JPS6257073B2 - - Google Patents

Info

Publication number
JPS6257073B2
JPS6257073B2 JP56125241A JP12524181A JPS6257073B2 JP S6257073 B2 JPS6257073 B2 JP S6257073B2 JP 56125241 A JP56125241 A JP 56125241A JP 12524181 A JP12524181 A JP 12524181A JP S6257073 B2 JPS6257073 B2 JP S6257073B2
Authority
JP
Japan
Prior art keywords
heat exchanger
main body
cooling
cooled
phosphoric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56125241A
Other languages
Japanese (ja)
Other versions
JPS5828177A (en
Inventor
Mitsuo Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP56125241A priority Critical patent/JPS5828177A/en
Publication of JPS5828177A publication Critical patent/JPS5828177A/en
Publication of JPS6257073B2 publication Critical patent/JPS6257073B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】 この発明はりん酸形燃料電池発電プラントに係
り、特に排熱を有効に回収して動力化を行い、プ
ラントの効率向上を図つたりん酸形燃料電池発電
プラントに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a phosphoric acid fuel cell power generation plant, and particularly relates to a phosphoric acid fuel cell power generation plant that effectively recovers exhaust heat and converts it into power to improve plant efficiency. .

第1図は従来考えられたりん酸形燃料電池発電
プラントの概略構成を示すブロツク図で、以下に
その概要を説明する。
FIG. 1 is a block diagram showing a schematic configuration of a conventionally considered phosphoric acid fuel cell power generation plant, and the outline thereof will be explained below.

主燃料は主燃料管1より導入され、詳細を後述
する蒸気管2よりの蒸気と混合して改質器3に入
り、改質反応により水素濃度の高い(燃料の種類
により異なるが60〜80%)プロセスガスに改質さ
れ、図示してない一酸化炭素変成器を経て、燃料
電池本体4のアノード(燃料極)Aへ導かれる。
燃料極Aへ入る前に燃料極入口熱交換器5によ
り、除湿を行う。
The main fuel is introduced through the main fuel pipe 1, mixed with steam from the steam pipe 2, which will be described in detail later, and then enters the reformer 3, where the reformer has a high hydrogen concentration (60 to 80% depending on the type of fuel) due to the reforming reaction. %) process gas, and is guided to the anode (fuel electrode) A of the fuel cell main body 4 via a carbon monoxide shift converter (not shown).
Before entering the fuel electrode A, dehumidification is performed by the fuel electrode inlet heat exchanger 5.

電池本体4においては、H2+1/2O2→H2Oの反
応により水素と酸素を消費して水を生成するとと
もに、電気を発生し負荷6へ送られる。燃料極A
より排出されたプロセスガスは燃料極出口熱交換
器7により除湿され、残余のプロセスガスは、改
質器3の加熱用燃料源として改質器バーナ8へ送
られ、空気と燃焼して、改質器3に熱を与え燃焼
排ガスはタービン9へ送られる。
In the battery body 4, hydrogen and oxygen are consumed by the reaction H 2 +1/2O 2 →H 2 O to generate water, and electricity is generated and sent to the load 6. Fuel electrode A
The process gas discharged from the fuel electrode is dehumidified by the fuel electrode outlet heat exchanger 7, and the remaining process gas is sent to the reformer burner 8 as a fuel source for heating the reformer 3, where it is combusted with air and reformed. Heat is applied to the generator 3 and the combustion exhaust gas is sent to the turbine 9.

他方空気は上記のタービン9により駆動される
圧縮機10により昇圧・供給され、燃料電池本体
4のカソード(空気極)Cへ送られ上記の反応に
より電気を発生する。空気極Cより排出された使
用済空気は、空気極出口熱交換器11により除湿
され、タービン9へ送られる。タービン9により
圧縮された空気の一部は改質器3の燃焼用空気と
して導管12へ一部分岐される。
On the other hand, air is pressurized and supplied by the compressor 10 driven by the turbine 9, and is sent to the cathode (air electrode) C of the fuel cell main body 4, where the reaction described above generates electricity. The used air discharged from the air electrode C is dehumidified by the air electrode outlet heat exchanger 11 and sent to the turbine 9. A portion of the air compressed by the turbine 9 is branched into a conduit 12 as combustion air for the reformer 3 .

