JP2002100382A - Fuel cell power generator - Google Patents

Fuel cell power generator

Info

Publication number
JP2002100382A
JP2002100382A JP2000285796A JP2000285796A JP2002100382A JP 2002100382 A JP2002100382 A JP 2002100382A JP 2000285796 A JP2000285796 A JP 2000285796A JP 2000285796 A JP2000285796 A JP 2000285796A JP 2002100382 A JP2002100382 A JP 2002100382A
Authority
JP
Japan
Prior art keywords
water
fuel cell
cooling
cooling water
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000285796A
Other languages
Japanese (ja)
Inventor
Tadashi Komatsu
正 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2000285796A priority Critical patent/JP2002100382A/en
Publication of JP2002100382A publication Critical patent/JP2002100382A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide a fuel power generator allowing for efficient utilization of an waste heat and prevention of smoke generation in an exhaust gas discharged from the water recovery system. SOLUTION: The generator comprises a fuel cell main body 1, a fuel reformer 7, a steam separator 21, a water recovery system 51 for cooling the discharged air from the fuel cell and a flue gas from the fuel reformer 7 and recovering air and water contained in the flue gas, and a heat transfer equipment 54 for recovering the heat received from the fuel cell out of a cooling water, and supplying the heat to the external waste heat utilization facility. The water recovery system 51 is provided with a heat exchanger 52 for heating the discharged air after water recovery and the flue gas. Further, the system 51 is provided with a cooling water circulation circuit 55, in which, after cooling the water recovered from the separator 21 by sending it to the heat transfer equipment 54 for cooling and further cooling it by sending to the exchanger 52, the cooled water and the drain water from the separator 21 are combined.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、燃料電池発電装
置、特にその排熱回収系および水回収系の構成に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell power generator, and more particularly, to a configuration of an exhaust heat recovery system and a water recovery system thereof.

【0002】[0002]

【従来の技術】燃料電池発電装置に組み込まれる燃料電
池としては、電解質の種類、改質原料の種類等によって
異なる種々のタイプがあるが、例えば、天然ガスを改質
した二酸化炭素を含むガスを精製せずにそのまま使用で
きる等の利点を持っているリン酸高濃度水溶液を電解質
として用いたリン酸型燃料電池が知られている。
2. Description of the Related Art There are various types of fuel cells to be incorporated in a fuel cell power generator, depending on the type of electrolyte, the type of reforming material, and the like. For example, a gas containing carbon dioxide obtained by reforming natural gas is used. 2. Description of the Related Art A phosphoric acid fuel cell using a high-concentration aqueous solution of phosphoric acid as an electrolyte, which has an advantage that it can be used as it is without purification, is known.

【0003】このリン酸型燃料電池は、メタンガス等の
炭化水素系の原燃料を水蒸気改質して得られた燃料ガス
中の水素と空気中の酸素とを、燃料電池の燃料極および
空気極にそれぞれ供給し、電気化学反応に基づいて発電
を行う。原燃料を燃料ガスに改質するには、原燃料とし
てのメタンに水蒸気を加えて、水とメタンとの反応を触
媒で促進して行う燃料改質装置が用いられる。従って、
燃料改質装置には、燃料の改質に使用した水蒸気量に対
応して水を補給する必要がある。この水にはイオン交換
式の水処理装置等で不純物を除去したイオン交換水が用
いられる。
[0003] This phosphoric acid type fuel cell converts hydrogen in fuel gas and oxygen in air obtained by steam reforming a hydrocarbon-based raw fuel such as methane gas into a fuel electrode and an air electrode of the fuel cell. To generate electricity based on the electrochemical reaction. In order to reform raw fuel into fuel gas, a fuel reforming apparatus is used in which water vapor is added to methane as raw fuel and the reaction between water and methane is promoted by a catalyst. Therefore,
It is necessary to supply water to the fuel reformer in accordance with the amount of steam used for reforming the fuel. As this water, ion-exchanged water from which impurities have been removed by an ion-exchange type water treatment device or the like is used.

【0004】また、燃料電池発電装置に組み込まれるリ
ン酸型燃料電池では、発電時に熱を発生するため、冷却
する必要があるが、この冷却は、空冷または水冷により
行っている。水冷式の燃料電池発電装置では、熱を冷却
水により除去することによって、燃料電池本体を冷却
し、運転温度を維持しており、この冷却で得た熱の一部
を熱交換器で回収してユーザに供給している。
A phosphoric acid type fuel cell incorporated in a fuel cell power generator generates heat during power generation, and therefore needs to be cooled. This cooling is performed by air cooling or water cooling. In a water-cooled fuel cell power generator, the operating temperature is maintained by cooling the fuel cell body by removing the heat with cooling water, and part of the heat obtained by this cooling is recovered by a heat exchanger. To the user.

【0005】図4は、従来のこの種の燃料電池発電装置
の排熱回収系および水回収系に着目した基本的な系統図
の一例である(特開平10−64566号公報参照)。
FIG. 4 is an example of a basic system diagram focusing on an exhaust heat recovery system and a water recovery system of this type of conventional fuel cell power generator (see Japanese Patent Application Laid-Open No. 10-64566).

【0006】図4において、燃料電池本体1は、模式的
に示され、図示しないリン酸電解質層を挟持する燃料極
2と空気極3と、これらからなる単位セルの複数個を重
ねる毎に配設される冷却管4を有する冷却板5とから構
成される。
In FIG. 4, a fuel cell main body 1 is schematically shown, and a fuel electrode 2 and an air electrode 3 sandwiching a phosphoric acid electrolyte layer (not shown) are arranged, and each time a plurality of unit cells composed of these are stacked, they are arranged. And a cooling plate 5 having a cooling pipe 4 provided.

【0007】一方、燃料改質器7は、燃料供給系8を経
て供給される天然ガス等の原燃料を、後述する水蒸気分
離器21で分離されて水蒸気供給系10を経て供給され
る水蒸気とともに、改質触媒下にて、図示しないバーナ
での後述するオフガスの燃焼による燃焼熱により加熱し
て、水素に富むガスに改質して改質ガスを生成する。
On the other hand, the fuel reformer 7 separates raw fuel such as natural gas supplied through a fuel supply system 8 together with steam separated by a steam separator 21 described later and supplied through a steam supply system 10. Under the reforming catalyst, the fuel gas is heated by combustion heat generated by the combustion of off-gas described later in a burner (not shown), and reformed into a hydrogen-rich gas to generate a reformed gas.

