JP2006294464A - Fuel cell power generation system - Google Patents

Fuel cell power generation system Download PDF

Info

Publication number
JP2006294464A
JP2006294464A JP2005114699A JP2005114699A JP2006294464A JP 2006294464 A JP2006294464 A JP 2006294464A JP 2005114699 A JP2005114699 A JP 2005114699A JP 2005114699 A JP2005114699 A JP 2005114699A JP 2006294464 A JP2006294464 A JP 2006294464A
Authority
JP
Japan
Prior art keywords
fuel cell
power generation
generation system
cell power
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005114699A
Other languages
Japanese (ja)
Inventor
Noriyuki Imada
典幸 今田
Yukinori Iwasaki
之紀 岩崎
Yutaka Takeda
豊 武田
Kazuhito Koyama
一仁 小山
Terufumi Miyata
輝史 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2005114699A priority Critical patent/JP2006294464A/en
Publication of JP2006294464A publication Critical patent/JP2006294464A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve energy efficiency of a power generation system while improving the concentration of hydrogen produced from a hydrogen production device without increasing the size of the device nor generating an unnecessary reaction. <P>SOLUTION: This fuel cell power generation system is composed by including a hydrogen production device body 2a for producing a reform gas containing hydrogen by a reform reaction by an incorporated reform catalyst 6 by using a city gas, air and water or steam as a material; a polymer electrolyte fuel cell 1 for generating power by using the produced reform gas as a fuel; and a heat recovery unit 3 for recovering heat by burning an anode exhaust gas of the fuel cell 1. The heat recovery unit 3 is provided with a heat exchanger (reform catalyst) 12 having a heating object fluid passage filled with a granular reform catalyst 23; the city gas and water or steam are supplied to the heating object fluid passage; the heating object fluid passage is heated by combustion heat of the anode exhaust gas; and a material supply tube 42 for guiding a fluid having passed the heating object fluid passage to the hydrogen production device body 2a is provided. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、燃料電池発電システムに係り、特に燃料電池に水素に富む改質ガスを供給する水素製造装置の効率向上に関する。   The present invention relates to a fuel cell power generation system, and more particularly to an improvement in the efficiency of a hydrogen production apparatus that supplies a reformed gas rich in hydrogen to a fuel cell.

燃料電池、例えば家庭用燃料電池発電システムに用いられる固体高分子形燃料電池(以下PEFCと記載)は、水素と酸素とを燃料として発電する。このPEFCに水素を供給するために、都市ガスや灯油、LPGなどの炭化水素系燃料から水素を含む気体(以下、改質ガスという)を生成する水素製造装置が必要となる。PEFCでは、供給された水素の70〜80%を使用するが、残りの20〜30%を排ガスとして放出するので、この残りの水素を水素製造装置の一部をなす熱回収器で燃焼し、熱回収する。   BACKGROUND ART A fuel cell, for example, a polymer electrolyte fuel cell (hereinafter referred to as PEFC) used in a household fuel cell power generation system generates power using hydrogen and oxygen as fuel. In order to supply hydrogen to the PEFC, a hydrogen production apparatus that generates a gas containing hydrogen (hereinafter referred to as a reformed gas) from a hydrocarbon fuel such as city gas, kerosene, or LPG is required. In PEFC, 70 to 80% of the supplied hydrogen is used, but the remaining 20 to 30% is discharged as exhaust gas. Therefore, the remaining hydrogen is burned in a heat recovery device that forms a part of the hydrogen production apparatus. Heat recovery.

