JPH0237262A - Device for utilizing waste heat of fuel battery - Google Patents

Device for utilizing waste heat of fuel battery

Info

Publication number
JPH0237262A
JPH0237262A JP63184558A JP18455888A JPH0237262A JP H0237262 A JPH0237262 A JP H0237262A JP 63184558 A JP63184558 A JP 63184558A JP 18455888 A JP18455888 A JP 18455888A JP H0237262 A JPH0237262 A JP H0237262A
Authority
JP
Japan
Prior art keywords
fuel cell
liquid
regenerator
heat
high temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63184558A
Other languages
Japanese (ja)
Inventor
Mokichi Kurosawa
黒沢 茂吉
Hiromasa Matsumoto
松本 博昌
Giichi Nagaoka
永岡 義一
Yuzo Ono
小野 悠三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP63184558A priority Critical patent/JPH0237262A/en
Publication of JPH0237262A publication Critical patent/JPH0237262A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE:To reduce an operation of an absorption type freezer and a cost of facility by a method wherein a hot temperature waste heat discharged from a fuel battery is utilized for a heating operation of a hot regenerative unit of an absorption type freezer and a low temperature waste heat is utilized as a heating source for a hot water regenerator. CONSTITUTION:Working liquid 2 within a hot regenerator 1 is heated by hot water from a fuel battery to generate water vapor. The working liquid reaches a gas-liquid separator 5 while taking dense solution, where water vapor and lithium bromide concentrated solution. In turn, the separated concentrated solution passes through a pipe 18, enters a hot heat exchanger 15, where heat is given to diluted solution and then the liquid rises within a pipe 19. At once the liquid enters a regenerative unit of low temperature 7, gives heat to the diluted solution from a pipe 20 to a low temperature heat exchanger 14, the liquid enters an absorption unit 1 from a pipe 21, is dispersed from small holes to absorb water vapor within an absorption unit and finally the liquid is accumulated at a lower part as diluted liquid. A part of the diluted liquid outputted from the low temperature heat exchanger 14 is branched by a pipe 24, enters a hot water regenerative unit 8 and then the liquid is heated with a low temperature waste heat of the fuel batter.

Description

【発明の詳細な説明】 [産業−にの利用分野] 本発明は、燃料電池から排出される排熱を吸収式冷凍機
においてその熱源として利用する燃料電池の排熱利用装
とに関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a fuel cell exhaust heat utilization system that uses exhaust heat discharged from a fuel cell as a heat source in an absorption chiller. .

[従来の技術] 燃料電池からはその冷却に使用された170°C〜18
0’c程度の高温水をとり出すことかできると共に燃料
電池の駆動に使用された燃焼排ガス中からは90°C〜
98°C程度に加熱された低温水をとり出すことができ
る。
[Prior art] A fuel cell has a temperature of 170°C to 18°C, which is used for its cooling.
It is possible to take out high-temperature water of about 0'C, and the temperature of the combustion exhaust gas used to drive the fuel cell can be extracted from 90C to 90C.
Low-temperature water heated to about 98°C can be taken out.

しかし、これらの排熱はすべて放棄されているのか現状
゛Cある。
However, at present, all of this waste heat is being discarded.

一方、吸収式冷凍機においては作動液としC用いられる
例えば臭化リチュウム水溶液を加熱するために、都市ガ
ス或いは石油などが使用されておリ、又ユ重効用式のも
のにおい’c 4.を温水再生器用の加熱源に、これも
都市ガスを刊用したり、特公昭63−5656号公報に
示されているように太陽熱温水器を利用するという提案
がある。
On the other hand, in absorption refrigerators, city gas or petroleum is used to heat the working fluid, such as a lithium bromide aqueous solution. There are proposals to use city gas as the heating source for a hot water regenerator, or to use a solar water heater as shown in Japanese Patent Publication No. 5656/1983.

[解決しようとする課題] このように、従来の吸収式冷凍機においては、作動液或
いは温水iff生器加熱用に燃料或いは設備の付加か必
要°Cあることから、運転コスト、設備費などが高くつ
くという問題かある。
[Problem to be solved] As described above, in conventional absorption refrigerators, additional fuel or equipment is required for heating the working fluid or warm water IF, which reduces operating costs, equipment costs, etc. The problem is that it's expensive.