燃料電池本体4は冷却水により冷却される。冷
却水はポンプ13により供給され、電池本体4へ
送られてこれを冷却するとともに、冷却水の一部
は蒸発する。よつて気水分離器14に導かれここ
でスチームと熱水とに分離されたスチームは前述
の蒸気管2を通り改質器3への改質用スチームと
して用いられる。余剰のスチームは、熱交換器1
5により冷却されて、気水分離器14で分離され
た熱水とともにポンプ13へ送られる。熱交換器
5,7,11でそれぞれ回収された水もポンプ1
3へ送られて、燃料電池本体4の冷却に再び用い
られる。
The fuel cell main body 4 is cooled by cooling water. Cooling water is supplied by the pump 13 and sent to the battery body 4 to cool it, and a portion of the cooling water evaporates. The steam is then led to the steam separator 14, where it is separated into steam and hot water, which passes through the steam pipe 2 described above and is used as reforming steam to the reformer 3. Excess steam is transferred to heat exchanger 1
5 and sent to the pump 13 together with the hot water separated by the steam separator 14. The water recovered by heat exchangers 5, 7, and 11 is also pumped to pump 1.
3 and used again to cool the fuel cell main body 4.

熱交換器5,7,11,15を冷却するループ
は水または不凍液を用いて行う。ポンプ16で送
られた冷却液は冷却塔17で所定の温度にまで冷
却され、熱交換器11,7,5に並列に供給さ
れ、熱交換器15へは合流して入る。
The loop for cooling the heat exchangers 5, 7, 11, 15 is performed using water or antifreeze. The cooling liquid sent by the pump 16 is cooled to a predetermined temperature in the cooling tower 17, and is supplied to the heat exchangers 11, 7, and 5 in parallel, and then enters the heat exchanger 15 after merging.

従来例の構成の概略は以上の通りであるが、こ
こで問題となるのは、排熱を有効に利用せず、冷
却塔17より排出していることであり、省エネル
ギーの見地からこの有効活用が要望されていた。
The outline of the configuration of the conventional example is as above, but the problem here is that the exhaust heat is not used effectively and is discharged from the cooling tower 17. was requested.

本発明の目的は、上記の排熱を有効に回収して
動力化を計るボトミングサイクルを構成し、高効
率のりん酸形燃料電池発発プラントを提供するに
ある。
An object of the present invention is to provide a highly efficient phosphoric acid fuel cell power generation plant by configuring a bottoming cycle that effectively recovers the above-mentioned waste heat for motive power generation.

本発明の概要を述べると、りん酸形燃料電池発
電プラントの排熱ループの一部または全部に低沸
点媒体を用いて、低沸点媒体の一部または全部を
蒸発させて、低沸点媒体タービンを駆動させるも
のである。この場合に熱を有効に回収してタービ
ン動力を増加させる方法として、空気極出口の熱
交換器を先に冷却し、次いで燃料極入口の熱交換
器を冷却するように構成することに特徴がある。
To summarize the present invention, a low boiling point medium is used in part or all of the exhaust heat loop of a phosphoric acid fuel cell power plant, and part or all of the low boiling point medium is evaporated to generate a low boiling point medium turbine. It is what drives it. In this case, a method to effectively recover heat and increase turbine power is characterized by a configuration in which the heat exchanger at the air electrode outlet is cooled first, and then the heat exchanger at the fuel electrode inlet is cooled. be.

以下図面を参照して本発明を説明する。第2図
は本発明の一実施例を示す概略構成ブロツク図
で、第1図と同一部分には同一符号を付しその説
明は省略する。第1図と異なる部分は熱交換器1
1,7,5及び15の冷却ループで、各熱交換器
は凡て直列接続され、低沸点媒体例えばフレオン
113、フレオン114、フレオン11、フレオ
ン21等で冷却される。ポンプ23で供給された
低沸点媒体は、熱交換器へ送られる。まず空気極
出口熱交換器11を冷却し、次いで燃料極出口熱
交換器7を冷却し、更に燃料極入口熱交換器5を
冷却し、最後に電池本体冷却系熱交換器15を冷
却する。
The present invention will be explained below with reference to the drawings. FIG. 2 is a schematic block diagram showing an embodiment of the present invention, and the same parts as those in FIG. The parts that differ from Fig. 1 are heat exchanger 1.
In cooling loops 1, 7, 5 and 15, each heat exchanger is all connected in series and cooled with a low boiling point medium such as Freon 113, Freon 114, Freon 11, Freon 21, etc. The low boiling point medium supplied by the pump 23 is sent to the heat exchanger. First, the air electrode outlet heat exchanger 11 is cooled, then the fuel electrode outlet heat exchanger 7 is cooled, further the fuel electrode inlet heat exchanger 5 is cooled, and finally the cell main body cooling system heat exchanger 15 is cooled.

