JPS61191824A - Fuel cell power generation type hot water supplier for space cooling and heating - Google Patents

Fuel cell power generation type hot water supplier for space cooling and heating

Info

Publication number
JPS61191824A
JPS61191824A JP60032294A JP3229485A JPS61191824A JP S61191824 A JPS61191824 A JP S61191824A JP 60032294 A JP60032294 A JP 60032294A JP 3229485 A JP3229485 A JP 3229485A JP S61191824 A JPS61191824 A JP S61191824A
Authority
JP
Japan
Prior art keywords
hot water
fuel cell
steam
heating
cell power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60032294A
Other languages
Japanese (ja)
Inventor
Takashi Moro
隆 茂呂
Akio Oi
大井 昭夫
Kiharu Maekawa
前川 甲陽
Takashi Shimanuki
島貫 崇
Masayuki Tokiwa
正之 常盤
Norio Igawa
憲男 井川
Takeshi Motoe
本江 猛
Ryoji Anahara
穴原 良司
Hideo Kaneko
金子 秀男
Hideo Nishigaki
英雄 西垣
Sumio Yokogawa
横川 純男
Kazuo Shimazu
嶋津 和雄
Atsuo Watanabe
敦夫 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Takenaka Komuten Co Ltd
Original Assignee
Fuji Electric Co Ltd
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Takenaka Komuten Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP60032294A priority Critical patent/JPS61191824A/en
Publication of JPS61191824A publication Critical patent/JPS61191824A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To improve the efficiency of energy use by effectively utilizing the waste heat of the fuel cell power generating device for the hot water supplier for space cooling and heating device. CONSTITUTION:An exhaust heat steam 4 generated as cooling water in a fuel cell power generating device 14 is fed to an absorption type freezer 23 via pipelines 14S, 14SA and 14SB, and also fed to a space heating hot water heat exchanger 24 via pipelines 14SC and 10SD, and further to a hot water storage tank 26 via a pipeline 14SE. Exhaust heat high hot water is fed through pipelines 14H and 14HA to a hot water heat exchanger 24 wherein the high hot water is absorbed of its heat and assumes a low temperature, and further passes through pipelines 24L, 24LA, and 24LB. Further, if necessary, it is cooled in a cooling tower 49, and is reutilized as cooling water of the fuel cell power generating device 14 via a pipeline 49L. Exhaust heat low hot water is fed through a pipeline 14L to a supply hot water preheat exchanger 28 wherein it is absorbed of its heat. Then, it assumes a lower temperature and passes through a pipeline 28L and amalgamates with low temperature water within the pipeline 24L and is utilized as cooling water for the fuel cell 14.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、天然ガス、石炭ガス又はメタノール等の燃料
ガスを用いて発電し、排熱を有効利用して冷暖房や給湯
等も行う燃料電池発電冷暖房給湯装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a fuel cell that generates electricity using fuel gas such as natural gas, coal gas, or methanol, and also performs air conditioning, heating, hot water supply, etc. by effectively utilizing exhaust heat. Related to power generation heating, cooling, and hot water supply equipment.

[従来の技術] 燃料電池発電装置の排熱を用いて冷暖房給湯を行う装置
では、排熱の熱量は充分にあるが排熱温度が45°C程
度にしかならず、熱効率が悪くて排熱の有効利用ができ
にくい点があった。また、電力余剰時(不使用又は軽負
荷時)には電力も排熱も有効利用できないため、エネル
ギーの使用効率が悪化した。
[Conventional technology] In devices that use the exhaust heat of fuel cell power generation equipment for heating, cooling, and hot water supply, the amount of exhaust heat is sufficient, but the exhaust heat temperature is only about 45°C, and the thermal efficiency is poor, making it difficult to utilize the exhaust heat effectively. It was difficult to use. Furthermore, when there is surplus power (when not in use or under light load), neither the power nor the waste heat can be used effectively, resulting in poor energy usage efficiency.

[発明が解決しようとする問題点] 本発明は、燃料電池発電装置の排熱を冷暖房給湯装置に
有効利用し、エネルギーの使用効率の向上を図った燃料
電池発電冷暖房給湯装置を得ることを目的とする。
[Problems to be Solved by the Invention] An object of the present invention is to obtain a fuel cell power generation air conditioning, heating, and hot water supply system that effectively utilizes the exhaust heat of the fuel cell power generation system in the air conditioning, heating, and water supply system to improve energy use efficiency. shall be.

[問題点を解決するための手段m] 本発明に係る燃料電池発電冷暖房給湯装置では燃料ガス
を改質してリッチ水素を生成するリフオーマと、前記リ
ッチ水素を用いて直流を発電する燃料電池発電装置と、
燃料ガスの燃焼熱で蒸気を発生させるボイラと、燃料電
池発電装置の排熱を排熱蒸気、排熱高温水及び排熱低温
水に区分し排熱で足りない分をボイラの蒸気で補う冷暖
房給湯装置と、を有している。
[Means for Solving Problems m] The fuel cell power generation air conditioning, heating, and hot water supply system according to the present invention includes a reformer that reformes fuel gas to generate rich hydrogen, and a fuel cell power generator that generates direct current using the rich hydrogen. a device;
A boiler that generates steam using the combustion heat of fuel gas, and an air-conditioning system that separates the exhaust heat from the fuel cell power generator into exhaust heat steam, exhaust heat high temperature water, and exhaust heat low temperature water, and supplements the lack of exhaust heat with steam from the boiler. It has a water heater.