一方、燃料電池においては、その排熱を無駄に放棄して
いることになり、エネルギーの有効利用という観点から
好ましくない。
On the other hand, in fuel cells, the waste heat is wasted, which is not desirable from the standpoint of effective energy use.

本発明は、燃料電池の排熱を有効に利用し、同時に吸収
式冷凍機における運転及び、没備コストの低減化をIA
ることをl」的とし′C提案されているものである。
The present invention effectively utilizes the exhaust heat of fuel cells, and at the same time reduces the operation and equipment costs of absorption chillers.
This is what has been proposed with the aim of achieving this.

[課題を解決するための手段] 本発明は、[−記[1的を達成する干、没として1次の
如き構成の燃#4電池の排熱利用装置を提案するもので
ある。
[Means for Solving the Problems] The present invention proposes an apparatus for utilizing waste heat of a #4 fuel cell having a configuration as described above, which achieves the following objectives.

燃14 ’、U池から排出される高温を吸収式冷凍機の
高温++j生器生温いてこの高温Fj生器内の溶液を加
熱し、更に前記燃料電池から排出される低温を前記吸収
式冷7!I!機の温水再生器に導い゛にの温水再生器内
の稀溶液を加熱するようにした燃料電池の排熱利用装置
。・ 14記装置において燃料電池から排出される高温は、燃
料電池の反応熱を冷却水により回収することができる。
Fuel 14', the high temperature discharged from the fuel cell is heated to the high temperature ++j generator of the absorption chiller to heat the solution in the high temperature Fj generator, and the low temperature discharged from the fuel cell is further heated to the absorption chiller 7. ! I! A fuel cell exhaust heat utilization device that heats a dilute solution in the hot water regenerator by introducing it into the hot water regenerator of the engine. - In the device described in item 14, the high temperature discharged from the fuel cell can be recovered by cooling water as reaction heat of the fuel cell.

このようにして回収できる熱は170°C〜180℃程
度゛Cある。
The amount of heat that can be recovered in this way is approximately 170°C to 180°C.

又、燃焼排ガスからは90℃〜98°Cの排熱な熱媒°
C回収することかできる。
In addition, waste heat of 90°C to 98°C is generated from combustion exhaust gas.
C. It is possible to collect it.

高温+Ir生器内には、熱交換器かMlみ込まれており
、冷却水(高温水)はこり熱交換器で作動液に熱をlt
tえ、Elfび燃料電池の冷却水系へと導かれる。
A heat exchanger or Ml is included in the high temperature + Ir generator, and the cooling water (high temperature water) is used to transfer heat to the working fluid.
It is then introduced into the cooling water system of the fuel cell.

方、燃焼排ガス中から熱回収して加熱された熱媒は温水
+lf生器内に組み込まれた熱交換器を経由する間に温
水再生器内の稀溶液を加熱し、再び燃焼排カス中に組み
込まれた排ガス熱交換器に導かれる。
On the other hand, the heated heat medium recovered from the combustion exhaust gas heats the dilute solution in the hot water regenerator while passing through the heat exchanger built into the hot water + LF generator, and is returned to the combustion exhaust gas. Directed to an integrated exhaust gas heat exchanger.

燃料電池の排熱は、これを直接高温再生憲或いは温水β
)生温へ導いてもよく、又前記のように循環用の熱媒に
排熱な熱移動させてから利用するようにしてbよい。
The exhaust heat of the fuel cell can be directly regenerated at high temperature or heated
) The heat may be brought to a lukewarm temperature, or the waste heat may be transferred to a circulating heating medium as described above before being used.

[作用] 燃才1′市池は原料ガスを改質して水素を作り、この水
素と空気中の酸素を反応ぎせて直接’i17気エネルキ
ーをとり出すものである。この5F、主作用時において
、燃料電池からは高温が放出される。この熱はジX・ゲ
ットを介して冷却水によりとり出される。そして高温化
した冷却水(高温水)は吸収式冷凍機の高温(す生温へ
導かれ、この高温再生器内に溜っている作動液を加熱し
、再び燃料電池の冷却本人B (戻り11)へと導かれ
る。
[Function] The engine is to reform the raw material gas to produce hydrogen, and to react the hydrogen with oxygen in the air to directly extract 'i17 energy. During this 5F main operation, high temperature is emitted from the fuel cell. This heat is extracted by cooling water through the di-X-get. The heated cooling water (high-temperature water) is led to the high temperature (warming temperature) of the absorption chiller, heats the working fluid accumulated in this high-temperature regenerator, and returns to the cooling water of the fuel cell B (Return 11 ).

