JPH07230819A - Internally modified solid electrolyte fuel cell system having self-heat exchange type heat insulating prereformer - Google Patents

Internally modified solid electrolyte fuel cell system having self-heat exchange type heat insulating prereformer

Info

Publication number
JPH07230819A
JPH07230819A JP6019124A JP1912494A JPH07230819A JP H07230819 A JPH07230819 A JP H07230819A JP 6019124 A JP6019124 A JP 6019124A JP 1912494 A JP1912494 A JP 1912494A JP H07230819 A JPH07230819 A JP H07230819A
Authority
JP
Japan
Prior art keywords
gas
temperature
fuel
reaction
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6019124A
Other languages
Japanese (ja)
Inventor
Yuichi Hishinuma
祐一 菱沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP6019124A priority Critical patent/JPH07230819A/en
Publication of JPH07230819A publication Critical patent/JPH07230819A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE:To provide internal modification performed on a fuel electrode simultaneously as fuel modification and power generation reaction by providing functions of modifying hydrocarbon of C2 or more in city gas, and controlling a methane reaction ratio easily. CONSTITUTION:Modifying gas and air flowing from a tube 15 through an air blower 8 and a heating air preheater 9 are supplied from a tube 23 to a solid electrolyte fuel cell 10 to generate power at 1000 deg.C, and temperature of fuel discharge gas getting into a combustor 11 also becomes about 1000 deg.C. Next, recycle gas of 1000 deg.C inside a tube 17 supplies heat to a reaction tube part 7b of a low temperature for heat absorption reaction to lower the temperature of the recycle gas itself to be low-temperature recycle gas of 500-800 deg.C, which is then supplied from a tube 22 through a recycle gas flow regulation valve 6 to an ejector 5. Hydrocarbon of C2 or more in city gas is thus modified in the reformer 7, thereby methane reformation reaction can be controlled.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は自己熱交換型断熱プレリ
フォーマを有する内部改質型固体電解質燃料システムに
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an internal reforming type solid electrolyte fuel system having a self-heat exchange type adiabatic prereformer.

【0002】[0002]

【従来の技術】都市ガスの有効利用技術のひとつとし
て、単一のシステムから電力と熱を供給するコジェネレ
ーションの普及が推進されているが、その中でも燃料電
池は優れた環境適合性と高い発電効率を有する重要な技
術と位置づけられる。
2. Description of the Related Art The spread of cogeneration, which supplies electric power and heat from a single system, is being promoted as one of the effective use technologies of city gas. Among them, fuel cells are excellent in environmental compatibility and high power generation. Positioned as an important technology with efficiency.

【0003】固体電解質型燃料電池(SOFC)はほか
のタイプの燃料電池と比較して運転温度が1000℃と
高いため、ガスタービン、スチームタービンを併用する
ことにより60%以上の発電効率が得ることができる。
The solid oxide fuel cell (SOFC) has an operating temperature as high as 1000 ° C. as compared with other types of fuel cells. Therefore, it is possible to obtain a power generation efficiency of 60% or more by using a gas turbine and a steam turbine together. You can

【0004】しかしながら、これらのボトミングサイク
ルの併用は発電所などの大規模施設でのみ可能であり、
オンサイトコジェネ用の燃料電池には不向きである。し
たがって今後オンサイトコジェネ用のSOFCを開発す
る上で、ボトミングサイクル抜きで高効率運転が可能な
システム構成を考える必要があり、また電池に求められ
る性能も検討する必要がある。
However, the combination of these bottoming cycles is possible only in a large-scale facility such as a power plant,
Not suitable for fuel cells for on-site cogeneration. Therefore, in developing an SOFC for on-site cogeneration in the future, it is necessary to consider a system configuration that enables high-efficiency operation without the bottoming cycle, and also to consider the performance required for the battery.