[作用] したがって、用途に応じ排熱蒸気、排熱高温水及び排熱
低温水の利用手順を定めて排熱を利用することにより、
排熱を有効に利用することができる。
[Function] Therefore, by determining procedures for using waste heat steam, waste heat high temperature water, and waste heat low temperature water according to the purpose, and utilizing waste heat,
Exhaust heat can be used effectively.

[実施例] 図面に従って本発明に係る燃料電池゛発電冷暖房給湯装
置の実施例を説明する。
[Example] An example of a fuel cell power generation, heating, cooling, and hot water supply system according to the present invention will be described with reference to the drawings.

単一エネルギー源である天然ガスlOは配管10Gでリ
フオーマ12へ供給されるようになっている。リフオー
マ12は天然ガス10を改質してリッチ水素ガスを生成
する。この水素ガスは配管12Gで燃料電池発電装置1
4へ供給されるようになっている。燃料電池発電装置1
4はこの水素ガスと空中の酸素を用いて直流を発電する
ようになっている。
Natural gas lO, which is a single energy source, is supplied to the reformer 12 through a pipe 10G. The reformer 12 reforms the natural gas 10 to produce rich hydrogen gas. This hydrogen gas is transferred to the fuel cell power generator 1 via pipe 12G.
4. Fuel cell power generation device 1
4 uses this hydrogen gas and oxygen in the air to generate direct current.

燃料電池発電装置14での冷却水として発生する排熱蒸
気、排熱高温水(約80℃)、排熱低温水(約40℃)
は冷暖房及び給湯の熱源として用いられている・ すなわち、排熱蒸気は順次接続される配管14S、14
SA、14sBを通って吸収式冷凍機23へ供給され、
前記配管14SAに順次連接される配管14SC110
5Dを通って暖房用の温水熱交換器24へ供給され、さ
らに前記配管143Cに連接される配管143Eを通っ
て貯湯槽26に供給されるようになっている・ 前記配管14SAにはボイラ25からの蒸気を供給する
配管25Sが連通されており、排熱蒸気で足りない場合
にボイラ25からの蒸気が利用されるようになっている
。このボイラ25の燃料は、配管10Gから分岐され〆
配管10GAを通って供給される天然ガス10である。
Exhaust heat steam, exhaust heat high temperature water (approximately 80°C), and exhaust heat low temperature water (approximately 40°C) generated as cooling water in the fuel cell power generation device 14
is used as a heat source for air conditioning and hot water supply. In other words, the exhaust heat steam is sent to the pipes 14S and 14 that are connected in sequence.
It is supplied to the absorption chiller 23 through SA and 14sB,
Piping 14SC110 sequentially connected to the piping 14SA
5D to the hot water heat exchanger 24 for heating, and further to the hot water storage tank 26 through the piping 143E connected to the piping 143C.The piping 14SA is supplied from the boiler 25 A pipe 25S for supplying steam is connected to the boiler 25, and steam from the boiler 25 is used when exhaust heat steam is insufficient. The fuel for this boiler 25 is the natural gas 10 that is branched from the pipe 10G and supplied through the final pipe 10GA.

吸収式冷凍機23、温水熱交換器24及び貯湯槽26を
通った蒸気は水滴となり、それぞれ配管23D、24D
、26Dを通って配管21Dで合流しホットウェルタン
ク21に回収され、次いでボイラ25に供給され、一部
は燃料電池発電装!!14の冷却水として再利用される
ようになっている。
The steam that has passed through the absorption refrigerator 23, hot water heat exchanger 24, and hot water storage tank 26 becomes water droplets, and is piped into pipes 23D and 24D, respectively.
, 26D, join the pipe 21D, and are collected in the hot well tank 21, then supplied to the boiler 25, and a portion of the fuel cell power generation system! ! It is designed to be reused as cooling water for 14 cars.