【0008】前記燃料電池本体1と燃料改質器7とに
は、燃料改質器7で生成された改質ガスを燃料電池本体
1の燃料極2に供給する改質ガス供給系11と、燃料極
2から電池反応に寄与しない水素を含むオフガスを燃料
改質器7のバーナに燃料として供給するオフガス供給系
12とが接続されている。
The fuel cell body 1 and the fuel reformer 7 include a reformed gas supply system 11 for supplying the reformed gas generated by the fuel reformer 7 to the fuel electrode 2 of the fuel cell body 1; The fuel electrode 2 is connected to an off-gas supply system 12 that supplies off-gas containing hydrogen that does not contribute to the cell reaction to the burner of the fuel reformer 7 as fuel.

【0009】また、燃料改質器7のバーナへは、燃焼空
気供給用のブロア17が接続されており、燃料改質器7
から出た燃焼排ガスは、燃焼排ガス系18により水回収
装置41へと送られる。
Further, a blower 17 for supplying combustion air is connected to a burner of the fuel reformer 7.
Is discharged to the water recovery device 41 by the flue gas system 18.

【0010】また、燃料電池本体1には、空気極3に空
気を供給する反応空気ブロア13を備えた空気供給系1
4と、電池反応後の空気を前記水回収装置41へ供給す
る空気排出系15とが接続されている。
The fuel cell body 1 has an air supply system 1 having a reaction air blower 13 for supplying air to the air electrode 3.
4 and an air discharge system 15 for supplying the air after the battery reaction to the water recovery device 41 are connected.

【0011】燃料電池本体1の冷却板5の冷却管4に
は、燃料電池本体1の発電時に冷却水を循環するため、
水蒸気分離器21、冷却水循環ポンプ22および冷却水
冷却器としての蒸気発生装置(ケトル型熱交換器)24
を備えた冷却水循環系20が、接続されている。
The cooling pipe 4 of the cooling plate 5 of the fuel cell body 1 circulates cooling water during power generation of the fuel cell body 1.
Steam separator 21, cooling water circulation pump 22, and steam generator (kettle type heat exchanger) 24 as cooling water cooler
Is connected.

【0012】前記水蒸気分離器21では、燃料電池本体
1の冷却管4から排出される蒸気との二相流となった冷
却水を、水蒸気と冷却水とに分離する。ここで分離され
た水蒸気は、前記燃料改質器7に向かう原燃料に混入す
るように、前記水蒸気供給系10を経て、送出される。
その際、元圧の低い原燃料との混合を行うために、エゼ
クタポンプ9を使用している。このエゼクタポンプ9
は、蒸気を駆動流体とするとともに、原燃料を被駆動流
体とする。
The steam separator 21 separates the cooling water, which has become a two-phase flow with the steam discharged from the cooling pipe 4 of the fuel cell main body 1, into steam and cooling water. The steam separated here is sent out through the steam supply system 10 so as to be mixed with the raw fuel toward the fuel reformer 7.
At that time, an ejector pump 9 is used to mix with the raw fuel having a low original pressure. This ejector pump 9
Uses steam as a driving fluid and raw fuel as a driven fluid.

【0013】前記蒸気発生装置(ケトル型熱交換器)2
4は、燃料電池を冷却して戻ってきた冷却水から熱を奪
って冷却し、回収した熱を、すなわち、燃料電池の発電
時に発生した熱の一部を、蒸気として外部の廃熱利用設
備を介してユーザに供給する。回収した熱は、冷暖房や
給湯に使用されるが、余剰の熱は捨てて、熱バランスを
保持する。熱媒が蒸気の場合には、蒸気炊きの吸収式冷
温水機が運転できるため、効率の高い熱利用ができる。
The steam generator (kettle type heat exchanger) 2
Reference numeral 4 denotes an external waste heat utilization facility that cools the fuel cell and removes heat from the returned cooling water, cools and recovers the recovered heat, that is, a part of the heat generated during power generation of the fuel cell as steam. To the user via. The recovered heat is used for cooling, heating and hot water supply, but excess heat is discarded to maintain the heat balance. When the heat medium is steam, the steam-cooked absorption chiller / heater can be operated, so that highly efficient heat utilization can be achieved.

【0014】また、前記水回収装置41には、燃焼排ガ
ス系18、空気排出系15、プロセス排気系19が接続
されている。この水回収装置41にはその他に、回収水
循環ポンプ42、回収水冷却器43およびノズル44か
らなる回収水生成循環系が接続されている。前記回収循
環ポンプ42は、該水回収装置41の底部に接続され、
該底部に貯留された回収水の一部を回収し、回収水冷却
器43に送り込む。
The water recovery unit 41 is connected to a flue gas system 18, an air discharge system 15, and a process exhaust system 19. In addition, a recovery water circulation pump 42, a recovery water cooler 43, and a nozzle 44 are connected to the water recovery device 41. The recovery circulation pump 42 is connected to the bottom of the water recovery device 41,
A part of the recovered water stored at the bottom is recovered and sent to the recovered water cooler 43.

【0015】回収水冷却器43にはユーザ側冷却水系4
5が熱回収系として挿入されており、冷却された回収水
をノズル44に供給する。ノズル44は、前記冷却回収
水を水回収装置41の上部から散布して、水回収装置4
1内の生成水を含む排空気と、燃焼生成水を含む燃焼排
ガスとに冷却水を作用させて、気中の回収水を直接的に
冷却して、それぞれの生成水を該水回収装置41の底部
に生成させる。
The recovered water cooler 43 includes a user-side cooling water system 4.
5 is inserted as a heat recovery system, and supplies cooled recovery water to the nozzle 44. The nozzle 44 sprays the cooling recovery water from the upper part of the water recovery device 41 and
The cooling water acts on the exhaust air containing the generated water and the combustion exhaust gas containing the generated water in the cooling water 1 to directly cool the recovered water in the air, and each generated water is separated into the water recovery device 41. At the bottom.