【0005】燃料電池の発電効率は理論効率、電圧効
率、燃料利用効率、インバータ効率、外部取出し効率等
の積である。理論効率、燃料利用効率、外部取出し効率
は、都市ガスを燃料にするゆえ燃料改質により改善が図
れる。一般的に燃料電池は高温で運転するとエントロピ
ー損失が大きくなるため理論効率が低下する。例えば水
素を燃料としたときの理論効率は1000℃では71%
まで低下する。しかしながらメタンを燃料とした場合に
は、メタンと水を吸熱反応させ改質することにより理論
発電効率を88%まで改善することが出来る。
The power generation efficiency of a fuel cell is the product of theoretical efficiency, voltage efficiency, fuel utilization efficiency, inverter efficiency, external extraction efficiency and the like. Theoretical efficiency, fuel utilization efficiency, and external extraction efficiency can be improved by fuel reforming because city gas is used as fuel. Generally, when a fuel cell is operated at a high temperature, the entropy loss increases, and the theoretical efficiency decreases. For example, the theoretical efficiency when using hydrogen as fuel is 71% at 1000 ° C.
Falls to. However, when methane is used as the fuel, the theoretical power generation efficiency can be improved to 88% by reforming by endothermic reaction between methane and water.

【0006】リン酸型燃料電池のような低温作動型の燃
料電池で改質ガスを燃料にすれば高効率が得られそうだ
が、実際には吸熱反応である燃料改質に必要な800℃
程度の高温熱源を得るために燃料の一部を燃焼する必要
があるため燃料利用率が低下し効率は思うほど上がらな
い。その点SOFCは1000℃で運転するため電池の
廃熱により改質に必要十分な熱が供給できるため、燃料
利用効率が上り高効率運転が可能となる。
High efficiency is likely to be obtained by using the reformed gas as fuel in a low temperature operation type fuel cell such as a phosphoric acid type fuel cell, but in reality, it is an endothermic reaction at 800 ° C. which is required for fuel reforming.
Since it is necessary to burn a part of the fuel to obtain a high temperature heat source, the fuel utilization rate decreases and the efficiency does not rise as much as desired. In this respect, SOFC operates at 1000 ° C., so that sufficient heat necessary for reforming can be supplied by the waste heat of the battery, so that the fuel utilization efficiency increases and high efficiency operation becomes possible.

【0007】[0007]

【発明が解決しようとする課題】燃料改質のためプレリ
フォーマが使用されている。従来使用されている固体電
解質型燃料電池のプレリフォーマは、改質触媒とこれを
充填する反応管と、反応管を加熱する加熱装置からな
り、都市ガス中に含まれる炭化水素と水蒸気を反応させ
炭化水素の一部あるいは全部を水素および一酸化炭素に
分解し、反応生成物を燃料電池の燃料として供給する役
割を持つ。
Pre-reformers are used for fuel reforming. The solid electrolyte fuel cell pre-reformer that has been conventionally used consists of a reforming catalyst, a reaction tube that fills the catalyst, and a heating device that heats the reaction tube.The pre-reformer reacts the hydrocarbons contained in city gas with water vapor. It has a role of decomposing a part or all of hydrocarbons into hydrogen and carbon monoxide, and supplying a reaction product as a fuel for a fuel cell.

【0008】しかしながら、このような従来の外部加熱
型リフォーマでは、都市ガス中に含まれるメタンの改質
率をコントロールすることが困難で、実際にはほとんど
全量のメタンを改質することになり、固体電解質型燃料
電池内で内部改質することができず、電池の効率を低下
させてしまう問題があった。
However, in such a conventional external heating reformer, it is difficult to control the reforming rate of methane contained in city gas, and in reality, almost all of the methane is reformed. There has been a problem that internal reforming cannot be performed in the solid oxide fuel cell, which lowers the efficiency of the cell.

【0009】本発明は上記の点にかんがみてなされたも
ので、SOFCは高温で運転されることに着目し、燃料
改質と発電反応を同時に燃料極上で行う内部改質を可能
にした自己熱交換型断熱プレリフォーマを有する内部改
質型固体電解質燃料電池システムを提供することを目的
とする。
The present invention has been made in view of the above points. Focusing on the fact that an SOFC is operated at a high temperature, self-heating that enables internal reforming in which fuel reforming and power generation reaction are simultaneously performed on the fuel electrode. An object of the present invention is to provide an internal reforming type solid electrolyte fuel cell system having an exchange type adiabatic pre-reformer.

【0010】[0010]

【課題を解決するための手段】上記課題を解決するた
め、本発明は固体電解質型燃料電池と、改質触媒を充填
した自己熱交換型断熱プレリフォーマと、燃料電池の燃
料極出口ガスを再循環させる燃料リサイクルラインと、
都市ガスおよび水蒸気の供給装置を備え、都市ガス中の
C2 以上の炭化水素を改質し、しかもメタンの反応率を
容易に制御する機能を持つことを特徴とする。
In order to solve the above problems, the present invention provides a solid electrolyte fuel cell, a self-heat exchange type adiabatic prereformer filled with a reforming catalyst, and a fuel electrode outlet gas of the fuel cell. A circulating fuel recycling line,
It is characterized by having a supply device for city gas and steam, reforming hydrocarbons of C2 or higher in city gas, and having a function of easily controlling the reaction rate of methane.