燃料電池発電装置14で生成された排熱高温水は、順次
接続される配管14)1.14HAを通り、温水熱交換
器24で吸熱され、低温となって配管24L、24LA
、24LBを通り、さらに必要があれば冷却塔49で冷
却され、配管49Lを通り燃料電池発電装置14の冷却
水として再利用される。また、前記配管14Hには配管
14HBが連接され貯湯槽26へ導かれており、排熱高
温水が貯湯槽26内で吸熱され、低温水となって配管2
6Lを通り、前記配管24L内の低温水と合流して温水
熱交換器24の加熱用の排熱高温水と同様に、燃料電池
発電装置14の冷却水として利用される。
The exhaust heat high temperature water generated by the fuel cell power generation device 14 passes through the sequentially connected piping 14) 1.14HA, absorbs heat in the hot water heat exchanger 24, becomes low temperature, and is transferred to the piping 24L, 24LA.
, 24LB, and if necessary, is further cooled in a cooling tower 49, passes through a pipe 49L, and is reused as cooling water for the fuel cell power generation device 14. Further, a pipe 14HB is connected to the pipe 14H and guided to a hot water storage tank 26, and the waste heat high temperature water is absorbed in the hot water storage tank 26 and becomes low temperature water, which is transferred to the pipe 14H.
6L, joins with the low temperature water in the pipe 24L, and is used as cooling water for the fuel cell power generation device 14, similar to the waste heat high temperature water for heating the hot water heat exchanger 24.

また、燃料電池発電装置14で生成された排熱低温水は
、配管14Lを通って給湯予熱交換器28内で吸熱され
、より低温となって配管28Lを通り、前記配管24L
内の低温水と合流して、温水熱交換器24の加熱用の排
熱高温水と同様に燃料電池14の冷却水として利用され
る。
In addition, the waste heat low temperature water generated by the fuel cell power generation device 14 passes through the pipe 14L, absorbs heat in the hot water preheating exchanger 28, becomes lower temperature, passes through the pipe 28L, and passes through the pipe 24L.
It is used as cooling water for the fuel cell 14 in the same way as the waste heat high temperature water for heating the hot water heat exchanger 24.

冷房用の冷水は吸収式冷凍機23で冷却され、冷水サプ
ライヘッダー30を介した配管23Cを通って空調機に
供給される。すなわち空調機内冷水コイルで吸熱し、冷
水レタンヘッダー32を介した配管23Lを通り、吸収
式冷凍機23へ戻って循環するようになっている。
Cold water for air conditioning is cooled by the absorption chiller 23, and is supplied to the air conditioner through a pipe 23C via a cold water supply header 30. That is, the cold water coil in the air conditioner absorbs heat, passes through the pipe 23L via the cold water header 32, and returns to the absorption refrigerator 23 for circulation.

暖房用の温水は温水熱交換器24で加熱され、34を介
した配管24Hを通って空調機に供給される。すなわち
空調機内温水コイルで放熱し、温水レタンヘッダー36
を介した配管24Lを通り、温水熱交換器24へ戻って
循環するようになっている。
Hot water for heating is heated by the hot water heat exchanger 24, and is supplied to the air conditioner through the pipe 24H via 34. In other words, the heat is radiated by the hot water coil inside the air conditioner, and the hot water retan header 36
The hot water heat exchanger 24 is circulated through the piping 24L via the hot water heat exchanger 24.

また、給湯予熱交換器28には補給水が供給され、給湯
予熱交換器28で予熱された補給水は配管28Lを通っ
て貯湯槽26に供給され、貯湯槽26内でさらに加熱さ
れ、循環ポンプ3Bを介して配管26Hを通って給湯し
、余った熱湯は配管26Lを通って貯゛湯槽26へ戻る
ようになっている。
Also, makeup water is supplied to the hot water preheating exchanger 28, and the makeup water preheated by the hot water preheating exchanger 28 is supplied to the hot water storage tank 26 through the piping 28L, is further heated in the hot water storage tank 26, and is pumped into the circulation pump. Hot water is supplied through pipe 26H via pipe 3B, and excess hot water returns to hot water tank 26 through pipe 26L.

次に、正常時は燃料電池発電装置14で発電された直流
は接点43を介した配線14Eを流れ。
Next, during normal operation, the direct current generated by the fuel cell power generator 14 flows through the wiring 14E via the contact 43.

インバータ44で交流に変換され、循環ポンプ38へ給
電されるようになっている。また、燃料電池発電装置1
4で発電した直流は電力負荷の小さい時に、接点45を
介した配線14EAを流れてバッテリ46で充電可能と
なっている。燃料電池がダウンするなどの非常時にはバ
ッテリ46は接点48を介した配線14EHによってイ
ンバータ44へ給電可能となっている。また、保安電源
として他の必要な電気機器にも給電される。
The inverter 44 converts the power into alternating current, which is then supplied to the circulation pump 38. In addition, fuel cell power generation device 1
When the power load is small, the direct current generated at 4 flows through the wiring 14EA via the contact 45 and can be charged by the battery 46. In an emergency such as when the fuel cell goes down, the battery 46 can supply power to the inverter 44 through the wiring 14EH via the contact 48. It also supplies power to other necessary electrical equipment as a safety power source.

次に、第2図に従ってリフオーマ12及び燃料電池発電
装置14の詳細な構成を説明する。
Next, the detailed configurations of the reformer 12 and the fuel cell power generation device 14 will be explained according to FIG.

燃料電池70は燃料極70A、空気極70B及び燃料電
池70を冷却する熱交換器70Cを備えている。
The fuel cell 70 includes a fuel electrode 70A, an air electrode 70B, and a heat exchanger 70C that cools the fuel cell 70.