−力、燃料゛散油から排出される排ガス中の熱は排ガス
熱交換器て回収され、そして吸収式冷凍機の温水+Ij
生器生温導かれ、ここで冷凍機の低温熱交換器以後にお
いて一部回収された稀溶液を加熱し、+lfび排ガス熱
交換器へ導かれる。
-The heat in the exhaust gas discharged from the fuel and oil spray is recovered in the exhaust gas heat exchanger, and then used as hot water for the absorption chiller.
The raw temperature of the raw material is led, where the dilute solution partially recovered after the low-temperature heat exchanger of the refrigerator is heated, and then led to the +lf and exhaust gas heat exchangers.

1−記吸収式冷凍機は、二重効用式の運転を行うもので
、この+1例は通常のものであるので、ここでの説IJ
1は省略する。
The absorption chiller described in 1-1 operates in a double-effect manner, and this +1 example is a normal one, so the explanation here is IJ.
1 is omitted.

[実施例] 第1図は本発明を一東効用吸収式冷凍機に実施した実施
例を示すものである。
[Example] Fig. 1 shows an example in which the present invention is applied to an Ichito effect absorption refrigerator.

符号のlはT、+11効用吸収式冷凍機の高温+tj生
器生温はこの高温再生Bl内に溜められた作動液(臭化
リチュウム水溶液)、3は高温再生′JAi内において
、作動液2中に浸漬された熱交換器にして、この熱交換
器3内には燃料電池(図示せず)の冷却水であって燃料
電池からの吸熱により170°C〜180°Cに高温化
したもの、すなわち高温水か高温水″@環回路4を経由
し°C導かれる。
The sign l is T, +11 effect is the high temperature + tj of the absorption refrigerator, and the raw temperature of the generator is the working fluid (lithium bromide aqueous solution) stored in this high-temperature regeneration Bl, and 3 is the working fluid 2 in the high-temperature regeneration JAi. Inside the heat exchanger 3 is cooling water for a fuel cell (not shown), which has been heated to a temperature of 170°C to 180°C due to heat absorption from the fuel cell. , i.e. high temperature water or high temperature water"@°C is conducted via the loop circuit 4.

5は気液分離姦、6は凝縮器、7は低温再生器、8は温
水1与生器、9は温水+1r生′JA8内の液中に浸漬
された熱交換器にして、この熱交換器9には燃ネ゛1電
池の燃焼排ガス中にlかれた排ガス熱交換器(図信せず
)で排熱を吸収し、90°C〜98°Cに加熱された低
温水か低温水回路IOを経由して導かれる。11は吸収
器、12は蒸発器、13は稀溶液ポンプ、14は低温熱
交換器、15は高温熱交換器である。
5 is a gas-liquid separator, 6 is a condenser, 7 is a low-temperature regenerator, 8 is a hot water generator, 9 is a heat exchanger immersed in the liquid in hot water + 1r raw water, and this heat exchange In the container 9, low-temperature water or low-temperature water heated to 90°C to 98°C is used to absorb exhaust heat with an exhaust gas heat exchanger (not shown) that is placed in the combustion exhaust gas of the fuel cell. It is routed via circuit IO. 11 is an absorber, 12 is an evaporator, 13 is a dilute solution pump, 14 is a low temperature heat exchanger, and 15 is a high temperature heat exchanger.

