JPS6041770A - Fuel cell system - Google Patents
Fuel cell systemInfo
- Publication number
- JPS6041770A JPS6041770A JP58149188A JP14918883A JPS6041770A JP S6041770 A JPS6041770 A JP S6041770A JP 58149188 A JP58149188 A JP 58149188A JP 14918883 A JP14918883 A JP 14918883A JP S6041770 A JPS6041770 A JP S6041770A
- Authority
- JP
- Japan
- Prior art keywords
- fuel cell
- water
- steam
- heat exchanger
- supplied
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
- H01M8/0606—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
- H01M8/0612—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
この発明は、天然カス等のガスをエネルギー源として所
定の電力k 雨る燃料電池装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a fuel cell device that generates a predetermined amount of electric power using gas such as natural scum as an energy source.
上記の燃料電池装置においては、化学二坏ルギーを区気
エネルギーに変換する際にかなりの熱が発生するので、
従来はこの熱を排熱回収用熱交換器へ導いて温水として
利用していた。In the above fuel cell device, a considerable amount of heat is generated when converting chemical energy into air energy.
Conventionally, this heat was led to a heat exchanger for exhaust heat recovery and used as hot water.
また、上記発生熱を吸収式冷却器の熱源として利用し、
冷気金得るように構成したものtま、たとえば、特開昭
50−77842号にて既知である。In addition, the generated heat is used as a heat source for an absorption cooler,
A device configured to obtain cold air is known, for example, from JP-A-50-77842.
ところで上記の燃料電池装置は、たとえば、砂漠のよう
な水分の補給が困難な場所に設置される場合が多い。こ
のような場合、従来のものにあっては、天然ガスと混合
し、改質装置へ供給する水分の生成については、余り考
慮がはられれているとはい\がたく、純水装置を別置し
ていた。また、このような装置全設置しない場合には、
燃料電池装置内から発生される排ガスを苧冷によって温
度金工けるよう構成しているのが普通であるため、十分
に水分を回収することができず、このため腐食面からし
て不利な改質装置からの燃焼排ガスからも水分の回収を
行なわねばならないという不都合があった。Incidentally, the above-mentioned fuel cell device is often installed in a place such as a desert where it is difficult to replenish water. In such cases, conventional methods do not give much consideration to the generation of water that is mixed with natural gas and supplied to the reformer, so it is difficult to install a separate water purifier. Was. In addition, if all such devices are not installed,
Normally, the exhaust gas generated from inside the fuel cell device is heated to temperature by cooling the exhaust gas, so it is not possible to recover enough moisture, which is disadvantageous from a corrosion standpoint. There is an inconvenience in that moisture must also be recovered from the combustion exhaust gas from the device.
この発明の主目的は、水分の補給が実質的に困難な場所
に設置することのできる燃料電池装置を提供することに
ある。The main object of the present invention is to provide a fuel cell device that can be installed in locations where it is substantially difficult to replenish water.
この発明の他の目的は、燃料電池装置内の水分の回収を
効率的に行なうことのできる燃料電池装置全提供するこ
とにある。Another object of the present invention is to provide an entire fuel cell device that can efficiently recover moisture within the fuel cell device.
この発明の更に他の目的は、上記各目的全達成すると共
に燃料電池の水素極へ供給される改質カスの水素分圧を
下げることのない燃料′就池装Ffk提供するところに
ある。Still another object of the present invention is to provide a fuel cell system Ffk that achieves all of the above objects and does not lower the hydrogen partial pressure of the reformed sludge supplied to the hydrogen electrode of the fuel cell.