次に、上記水素製造装置及び熱回収器の従来構成を説明する。水素製造装置は、水素製造装置本体(改質ガス生成手段)と熱回収器と両者を接続する配管と、水素製造装置本体と熱回収器に各種流体を供給する手段、及び制御装置を含んで構成される。水素製造装置本体の下部より、原料である炭化水素系燃料(例えば都市ガス)、空気、水(水蒸気)が原料混合部に供給され、混合された気体が燃焼触媒に導かれる。ここで原料中の都市ガスと空気が反応し発熱する。発熱した前記気体は次に、改質触媒に導かれ、ここで都市ガスと水蒸気とが反応する吸熱反応により、水素が生成される。このとき、大量の熱が必要となるため、前段の燃焼触媒で発生した熱が使用される。   Next, conventional configurations of the hydrogen production apparatus and the heat recovery unit will be described. The hydrogen production device includes a hydrogen production device main body (reformed gas generation means) and a heat recovery device, a pipe connecting the two, a hydrogen production device main body and a means for supplying various fluids to the heat recovery device, and a control device. Composed. From the lower part of the main body of the hydrogen production apparatus, hydrocarbon-based fuel (for example, city gas), air, and water (steam) as raw materials are supplied to the raw material mixing section, and the mixed gas is guided to the combustion catalyst. Here, city gas and air in the raw material react to generate heat. The exothermic gas is then guided to the reforming catalyst, where hydrogen is generated by an endothermic reaction in which the city gas and water vapor react. At this time, since a large amount of heat is required, the heat generated by the preceding combustion catalyst is used.

このときの反応を式(1)に示すが、水素と同時に一酸化炭素(以下CO)が発生する。生成された水素、COを含む気体を改質ガスという。   The reaction at this time is shown in Formula (1), and carbon monoxide (hereinafter referred to as CO) is generated simultaneously with hydrogen. The generated hydrogen and CO-containing gas is called a reformed gas.

CH + HO → 3H + CO ・・・(1)
水素を燃料として発電するPEFCでは、このCOにより性能が低下するため、CO濃度を10ppm以下にまで低減する必要がある。そこで一般にCO転化器、CO除去器などが使用される。
CH 4 + H 2 O → 3H 2 + CO (1)
In the PEFC that generates power using hydrogen as the fuel, the performance is reduced by this CO, so the CO concentration must be reduced to 10 ppm or less. Therefore, a CO converter, a CO remover, etc. are generally used.

PEFCでは上記改質ガスを用いて発電した後、20〜30%の水素を含んだアノード排ガスを放出する。アノード排ガスは、前記熱回収器で燃焼され、その燃焼熱が水蒸気生成や原料(都市ガス、空気など)の予熱に利用される。   In PEFC, after generating electricity using the above reformed gas, anode exhaust gas containing 20 to 30% hydrogen is released. The anode exhaust gas is combusted in the heat recovery unit, and the combustion heat is used for steam generation and preheating of raw materials (city gas, air, etc.).

熱回収器は、起動バーナ、燃焼触媒、それぞれ水、空気、都市ガスが流れる複数の熱交換器から構成され、PEFCから排出されるアノード排ガスを燃焼触媒で燃焼させ、その熱を利用して前記複数の熱交換器により、原料を予熱する構成となっている。   The heat recovery unit is composed of a starter burner, a combustion catalyst, and a plurality of heat exchangers through which water, air, and city gas respectively flow. The anode exhaust gas discharged from the PEFC is burned by the combustion catalyst, and the heat is used to The raw material is preheated by a plurality of heat exchangers.

特許文献1には、主改質器の上流側に予備改質器を設置するものが開示されている。特許文献2には、改質器に予備改質部を設置し、改質器に投入された原料と水蒸気の混合ガスの一部を予備改質部で水素に転化し、さらに触媒層で残りを水素に転化するものが開示されている。さらに、特許文献3には、水蒸気改質触媒と酸化触媒を混合した混合触媒層が充填された第2反応室の上流側に、水蒸気改質触媒層が充填された第1反応室を設置し、改質器に投入した原料−水蒸気混合物を第2反応室で改質する構成が開示されている。   Patent Document 1 discloses a system in which a preliminary reformer is installed on the upstream side of the main reformer. In Patent Document 2, a pre-reformer is installed in the reformer, and a part of the mixed gas of the raw material and steam charged in the reformer is converted into hydrogen in the pre-reformer, and the remaining in the catalyst layer Have been disclosed which convert to hydrogen. Further, in Patent Document 3, a first reaction chamber filled with a steam reforming catalyst layer is installed upstream of a second reaction chamber filled with a mixed catalyst layer in which a steam reforming catalyst and an oxidation catalyst are mixed. A configuration is disclosed in which a raw material-steam mixture charged in a reformer is reformed in a second reaction chamber.