【0011】[0011]

【作用】内部改質法には、前述した燃料改質利用に加え
以下のような作用がある。 (1)リフォーマ加熱装置が不要となりシステム全体が
コンパクトになる。 (2)改質反応により電池が冷却できる。 (3)高温で改質するため改質率が100%である。 特に電池の冷却効果により、冷却用空気を送り込むブロ
ワー用電力低減による発電効率の向上と冷却用の空気量
の低減により廃熱回収効率が向上する。
The internal reforming method has the following actions in addition to the fuel reforming utilization described above. (1) The reformer heating device is not required and the entire system becomes compact. (2) The battery can be cooled by the reforming reaction. (3) The reforming rate is 100% because the reforming is performed at a high temperature. In particular, due to the cooling effect of the battery, the power generation efficiency is improved by reducing the electric power for the blower that feeds the cooling air, and the waste heat recovery efficiency is improved by reducing the cooling air amount.

【0012】[0012]

【実施例】以下本発明の実施例を図面に基づいて説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

【0013】図1は本発明の自己熱交換型断熱プレリフ
ォーマを有する内部改質型固体電解質燃料電池システム
の概略構成を示す図である。
FIG. 1 is a diagram showing a schematic structure of an internal reforming type solid electrolyte fuel cell system having a self-heat exchange type adiabatic pre-reformer of the present invention.

【0014】内部改質を行なう上での最大の問題点は、
高温でのC2以上の炭化水素の熱分解によるカーボン析
出である。そこで都市ガス中のC2以上の成分を選択的
に除去するプレリフォーマを設けた。
The biggest problem in performing internal reforming is
Carbon deposition due to thermal decomposition of C 2 or higher hydrocarbons at high temperature. Therefore, we installed a pre-reformer that selectively removes C 2 and higher components from city gas.

【0015】本システムの特徴は、下記の通りである。 (1)プレリフォーマは自己熱交換式断熱型にし、断熱
反応温度により改質率をコントロールする。 (2)電池出口の燃料をリサイクルし、スチームを節約
すると共に、燃料利用率の向上を図る。 (3)外部から反応用スチームを加え、スチーム比を
2.5程度に上げカーボン析出を防ぐ。
The features of this system are as follows. (1) The pre-reformer is a self-heat exchange type adiabatic type, and the reforming rate is controlled by the adiabatic reaction temperature. (2) Recycle fuel at the cell outlet to save steam and improve fuel utilization. (3) Add steam for reaction from the outside to raise the steam ratio to about 2.5 and prevent carbon deposition.

【0016】13Aガス中のメタンの改質率は、断熱反
応器の入口温度で決まり、入口温度はスチーム温度、リ
サイクルガス温度・ガス量によりコントロールすること
ができる。
The reforming rate of methane in the 13A gas is determined by the inlet temperature of the adiabatic reactor, and the inlet temperature can be controlled by the steam temperature and the recycle gas temperature / gas amount.

【0017】図1において1は脱硫装置、2は燃料流量
制御装置、3は水ポンプ、4は水気化装置、5はイジェ
クター、6はリサイクルガス流量制御弁、7は自己熱交
換型断熱プレリフォーマ、8は空気ブロア、9は空気予
熱器、10は固体電解質型燃料電池、11は燃焼器、1
2は廃熱回収機である。
In FIG. 1, 1 is a desulfurization device, 2 is a fuel flow control device, 3 is a water pump, 4 is a water vaporization device, 5 is an ejector, 6 is a recycle gas flow control valve, and 7 is a self-heat exchange type adiabatic pre-reformer. , 8 is an air blower, 9 is an air preheater, 10 is a solid oxide fuel cell, 11 is a combustor, 1
2 is a waste heat recovery machine.