上記目的を達成するために、この発明にあっては、吸収
式冷却器を燃料電池に組みこみ、燃料電池からの排熱を
上記冷却器に与え冷気を得るようにし、この冷気の一部
または全部を燃料電池の酸素極から発生する排ガスライ
ンと燃料電池のシフトコンハータから水素極へ至るガス
ラインの両方もしくはいずれか一方に導くように444
成し、これによって得られた水を天然ガスの改質装置に
供給できるように構成した。In order to achieve the above object, the present invention incorporates an absorption type cooler into a fuel cell, gives exhaust heat from the fuel cell to the cooler to obtain cold air, and provides a portion or portion of this cold air. 444 so as to lead all of the gas to either or both of the exhaust gas line generated from the oxygen electrode of the fuel cell and the gas line leading from the shift converter of the fuel cell to the hydrogen electrode.
The system was constructed so that the water thus obtained could be supplied to a natural gas reformer.
本発明において、上記酸素極からの排ガスライン、水素
極へ至るガスラインに圧目した理由は下記による、
すなわち、燃料電池装置内には水分回収が可能なライン
として上記酸素極からの排ガスライン、上り己水素極へ
至るガスライン、リフオーマ燃焼部排ガスラインがある
。In the present invention, the reason for concentrating the exhaust gas line from the oxygen electrode and the gas line leading to the hydrogen electrode is as follows.In other words, the exhaust gas line from the oxygen electrode and the gas line from the oxygen electrode are included in the fuel cell device as lines capable of recovering moisture. There is a gas line leading to the upstream hydrogen pole, and an exhaust gas line from the rifoma combustion section.
このうち、リフオーマ燃焼部排ガスラインには水蒸気と
共に多数の二酸化炭素やNOXが含まれている。従って
、回収水分には、炭酸イオン、硝酸イオン等の腐蝕性の
イオンが含1れている。Among these, the exhaust gas line of the re-former combustion section contains a large amount of carbon dioxide and NOx along with water vapor. Therefore, the recovered water contains corrosive ions such as carbonate ions and nitrate ions.
これに対して、酸素極からの排カスラインには、上記の
ような腐蝕性のイオンを発生するカスは含まれていない
。On the other hand, the waste line discharged from the oxygen electrode does not contain the above-mentioned waste that generates corrosive ions.
1だ、水素極へ至るガスラインには、二酸化炭素が含ま
れているもののその量はきわめて少ないため腐蝕性に関
し問題はない。1. Although the gas line leading to the hydrogen electrode contains carbon dioxide, the amount is extremely small, so there is no problem with corrosivity.
以下、この発明の実施例ケ図にもとついて説明する。図
中、装置内を流れる気体と液体の区別を明らかにするた
めに線の種類を変えている。すなわち、太線は燃料シイ
/、細線は水ライン、一点鎖線は空気ライン、二点鎖線
は排ガス2イン、点勝は蒸気ラインである。DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be explained based on the drawings. In the figure, the types of lines are changed to clearly distinguish between gas and liquid flowing inside the device. That is, the thick line is the fuel line, the thin line is the water line, the one-dot chain line is the air line, the two-dot chain line is the exhaust gas 2-in line, and the point line is the steam line.
天然ガス等の燃料Oには、水蒸気Vを加え改質装置5に
入るよう構成されている。’l:j:、水蒸気を燃料G
に混合させるための混合器である。改質装置5では、水
蒸気vを含む燃料Oが、水素を多量に含むカスに改質さ
ル、/ノドコンバータ8へ導入されるよう(シ4成a扛
でいる。It is configured such that water vapor V is added to the fuel O such as natural gas and the mixture enters the reformer 5. 'l:j:, water vapor as fuel G
This is a mixer for mixing. In the reformer 5, the fuel O containing water vapor V is reformed into waste containing a large amount of hydrogen, and the fuel O is introduced into the /node converter 8 (in a four-stage process).
/ストコンバータ8では、−酸化炭素が除去きれた後、
燃料電池lのA素換IAに供給芒れるよう構成されてい
る。yk水素極Aか1つの排カスは、U31質装置5の
燃焼部5Aに戻され、燃焼に供芒れるよう構成されてい
る。In the /st converter 8, after the -carbon oxide is completely removed,
It is configured so that it can be supplied to the A conversion IA of the fuel cell I. The waste from one of the YK hydrogen electrodes A is returned to the combustion section 5A of the U31 quality equipment 5 and is configured to be used for combustion.
