764B2 (en) 2019-09-12 2023-01-24 Kabushiki Kaisha Toshiba Carbon dioxide capturing system and method of operating the same
CN112473322B (en) * 2019-09-12 2023-03-03 株式会社东芝 Carbon dioxide recovery system and method for operating same

Similar Documents

Publication Publication Date Title
JP5383338B2 (en) CO2 recovery device and CO2 recovery method
JP5383339B2 (en) Concentration management method for CO2 absorbent used in CO2 recovery equipment
JP4745682B2 (en) CO2 recovery apparatus and method
JP5922451B2 (en) CO2 recovery device
JP5173941B2 (en) CO2 recovery device
JP4875522B2 (en) CO2 recovery device and waste extraction method
JP5638262B2 (en) CO2 recovery apparatus and CO2 recovery method
JP6016513B2 (en) CO2 recovery apparatus and CO2 recovery method
JP2012236166A (en) Co2 recovery device, and co2 recovery method
JP2013059726A (en) Co2 recovery device and co2 recovery method
WO2013161574A1 (en) Co2 recovery device, and co2 recovery method
KR20130023484A (en) Energy saving method and apparatus for carbon dioxide capture in power plant
JP5738137B2 (en) CO2 recovery apparatus and CO2 recovery method
JP2011240321A (en) Exhaust gas treatment system having carbon dioxide removal device
JP5237204B2 (en) CO2 recovery apparatus and method
JP2011000528A (en) Co2 recovering device and co2 recovering method
CA2785287C (en) Heat recovery system and heat recovery method of co2 recovery unit
JP5737916B2 (en) CO2 recovery system
JP5591083B2 (en) CO2 recovery system
WO2016072292A1 (en) Co2 recovery device and co2 recovery method
JP2011005368A (en) Co2 recovering apparatus and method
JP6004821B2 (en) CO2 recovery apparatus and CO2 recovery method
JP2011005367A (en) Co2 recovering apparatus and method
Yonekawa et al. CO 2 recovery apparatus
Iijima et al. CO 2 recovery system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120918

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130205