【0018】次にこのようなシステムの動作について説
明する。外部から供給されたメタンを主成分としC2
5程度の炭化水素を含む都市ガスは管13から入り、
脱硫装置1により硫黄成分が取り除かれた後、燃料流量
制御装置2により所定流量の燃料ガスとして管16から
イジェクター5に送り込まれる。水は管14より水ポン
プ3に入り、ここで所定の流量水気化器4に送り込まれ
175℃の加熱水蒸気となる。この加熱水蒸気と都市ガ
スの噴出が駆動源となるイジェクター効果により、燃料
排ガスの一部を循環した水蒸気、二酸化炭素、一酸化炭
素、水素等を主成分とするリサイクルガスが管17から
イジェクター5に吸い込まれ混合し、混合ガスとして管
18から自己熱交換型断熱プレリフォーマ7に供給さ
れ、ここで混合ガスは断熱型プレリフォーマに充填され
た触媒上での水蒸気改質反応(数1〜数3)により改質
され改質ガスに転換される。
Next, the operation of such a system will be described. Mainly composed of methane supplied from the outside, C 2 ~
City gas containing hydrocarbons of about C 5 enters through the pipe 13,
After the sulfur component is removed by the desulfurization device 1, the fuel flow rate control device 2 sends the fuel gas at a predetermined flow rate from the pipe 16 to the ejector 5. The water enters the water pump 3 through the pipe 14, and is sent to the water vaporizer 4 with a predetermined flow rate, and becomes heated steam at 175 ° C. Due to the ejector effect in which the heated steam and the jet of city gas serve as a driving source, a recycled gas containing steam, carbon dioxide, carbon monoxide, hydrogen, etc., which circulates a part of the fuel exhaust gas, as main components to the ejector 5 from the pipe 17. The gas is sucked and mixed, and is supplied as a mixed gas from the pipe 18 to the adiabatic prereformer 7 of the heat exchange type, where the mixed gas is subjected to a steam reforming reaction (numbers 1 to 3) on the catalyst packed in the adiabatic prereformer. ) And is converted into reformed gas.

【0019】[0019]

【数1】 [Equation 1]

【0020】[0020]

【数2】 [Equation 2]

【0021】[0021]

【数3】 上記の改質反応はいずれも左辺から右辺に変化する場合
は吸熱反応であるので、一般的には反応温度が高いとき
に優先的に起こりやすい。一方低温時には数2、3は可
逆反応なので逆に右辺から左辺に反応が起こりやすい。
従って断熱型プレリフォーマ7においては、混合ガスの
中のCnm(C2以上の炭化水素)は数1に従い吸熱反
応によりCO(一酸化炭素)とH2(水素)に分解され
そのガス温度を下げることとなる。ガス温度がC2以上
の炭化水素の分解反応(数1)により適度な温度まで下
がれば都市ガス中に含まれるメタンの改質反応(数2の
左辺から右辺への反応)は進まなくなる。自己熱交換型
断熱プレリフォーマ7は一度熱交換するものの交換後の
ガスは再び反応器に入るので等エンタルピー変化である
ので、自己熱交換型断熱プレリフォーマ7のメタンの改
質率は、リフォーマに入る各種ガスの組成と温度と流量
により決まる顕熱量により制御することが可能である。
[Equation 3] When any of the above-mentioned reforming reactions changes from the left side to the right side, it is an endothermic reaction, and therefore generally tends to occur preferentially when the reaction temperature is high. On the other hand, when the temperature is low, the equations 2 and 3 are reversible reactions, and conversely the reaction easily occurs from the right side to the left side.
Therefore, in the adiabatic pre-reformer 7, C n H m (hydrocarbons of C 2 or more) in the mixed gas is decomposed into CO (carbon monoxide) and H 2 (hydrogen) by an endothermic reaction according to the equation 1. It will lower the temperature. If the gas temperature is lowered to an appropriate temperature by the decomposition reaction of hydrocarbons having C 2 or more (Equation 1), the reforming reaction of methane contained in city gas (reaction from the left side to the right side of Equation 2) will not proceed. Although the self-heat-exchange type adiabatic pre-reformer 7 exchanges heat once, but the gas after the exchange enters the reactor again, it has an isenthalpic change. Therefore, the methane reforming rate of the self-heat-exchange type adiabatic pre-reformer 7 is It can be controlled by the amount of sensible heat determined by the composition, temperature, and flow rate of various incoming gases.

【0022】自己熱交換型断熱プレリフォーマ7の入り
口温度の制御方法について以下に説明する。
A method of controlling the inlet temperature of the self-heat exchange type adiabatic pre-reformer 7 will be described below.