一方、空気A VJ: 、、ブロワ等により燃料電池1
の憩濤極IBと改質装置5の燃焼部5Aへ供給するよう
構成されている。そして、R−J極113からの排ガス
は、改質装置5の燃焼部5Aからのり1カスとともに吸
収式冷却器10へ努くよつに偵成石れている。具体的に
Qよ、吸収式冷却器の商温再生器10Aの排ガス用熱交
換器10A−1に導かれている。On the other hand, air A VJ: ,, fuel cell 1 by blower etc.
It is configured so as to be supplied to the diverting pole IB and the combustion section 5A of the reformer 5. Then, the exhaust gas from the R-J pole 113 is sent to the absorption cooler 10 along with the glue residue from the combustion section 5A of the reformer 5. Specifically, Q is guided to the exhaust gas heat exchanger 10A-1 of the commercial temperature regenerator 10A of the absorption type cooler.
こ\で、排ガスの有する熱量は、稀溶液10Bに吸収さ
れ、冷媒蒸気10Cを分離し、濃溶液10Dとして利用
される。稀溶液10Bに熱量を与えた排ガスは、吸収式
冷却機lOの機外に設けた凝縮機11により水分が除去
され後、大気へ放出されるよう構成されている。一方、
除去された水分は、ポンプ等を介して燃料電池1の冷却
部ICへ供給きれるように構成てれている、冷却部IC
に導かれた冷却水は、尚温の水あるいは蒸気となって吸
収式冷却機10の低温再生器10Fへ4〃旬しるよう構
成されている。Here, the amount of heat contained in the exhaust gas is absorbed by the dilute solution 10B, and the refrigerant vapor 10C is separated and used as a concentrated solution 10D. The exhaust gas that has imparted heat to the dilute solution 10B is configured to be discharged into the atmosphere after moisture is removed by a condenser 11 provided outside the absorption cooler IO. on the other hand,
The removed moisture is supplied to the cooling unit IC of the fuel cell 1 through a pump or the like.
The cooling water guided to the absorption cooler 10 is configured to be turned into still-temperature water or steam and sent to the low-temperature regenerator 10F of the absorption cooler 10.
この結果、稀溶液10Bは冷媒蒸気を分離し濃溶液10
Dとなる。低温再生器10Fケ出た水あるいは蒸気は温
度制御用熱交換器12により温度調9i埒れ、その後流
側に設けた気水分離器18により水と蒸気に分離される
。水は前述のポンプにより冷却部ICを介して再循環さ
ノシ、蒸気tよ混合器9に供給され燃料と混合され、改
質装置50反応部テ弔に導かれる。As a result, the dilute solution 10B separates the refrigerant vapor and the concentrated solution 10B
It becomes D. The water or steam discharged from the low-temperature regenerator 10F is temperature-controlled 9i by a temperature control heat exchanger 12, and separated into water and steam by a steam-water separator 18 provided on the downstream side. The water is recirculated via the cooling section IC by the pump described above, and the steam is supplied to the mixer 9 where it is mixed with fuel and led to the reaction section of the reformer 50.
従って、冷媒蒸気は凝縮器LOG内で外部冷却水により
冷やされ冷媒10Hとなる。冷媒1011は蒸発器10
J内で気化し外部からの循環水から熱を奪い冷水20′
ff:込り出す。気化した冷媒蒸気は濃溶液10Dに溶
は再び稀溶液10Bとなる。Therefore, the refrigerant vapor is cooled by external cooling water in the condenser LOG and becomes refrigerant 10H. The refrigerant 1011 is in the evaporator 10
Cold water 20' vaporizes in J and removes heat from circulating water from outside.
ff: Input. The vaporized refrigerant vapor becomes a concentrated solution 10D and a dilute solution 10B again.