天然ガスは改質炉72により改質されて「)ツチ水素が
生成され、燃料ガス冷却器74により冷却され、次いで
燃料ガス気水分離器76により水素ガスが分離されて燃
料極70Aに供給されるようになっている。燃料極70
Aで酸素と反応しなかった水素ガスは改質炉72に供給
されて改質炉72の燃料とされる。戻り高温水は燃料ガ
ス冷却器74により加熱されて約80@になる。
Natural gas is reformed in a reforming furnace 72 to produce hydrogen, which is cooled by a fuel gas cooler 74, and then hydrogen gas is separated by a fuel gas steam separator 76 and supplied to the fuel electrode 70A. Fuel electrode 70
The hydrogen gas that did not react with oxygen in A is supplied to the reforming furnace 72 and used as fuel for the reforming furnace 72. The returned high-temperature water is heated by the fuel gas cooler 74 to about 80°C.

空気は低圧空気圧縮機78により圧縮され、圧縮によっ
て生ずる熱が圧縮機中間冷却器80によって吸熱され、
さらに高圧空気圧縮機82により加圧されて空気極70
Bに供給される。空気極70Bで水素と反応しなかった
空気は空気極出口ガス冷却器84で吸熱され、次いでそ
の水分が空気極出口ガス気水分離器86により取り除か
れた後改質炉72へ供給されて、燃料極70Aからの水
素ガスを燃やすようになっている。戻り低温水の一部は
空気極出口ガス冷却器84をも通り、約、40′″Cに
加熱される。
The air is compressed by a low-pressure air compressor 78, and the heat generated by the compression is absorbed by a compressor intercooler 80.
Furthermore, the air electrode 70 is pressurized by a high-pressure air compressor 82.
B is supplied. The air that has not reacted with hydrogen at the air electrode 70B is heat-absorbed by the air electrode outlet gas cooler 84, and then its moisture is removed by the air electrode outlet gas steam water separator 86, and then supplied to the reforming furnace 72. Hydrogen gas from the fuel electrode 70A is burned. A portion of the returning low temperature water also passes through the cathode outlet gas cooler 84 and is heated to approximately 40'''C.

電池循環水気水難器96より発生する蒸気の余剰分は、
余剰蒸気復水器94により冷却されて凝縮水とされる。
The excess steam generated from the battery circulation water/steam water tank 96 is
It is cooled by the surplus steam condenser 94 and becomes condensed water.

戻り蒸気凝縮水は電池循環水気水分離器96に供給され
る。電池循環水気水分離器9・6内の冷却水は熱交換器
70Cを通って加熱され、蒸気となって冷暖房給湯装置
に利用される。
The return steam condensed water is supplied to the battery circulating water/steam separator 96 . The cooling water in the battery circulation water/steam separators 9 and 6 is heated through the heat exchanger 70C, and is turned into steam and used for the air conditioning/heating/water heating system.

また、この蒸気の一部は改質炉72にも供給される。前
記余剰蒸気復水器94を通る配管はループを形成してお
り、余剰蒸気復水器94で加熱された温水の一部は高温
水として冷暖房装置へ利用され、残りは前記ループの一
部に形成された冷却塔97で冷却され、戻り低温水の一
部と合流して余剰蒸気復水器94へ流れるようになって
いる。
A part of this steam is also supplied to the reforming furnace 72. The piping passing through the surplus steam condenser 94 forms a loop, and part of the hot water heated by the surplus steam condenser 94 is used as high-temperature water for the air conditioning system, and the rest is used in a part of the loop. It is cooled in the formed cooling tower 97, merges with a portion of the returned low-temperature water, and flows to the surplus steam condenser 94.

改質炉72での燃焼ガスは高圧排気タービン88、低圧
排気タービン90を介して排気塔92から大気へ排出さ
れるようになっている。
The combustion gas in the reforming furnace 72 is discharged from the exhaust tower 92 to the atmosphere via a high pressure exhaust turbine 88 and a low pressure exhaust turbine 90.

このようにして排熱低温水、排熱高温水及び排熱蒸気が
各々独立して生成される。
In this way, waste heat low temperature water, waste heat high temperature water, and waste heat steam are each independently generated.

次に、上記の如く構成された第1実施例の作用を第3図
乃至第5図に示す制御フローチャートに従って説明する
Next, the operation of the first embodiment configured as described above will be explained with reference to the control flowcharts shown in FIGS. 3 to 5.