−1−記装置においては、高温再生器l内の作動液2は
燃料電池からの高温水により加熱されて水蒸気を発生し
、濃溶液をとり込みながら気液分離器5に至り、ここで
水蒸気と臭化リチュウム濃溶液は分離する。分離した高
圧の水蒸気は管16から凝縮器6の低温再生器7内に至
り、冷却水管17て冷やされ、凝縮して下部に溜る。一
方、分1′slノた濃容液は管18を通って高温熱交換
器15に入り、ここて稀溶液に熱を!j−えて管19内
をL昇し、−■低温再生器7内に入り、管20から低温
熱交換器14において稀溶液に熱をグーえ、管21から
吸収器llに入り、小孔からrt!l711され、吸収
zti内の水蒸気を吸収し、稀溶液となって下部に肩る
。この溜った稀溶液は管22から稀溶液ポンプ13によ
り管23を介して低温熱交換器14、高温熱交換fi1
5を経由して高温再生器lに戻る。又、低温熱交換器1
4を出た稀溶液の一部は管24て分岐されて温水再生器
8に入り、燃料電池の低&l排熱で加熱される。
In the device described in -1-, the working fluid 2 in the high-temperature regenerator 1 is heated by high-temperature water from the fuel cell to generate water vapor, which reaches the gas-liquid separator 5 while taking in a concentrated solution, where the water vapor and lithium bromide concentrated solution are separated. The separated high-pressure water vapor reaches the low-temperature regenerator 7 of the condenser 6 from the pipe 16, is cooled by the cooling water pipe 17, and condenses and accumulates in the lower part. Meanwhile, the 1'sl concentrated liquid passes through tube 18 and enters the high temperature heat exchanger 15, which imparts heat to the dilute solution. It then goes up L in the tube 19, enters the low-temperature regenerator 7, transfers heat to the dilute solution in the low-temperature heat exchanger 14 through the tube 20, enters the absorber ll through the tube 21, and passes through the small hole. rt! 1711, absorbs the water vapor in the absorption zti, becomes a dilute solution, and falls to the bottom. The accumulated dilute solution is transferred from the pipe 22 to the low temperature heat exchanger 14 via the pipe 23 by the dilute solution pump 13, and then to the high temperature heat exchanger fi1.
5 and returns to the high temperature regenerator 1. Also, low temperature heat exchanger 1
A portion of the dilute solution exiting from the pipe 24 is branched off to enter the hot water regenerator 8, where it is heated by the low &l waste heat of the fuel cell.

凝縮器6内に溜った水は管25から蒸発器12内に散布
されて水蒸気となり濃溶液に吸収され、これを薄めて稀
溶液化する。
The water accumulated in the condenser 6 is sprayed into the evaporator 12 from the pipe 25, becomes water vapor, is absorbed into the concentrated solution, and is diluted to form a dilute solution.

IN発器12内に組み込まれた冷凍回路26内を循環す
る冷媒は熱交換器27内を通過する間に蒸発潜熱により
冷却され、放熱器に導かれる。
The refrigerant circulating in the refrigeration circuit 26 built into the IN generator 12 is cooled by latent heat of vaporization while passing through the heat exchanger 27, and is guided to the radiator.

実施例の装こは以上の如き作用により燃料電池の排熱を
吸収式冷凍器の熱源に利用して冷凍機を駆動するもので
ある。
The device of the embodiment operates as described above, and utilizes the exhaust heat of the fuel cell as a heat source for the absorption refrigerator to drive the refrigerator.

第2図は蒸気焚き吸収式冷凍機に本発明を実施した場合
、第3図は単効用吸収式冷凍機に本発明を実施した場合
を示すものて、この2例においては第1図に示した二重
効用式に比較して、燃料電池の低温を利用する技術か無
いのみで、他の構成と作用は二重効用式と同一である。
Figure 2 shows the case where the present invention is implemented in a steam-fired absorption refrigerator, and Figure 3 shows the case where the invention is implemented in a single-effect absorption refrigerator. Compared to the dual-effect type, the other structure and operation are the same as the dual-effect type, except that there is no technology to utilize the low temperature of the fuel cell.

[本発明の効果1 未発11は以−Fのように燃料電池から排出される高温
4J8を吸収式冷凍機の高温+Ir生器加熱用に利用し
、低温排熱を温水再生器の熱源に利用するようにしたの
で、吸収式冷凍機は他に熱源を一切使用しないで運転を
行うことがてきる。
[Effect of the present invention 1 As shown in F above, the high temperature 4J8 discharged from the fuel cell is used to heat the high temperature + Ir generator of the absorption chiller, and the low temperature waste heat is used as the heat source of the hot water regenerator. As a result, the absorption chiller can be operated without using any other heat source.