【0016】なお、前述のようにノズル44から水を散
布する方式とはせずに、ユーザ側冷却水系45を直接排
空気および燃焼排ガスと接触させて冷却することによ
り、水回収する構成とすることもできる。
It should be noted that instead of the method of spraying water from the nozzles 44 as described above, water is recovered by cooling the user-side cooling water system 45 by directly contacting it with exhaust air and combustion exhaust gas. You can also.

【0017】前述のようにして水回収装置41の底部に
貯留した回収水は、補給ポンプ46、水処理装置47が
設けられた回収系を経て、前記水蒸気分離器21に供給
される。
The recovered water stored at the bottom of the water recovery device 41 as described above is supplied to the steam separator 21 via a recovery system provided with a supply pump 46 and a water treatment device 47.

【0018】回収水冷却器43には、前述のように、回
収水を冷却するためにユーザ側冷却水45が接続されて
いるが、生成水を回収するためには、この冷却水の温度
は、40℃以下にすることが望ましいために、熱エネル
ギーとしての価値は低く、通常は冷却塔やラジエータで
外気に放出して処理している。
As described above, the user-side cooling water 45 is connected to the recovered-water cooler 43 to cool the recovered water. , 40 ° C. or lower, and therefore, its value as thermal energy is low. Usually, the waste gas is discharged to the outside air by a cooling tower or a radiator for treatment.

【0019】なお、図4中、符号26は、冷却水循環系
20において、冷却管4と冷却水冷却器24の流路と、
蒸気発生装置24と水蒸気分離器21との間の流路とを
短絡するバイパス配管であり、符号27はそのための三
方調節弁である。また、符号28は、水蒸気分離器21
内の気圧を測定する圧力計である。
In FIG. 4, reference numeral 26 denotes the cooling water circulation system 20 and the cooling pipe 4 and the flow path of the cooling water cooler 24.
This is a bypass pipe that short-circuits the flow path between the steam generator 24 and the steam separator 21, and reference numeral 27 is a three-way control valve for that purpose. Reference numeral 28 denotes the steam separator 21
It is a pressure gauge that measures the internal pressure.

【0020】前記図4とは異なる従来の燃料電池発電装
置として、蒸気炊きの吸収式冷温水機を燃料電池の冷却
系に直結した図5に示す構成の発電装置も知られている
(特開平9−14786号公報参照)。
As a conventional fuel cell power generator different from FIG. 4, there is also known a power generator having a configuration shown in FIG. 5 in which a steam-cooked absorption chiller / heater is directly connected to a cooling system of a fuel cell (JP-A-Hei. No. 9-14786).

【0021】図5の系統図において、図4に示した機器
と同一の機能を有する機器には同一番号を付し、説明を
省略する。なお、図5においては、図4に示した燃料改
質器7と水回収装置41およびそれらの周辺機器・配管
系統を省略している。
In the system diagram of FIG. 5, devices having the same functions as the devices shown in FIG. 4 are denoted by the same reference numerals, and description thereof will be omitted. Note that FIG. 5 omits the fuel reformer 7, the water recovery device 41, and their peripheral devices and piping systems shown in FIG.

【0022】図5において、電池冷却水系統20a,2
0bは、水蒸気分離器21と燃料電池本体1と吸収式冷
温水器40と放熱用熱交換器50とを接続する配管構成
からなる。燃料電池本体1の発熱は、吸収式冷温水器4
0において有効利用された後、放熱用熱交換器50にお
いて余剰の熱が除去されて、水蒸気分離器21の温度も
しくは圧力が一定に保持される。
In FIG. 5, the battery cooling water systems 20a, 20a
Reference numeral 0b denotes a piping configuration for connecting the steam separator 21, the fuel cell main body 1, the absorption type water heater / heater 40, and the heat exchanger 50 for heat radiation. The heat generated by the fuel cell body 1 is absorbed
After being effectively used at 0, the excess heat is removed in the heat-radiating heat exchanger 50, and the temperature or pressure of the steam separator 21 is kept constant.

【0023】水蒸気分離器21の温度制御は、流量調整
器60,80を制御することにより行われる。110
は、温度または圧力の検出器、70は、流量調整器60
を制御するためのコントロールユニットであり、検出器
110の検出結果により、燃料電池本体1から吸収式冷
温水器40に導入する燃料電池冷却水の流量を制御す
る。
The temperature of the steam separator 21 is controlled by controlling the flow controllers 60 and 80. 110
Is a temperature or pressure detector, 70 is a flow regulator 60
And controls the flow rate of the fuel cell cooling water introduced from the fuel cell main body 1 to the absorption type water heater / water heater 40 based on the detection result of the detector 110.

【0024】[0024]

【発明が解決しようとする課題】ところで、前述のよう
な従来の燃料電池発電装置においては、下記のような問
題があった。
The above-mentioned conventional fuel cell power generator has the following problems.

【0025】従来装置においては、燃料電池本体および
燃料改質器から排出される排空気および燃焼排ガスを冷
却することにより、これら排ガス内に含まれる水を回収
するので、水回収装置から排出される排ガスは、水飽和
状態となっている。この水飽和状態の排ガスが外気によ
って冷却されると、排ガス中の水蒸気が白煙化する。こ
の白煙は、燃料電池発電装置の設置場所によっては、問
題視される。
In the conventional apparatus, since the exhaust air and the combustion exhaust gas discharged from the fuel cell main body and the fuel reformer are cooled to recover water contained in the exhaust gas, the water is discharged from the water recovery apparatus. The exhaust gas is in a water-saturated state. When the exhaust gas in the water-saturated state is cooled by the outside air, the water vapor in the exhaust gas turns into white smoke. This white smoke is regarded as a problem depending on the installation location of the fuel cell power generator.