【0023】改質ガスと、管15からブロアー8と昇温
のための空気予熱器9を介して流入した空気は、管23
から固体電解質型燃料電池10に供給され、1000℃
で発電が行なわれる。1000度で運転するので燃焼器
11に入る燃料排ガスの温度も約1000度程度であ
る。燃料電池10の燃料排ガスの一部は管20、22か
らリサイクルガスとして循環再利用されるが、残りの燃
料排ガスと排気空気はそれぞれ管20、23により燃焼
器11に供給され、燃焼した後、その燃焼熱は水気化器
4、空気予熱器9等で回収された後系外に放出される。
The reformed gas and the air flowing from the pipe 15 through the blower 8 and the air preheater 9 for raising the temperature are fed into the pipe 23.
Is supplied to the solid oxide fuel cell 10 from 1000 ° C.
Will generate electricity. Since the operation is performed at 1000 degrees, the temperature of the fuel exhaust gas entering the combustor 11 is also about 1000 degrees. A part of the fuel exhaust gas of the fuel cell 10 is circulated and reused as recycled gas from the pipes 20 and 22, but the remaining fuel exhaust gas and exhaust air are supplied to the combustor 11 through the pipes 20 and 23, respectively, and after combustion, The combustion heat is recovered by the water vaporizer 4, the air preheater 9 and the like and then released to the outside of the system.

【0024】一方管17内の1000℃のリサイクルガ
スは自己熱交換型断熱プレリフォーマの熱交換器部7a
に供給され、ここで吸熱反応のために温度の低い反応管
部7bに熱を与えることによりリサイクルガス自身の温
度を下げ、温度500〜800度の低温リサイクルガス
となり管22からリサイクルガス流量調節弁6を介して
イジェクター5に供給される。このリサイクルガス流量
制御弁6とは、例えばバタフライ弁、ゲートバルブのよ
うな開口面積の大きな弁が好ましい。本発明において
は、このリサイクルガス流量制御弁6の調節によりリサ
イクルガスの流量を調節し、自己熱交換型断熱プレリフ
ォーマ7に供給する顕熱を制御している。
On the other hand, the recycle gas at 1000 ° C. in the tube 17 is used as the heat exchanger section 7a of the self-heat exchange type adiabatic pre-reformer.
The temperature of the recycle gas itself is lowered by supplying heat to the low temperature reaction tube portion 7b for the endothermic reaction, and the temperature of the recycle gas itself becomes low temperature recycle gas of 500 to 800 degrees Celsius. It is supplied to the ejector 5 via 6. The recycled gas flow control valve 6 is preferably a valve having a large opening area such as a butterfly valve or a gate valve. In the present invention, the recycle gas flow rate control valve 6 is adjusted to adjust the flow rate of the recycle gas to control the sensible heat supplied to the self-heat exchange type adiabatic pre-reformer 7.

【0025】図2は自己熱交換型断熱プレリフォーマの
運転例を説明する図である。
FIG. 2 is a diagram for explaining an operation example of the self-heat exchange type adiabatic pre-reformer.

【0026】自己熱交換型断熱プレリフォーマ7の伝熱
面積を変化させることにより伝熱流量を調節し、温度1
000℃、利用率85%の燃料排ガスの40%を管17
によりリフォーマ7にリサイクルし、このリサイクルガ
スを熱交換部7aにおいて500〜900℃まで冷却し
た後、管22からイジェクター5を介して、管16から
入る15℃の都市ガスと、スチーム比2.5となるよう
に流量調節された175℃の加熱水蒸気(管15から入
る)を混合する。この時の管18から入る反応管部7b
入り口の混合ガスの温度は340℃から580℃とな
る。
The heat transfer flow rate is adjusted by changing the heat transfer area of the self-heat exchange type adiabatic pre-reformer 7, and the temperature of 1
40% of fuel exhaust gas with a utilization rate of 85% at 000 ° C is pipe 17
The recycled gas is recycled to the reformer 7, and the recycled gas is cooled to 500 to 900 ° C. in the heat exchange section 7 a, and then the city gas of 15 ° C. that enters from the pipe 22 through the ejector 5 and the steam ratio of 2.5. 175 ° C. heated steam (entered from the tube 15) whose flow rate is adjusted so that Reaction tube portion 7b entering from the tube 18 at this time
The temperature of the mixed gas at the inlet is 340 ° C to 580 ° C.