尚、冷却機負荷に対応する熱が燃料電池システムの排熱
より多い場合は高温再生器10Aの内部に設けられた燃
焼室10A−2にて燃料を直焚することにより必要な熱
量を得ることも可能である。In addition, if the heat corresponding to the cooler load is greater than the exhaust heat of the fuel cell system, the necessary amount of heat can be obtained by directly burning the fuel in the combustion chamber 10A-2 provided inside the high-temperature regenerator 10A. is also possible.
以上の通り構成することによって吸収式冷却器10を作
動し、冷水20を得ることかできる。ぞして、この冷水
20はファンコイル21を作動し、冷房に利用されるよ
う構成されているとともに一部を配管2A、213栄介
して、燃料電池1の水素極IBの出口に設けた熱交換器
3とソフトコンバータ8の出口に設けた熱交換器4に供
給するように構成している。2C,2Dにそれらの戻り
管路である。6は、熱交換器2と吸収式冷却器lOの間
に設けた気水分11i11i器、IVi熱父熱器換器3
料電池のpL素極IAとの間に設けた気水分離器で、こ
れら分離器で分離された純度の置い水分■σつは燃料′
[を池を冷却するラインに供絽婆れて6iJ述したよう
に冷却部IC−eC−上た後は水蒸気となって混合器9
に供給される。By configuring as described above, the absorption type cooler 10 can be operated and the cold water 20 can be obtained. This cold water 20 operates a fan coil 21 to be used for air conditioning, and a portion of the cold water 20 is supplied to the outlet of the hydrogen electrode IB of the fuel cell 1 through pipes 2A and 213. The heat exchanger 4 is configured to be supplied to the exchanger 3 and the heat exchanger 4 provided at the outlet of the soft converter 8. 2C and 2D are their return pipes. 6 is a steam/moisture 11i11i device installed between the heat exchanger 2 and the absorption type cooler IO, and an IVi heat exchanger 3.
In the steam/water separator installed between the pL element electrode IA of the fuel cell, the purified water separated by these separators ■σ is the fuel '
As mentioned above, after passing through the cooling section IC-eC, it becomes water vapor and flows into the mixer 9.
supplied to
一般に、燃料電池においては、酸素極IBから出る排ガ
スの温度は約200Cでこれが冷水20により30C寸
で冷却される。また、シフトコンバーク8から出るガス
温度は約200Cで、これも冷水20により30Cまで
冷却されるので、各気水分離器で十分な水分が回収でき
るため、純水装置等の水分の補給を行なう特別な装置を
必要としない。iた、水素極への改質カス中に残存して
いる水分は、比]双曲高温で気水分離さ!シるため、水
素極IAへ供給されるガスの水素分圧が低くなり、電池
効率の低下をまねくこともない。なお図中、100は直
流−交流変換器でりる。Generally, in a fuel cell, the temperature of the exhaust gas emitted from the oxygen electrode IB is about 200C, and this is cooled by cold water 20 to about 30C. In addition, the temperature of the gas coming out of the shift converter 8 is approximately 200C, which is also cooled down to 30C by the cold water 20, so each steam-water separator can recover sufficient moisture, so it is necessary to replenish the water in the deionizer etc. No special equipment is required. In addition, the water remaining in the reforming residue to the hydrogen electrode is separated into steam and water at a hyperbolic high temperature! Therefore, the hydrogen partial pressure of the gas supplied to the hydrogen electrode IA becomes low, and there is no possibility of a decrease in cell efficiency. In the figure, 100 is a DC-AC converter.
以上述べたようにこの発明は、燃料電池装置内で水分回
収金十分性なうように構成したので、純水装置等の水分
の抽帽を行なう特別な装置を設ける必要のない燃料電池
装置を提供できた。As described above, the present invention is configured so that the water recovery amount is sufficient within the fuel cell device, so that the fuel cell device does not require a special device such as a pure water device to extract water. I was able to provide it.