【0026】この発明は、上記問題点を解消するために
なされたもので、この発明の課題は、燃料電池の排熱を
有効に利用し、かつ水回収装置から排出される排ガスの
白煙化の防止を図った燃料電池発電装置を提供すること
にある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and it is an object of the present invention to effectively use the exhaust heat of a fuel cell and to convert the exhaust gas discharged from a water recovery device into white smoke. It is an object of the present invention to provide a fuel cell power generation device which prevents the occurrence of a fuel cell.

【0027】[0027]

【課題を解決するための手段】前述の課題を解決するた
めに、この発明は、電池冷却水を通流する冷却板を備え
た燃料電池本体と、炭化水素と水蒸気との改質反応によ
り水素リッチな改質ガスを生成する燃料改質器と、前記
冷却板から排出される冷却水を水蒸気と水とに分離する
水蒸気分離器と、前記燃料電池本体および燃料改質器か
ら排出される排空気および燃焼排ガスを冷却して空気お
よび燃焼排ガス中に含まれる水を回収する水回収装置
と、燃料電池から受けた冷却水の熱を回収して外部の排
熱利用設備へ熱供給する排熱利用熱交換装置とを備えた
燃料電池発電装置において、前記水回収装置は、水回収
された排空気および燃焼排ガスを加熱するための排気ガ
ス加熱用熱交換器を有するものとし、前記水蒸気分離器
から導出した冷却水を、前記排熱利用熱交換装置に通流
して冷却した後、前記排気ガス加熱用熱交換器に通流し
てさらに冷却し、この冷却された水を前記水蒸気分離器
から導出した水と合流する冷却水循環回路を備えたもの
とする(請求項1の発明)。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a fuel cell body having a cooling plate through which battery cooling water flows, and a hydrogen reforming reaction between hydrocarbon and steam. A fuel reformer for generating a rich reformed gas, a steam separator for separating cooling water discharged from the cooling plate into steam and water, and a waste gas discharged from the fuel cell body and the fuel reformer. A water recovery device that cools air and flue gas to recover the water contained in the air and flue gas, and waste heat that recovers the heat of the cooling water received from the fuel cell and supplies it to external waste heat utilization equipment A fuel cell power generation apparatus provided with a utilization heat exchange device, wherein the water recovery device has an exhaust gas heating heat exchanger for heating exhaust water and combustion exhaust gas collected with water, and the water vapor separator Cooling water derived from After flowing through the exhaust heat utilizing heat exchanger and cooling, the cooling water flows through the exhaust gas heating heat exchanger for further cooling, and the cooled water is combined with water derived from the steam separator. A water circulation circuit is provided (the invention of claim 1).

【0028】前記請求項1の発明によれば、水蒸気分離
器から導出した冷却水を、排熱利用熱交換装置に通流し
て排熱を有効利用し、その後、この冷却水を水回収装置
内に設けた排気ガス加熱用熱交換器に通流し、水回収装
置から排出される排ガスを、冷却水の余剰熱によって加
熱することにより、排ガスの白煙化が防止できる。
According to the first aspect of the present invention, the cooling water derived from the steam separator flows through the waste heat utilizing heat exchange device to effectively use the waste heat, and thereafter, the cooling water is supplied to the water collecting device. By heating the exhaust gas discharged from the water recovery device through the heat exchanger for exhaust gas heating provided in the exhaust gas by the excess heat of the cooling water, it is possible to prevent the exhaust gas from becoming white smoke.

【0029】また、前記請求項1の発明の実施態様とし
ては、下記請求項2ないし4の発明が好適である。即
ち、前記請求項1記載の燃料電池発電装置において、前
記水蒸気分離器は圧力計を備え、前記冷却水循環回路
は、前記圧力計の計測値に基づいて水蒸気分離器内の圧
力を一定に制御する流量調節弁を備えたものとする(請
求項2の発明)。これにより、燃料改質器への水蒸気の
供給を安定して行なうことができるとともに、余剰熱を
前述のように有効に利用することができる。
Further, as an embodiment of the first aspect of the invention, the following second to fourth aspects of the invention are preferable. That is, in the fuel cell power generator according to claim 1, the steam separator includes a pressure gauge, and the cooling water circulation circuit controls the pressure in the steam separator to be constant based on a measurement value of the pressure gauge. A flow control valve is provided (the invention of claim 2). Thus, the supply of steam to the fuel reformer can be stably performed, and the excess heat can be effectively used as described above.

【0030】さらに、前記請求項2記載の燃料電池発電
装置において、前記排熱利用設備は温度計を備え、前記
冷却水循環回路は、前記温度計の計測値に基づいて排熱
利用設備の利用水の温度を一定に制御する第2の流量調
節弁を備えたものとする(請求項3の発明)。これによ
り、前記排熱利用設備への熱の供給を利用状況に適応し
て行なうことができるとともに、余剰熱を前述のように
白煙化防止に有効に利用することができる。
Further, in the fuel cell power generator according to claim 2, the waste heat utilization facility includes a thermometer, and the cooling water circulation circuit uses the waste heat utilization facility water based on a measurement value of the thermometer. And a second flow control valve for controlling the temperature of the fuel cell to be constant (the invention of claim 3). Thus, heat can be supplied to the waste heat utilization equipment in accordance with the use situation, and the excess heat can be effectively used to prevent white smoke as described above.