特開平11−292503号公報(第1頁、図1)JP-A-11-292503 (first page, FIG. 1) 特開2001−031403号公報(第1、2頁、図1)JP 2001-031403 A (1st, 2nd page, FIG. 1) 特開2004−137108号公報(第6、9、10頁、図3)JP 2004-137108 A (6th, 9th, 10th pages, FIG. 3)

上記従来技術では、熱回収器で発生する熱の有効利用について配慮が十分でなく、利用可能な熱を放出してしまうという問題があった。また、そのために水素製造装置から発生する水素濃度が低いという問題があった。   In the above-described conventional technology, there is a problem that the effective use of heat generated in the heat recovery device is not sufficiently considered, and usable heat is released. In addition, there is a problem that the hydrogen concentration generated from the hydrogen production apparatus is low.

熱回収器で発生する熱を有効利用するためには、熱回収器内部に設置した熱交換器の伝熱効率を高くし、原料への熱供給量を増加させる方法が考えられるが、(1)熱交換器の効率を上げるためには、伝熱面積を大きくする必要があり、装置が大きくなる、
(2)原料への熱供給量を増加させると、原料の熱分解(CH→C+2Hなど)などの不必要な反応が生じる、
などの問題があった。
In order to effectively use the heat generated in the heat recovery unit, a method of increasing the heat transfer efficiency of the heat exchanger installed in the heat recovery unit and increasing the amount of heat supplied to the raw material can be considered. In order to increase the efficiency of the heat exchanger, it is necessary to increase the heat transfer area, resulting in a larger device.
(2) When the amount of heat supply to the raw material is increased, unnecessary reactions such as thermal decomposition of the raw material (CH 4 → C + 2H 2 etc.) occur.
There were problems such as.

前記特許文献1〜3に記載のものは、改質を2箇所に分けて行なう点で前記従来の技術とは異なるが、熱回収器の熱の有効利用については考慮されていない。   Although the thing of the said patent documents 1-3 differs from the said prior art by the point which performs reforming in two places, it does not consider about the effective utilization of the heat | fever of a heat recovery device.

本発明の課題は、装置を大きくすることなく、かつ不必要な反応を生じさせることなく、発電システムのエネルギー効率を向上すると同時に、改質ガス生成手段と熱回収器からなる水素製造装置から発生する水素濃度を向上させることにある。   An object of the present invention is to improve the energy efficiency of a power generation system without increasing the size of the apparatus and causing unnecessary reactions, and at the same time, is generated from a hydrogen production apparatus comprising a reformed gas generation means and a heat recovery device. It is to improve the hydrogen concentration.

上記課題は、前記熱回収器で発生する熱を単に原料ガスの予熱に利用するのではなく、改質反応を行なうのに必要な熱の熱源として利用することにより達成される。   The above-described object is achieved by using the heat generated in the heat recovery device as a heat source for heat necessary for performing the reforming reaction, not simply for preheating the raw material gas.