第3図には吸収式冷凍機23へ供給する蒸気の制御フロ
ーチャートが示されており、燃料電池発電装置14から
排熱蒸気を供給しくステップ300)、この蒸気で充分
な場合、すなわち、一定時間使用後吸収式冷凍機23内
に設けられた図示しない温度計により検出された温度が
一定値T2未満となった場合には(ステップ302)、
ボイラ25からの蒸気を用いない、吸収式冷凍機23か
らの蒸気要求があればステップ300へ戻る(ステップ
304)、前記温度が一定値T2以上である場合には、
天然ガスlOが使用可能であるとき(ステップ308)
、ボイラ25からの蒸気も利用する(ステップ308)
、吸収式冷凍機23からの蒸気要求がなくなればメイン
ルーチンへリターンし、次回の要求を待つ。
FIG. 3 shows a flowchart for controlling steam supplied to the absorption chiller 23. In step 300), exhaust heat steam is supplied from the fuel cell power generation device 14, and if this steam is sufficient, that is, for a certain period of time. If the temperature detected by a thermometer (not shown) provided in the absorption chiller 23 after use becomes less than a certain value T2 (step 302),
If there is a request for steam from the absorption chiller 23 that does not use steam from the boiler 25, the process returns to step 300 (step 304); if the temperature is above the constant value T2,
When natural gas lO is available (step 308)
, steam from the boiler 25 is also used (step 308).
When there is no longer a request for steam from the absorption chiller 23, the process returns to the main routine and waits for the next request.

したがって、燃料電池発電装置14の排熱が吸収式冷凍
@23に有効利用されることになる。
Therefore, the exhaust heat of the fuel cell power generation device 14 is effectively utilized for absorption refrigeration@23.

次に、WS4図には温水熱交換器24での吸熱制御フロ
ーチャートが示されており、排熱高温水を温水熱交換器
24へ流して戻り温水を加熱しくステップ400)、燃
料電池発電装置14からの排熱高温水で充分な場合、す
なわち、一定時間使用後温水熱交換器24内に設けられ
た図示しない温度計により検出された温度が一定値T3
以上となった場合には(ステップ402)蒸気を用いな
い、温水熱交換器24の温水出口温度が一定値以下であ
ればステップ400へ戻る(ステップ404)、前記ス
テップ402での温度が一定値T3未満である場合には
、排熱蒸気が余っているかどうかを確認しくステップ4
0B)、余っていれば次に排熱蒸気を利用する(ステッ
プ408)、この排熱蒸気を用いても不充分な場合、す
なわち前記同様に一定時間使用後温水熱交換器24の温
度が一定値T3未満である場合には(ステップ410)
、天然ガス10が使用可能であるとき(ステップ412
)、ボイラ25からの蒸気も利用する(ステップ414
)。
Next, Figure WS4 shows a flowchart for controlling heat absorption in the hot water heat exchanger 24, in which the exhaust heat high temperature water is flowed to the hot water heat exchanger 24 to heat the returning hot water (step 400), and the fuel cell power generation device 14 When the exhaust heat high temperature water from the hot water heat exchanger 24 is sufficient, that is, after a certain period of use, the temperature detected by a thermometer (not shown) installed in the hot water heat exchanger 24 reaches a constant value T3.
If the temperature is above (step 402), steam is not used. If the hot water outlet temperature of the hot water heat exchanger 24 is below a certain value, the process returns to step 400 (step 404). The temperature at step 402 is a constant value. If it is less than T3, check whether there is any waste heat steam left.Step 4
0B), if there is any leftover, then the exhaust heat steam is used (step 408); if this exhaust heat steam is insufficient, that is, the temperature of the hot water heat exchanger 24 remains constant after being used for a certain period of time as described above. If it is less than the value T3 (step 410)
, when natural gas 10 is available (step 412
), steam from the boiler 25 is also utilized (step 414
).

したがって、燃料電池発電装置14の排熱が温水熱交換
器24に有効利用されることになる。
Therefore, the exhaust heat of the fuel cell power generation device 14 is effectively used in the hot water heat exchanger 24.

次に、第5図には貯湯槽26及び給湯予熱交換器28の
制御フローチャートが示されており、最初は燃料電池発
電装置14かもの排熱低温水で給湯予熱交換器28内の
補給水を予熱する(ステップ5OO)。
Next, FIG. 5 shows a control flowchart for the hot water storage tank 26 and the hot water preheating exchanger 28. Initially, the make-up water in the hot water preheating exchanger 28 is supplied with waste heat low temperature water from the fuel cell power generation device 14. Preheat (step 5OO).

したがって、燃料電池発電装置14からの排熱低温水さ
えも有効に利用することができることになる。
Therefore, even the waste heat low temperature water from the fuel cell power generation device 14 can be effectively used.