【0027】この温度は、熱交換を全く行なわなかった
時の混合ガスの温度の640℃に比べ十分低く、本発明
により触媒層入り口の温度を下げる効果が得られること
が解る。また、熱交換により管22を流れる低温リサイ
クルガスの温度を600℃まで下げれば、炭化水素の熱
分解による炭化析出がほとんど無視できる400℃程度
まで反応管部7b入り口の混合ガスの温度を下げること
ができる。しかも本プレリフォーマは断熱式であるので
熱交換により混合ガスの温度を下げても、反応管部7b
出口の温度は473℃と一定であるので、都市ガス中の
メタンの改質率も一定となる。したがって前述の条件下
においてはメタンの改質率は0%となりC2以上の炭化
水素のみの改質を選択的に行なうことができる。
This temperature is sufficiently lower than 640 ° C., which is the temperature of the mixed gas when no heat exchange is performed, and it can be seen that the present invention has the effect of lowering the temperature at the catalyst layer inlet. Further, if the temperature of the low-temperature recycled gas flowing through the pipe 22 is lowered to 600 ° C. by heat exchange, the temperature of the mixed gas at the inlet of the reaction tube portion 7b is lowered to about 400 ° C. at which carbonization precipitation due to thermal decomposition of hydrocarbons can be almost ignored. You can Moreover, since this pre-reformer is an adiabatic type, even if the temperature of the mixed gas is lowered by heat exchange, the reaction tube portion 7b
Since the outlet temperature is constant at 473 ° C., the reforming rate of methane in city gas is also constant. Therefore, under the above-mentioned conditions, the reforming rate of methane is 0%, and the reforming of only hydrocarbons of C 2 or more can be selectively performed.

【0028】[0028]

【発明の効果】この自己熱交換型断熱プレリフォーマを
採用することにより、完全にプレリフォーマでメタンの
改質を行なう外部改質方式に比べ発電効率にして約3%
改善することができる。また、本発明は、反応器の入り
口温度を制御しその反応物の持つ顕熱により反応を進行
させ平衡状態で反応を終了させることにより反応率を制
御する手法を採っているため、触媒の活性の変化にとも
なう影響を受けにくく長期にわたって安定した制御特性
を得ることが可能であるし、改質率のフィードバック制
御を行なう場合にも、ガスの組成分析などは不要で、触
媒層出口温度を制御すれば良いので安価にその制御を行
なうことが可能である。
EFFECTS OF THE INVENTION By adopting this self-heat exchange type adiabatic pre-reformer, the power generation efficiency is about 3% as compared with the external reforming system in which methane is completely reformed by the pre-reformer.
Can be improved. In addition, the present invention adopts a method of controlling the reaction rate by controlling the inlet temperature of the reactor and advancing the reaction by the sensible heat of the reaction product and terminating the reaction in an equilibrium state. It is possible to obtain stable control characteristics over a long period of time without being affected by changes in the fuel cell, and even when performing feedback control of the reforming rate, gas composition analysis etc. is unnecessary and the catalyst layer outlet temperature is controlled. Since it suffices to do so, the control can be performed at a low cost.

【0029】また、リサイクルガスは一度熱交換して温
度を下げてからリサイクルガス流量制御弁6、イジェク
ター5に供給されるため、これらに要求される耐熱性も
緩やかなものとなり、より安価で長寿命なものを用いる
ことができるし、イジェクターの代わりに高温ブロアー
を用いることも可能となる。
Further, since the recycled gas is once heat-exchanged to lower the temperature and then supplied to the recycled gas flow rate control valve 6 and the ejector 5, the heat resistance required for these is also moderate, which is cheaper and longer. It is possible to use one with a long life, and it is also possible to use a high temperature blower instead of the ejector.

【0030】触媒にとっても、入り口温度を400程度
まで下げれば炭素析出による劣化も防げる上に、触媒層
の流れ方向の温度分布も小さくなるために活性劣化が起
きにくくなり、長寿命化が期待できる等の効果がある。
Also for the catalyst, if the inlet temperature is lowered to about 400, deterioration due to carbon deposition can be prevented, and the temperature distribution in the flow direction of the catalyst layer also becomes small, so that activity deterioration is less likely to occur and a longer life can be expected. And so on.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の自己熱交換型断熱プレリフォーマを有
する内部改質型固体電解質燃料電池システムの概略構成
を示す図である。
FIG. 1 is a diagram showing a schematic configuration of an internal reforming type solid electrolyte fuel cell system having a self-heat exchange type adiabatic prereformer of the present invention.