熱交換器15を出た低沸点媒体は少くともその
一部が気体となつているように、圧力、流量を選
択する。気液分離器18により分離された気体は
低沸点媒体タービン19を駆動して発電を行う。
タービン19より排出された低沸点媒体は冷却塔
20により凝縮し液体となり、ポンプ21により
昇圧される。気液分離器18で分離された低沸点
媒体液体は冷却塔22により所定の温度まで冷却
されポンプ23へ送られる。
The pressure and flow rate are selected so that at least a part of the low boiling point medium leaving the heat exchanger 15 is in the form of gas. The gas separated by the gas-liquid separator 18 drives a low boiling point medium turbine 19 to generate electricity.
The low boiling point medium discharged from the turbine 19 is condensed into a liquid by the cooling tower 20, and the pressure is increased by the pump 21. The low boiling point medium liquid separated by the gas-liquid separator 18 is cooled to a predetermined temperature by a cooling tower 22 and sent to a pump 23.

排熱部の熱交換器の配置を上記の如くすること
により排熱を有効に回収して動力化することが可
能となる。
By arranging the heat exchanger in the exhaust heat section as described above, it becomes possible to effectively recover exhaust heat and convert it into power.

燃料極出口の熱交換器7を設置しない場合は、
冷却ループの順序は、その熱交換器7を省略した
順序に冷却する。また、空気極出口熱交換器11
と燃料極出口熱交換器7とを並列に冷却し、次に
燃料極入口熱交換器5を冷却し、最後に電池本体
冷却系熱交換器15を冷却しても良い。
If the heat exchanger 7 at the fuel electrode outlet is not installed,
The order of the cooling loops is such that the heat exchangers 7 are cooled in the omitted order. In addition, the air electrode outlet heat exchanger 11
and the fuel electrode outlet heat exchanger 7 may be cooled in parallel, then the fuel electrode inlet heat exchanger 5 may be cooled, and finally the battery body cooling system heat exchanger 15 may be cooled.

以上本発明について詳細に説明したが、本発明
によれば従来冷却ループの冷却塔より排出してい
た熱を回収し、これを有効に利用するようにした
ので、高効率のりん酸形燃料電池発電プラントを
提供することができる。
The present invention has been described in detail above.According to the present invention, the heat that was conventionally discharged from the cooling tower of the cooling loop is recovered and used effectively, so that a highly efficient phosphoric acid fuel cell can be produced. Power generation plants can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来考えられた燃料電池発電プラント
の概略構成を示すブロツク図、第2図は本発明の
一実施例を示す概略構成ブロツク図である。 1……主燃料管、3……改質器、4……燃料電
池本体、5,7,11,15……熱交換器、19
……低沸点媒体タービン。
FIG. 1 is a block diagram showing a schematic configuration of a conventional fuel cell power generation plant, and FIG. 2 is a schematic block diagram showing an embodiment of the present invention. 1... Main fuel pipe, 3... Reformer, 4... Fuel cell main body, 5, 7, 11, 15... Heat exchanger, 19
...Low boiling point medium turbine.

Claims (1)