予熱された給湯交換器28内の温水は貯湯槽26内に供
給される(ステップ502)、次いで排熱高温水が余っ
ている場合には(ステップ504)、排熱高温水で貯湯
槽2“6内の温水を加熱する(ステップ50B)、この
加熱によっても加熱不充分であるときは(ステップ50
8)、排熱蒸気が余っているかどうかを確認しくステッ
プ51O)、余っていれば貯湯槽26内の温水を燃料電
池発電装置14からの排熱蒸気でも加熱する(ステップ
512)、この加熱で充分な場合(特に夏期の場合)、
すなわち、一定時間使用後貯湯槽26内に設けられた図
示しない温度計により検出された温度が一定値T4以上
となった場合には、ボイラ25からの蒸気を用いない(
ステップ514)、排熱蒸気で不充分な場合には、天然
ガスlOを使用可能であるとき(ステップ516)、ボ
イラ25からの蒸気も利用し、加熱が充分になるまでこ
の蒸気で加熱を続ける(ステップ518゜520)。
The preheated hot water in the hot water exchanger 28 is supplied to the hot water storage tank 26 (step 502), and then, if there is excess waste heat high temperature water (step 504), the waste heat high temperature water is supplied to the hot water storage tank 26. 6 (step 50B), and if this heating is insufficient (step 50B).
8) Check whether there is any waste heat steam remaining (step 51O); if there is, heat the hot water in the hot water tank 26 with the waste heat steam from the fuel cell power generation device 14 (step 512); with this heating. If there is enough (especially in the summer),
That is, if the temperature detected by a thermometer (not shown) installed in the hot water storage tank 26 after a certain period of use reaches a certain value T4 or more, the steam from the boiler 25 is not used (
Step 514), if the exhaust heat steam is insufficient, when natural gas lO is available (step 516), steam from the boiler 25 is also utilized and heating is continued with this steam until the heating is sufficient. (Steps 518 and 520).

したがって、燃料電池発電装置114内の排熱が貯湯槽
26及び給湯予熱交換器28に有効利用されることにな
る。
Therefore, the exhaust heat within the fuel cell power generation device 114 is effectively used in the hot water storage tank 26 and the hot water supply preheating exchanger 28.

次に、給電については、通常は接点43を閉路して燃料
電池発電装置14で発電された直流をインバータ44で
交流に変換し各機器へ電力を供給する。軽負荷時には接
点45を閉路してバッテリ46を充電する。燃料電池発
電装置14が故障して停電したときは接点43を開路し
てバッテリ46からのみ保安機器を対象に給電する。
Next, regarding power supply, normally the contact 43 is closed and the DC generated by the fuel cell power generator 14 is converted into AC by the inverter 44 to supply power to each device. When the load is light, the contact 45 is closed to charge the battery 46. When the fuel cell power generator 14 fails and a power outage occurs, the contact 43 is opened and power is supplied only from the battery 46 to the safety equipment.

次に、第6図に従って本発明の第2実施例を説明する。Next, a second embodiment of the present invention will be described according to FIG.

この第2実施例では第1実施例よりも大型の股。This second embodiment has a larger crotch than the first embodiment.

備となっており、冷房用循環路内に冷水竪型蓄熱槽50
を設(す、暖房用循環路内に温水竪型蓄熱槽52を設け
ている。また、冷房用の戻り水及び暖房用の戻り水が有
する熱を回収して給湯予熱交換器28にこの熱を供給す
るために、給湯熱交換器58、同じく冷水又は温水竪型
蓄熱槽に供給するために主熱交換器56、補助熱交換器
54を備えた全電力可逆型熱回収式空気熱源ヒートポン
プ60を設けている。他の点は第1実施例の場合と同様
である。
A cold water vertical heat storage tank 50 is installed in the cooling circulation path.
A hot water vertical heat storage tank 52 is provided in the heating circulation path.In addition, the heat contained in the return water for cooling and the return water for heating is recovered and transferred to the hot water preheating exchanger 28. An all-power reversible heat recovery air source heat pump 60 is equipped with a hot water heat exchanger 58 for supplying cold water or hot water, and a main heat exchanger 56 and an auxiliary heat exchanger 54 for supplying cold water or hot water to a vertical heat storage tank. Other points are the same as in the first embodiment.

[発明の効果] 本発明に係る燃料電池発電冷暖房給湯装置では、水素・
酸素燃料電池発電装置の排熱を排熱蒸気、排熱高温水及
び排熱低温水に区分し排熱で足りない分をボイラの蒸気
で補うようになっており、しかも用途に応じ排熱蒸気、
排熱高温水及び排熱低温水の利用手順を定めて排熱を利
用するようになっているので、排熱の利用率を高めるこ
とができ有効利用を図ることができるという優れた効果
を有する。
[Effect of the invention] In the fuel cell power generation air conditioning/heating and hot water supply system according to the present invention, hydrogen/
The exhaust heat of the oxygen fuel cell power generation equipment is divided into exhaust heat steam, exhaust heat high temperature water, and exhaust heat low temperature water, and the insufficient amount of exhaust heat is supplemented with steam from the boiler. ,
Since the procedure for using waste heat high temperature water and waste heat low temperature water is established and waste heat is used, it has the excellent effect of increasing the utilization rate of waste heat and making it possible to use it effectively. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る燃料電池発電冷暖房給湯装置の実
施例の構成を示すブロック図、第2図は第1図のリフオ
ーマ及び燃料電池発電装置の詳細を示すブロック図、第
3図乃至第1図は制御フローチャート、第1図は本発明
の第2実施例の構成を示すブロック図である。 10・・・天然ガス。 12・φ・リフオーマ、 14・・・燃料電池発電装置、 23・・・吸収式冷凍機、 24・・・温水熱交換器、 2511・・ボイラ、 26・Φ・貯湯槽、 28・・・給湯予熱交換器。
FIG. 1 is a block diagram showing the configuration of an embodiment of the fuel cell power generation cooling, heating, and hot water supply system according to the present invention, FIG. 2 is a block diagram showing details of the reheater and fuel cell power generation system shown in FIG. FIG. 1 is a control flowchart, and FIG. 1 is a block diagram showing the configuration of a second embodiment of the present invention. 10...Natural gas. 12・φ・Reformer, 14・・Fuel cell power generator, 23・・Absorption chiller, 24・・Hot water heat exchanger, 2511・・Boiler, 26・φ・Hot water storage tank, 28・・Hot water supply Preheat exchanger.