【図2】自己熱交換型断熱プレリフォーマの運転例を説
明する図である。
FIG. 2 is a diagram illustrating an operation example of a self-heat exchange type adiabatic pre-reformer.

【符号の説明】[Explanation of symbols]

1 脱硫装置 2 燃料流量制御装置 3 水ポンプ 4 水気化装置 5 イジェクター 6 リサイクルガス流量制御弁 7 自己熱交換型断熱プレリフォーマ 7a 熱交換器部 7b 反応管部 8 空気ブロア 9 空気予熱器 10 固体電解質型燃料電池 11 燃焼器 12 廃熱回収機 13 都市ガス管 14 水管 15 加熱水蒸気管 16 燃料ガス管 17 リサイクルガス管 18 混合ガス管 19 改質ガス管 20 燃料排ガス管 21 排気空気管 22 低温リサイクルガス管 23 空気管 1 Desulfurization Device 2 Fuel Flow Control Device 3 Water Pump 4 Water Vaporizer 5 Ejector 6 Recycle Gas Flow Control Valve 7 Self-heat Exchange Adiabatic Prereformer 7a Heat Exchanger Part 7b Reaction Tube Part 8 Air Blower 9 Air Preheater 10 Solid Electrolyte Type fuel cell 11 Combustor 12 Waste heat recovery machine 13 City gas pipe 14 Water pipe 15 Heating steam pipe 16 Fuel gas pipe 17 Recycle gas pipe 18 Mixed gas pipe 19 Reformed gas pipe 20 Fuel exhaust pipe 21 Exhaust air pipe 22 Low temperature recycled gas Tube 23 air tube

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 固体電解質燃料電池と、改質触媒を充填
した自己熱交換型断熱プレリフォーマと、燃料電池の燃
料極出口ガスを再循環させる燃料リサイクルラインと、
都市ガスおよび水蒸気の供給装置を備え、都市ガス中の
2以上の炭化水素を改質し、しかもメタンの反応率を
容易に制御する機能を持つことを特徴とする自己熱交換
型断熱プレリフォーマを有する内部改質型固体電解質燃
料電池システム。
1. A solid electrolyte fuel cell, a self-heat exchange type adiabatic pre-reformer filled with a reforming catalyst, and a fuel recycling line for recirculating the fuel electrode outlet gas of the fuel cell.
A self-heat exchange type adiabatic pre-reformer equipped with a supply device for city gas and steam, reforming hydrocarbons of C 2 or higher in city gas, and having a function of easily controlling the reaction rate of methane Internal reforming type solid oxide fuel cell system having the following.
JP6019124A 1994-02-16 1994-02-16 Internally modified solid electrolyte fuel cell system having self-heat exchange type heat insulating prereformer Pending JPH07230819A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6019124A JPH07230819A (en) 1994-02-16 1994-02-16 Internally modified solid electrolyte fuel cell system having self-heat exchange type heat insulating prereformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6019124A JPH07230819A (en) 1994-02-16 1994-02-16 Internally modified solid electrolyte fuel cell system having self-heat exchange type heat insulating prereformer

Publications (1)

Publication Number Publication Date
JPH07230819A true JPH07230819A (en) 1995-08-29

Family

ID=11990721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6019124A Pending JPH07230819A (en) 1994-02-16 1994-02-16 Internally modified solid electrolyte fuel cell system having self-heat exchange type heat insulating prereformer

Country Status (1)

Country Link
JP (1) JPH07230819A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0948070A1 (en) * 1998-02-17 1999-10-06 Mitsubishi Heavy Industries, Ltd. Solid electrolyte fuel cell power generating system
JP2003109628A (en) * 2001-09-27 2003-04-11 Toto Ltd Fuel cell system
JP2003282118A (en) * 2002-01-15 2003-10-03 Osaka Gas Co Ltd Energy cogeneration system
JP2004207241A (en) * 2002-12-23 2004-07-22 General Electric Co <Ge> Integrated fuel cell hybrid generator with re-circulated air fuel flow
JP2005535068A (en) * 2002-05-21 2005-11-17 セラミック・フューエル・セルズ・リミテッド Fuel cell system
JP2006500758A (en) * 2002-09-27 2006-01-05 クエストエアー テクノロジーズ インコーポレイテッド Improved solid oxide fuel cell system
JP2009032406A (en) * 2007-07-24 2009-02-12 Kyocera Corp Fuel cell system
US7521139B2 (en) 2002-01-31 2009-04-21 Ceramic Fuel Cells Limited Thermal management of fuel cells
JP2010245049A (en) * 2010-06-24 2010-10-28 Kyocera Corp Fuel cell assembly
JP2019079802A (en) * 2017-10-26 2019-05-23 エルジー フューエル セル システムズ インクLg Fuel Cell Systems Inc. Fuel cell system with in-block reforming