【0031】さらにまた、前記請求項2記載の燃料電池
発電装置において、前記排熱利用設備は温度計を備え、
さらに、前記冷却水循環回路に代えて、前記水蒸気分離
器から導出した冷却水を前記排熱利用熱交換装置と排気
ガス加熱用熱交換器とに通流して冷却し、それぞれ冷却
した後の水を前記水蒸気分離器から導出した冷却水と合
流する冷却水循環回路となし、この冷却水循環回路にお
ける前記水蒸気分離器と前記排熱利用熱交換装置との間
には、前記圧力計および温度計の計測値に基づいて水蒸
気分離器内の圧力を一定に制御しかつ排熱利用設備の利
用水の温度を一定に制御する流量調節弁Aを設け、か
つ、冷却水循環回路における前記水蒸気分離器と排気ガ
ス加熱用熱交換器との間には、前記圧力計の計測値に基
づいて水蒸気分離器内の圧力を一定に制御する流量調節
弁Bを設けたものとする(請求項4の発明)。
Further, in the fuel cell power generator according to claim 2, the waste heat utilization equipment includes a thermometer,
Further, instead of the cooling water circulation circuit, cooling water derived from the steam separator flows through the exhaust heat utilizing heat exchange device and the exhaust gas heating heat exchanger to be cooled, and the cooled water is cooled. There is no cooling water circulation circuit that merges with the cooling water derived from the steam separator, and between the steam separator and the waste heat utilizing heat exchange device in the cooling water circulation circuit, the measured values of the pressure gauge and the thermometer are used. A flow control valve A for controlling the pressure in the steam separator constant and for controlling the temperature of the water used in the exhaust heat utilization equipment based on the flow rate, and heating the steam separator and the exhaust gas in the cooling water circulation circuit. A flow control valve B for controlling the pressure in the steam separator to be constant based on the measurement value of the pressure gauge is provided between the heat exchanger and the heat exchanger (the invention of claim 4).

【0032】これにより、前記排熱利用設備への熱の供
給を利用状況に適応して行なうことができるとともに、
余剰熱を前述のように白煙化防止に有効に利用すること
ができる。さらに、冷却水の排気ガス加熱用熱交換器と
排熱利用熱交換装置への通流制御が別系統となっている
ので、白煙発生が比較的少ない夏季には、排気ガス加熱
用熱交換器での加熱量、即ち燃料電池の排熱利用量を少
なくし、その分、排熱利用設備における熱利用量を増大
できる。
[0032] Thereby, heat can be supplied to the waste heat utilization equipment in accordance with the use situation, and
The surplus heat can be effectively used to prevent white smoke as described above. Furthermore, since the flow control of the cooling water to the heat exchanger for exhaust gas heating and the flow control to the heat exchanger utilizing waste heat are separate systems, the heat exchange for exhaust gas heating should be performed in summer when white smoke is relatively low. The amount of heat in the heater, that is, the amount of waste heat used by the fuel cell is reduced, and the amount of heat used in the waste heat utilization equipment can be increased accordingly.

【0033】[0033]

【発明の実施の形態】図面に基づき、本発明の実施の形
態について以下にのべる。
Embodiments of the present invention will be described below with reference to the drawings.

【0034】図1ないし図3は、この発明の実施例を示
す図であり、図4と同じ機能部材には同一の番号を付し
て説明を省略する。また、図1においては、図4におけ
る水処理装置47およびその周辺機器・配管系統その他
一部を省略してある。さらに図2および図3において
は、図1よりさらに一部省略してある。
FIGS. 1 to 3 show an embodiment of the present invention. The same functional members as those in FIG. 4 are denoted by the same reference numerals and description thereof will be omitted. Further, in FIG. 1, the water treatment apparatus 47 in FIG. 4 and its peripheral devices and piping system and other parts are omitted. 2 and 3, a part is further omitted from FIG.

【0035】まず、図1の実施例について説明する。図
1と図4との基本的な相違は、図1における水回収装置
52と排熱利用熱交換装置54とその周辺機器・配管系
統の部分である。図1において、水回収装置52は、水
回収用の排ガス冷却器53の上方に、水回収された排空
気および燃焼排ガスを加熱するための排気ガス加熱用熱
交換器52を備える。また、水蒸気分離器21から導出
した冷却水を、排熱利用熱交換装置54に通流して冷却
した後、排気ガス加熱用熱交換器52に通流してさらに
冷却し、この冷却された水を、水蒸気分離器21から導
出した水と合流する冷却水循環回路55を備える。
First, the embodiment of FIG. 1 will be described. The basic differences between FIG. 1 and FIG. 4 are the water recovery device 52, the exhaust heat utilizing heat exchange device 54, and the peripheral equipment and piping system in FIG. In FIG. 1, the water recovery device 52 includes an exhaust gas heating heat exchanger 52 for heating the exhaust air and the combustion exhaust gas whose water has been recovered, above an exhaust gas cooler 53 for water recovery. Further, the cooling water derived from the steam separator 21 flows through the exhaust heat utilizing heat exchange device 54 to be cooled, and then flows through the exhaust gas heating heat exchanger 52 for further cooling. , A cooling water circulation circuit 55 that merges with water derived from the steam separator 21.

【0036】水蒸気分離器21は圧力計32を備え、ま
た、冷却水循環回路55は、前記圧力計32の計測値に
基づいて水蒸気分離器21内の圧力を一定に制御する流
量調節弁33を備える。30は電池冷却水循環用ポン
プ、31は補給水ポンプを示す。
The steam separator 21 has a pressure gauge 32, and the cooling water circulation circuit 55 has a flow rate control valve 33 for controlling the pressure in the steam separator 21 to be constant based on the value measured by the pressure gauge 32. . Reference numeral 30 denotes a battery cooling water circulation pump, and reference numeral 31 denotes a makeup water pump.

【0037】上記構成において、電池冷却水の一部が分
岐され、排熱利用熱交換装置54に通流して冷却した
後、前記排気ガス加熱用熱交換器52に通流してさらに
冷却することにより、燃料電池における発熱量と熱除去
量のバランスをとることができる。ちなみに、図1にT
1〜T10で示す各部の温度を例示すると、下記のとお
りである。下記温度において、括弧内に示す数値は、代
表温度である。
In the above configuration, a part of the battery cooling water is branched, flows through the exhaust heat utilizing heat exchange device 54 to be cooled, and then flows through the exhaust gas heating heat exchanger 52 for further cooling. In addition, the amount of heat generated and the amount of heat removed in the fuel cell can be balanced. By the way, FIG.
The temperature of each part shown by 1 to T10 is exemplified as follows. At the following temperatures, numerical values shown in parentheses are representative temperatures.