【特許請求の範囲】 1 りん酸形の燃料電池本体と、この電池本体に
供給される燃料の改質を行ないプロセスガスを生
ずる改質器と、前記電池本体の燃料極入口側に設
けられ、前記燃料極に供給されるプロセスガスの
湿度制御を行なう第1の熱交換器と、前記電池本
体の空気極の出口側に設けられ、前記空気極より
排出される気体の除湿を行なう第2の熱交換器
と、前記電池本体を冷却する冷却ループと、この
冷却ループに設けられる第3の熱交換器とを備え
たりん酸形燃料電池発電プラントにおいて、冷却
媒体として低沸点媒体を用い前記第1及び第3の
熱交換器を冷却すると共に前記低沸点媒体により
駆動されるタービンを備えた冷却ループを設け、
冷却の順序として先づ第2の熱交換器を、次に第
1の熱交換器を、更に第3の熱交換器を冷却する
ように構成したことを特徴とするりん酸形燃料電
池発電プラント。 2 りん酸形燃料電池本体と、この電池本体に供
給される燃料の改質を行ないプロセスガスを生ず
る改質器と、前記電池本体の燃料極入口側に設け
られ、前記燃料極に供給されるプロセスガスの湿
度制御を行なう第1の熱交換器と、前記電池本体
の空気極の出口側に設けられ、前記空気極より排
出される気体の除湿を行なう第2の熱交換器と、
前記電池本体を冷却する冷却ループと、この冷却
ループに設けられる第3の熱交換器と、前記電池
本体の燃料極の出口側に設けられ、前記燃料極よ
り排出される気体の除湿を行なう第4の熱交換器
とを備えたりん酸形燃料電池発電プラントにおい
て、冷却媒体として低沸点媒体を用い前記第1乃
至第4の熱交換器を冷却すると共に前記低沸点媒
体により駆動されるタービンを備えた冷却ループ
を設け、冷却の順序として先づ第2の熱交換器
を、次に第4の熱交換器を、更に第1の熱交換器
を、最後に第3の熱交換器を冷却するように構成
したことを特徴とするりん酸形燃料電池発電プラ
ント。 3 りん酸形燃料電池本体と、この電池本体に供
給される燃料の改質を行ないプロセスガスを生ず
る改質器と、前記電池本体の燃料極入口側に設け
られ、前記燃料極に供給されるプロセスガスの湿
度制御を行なう第1の熱交換器と、前記電池本体
の空気極の出口側に設けられ、前記空気極より排
出される気体の除湿を行なう第2の熱交換器と、
前記電池本体を冷却する冷却ループと、この冷却
ループに設けられる第3の熱交換器と、前記電池
本体の燃料極の出口側に設けられ、前記燃料極よ
り排出される気体の除湿を行なう第4の熱交換器
とを備えたりん酸形燃料電池発電プラントにおい
て、冷却媒体とし低沸点媒体を用い前記第1乃至
第4の熱交換器を冷却すると共に前記低沸点媒体
により駆動されるタービンを備えた冷却ループを
設け、冷却の順序として先づ第2の熱交換器と第
4の熱交換器とを並列に冷却し、次に第1の熱交
換器を、更に第3の熱交換器を冷却するように構
成したことを特徴とするりん酸形燃料電池プラン
ト。
[Scope of Claims] 1. A phosphoric acid type fuel cell main body, a reformer for reforming the fuel supplied to the cell main body and producing a process gas, and a reformer provided on the fuel electrode inlet side of the cell main body, a first heat exchanger that controls the humidity of the process gas supplied to the fuel electrode; and a second heat exchanger that is provided on the outlet side of the air electrode of the battery body and that dehumidifies the gas discharged from the air electrode. In a phosphoric acid fuel cell power generation plant comprising a heat exchanger, a cooling loop for cooling the cell main body, and a third heat exchanger provided in this cooling loop, a low boiling point medium is used as a cooling medium. a cooling loop comprising a turbine for cooling the first and third heat exchangers and driven by the low boiling point medium;
A phosphoric acid fuel cell power generation plant characterized in that the order of cooling is such that first the second heat exchanger is cooled, then the first heat exchanger, and then the third heat exchanger. . 2. A phosphoric acid fuel cell main body, a reformer for reforming the fuel supplied to the cell main body and producing a process gas, and a reformer provided on the fuel electrode inlet side of the cell main body and supplied to the fuel electrode. a first heat exchanger that controls the humidity of process gas; a second heat exchanger that is provided on the outlet side of the air electrode of the battery body and that dehumidifies the gas discharged from the air electrode;
a cooling loop for cooling the battery main body; a third heat exchanger provided in this cooling loop; and a third heat exchanger provided on the outlet side of the fuel electrode of the battery main body for dehumidifying gas discharged from the fuel electrode. In a phosphoric acid fuel cell power generation plant comprising four heat exchangers, a low boiling point medium is used as a cooling medium to cool the first to fourth heat exchangers and a turbine driven by the low boiling point medium. A cooling loop is provided in which the cooling order is such that the second heat exchanger is cooled first, then the fourth heat exchanger is cooled, then the first heat exchanger is cooled, and finally the third heat exchanger is cooled. A phosphoric acid fuel cell power generation plant characterized by being configured to. 3. A phosphoric acid fuel cell main body, a reformer for reforming the fuel supplied to the cell main body and producing a process gas, and a reformer provided on the fuel electrode inlet side of the cell main body and supplied to the fuel electrode. a first heat exchanger that controls the humidity of process gas; a second heat exchanger that is provided on the outlet side of the air electrode of the battery body and that dehumidifies the gas discharged from the air electrode;
a cooling loop for cooling the battery main body; a third heat exchanger provided in this cooling loop; and a third heat exchanger provided on the outlet side of the fuel electrode of the battery main body for dehumidifying gas discharged from the fuel electrode. In the phosphoric acid fuel cell power generation plant, the first to fourth heat exchangers are cooled using a low boiling point medium as a cooling medium, and a turbine driven by the low boiling point medium is cooled. A cooling loop is provided, and the cooling order is such that first the second heat exchanger and the fourth heat exchanger are cooled in parallel, then the first heat exchanger is cooled, and then the third heat exchanger is cooled. A phosphoric acid fuel cell plant configured to cool a phosphoric acid fuel cell plant.
JP56125241A 1981-08-12 1981-08-12 Fuel-cell generation plant Granted JPS5828177A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56125241A JPS5828177A (en) 1981-08-12 1981-08-12 Fuel-cell generation plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56125241A JPS5828177A (en) 1981-08-12 1981-08-12 Fuel-cell generation plant