よって、燃ネー1電池の排熱が有効利用されるので、省
エネルギーの観点から大変好ましく、又冷凍機において
は熱源設備及び運転用の熱源を必要としないので、熱源
用の設備コスト藁びに熱源費かかからない効果かある。
Therefore, the waste heat of the fuel cell is effectively used, which is very desirable from the viewpoint of energy saving.Also, since the refrigerator does not require heat source equipment or a heat source for operation, the equipment cost for the heat source and the heat source cost are reduced. There are some effects that don't apply.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は二屯効用吸収式冷凍機に本発明を実施した実施
例図、第2(7Iは蒸気焚き式吸収式冷凍機に本発明を
実施した実施例図、第3図は単効用吸収式冷凍機に未発
I51を実施した実施例図である。 ■・・・・・・高温pf生生温   3・・・・・・熱
交換器4・・・・・・高温水循環回路  5・・・・・
・気液分離器6・・・・・・凝縮器      7・・
・・・・低温再生器8・・・・・・温水1f生憲   
 lO・・・低温水循環回路ll・・・吸収器    
  14・・・低温熱交換器15・・・高温熱交換器 
  26・・・冷凍回路2751  図
Figure 1 is an example diagram in which the present invention is implemented in a two-ton effect absorption refrigerator, Figure 2 (7I is an example diagram in which the invention is implemented in a steam-fired absorption refrigerator, and Figure 3 is a diagram in which the present invention is implemented in a single-effect absorption refrigerator. It is an example diagram in which unreleased I51 was applied to a type refrigerator. ■...High temperature PF raw temperature 3... Heat exchanger 4... High temperature water circulation circuit 5... ...
・Gas-liquid separator 6...Condenser 7...
...Low temperature regenerator 8...Hot water 1f raw condition
1O...Low temperature water circulation circuit 11...Absorber
14...Low temperature heat exchanger 15...High temperature heat exchanger
26... Refrigeration circuit 2751 diagram

Claims (6)

【特許請求の範囲】[Claims] (1)燃料電池から排出される高温を吸収式冷凍機の高
温再生器に導いてこの高温再生器内の稀溶液を加熱し、
更に前記燃料電池から排出される低温を前記吸収式冷凍
機の温水再生器に導いてこの温水再生器内の稀溶液を加
熱するようにした燃料電池の排熱利用装置。
(1) Directing the high temperature discharged from the fuel cell to the high temperature regenerator of the absorption refrigerator and heating the dilute solution in the high temperature regenerator,
Furthermore, the exhaust heat utilization device for the fuel cell is configured to introduce the low temperature discharged from the fuel cell to the hot water regenerator of the absorption chiller and heat the dilute solution in the hot water regenerator.
(2)高温を単効用吸収式冷凍機の高温再生器に導いて
成る燃料電池の排熱利用装置。
(2) A fuel cell waste heat utilization device that leads high temperature to a high temperature regenerator of a single effect absorption chiller.
(3)燃料電池から排出される高温を吸収した燃料電池
の冷却水を高温再生器に導くようにした請求項1記載の
燃料電池の排熱利用装置。
(3) The exhaust heat utilization device for a fuel cell according to claim 1, wherein cooling water of the fuel cell that has absorbed high temperature discharged from the fuel cell is guided to a high temperature regenerator.
(4)燃料電池から排出される燃焼排ガスにより加熱さ
れた温水を温水再生器に導くようにした請求項1記載の
燃料電池の排熱利用装置。
(4) The exhaust heat utilization device for a fuel cell according to claim 1, wherein hot water heated by combustion exhaust gas discharged from the fuel cell is guided to a hot water regenerator.
(5)燃料電池から排出される高温蒸気を直接高温再生
器に導く請求項1又は2記載の燃料電池の排熱利用装置
(5) The exhaust heat utilization device for a fuel cell according to claim 1 or 2, wherein high temperature steam discharged from the fuel cell is directly guided to a high temperature regenerator.
(6)燃料電池から排出される燃焼排ガスと熱交換して
加熱された低温水を温水再生器に導くようにした請求項
1記載の燃料電池の排熱利用装置。
(6) The exhaust heat utilization device for a fuel cell according to claim 1, wherein low-temperature water heated by exchanging heat with combustion exhaust gas discharged from the fuel cell is guided to a hot water regenerator.
JP63184558A 1988-07-26 1988-07-26 Device for utilizing waste heat of fuel battery Pending JPH0237262A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63184558A JPH0237262A (en) 1988-07-26 1988-07-26 Device for utilizing waste heat of fuel battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63184558A JPH0237262A (en) 1988-07-26 1988-07-26 Device for utilizing waste heat of fuel battery