【0038】 T1:160〜170℃(160℃),T2:140〜170℃(145℃) T3: 85〜 95℃( 95℃),T4: 50〜 90℃( 60℃) T5: 70〜 85℃( 85℃),T6: 80〜 95℃( 90℃) T7: 30〜 40℃( 40℃),T8: 40〜 60℃( 50℃) T9: 40〜 45℃( 45℃),T10: 45〜 55℃( 50℃) 上記のように、水回収装置51において冷却され、水回
収された排ガスの温度T9は40〜45℃であるが、こ
の排ガスを、排気ガス加熱用熱交換器52により冷却水
の余剰熱によって加熱し、その温度T10を、45〜55
℃とすることにより、排ガス中の水蒸気が外気にさらさ
れても直ちに、水蒸気の白煙が生成することがなくな
り、排ガスの白煙化が防止できる。
T1: 160 to 170 ° C. (160 ° C.), T2: 140 to 170 ° C. (145 ° C.) T3: 85 to 95 ° C. (95 ° C.), T4: 50 to 90 ° C. (60 ° C.) T5: 70 to 85 ° C (85 ° C), T6: 80 to 95 ° C (90 ° C) T7: 30 to 40 ° C (40 ° C), T8: 40 to 60 ° C (50 ° C) T9: 40 to 45 ° C (45 ° C), T10: 45 to 55 ° C. (50 ° C.) As described above, the temperature T9 of the exhaust gas cooled and recovered in the water recovery device 51 is 40 to 45 ° C., and the exhaust gas is supplied to the exhaust gas heating heat exchanger 52. And the temperature T10 is increased by 45-55.
By setting the temperature to ° C., even if the water vapor in the exhaust gas is exposed to the outside air, the white smoke of the water vapor is not immediately generated, and the white smoke of the exhaust gas can be prevented.

【0039】次に、図2の実施例について説明する。図
1と図2の相違は、図2においては、排熱利用設備54
は温度計35を備え、冷却水循環回路55は、前記温度
計35の計測値に基づいて排熱利用設備54の利用水の
温度を一定に制御する第2の流量調節弁34を備えた点
である。これにより、排熱利用設備の熱利用状況に合わ
せて、熱を出力することができる。また、余剰熱を、排
気ガス加熱用熱交換器52により消費し、排ガスの白煙
化が防止できる。
Next, the embodiment shown in FIG. 2 will be described. The difference between FIG. 1 and FIG. 2 is that in FIG.
Is provided with a thermometer 35, and the cooling water circulation circuit 55 is provided with a second flow control valve 34 for controlling the temperature of the water used in the exhaust heat utilization facility 54 based on the measurement value of the thermometer 35. is there. Thereby, heat can be output in accordance with the heat utilization state of the exhaust heat utilization facility. In addition, the excess heat is consumed by the exhaust gas heating heat exchanger 52, so that the exhaust gas can be prevented from becoming white smoke.

【0040】次に、図3の実施例について説明する。図
3においては、水蒸気分離器21から導出した冷却水を
排熱利用熱交換装置54と排気ガス加熱用熱交換器52
とに通流して冷却し、それぞれ冷却した後の水を水蒸気
分離器21から導出した冷却水と合流する冷却水循環回
路となし、この冷却水循環回路における水蒸気分離器2
1と排熱利用熱交換装置54との間には、圧力計32お
よび温度計35の計測値に基づいて水蒸気分離器21内
の圧力を一定に制御しかつ排熱利用設備の利用水の温度
を一定に制御する部番36の流量調節弁Aを設け、か
つ、冷却水循環回路における水蒸気分離器21と排気ガ
ス加熱用熱交換器52との間には、圧力計32の計測値
に基づいて水蒸気分離器21内の圧力を一定に制御する
部番37の流量調節弁Bを設けた点が、図1と異なる。
Next, the embodiment shown in FIG. 3 will be described. In FIG. 3, the cooling water derived from the steam separator 21 is used as a heat exchanger utilizing waste heat 54 and a heat exchanger 52 for heating exhaust gas.
To form a cooling water circulating circuit in which the cooled water is combined with the cooling water derived from the steam separating device 21.
1 and the waste heat utilization heat exchange device 54, the pressure in the steam separator 21 is controlled to be constant based on the measurement values of the pressure gauge 32 and the thermometer 35, and the temperature of the water used in the waste heat utilization facility Is provided between the steam separator 21 and the exhaust gas heating heat exchanger 52 in the cooling water circulation circuit based on the measurement value of the pressure gauge 32. The difference from FIG. 1 is that a flow control valve B of a part number 37 for controlling the pressure in the steam separator 21 to be constant is provided.

【0041】図1及び図2の実施例においては、水蒸気
分離器21から導出した冷却水を排熱利用熱交換装置5
4と排気ガス加熱用熱交換器52とに直列に通水してい
るのに対して、図3においては、通水回路が並列で、か
つ排熱利用と排気ガス加熱とを個々に制御できるので、
効率的な排熱利用が可能となる。例えば前述のように、
白煙発生が比較的少ない夏季には、排気ガス加熱用熱交
換器での加熱量、即ち燃料電池の排熱利用量を少なく
し、その分、排熱利用設備における熱利用量を増大でき
る。また、排熱利用設備において、熱が必要ない時に
は、排気ガスを十分加熱して、確実にその白煙化を防止
できる。
In the embodiment shown in FIGS. 1 and 2, the cooling water discharged from the steam separator 21 is
4 and the exhaust gas heating heat exchanger 52 in series, whereas in FIG. 3, the water passage circuits are parallel and the exhaust heat utilization and exhaust gas heating can be individually controlled. So
Efficient use of exhaust heat is possible. For example, as mentioned above,
In summer, when the generation of white smoke is relatively small, the amount of heat in the exhaust gas heating heat exchanger, that is, the amount of waste heat used by the fuel cell is reduced, and the amount of heat used in the waste heat utilization equipment can be increased accordingly. Further, in the waste heat utilization equipment, when heat is not required, the exhaust gas can be sufficiently heated to reliably prevent the emission of white smoke.