Publications (2)

Publication Number Publication Date
JPS5828177A JPS5828177A (en) 1983-02-19
JPS6257073B2 true JPS6257073B2 (en) 1987-11-28

Family

ID=14905275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56125241A Granted JPS5828177A (en) 1981-08-12 1981-08-12 Fuel-cell generation plant

Country Status (1)

Country Link
JP (1) JPS5828177A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6041770A (en) * 1983-08-17 1985-03-05 Hitachi Ltd Fuel cell system
JPH0687422B2 (en) * 1984-01-30 1994-11-02 株式会社島津製作所 Fuel cell power generation system
JPS61218072A (en) * 1985-03-25 1986-09-27 Hitachi Ltd Thermal power generating equipment
DE19608738C1 (en) * 1996-03-06 1997-06-26 Siemens Ag Method of utilising e.g. low temp. polymer membrane (PEM) fuel cell enthalpy
JP4534401B2 (en) * 2001-09-10 2010-09-01 株式会社日立製作所 Fuel cell and its compressed air supply system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51104539A (en) * 1975-02-12 1976-09-16 United Technologies Corp
JPS5329534A (en) * 1976-08-30 1978-03-18 United Technologies Corp Power generating equipment by high pressure high temperature fuel cell with bottoming cycle and metod of operating thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51104539A (en) * 1975-02-12 1976-09-16 United Technologies Corp
JPS5329534A (en) * 1976-08-30 1978-03-18 United Technologies Corp Power generating equipment by high pressure high temperature fuel cell with bottoming cycle and metod of operating thereof

Also Published As

Publication number Publication date
JPS5828177A (en) 1983-02-19

Similar Documents

Publication Publication Date Title
RU2119700C1 (en) Method and plant for cogeneration of electrical and mechanical energy
CA1043857A (en) Pressurized fuel cell power plant with steam powered compressor
US4333992A (en) Method for producing steam from the liquid in a moist gas stream
JP3315719B2 (en) Chemical loop combustion power plant system
US4041210A (en) Pressurized high temperature fuel cell power plant with bottoming cycle
CA1043859A (en) Pressurized fuel cell power plant
JP2880925B2 (en) Hydrogen combustion gas turbine plant
JPH0434861A (en) Fused carbonate type fuel cell power generator having co2 separator utilizing liquefied natural gas coldness
JPS6257072B2 (en)
JP3924243B2 (en) Fuel cell combined power generation system
JPH11297336A (en) Composite power generating system
JPH1126004A (en) Power generating system
JP2000200617A (en) Fuel-cell composite power generating plant system
JPS6185773A (en) Composite fuel battery power generation facility
JPH08504049A (en) Fuel cell exhaust heat utilization method and heat utilization device implementing this method
JPH06223851A (en) Fuel cell and gas turbine combined generation system
JPS6257073B2 (en)
JPS60158561A (en) Fuel cell-thermal power generating complex system
JPH04169073A (en) Exhaust heat recovery method and device for fuel cell
JPH0260060A (en) Fuel cell system with exhaust heat energy recovery unit
JP5183118B2 (en) Power generation system
JPH03258902A (en) Electric power plant
JP2004224661A (en) Electric power generation/hydrogen preparation combination plant
JPH11176455A (en) Fuel cell composite power generating device
JPH0534783B2 (en)