Claims (4)

【特許請求の範囲】[Claims] (1)燃料ガスを改質してリッチ水素を生成するリフォ
ーマと、前記リッチ水素を用いて直流を発電する燃料電
池発電装置と、燃料ガスの燃焼熱で蒸気を発生させるボ
イラと、燃料電池発電装置の排熱を排熱蒸気、排熱高温
水及び排熱低温水に区分し排熱で足りない分をボイラの
蒸気で補う冷暖房給湯装置と、を有することを特徴とす
る燃料電池発電冷暖房給湯装置。
(1) A reformer that reforms fuel gas to generate rich hydrogen, a fuel cell power generation device that generates direct current using the rich hydrogen, a boiler that generates steam using the combustion heat of the fuel gas, and a fuel cell power generation device. A fuel cell power generation air conditioning, heating, and hot water supply system comprising: an air conditioning, heating, and water supply system that divides the exhaust heat of the device into waste heat steam, waste heat high temperature water, and waste heat low temperature water, and supplements the amount that is insufficient in the exhaust heat with steam from a boiler. Device.
(2)冷暖房給湯装置は、排熱蒸気で足りない分をボイ
ラの蒸気で補う吸収式冷凍機を備えた特許請求の範囲第
1項記載の燃料電池発電冷暖房給湯装置。
(2) The fuel cell power generation air conditioning, heating and water supply system according to claim 1, wherein the heating and cooling water supply system is equipped with an absorption chiller that makes up for the lack of exhaust heat steam with steam from a boiler.
(3)冷暖房給湯装置は、排熱高温水で足りない分を排
熱蒸気で補い、これらで足りない分をボイラの蒸気で補
う暖房用熱交換器を備えた特許請求の範囲第1項又は第
2項記載の燃料電池発電冷暖房給湯装置。
(3) The air-conditioning, heating, and hot water supply system is provided with a heating heat exchanger that makes up for the lack of high-temperature waste heat water with waste heat steam, and makes up for the lack of these with steam from the boiler, or 2. The fuel cell power generation air conditioning, heating, and hot water supply device according to item 2.
(4)冷暖房給湯装置は、排熱低温水で予熱する予熱交
換器と、この予熱交換器で予熱された温水を排熱高温水
で加熱し、足りない分を排熱蒸気でさらにはボイラの蒸
気の順で加熱する給湯装置を備えた特許請求の範囲第1
項、第2項又は第3項記載の燃料電池発電冷暖房給湯装
置。
(4) The air-conditioning, heating, and water supply system includes a preheating exchanger that preheats with wastewater low temperature water, and heats the hot water preheated by this preheating exchanger with wastewater high temperature water, and uses waste heat steam to make up for the insufficient amount, and then heats the boiler. Claim 1 comprising a water heater that heats water in the order of steam.
3. The fuel cell power generation air conditioning, heating, and hot water supply system according to item 1, 2, or 3.
JP60032294A 1985-02-20 1985-02-20 Fuel cell power generation type hot water supplier for space cooling and heating Pending JPS61191824A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60032294A JPS61191824A (en) 1985-02-20 1985-02-20 Fuel cell power generation type hot water supplier for space cooling and heating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60032294A JPS61191824A (en) 1985-02-20 1985-02-20 Fuel cell power generation type hot water supplier for space cooling and heating

Publications (1)

Publication Number Publication Date
JPS61191824A true JPS61191824A (en) 1986-08-26

Family

ID=12354934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60032294A Pending JPS61191824A (en) 1985-02-20 1985-02-20 Fuel cell power generation type hot water supplier for space cooling and heating

Country Status (1)