【0042】[0042]

【発明の効果】上記のとおり、この発明によれば、電池
冷却水を通流する冷却板を備えた燃料電池本体と、炭化
水素と水蒸気との改質反応により水素リッチな改質ガス
を生成する燃料改質器と、前記冷却板から排出される冷
却水を水蒸気と水とに分離する水蒸気分離器と、前記燃
料電池本体および燃料改質器から排出される排空気およ
び燃焼排ガスを冷却して空気および燃焼排ガス中に含ま
れる水を回収する水回収装置と、燃料電池から受けた冷
却水の熱を回収して外部の排熱利用設備へ熱供給する排
熱利用熱交換装置とを備えた燃料電池発電装置におい
て、前記水回収装置は、水回収された排空気および燃焼
排ガスを加熱するための排気ガス加熱用熱交換器を有す
るものとし、前記水蒸気分離器から導出した冷却水を、
前記排熱利用熱交換装置に通流して冷却した後、前記排
気ガス加熱用熱交換器に通流してさらに冷却し、この冷
却された水を前記水蒸気分離器から導出した水と合流す
る冷却水循環回路を備えたものとしたので、燃料電池の
排熱を有効に利用し、かつ水回収装置から排出される排
ガスの白煙化の防止を図ることができる。
As described above, according to the present invention, a fuel cell main body provided with a cooling plate through which battery cooling water flows, and a hydrogen-rich reformed gas is produced by a reforming reaction between hydrocarbons and steam. A fuel reformer, a steam separator for separating cooling water discharged from the cooling plate into water vapor and water, and cooling exhaust air and combustion exhaust gas discharged from the fuel cell body and the fuel reformer. A water recovery device for recovering air and water contained in the combustion exhaust gas, and an exhaust heat utilization heat exchange device for recovering the heat of the cooling water received from the fuel cell and supplying it to external waste heat utilization equipment. In the fuel cell power generation device, the water recovery device shall have an exhaust gas heating heat exchanger for heating exhaust water and combustion exhaust gas whose water has been recovered, and cooling water derived from the steam separator.
After cooling by flowing through the heat exchanger utilizing waste heat, the cooling water circulates through the heat exchanger for exhaust gas heating to further cool, and combines the cooled water with water derived from the steam separator. Since the circuit is provided, it is possible to effectively use the exhaust heat of the fuel cell and to prevent the exhaust gas discharged from the water recovery device from becoming white smoke.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の燃料電池発電装置の実施例を示す図FIG. 1 is a diagram showing an embodiment of a fuel cell power generator according to the present invention.

【図2】この発明の異なる燃料電池発電装置の実施例を
示す図
FIG. 2 is a diagram showing an embodiment of a different fuel cell power generator according to the present invention.

【図3】この発明のさらに異なる燃料電池発電装置の実
施例を示す図
FIG. 3 is a diagram showing another embodiment of the fuel cell power generator according to the present invention.

【図4】従来の燃料電池発電装置の概略システム構成を
示す図
FIG. 4 is a diagram showing a schematic system configuration of a conventional fuel cell power generator.

【図5】図4とは異なる従来の燃料電池発電装置の概略
システム構成を示す図
FIG. 5 is a diagram showing a schematic system configuration of a conventional fuel cell power generator different from FIG. 4;

【符号の説明】[Explanation of symbols]

1:燃料電池本体、7:燃料改質器、21:水蒸気分離
器、32:圧力計、33:流量調節弁、34:第2の流
量調節弁、35:温度計、36:流量調節弁A、37:
流量調節弁B、51:水回収装置、52:排気ガス加熱
用熱交換器、54:排熱利用熱交換装置、55:冷却水
循環回路。
1: Fuel cell body, 7: Fuel reformer, 21: Steam separator, 32: Pressure gauge, 33: Flow control valve, 34: Second flow control valve, 35: Thermometer, 36: Flow control valve A , 37:
Flow control valve B, 51: water recovery device, 52: heat exchanger for exhaust gas heating, 54: heat exchange device using waste heat, 55: cooling water circulation circuit.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 電池冷却水を通流する冷却板を備えた燃
料電池本体と、炭化水素と水蒸気との改質反応により水
素リッチな改質ガスを生成する燃料改質器と、前記冷却
板から排出される冷却水を水蒸気と水とに分離する水蒸
気分離器と、前記燃料電池本体および燃料改質器から排
出される排空気および燃焼排ガスを冷却して空気および
燃焼排ガス中に含まれる水を回収する水回収装置と、燃
料電池から受けた冷却水の熱を回収して外部の排熱利用
設備へ熱供給する排熱利用熱交換装置とを備えた燃料電
池発電装置において、前記水回収装置は、水回収された
排空気および燃焼排ガスを加熱するための排気ガス加熱
用熱交換器を有するものとし、前記水蒸気分離器から導
出した冷却水を、前記排熱利用熱交換装置に通流して冷
却した後、前記排気ガス加熱用熱交換器に通流してさら
に冷却し、この冷却された水を前記水蒸気分離器から導
出した水と合流する冷却水循環回路を備えたことを特徴
とする燃料電池発電装置。
1. A fuel cell body having a cooling plate through which battery cooling water flows, a fuel reformer for generating a hydrogen-rich reformed gas by a reforming reaction between hydrocarbons and steam, and the cooling plate A steam separator for separating the cooling water discharged from the fuel cell into water vapor and water; and cooling the discharged air and the combustion exhaust gas discharged from the fuel cell body and the fuel reformer to remove water contained in the air and the combustion exhaust gas. A fuel cell power generator comprising: a water recovery device for recovering water; and a waste heat utilizing heat exchange device for recovering heat of the cooling water received from the fuel cell and supplying heat to an external waste heat utilizing facility. The apparatus has an exhaust gas heating heat exchanger for heating the exhaust gas and the combustion exhaust gas collected with water, and the cooling water derived from the steam separator flows through the exhaust heat utilizing heat exchange apparatus. After cooling, the exhaust A fuel cell power generator, comprising: a cooling water circulation circuit that flows through a heat exchanger for gas heating to further cool the water, and merges the cooled water with water derived from the steam separator.
【請求項2】 請求項1記載の燃料電池発電装置におい
て、前記水蒸気分離器は圧力計を備え、前記冷却水循環
回路は、前記圧力計の計測値に基づいて水蒸気分離器内
の圧力を一定に制御する流量調節弁を備えたことを特徴
とする燃料電池発電装置。
2. The fuel cell power generator according to claim 1, wherein the steam separator includes a pressure gauge, and the cooling water circulation circuit keeps the pressure in the steam separator constant based on a measurement value of the pressure gauge. A fuel cell power generator comprising a flow control valve for controlling.
【請求項3】 請求項2記載の燃料電池発電装置におい
て、前記排熱利用設備は温度計を備え、前記冷却水循環
回路は、前記温度計の計測値に基づいて排熱利用設備の
利用水の温度を一定に制御する第2の流量調節弁を備え
たことを特徴とする燃料電池発電装置。
3. The fuel cell power generator according to claim 2, wherein the waste heat utilization equipment includes a thermometer, and the cooling water circulation circuit uses the waste heat utilization equipment water based on a measurement value of the thermometer. A fuel cell power generator comprising a second flow control valve for controlling the temperature to be constant.
【請求項4】 請求項2記載の燃料電池発電装置におい
て、前記排熱利用設備は温度計を備え、さらに、前記冷
却水循環回路に代えて、前記水蒸気分離器から導出した
冷却水を前記排熱利用熱交換装置と排気ガス加熱用熱交
換器とに通流して冷却し、それぞれ冷却した後の水を前
記水蒸気分離器から導出した冷却水と合流する冷却水循
環回路となし、この冷却水循環回路における前記水蒸気
分離器と前記排熱利用熱交換装置との間には、前記圧力
計および温度計の計測値に基づいて水蒸気分離器内の圧
力を一定に制御しかつ排熱利用設備の利用水の温度を一
定に制御する流量調節弁Aを設け、かつ、冷却水循環回
路における前記水蒸気分離器と排気ガス加熱用熱交換器
との間には、前記圧力計の計測値に基づいて水蒸気分離
器内の圧力を一定に制御する流量調節弁Bを設けたこと
を特徴とする燃料電池発電装置。
4. The fuel cell power generator according to claim 2, wherein the waste heat utilization equipment includes a thermometer, and further comprises, instead of the cooling water circulation circuit, cooling water derived from the steam separator. There is no cooling water circulation circuit that flows through the use heat exchange device and the exhaust gas heating heat exchanger and cools, and the cooled water is combined with the cooling water derived from the steam separator. Between the steam separator and the waste heat utilization heat exchange device, the pressure in the steam separator is controlled to be constant based on the measurement values of the pressure gauge and the thermometer, and the water used in the waste heat utilization facility is used. A flow control valve A for controlling the temperature to be constant is provided, and between the steam separator and the exhaust gas heating heat exchanger in the cooling water circulation circuit, the inside of the steam separator is measured based on the measurement value of the pressure gauge. Constant pressure A fuel cell power generator, comprising a flow control valve B to be controlled.
JP2000285796A 2000-09-20 2000-09-20 Fuel cell power generator Pending JP2002100382A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000285796A JP2002100382A (en) 2000-09-20 2000-09-20 Fuel cell power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000285796A JP2002100382A (en) 2000-09-20 2000-09-20 Fuel cell power generator