図は、この発明の一実/Ii!1lull ’x示す系
統図である。
1・・・燃料電池、IA・・・(燃料電池の)フ1り素
極、IB・・・(燃料電池の)酸素極、5・・・改質装
置、8・・・ソフトコンバータ、10山吸収式冷却dA
、20・・・冷気、G・・・燃料、■・・・水蒸気。The figure is a fruit of this invention/Ii! 1lull 'x. DESCRIPTION OF SYMBOLS 1...Fuel cell, IA...Full element electrode (of a fuel cell), IB...Oxygen electrode (of a fuel cell), 5...Reformer, 8...Soft converter, 10 Mountain absorption cooling dA
, 20...Cold air, G...Fuel, ■...Water vapor.
Claims (1)
電力を発生する燃料電池と、吸収式冷却器とを組合せ、
上記燃料電池からの排熱を上記冷却器に与え冷気を得る
ようにした燃料ηL池装置において、前記冷気の一部ま
たは全部を、前記燃料電池の酸素極から発生する排ガス
ラインと、前記燃料電池のソフトコンバータから前記燃
料電池の21り素極へ至るガスラインの両方もしくはい
ずれか一方に導くようVC,構成し、これによって得ら
れた水を上記天然ガスの改質装置に供給できるように構
成したことIJ徴とする燃料電池装置。 2、 1QiJ記邊素極からの前記排ガスの送出ジイン
に熱交換器と気水分離器とを配設すると共に、前記ソフ
トコンバータから前記fK素極へ至るガスラインに前d
已然交換器と気水分離器とは別なる熱交換器と気水分離
器とを設け、前記画然交換器もしくはそのいずれか一方
に1iJ記冷気を導いて成る特許請求の範囲第1項記載
の燃料電池装置。 3、前記改質装置に供給する水は、前記燃料電池冷却水
系に用いられた後に気水分離器にて分離された後に蒸気
として供給されることを特徴とする請求 置。 4、 前記冷却水系として用いた後に、前記吸収式冷却
器の低温再生器に導入され、しかる後に、前記低温再生
器の後流側に設けた前記気水分離器に導入きれるよう構
成したことを特徴とする特許請求の範囲第3項記載の燃
料電池装置。[Claims] 1. P9 using gas such as natural gas as an energy source? Combining a fuel cell that generates a constant amount of power with an absorption cooler,
In the fuel ηL pond device in which exhaust heat from the fuel cell is given to the cooler to obtain cold air, a part or all of the cold air is transferred between an exhaust gas line generated from the oxygen electrode of the fuel cell and the fuel cell. The VC is configured to lead to both or either one of the gas lines from the soft converter to the 21 prime electrode of the fuel cell, and the water obtained thereby is configured to be supplied to the natural gas reformer. A fuel cell device with IJ characteristics. 2. A heat exchanger and a steam/water separator are disposed at the outlet for the exhaust gas from the 1QiJ element electrode, and a gas line leading from the soft converter to the fK element electrode is provided with a heat exchanger and a steam separator.