Country Link
JP (1) JPS61191824A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01166468A (en) * 1987-12-23 1989-06-30 Mitsubishi Electric Corp Fuel cell power generation system
JPH0210664A (en) * 1988-06-27 1990-01-16 Mitsubishi Electric Corp Fuel cell water treatment system
JPH0210663A (en) * 1988-06-27 1990-01-16 Mitsubishi Electric Corp Fuel cell heat supply system
JPH0237262A (en) * 1988-07-26 1990-02-07 Agency Of Ind Science & Technol Device for utilizing waste heat of fuel battery
JPH06310163A (en) * 1993-04-28 1994-11-04 Shikoku Sogo Kenkyusho:Kk Fuel cell power generating system
WO2000012932A3 (en) * 1998-08-26 2000-06-02 Plug Power Inc Integrated fuel processor, furnace, and fuel cell system for providing heat and electrical power to a building
JP2001126741A (en) * 1999-10-25 2001-05-11 Sekisui Chem Co Ltd Energy supply apparatus
JP2002228296A (en) * 2001-01-31 2002-08-14 Daikin Ind Ltd Fuel cell-driven heat pump device
JP2015017713A (en) * 2013-07-08 2015-01-29 有限会社庄野環境デザインラボ Heat medium supplying method, heat medium production method, cogeneration device introduction method and cogeneration system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5747171A (en) * 1980-07-10 1982-03-17 Matsushita Electric Ind Co Ltd Air conditioning hot water feeder
JPS5828176A (en) * 1981-08-12 1983-02-19 Toshiba Corp Fuel-cell generation system
JPS5925853A (en) * 1982-08-05 1984-02-09 Canon Inc Recording liquid

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5747171A (en) * 1980-07-10 1982-03-17 Matsushita Electric Ind Co Ltd Air conditioning hot water feeder
JPS5828176A (en) * 1981-08-12 1983-02-19 Toshiba Corp Fuel-cell generation system
JPS5925853A (en) * 1982-08-05 1984-02-09 Canon Inc Recording liquid

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01166468A (en) * 1987-12-23 1989-06-30 Mitsubishi Electric Corp Fuel cell power generation system
JPH0210664A (en) * 1988-06-27 1990-01-16 Mitsubishi Electric Corp Fuel cell water treatment system
JPH0210663A (en) * 1988-06-27 1990-01-16 Mitsubishi Electric Corp Fuel cell heat supply system
JPH0237262A (en) * 1988-07-26 1990-02-07 Agency Of Ind Science & Technol Device for utilizing waste heat of fuel battery
JPH06310163A (en) * 1993-04-28 1994-11-04 Shikoku Sogo Kenkyusho:Kk Fuel cell power generating system
WO2000012932A3 (en) * 1998-08-26 2000-06-02 Plug Power Inc Integrated fuel processor, furnace, and fuel cell system for providing heat and electrical power to a building
JP2001126741A (en) * 1999-10-25 2001-05-11 Sekisui Chem Co Ltd Energy supply apparatus
JP2002228296A (en) * 2001-01-31 2002-08-14 Daikin Ind Ltd Fuel cell-driven heat pump device
JP4660933B2 (en) * 2001-01-31 2011-03-30 ダイキン工業株式会社 Fuel cell driven heat pump device
JP2015017713A (en) * 2013-07-08 2015-01-29 有限会社庄野環境デザインラボ Heat medium supplying method, heat medium production method, cogeneration device introduction method and cogeneration system

Similar Documents

Publication Publication Date Title
US8080344B2 (en) Fuel cell hybrid power generation system
KR101326105B1 (en) Electrolysis
CN102088099B (en) Combined cold-heat-power supplying circulation system driven by solid oxide fuel cell
US9328659B2 (en) Distributed combined cooling, heating and power generating apparatus and method with internal combustion engine by combining solar energy and alternative fuel
JP2018517233A (en) Thermal management method for high temperature steam electrolysis [SOEC], solid oxide fuel cell [SOFC] and / or reversible high temperature fuel cell [rSOC], and high temperature steam electrolysis [SOEC] apparatus, solid oxide fuel cell [SOFC] apparatus and Reversible high temperature fuel cell [rSOC] device
CN102456897B (en) Fuel cell electric heating cold supply system
KR101339672B1 (en) Heating and cooling system using heat from fuel cell
JPS61191824A (en) Fuel cell power generation type hot water supplier for space cooling and heating
Wang et al. 4E Analysis of a novel combined cooling, heating and power system coupled with solar thermochemical process and energy storage
KR101397622B1 (en) Waste heat recovery system for cooling tower of power plant by using feul cell
JPS6257072B2 (en)
JPH04169073A (en) Exhaust heat recovery method and device for fuel cell
JPH0260060A (en) Fuel cell system with exhaust heat energy recovery unit
JP2920018B2 (en) Fuel cell power generator
JPS61191825A (en) Fuel cell power generation type hot water supplier for space cooling and heating
JP5183118B2 (en) Power generation system
US20090320369A1 (en) Method of generating an energy source from a wet gas flow
WO2024119391A1 (en) Renewable energy utilization system based on nitrogen-free combustion and carbon dioxide circulation
JPH0377121B2 (en)
CN220673403U (en) Multi-energy co-supply system of data center
JPS585975A (en) Combined cycle in fuel cell generation unit
CN219547117U (en) Renewable energy source electrolysis energy storage system
JP4453226B2 (en) Waste heat utilization method and apparatus for fuel cell power generator
JPS6257073B2 (en)
EP4289989A1 (en) Method and apparatus for the utilisation of waste heat from an electrolysis reaction for the generation of steam