Publications (1)

Publication Number Publication Date
JP2002100382A true JP2002100382A (en) 2002-04-05

Family

ID=18769806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000285796A Pending JP2002100382A (en) 2000-09-20 2000-09-20 Fuel cell power generator

Country Status (1)

Country Link
JP (1) JP2002100382A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005135875A (en) * 2003-10-31 2005-05-26 Fuji Electric Holdings Co Ltd Fuel cell power generation system
JP2009105055A (en) * 2008-12-19 2009-05-14 Fuji Electric Holdings Co Ltd Exhaust heat utilization method and device for fuel cell power generation system
JP2010218882A (en) * 2009-03-17 2010-09-30 Fuji Electric Systems Co Ltd Fuel cell generator
JP2011257978A (en) * 2010-06-09 2011-12-22 Kawamura Electric Inc Cooling system for server rack

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005135875A (en) * 2003-10-31 2005-05-26 Fuji Electric Holdings Co Ltd Fuel cell power generation system
JP4645017B2 (en) * 2003-10-31 2011-03-09 富士電機システムズ株式会社 Fuel cell power generation system
JP2009105055A (en) * 2008-12-19 2009-05-14 Fuji Electric Holdings Co Ltd Exhaust heat utilization method and device for fuel cell power generation system
JP2010218882A (en) * 2009-03-17 2010-09-30 Fuji Electric Systems Co Ltd Fuel cell generator
JP2011257978A (en) * 2010-06-09 2011-12-22 Kawamura Electric Inc Cooling system for server rack

Similar Documents

Publication Publication Date Title
JPH1197044A (en) Fuel cell and hot water supply cogeneration system
RU2443040C2 (en) Fuel elements system
JP2889807B2 (en) Fuel cell system
JP4453211B2 (en) Waste heat treatment method and apparatus for fuel cell power generator
JPH07230819A (en) Internally modified solid electrolyte fuel cell system having self-heat exchange type heat insulating prereformer
JP2002100382A (en) Fuel cell power generator
JPH1064566A (en) Fuel cell power generator and waste heat recovery method therefor
JP2006127861A (en) Fuel cell system
JP3994324B2 (en) Fuel cell power generator
JP3743254B2 (en) Fuel cell power generator
JP3960001B2 (en) Carbon monoxide remover and fuel cell system
JP4453226B2 (en) Waste heat utilization method and apparatus for fuel cell power generator
JPH065298A (en) Fuel cell power generating apparatus
JP4440676B2 (en) Fuel cell power generation hot water supply system
JP3997466B2 (en) Fuel cell power generator and operation control method thereof
JP4283980B2 (en) Starting method of fuel cell power generator
JP5083195B2 (en) Waste heat utilization method and apparatus for fuel cell power generator
JP3670467B2 (en) Fuel cell power generation system
JP4660888B2 (en) Fuel cell power generation system and operation method thereof
JPH0817455A (en) Exhaust heat recovery device for fuel cell generating unit
JP4161264B2 (en) Fuel cell power generator
JPH06231787A (en) Fuel cell power generator
JP2004296266A (en) Fuel cell system
JP2007115715A (en) Fuel cell power generating system
JP2004213977A (en) Fuel cell system