Publications (1)

Publication Number Publication Date
JPH0237262A true JPH0237262A (en) 1990-02-07

Family

ID=16155307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63184558A Pending JPH0237262A (en) 1988-07-26 1988-07-26 Device for utilizing waste heat of fuel battery

Country Status (1)

Country Link
JP (1) JPH0237262A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5345786A (en) * 1992-08-27 1994-09-13 Hitachi, Ltd. Absorption heat pump and cogeneration system utilizing exhaust heat
US5499769A (en) * 1992-07-16 1996-03-19 Unisia Jecs Corporation Fuel injection valve including air promoting atomization
CN101793446A (en) * 2010-03-09 2010-08-04 浙江大学 Lithium bromide heat-storage and cold-storage system
CN103206806A (en) * 2012-01-11 2013-07-17 江苏江平空调净化设备有限公司 Ammonia water heat separation system driven by waste heat
CN104085900A (en) * 2014-06-23 2014-10-08 山东晋煤明水化工集团有限公司 Method for cooling synthetic ammonia by using urea work section high-pressure temperature-regulation water waste heat
CN107388657A (en) * 2017-05-19 2017-11-24 东南大学 A kind of Frostless air-source heat pump system based on low pressure compression solution regeneration

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61191824A (en) * 1985-02-20 1986-08-26 Takenaka Komuten Co Ltd Fuel cell power generation type hot water supplier for space cooling and heating

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61191824A (en) * 1985-02-20 1986-08-26 Takenaka Komuten Co Ltd Fuel cell power generation type hot water supplier for space cooling and heating

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5499769A (en) * 1992-07-16 1996-03-19 Unisia Jecs Corporation Fuel injection valve including air promoting atomization
US5345786A (en) * 1992-08-27 1994-09-13 Hitachi, Ltd. Absorption heat pump and cogeneration system utilizing exhaust heat
CN101793446A (en) * 2010-03-09 2010-08-04 浙江大学 Lithium bromide heat-storage and cold-storage system
CN103206806A (en) * 2012-01-11 2013-07-17 江苏江平空调净化设备有限公司 Ammonia water heat separation system driven by waste heat
CN103206806B (en) * 2012-01-11 2015-09-16 江苏江平空调净化设备有限公司 The ammoniacal liquor thermal release system that waste heat drives
CN104085900A (en) * 2014-06-23 2014-10-08 山东晋煤明水化工集团有限公司 Method for cooling synthetic ammonia by using urea work section high-pressure temperature-regulation water waste heat
CN107388657A (en) * 2017-05-19 2017-11-24 东南大学 A kind of Frostless air-source heat pump system based on low pressure compression solution regeneration

Similar Documents

Publication Publication Date Title
JPS5899660A (en) Air cooling device
JPS61110852A (en) Absorption heat pump/refrigeration system
KR101208459B1 (en) Organic rankine cycle turbo generation system generating cooling air and hot water
CN114322354A (en) Absorption type circulating refrigeration system and process thereof
JPH0237262A (en) Device for utilizing waste heat of fuel battery
JP3905986B2 (en) Waste heat utilization air conditioning system
JP3865346B2 (en) Absorption chiller / heater
KR101271189B1 (en) Intake air cooling system for ship
KR100449302B1 (en) Absorption refrigerator
JP2008020094A (en) Absorption type heat pump device
JP4315854B2 (en) Absorption refrigerator
JP2005147447A (en) Ammonia-water non-azeotropic mixture medium circulation system
KR102144935B1 (en) absorption chiller using non-heat type recycling process
CN110986423B (en) Water chilling unit
JPH05263610A (en) Power generating facility
CN217423663U (en) Smoke type lithium bromide absorption type second-class heat pump unit
JPS6122225B2 (en)
KR100827569B1 (en) Absorption refrigerating apparatus with heat pump
KR200144045Y1 (en) Absorption type cooler
JP2004198087A (en) Absorption refrigerating device, and absorption refrigerating system
JPS5829819Y2 (en) Absorption heat pump
JPS6135899Y2 (en)
JP3429906B2 (en) Absorption refrigerator
JPS5899661A (en) Engine waste-heat recovery absorption type cold and hot water machine
JPH08327175A (en) Absorption type freezer