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6309770B1 (en) 1998-02-17 2001-10-30 Mitsubishi Heavy Industries, Ltd. Solid electrolyte fuel cell power generating system
EP0948070A1 (en) * 1998-02-17 1999-10-06 Mitsubishi Heavy Industries, Ltd. Solid electrolyte fuel cell power generating system
JP2003109628A (en) * 2001-09-27 2003-04-11 Toto Ltd Fuel cell system
JP2003282118A (en) * 2002-01-15 2003-10-03 Osaka Gas Co Ltd Energy cogeneration system
US7521139B2 (en) 2002-01-31 2009-04-21 Ceramic Fuel Cells Limited Thermal management of fuel cells
US8057947B2 (en) * 2002-05-21 2011-11-15 Ceramic Fuel Cells Limited Thermal management of a fuel cell system
JP2005535068A (en) * 2002-05-21 2005-11-17 セラミック・フューエル・セルズ・リミテッド Fuel cell system
JP2006500758A (en) * 2002-09-27 2006-01-05 クエストエアー テクノロジーズ インコーポレイテッド Improved solid oxide fuel cell system
JP2004207241A (en) * 2002-12-23 2004-07-22 General Electric Co <Ge> Integrated fuel cell hybrid generator with re-circulated air fuel flow
JP2009032406A (en) * 2007-07-24 2009-02-12 Kyocera Corp Fuel cell system
JP2010245049A (en) * 2010-06-24 2010-10-28 Kyocera Corp Fuel cell assembly
JP2019079802A (en) * 2017-10-26 2019-05-23 エルジー フューエル セル システムズ インクLg Fuel Cell Systems Inc. Fuel cell system with in-block reforming
US10693158B2 (en) 2017-10-26 2020-06-23 Lg Electronics, Inc. Methods of operating fuel cell systems with in-block reforming

Similar Documents

Publication Publication Date Title
JP5331819B2 (en) MCFC power generation system
JPH11233129A (en) Solid electrolyte fuel cell generating system
JPH07230816A (en) Internally modified solid electrolyte fuel cell system
JPH07230819A (en) Internally modified solid electrolyte fuel cell system having self-heat exchange type heat insulating prereformer
EP3477751A1 (en) Fuel cell system comprising heat exchanger using anode gas or anode exhaust gas
KR100751029B1 (en) Fuel cell power generation system
CN112290055B (en) Self-humidifying anode fuel circulation system and method of fuel cell system
JP4154680B2 (en) Fuel cell power generator that injects steam into the anode exhaust gas line
JP2005327513A (en) Hot standby method for solid oxide fuel cell and system for the same
JP2001313053A (en) Fuel cell system
JP3986430B2 (en) Hydrogen utilization system using solid oxide fuel cell
JP3139574B2 (en) Fuel cell generator
JP2009176659A (en) Fuel cell generation system and its control method
JP2004087350A (en) Solid electrolyte fuel cell and solid electrolyte fuel cell power generation provision
JP2002100382A (en) Fuel cell power generator
JP2006294464A (en) Fuel cell power generation system
JP3137143B2 (en) Temperature control method for fuel cell power plant and fuel cell power plant equipped with temperature control device
US12126061B1 (en) Ammonia-based solid oxide fuel cell (SOFC) system in which temperature rise using heating element is applied, and operation method therefor
JPH08339815A (en) Fuel cell power generation device
JP3467759B2 (en) Control method of outlet temperature of reformer
US20240332571A1 (en) Ammonia-based solid oxide fuel cell (sofc) system in which temperature rise using heating element is applied, and operation method therefor
JP2002025589A (en) Fuel cell system
JPH06104000A (en) Fuel cell power generator
JPH04243538A (en) Method and device for controlling catalyst layer temperature of fuel reformer for fuel battery use
JP3969976B2 (en) Fuel reforming system and fuel cell system

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010904