Claim 1 is characterized in that a heat exchanger and a steam/water separator are provided separately from the natural exchanger and the steam/water separator, and the cold air is guided to the natural exchanger or either one thereof. fuel cell equipment. 3. The apparatus according to claim 1, wherein the water supplied to the reformer is used in the fuel cell cooling water system, separated in a steam separator, and then supplied as steam. 4. After being used as the cooling water system, it is introduced into the low-temperature regenerator of the absorption cooler, and then the water is introduced into the steam-water separator provided on the downstream side of the low-temperature regenerator. A fuel cell device according to claim 3, characterized in that:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58149188A JPS6041770A (en) | 1983-08-17 | 1983-08-17 | Fuel cell system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58149188A JPS6041770A (en) | 1983-08-17 | 1983-08-17 | Fuel cell system |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6041770A true JPS6041770A (en) | 1985-03-05 |
JPH0228231B2 JPH0228231B2 (en) | 1990-06-22 |
Family
ID=15469721
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58149188A Granted JPS6041770A (en) | 1983-08-17 | 1983-08-17 | Fuel cell system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6041770A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0559653A1 (en) * | 1990-11-13 | 1993-09-15 | Perry Oceanographics, Inc. | Closed loop reactant/product management system for electrochemical galvanic energy devices |
CN1325697C (en) * | 2002-12-10 | 2007-07-11 | 关东化学株式会社 | Etching agent composition and method for producing reflective plate using the same etching liquid composition |
KR20210018236A (en) * | 2018-05-31 | 2021-02-17 | 더 스쿨 코포레이션 칸사이 유니버시티 | Silicon semiconductor substrate etching method, semiconductor device manufacturing method, and etching solution |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5364739A (en) * | 1976-11-24 | 1978-06-09 | Tokyo Shibaura Electric Co | Recovery device for waste heat energy of fuel battery |
JPS5828177A (en) * | 1981-08-12 | 1983-02-19 | Toshiba Corp | Fuel-cell generation plant |
-
1983
- 1983-08-17 JP JP58149188A patent/JPS6041770A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5364739A (en) * | 1976-11-24 | 1978-06-09 | Tokyo Shibaura Electric Co | Recovery device for waste heat energy of fuel battery |
JPS5828177A (en) * | 1981-08-12 | 1983-02-19 | Toshiba Corp | Fuel-cell generation plant |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0559653A1 (en) * | 1990-11-13 | 1993-09-15 | Perry Oceanographics, Inc. | Closed loop reactant/product management system for electrochemical galvanic energy devices |
EP0559653A4 (en) * | 1990-11-13 | 1995-04-19 | Perry Oceanographics Inc | Closed loop reactant/product management system for electrochemical galvanic energy devices |
CN1325697C (en) * | 2002-12-10 | 2007-07-11 | 关东化学株式会社 | Etching agent composition and method for producing reflective plate using the same etching liquid composition |
KR20210018236A (en) * | 2018-05-31 | 2021-02-17 | 더 스쿨 코포레이션 칸사이 유니버시티 | Silicon semiconductor substrate etching method, semiconductor device manufacturing method, and etching solution |
Also Published As
Publication number | Publication date |
---|---|
JPH0228231B2 (en) | 1990-06-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5345786A (en) | Absorption heat pump and cogeneration system utilizing exhaust heat | |
US7785744B2 (en) | Fuel cell water purification system and method | |
WO2004105158A2 (en) | A fuel cell system with recycle of anode exhaust gas | |
JPH0228232B2 (en) | ||
CN102456897B (en) | Fuel cell electric heating cold supply system | |
JP2002319428A (en) | Molten carbonate fuel cell power generating device | |
KR101339672B1 (en) | Heating and cooling system using heat from fuel cell | |
CN112820915A (en) | Combined CO2Trapped molten carbonate fuel cell system and method of operating same | |
JPS6257072B2 (en) | ||
JPS6041770A (en) | Fuel cell system | |
JPH11102720A (en) | Fuel cell power generating device | |
JPH0582150A (en) | Condenser for fuel cell | |
JP4470329B2 (en) | Fuel cell power generator and method of operating the same | |
JPH05225993A (en) | Phosphoric acid type fuel cell | |
JP3557104B2 (en) | Phosphoric acid fuel cell power plant | |
JP2002100382A (en) | Fuel cell power generator | |
JPH04138671A (en) | Fuel cell | |
JPS6280970A (en) | Power generating method of fuel cell | |
JP3426620B2 (en) | Fuel cell waste heat utilization system | |
JPS63141268A (en) | Generating unit for natural-gas reformed molten carbonate type fuel cell | |
JP3359146B2 (en) | Fuel cell | |
CN118738448B (en) | Cold exhaust power supply balance system using ammonia decomposition hydrogen production device | |
JPS6257073B2 (en) | ||
JPH1064573A (en) | Recovery system of fuel cell exhaust gas system heat and water | |
JP2000106207A (en) | Fuel cell generating system |