具体的には、上記課題は、炭化水素系燃料、酸素又は空気および水又は水蒸気を原料とし内装した改質触媒による改質反応により水素を含む改質ガスを生成する改質ガス生成手段と、生成された改質ガスを燃料として発電する燃料電池と、前記燃料電池のアノード排ガスを燃焼して熱回収する熱回収器とを有してなる燃料電池発電システムであって、前記熱回収器を、改質触媒が充填された被加熱流体流路を備えた熱交換器を含んで構成し、前記被加熱流体流路に炭化水素系燃料と水または水蒸気を供給する手段と、前記被加熱流体流路を通過した流体を前記改質ガス生成手段に導く管路と、を備えた燃料電池発電システムにより達成される。   Specifically, the above-mentioned problem is a reformed gas generating means for generating a reformed gas containing hydrogen by a reforming reaction by a reforming catalyst using hydrocarbon fuel, oxygen or air and water or steam as raw materials, A fuel cell power generation system comprising: a fuel cell that generates electricity using the generated reformed gas as fuel; and a heat recovery unit that recovers heat by burning the anode exhaust gas of the fuel cell, wherein the heat recovery unit A heat exchanger including a heated fluid channel filled with a reforming catalyst, a means for supplying hydrocarbon fuel and water or steam to the heated fluid channel, and the heated fluid And a conduit that guides the fluid that has passed through the flow path to the reformed gas generation means.

上記構成によれば、前記熱回収器でアノード排ガスを燃焼させ、熱回収器に設置された熱交換器の前記改質触媒を充填した被加熱流体流路に炭化水素系燃料と水または水蒸気を供給することにより、前記被加熱流体流路内部で改質反応が進行し、投入した炭化水素系燃料の一部が水素に変換される。改質反応は吸熱反応であるため、アノード排ガスの燃焼熱を有効に利用することができる。すなわち、原料の温度を必要以上に上げることなく、また、熱交換器の大きさを変えることなく、熱交換器の効率を向上させることができる。   According to the above configuration, the anode exhaust gas is combusted in the heat recovery unit, and the hydrocarbon-based fuel and water or water vapor are supplied to the heated fluid passage filled with the reforming catalyst of the heat exchanger installed in the heat recovery unit. By supplying, the reforming reaction proceeds inside the heated fluid flow path, and a part of the injected hydrocarbon fuel is converted to hydrogen. Since the reforming reaction is an endothermic reaction, the combustion heat of the anode exhaust gas can be used effectively. That is, the efficiency of the heat exchanger can be improved without increasing the temperature of the raw material more than necessary and without changing the size of the heat exchanger.

一方、上記熱交換器内部で投入した炭化水素系燃料の一部が水素に変換されるので、改質ガス生成手段内部では、従来に比べて改質反応量が少なくなる。すなわち、供給する熱量が少なくてすむこととなるので、熱源となる空気の供給量を少なくすることができ、改質ガス生成手段から送り出される改質ガスの水素濃度、言い換えると水素製造装置で生成される改質ガスの水素濃度を高くすることが可能となる。   On the other hand, since a part of the hydrocarbon-based fuel charged in the heat exchanger is converted to hydrogen, the amount of reforming reaction is reduced in the reformed gas generating means as compared with the prior art. That is, since the amount of heat to be supplied can be reduced, the amount of air supplied as a heat source can be reduced, and the hydrogen concentration of the reformed gas sent out from the reformed gas generating means, in other words, generated by the hydrogen production apparatus. It is possible to increase the hydrogen concentration of the reformed gas.

また、前記改質ガス生成手段の改質触媒の改質ガス出口に改質ガスの温度を計測する温度計測手段を設け、さらに、前記温度計測手段による計測値が予め定められた温度範囲となるように前記改質ガス生成手段に供給する空気量を調整する制御器を設けることが望ましい。このように改質触媒に供給する空気量を調整することで、起動時間を短くし、かつ、定常運転時に改質ガス生成手段から送り出される改質ガスの水素濃度を高くすることができる。   Further, a temperature measuring means for measuring the temperature of the reformed gas is provided at the reformed gas outlet of the reforming catalyst of the reformed gas generating means, and the measured value by the temperature measuring means falls within a predetermined temperature range. Thus, it is desirable to provide a controller for adjusting the amount of air supplied to the reformed gas generating means. By adjusting the amount of air supplied to the reforming catalyst in this way, the start-up time can be shortened and the hydrogen concentration of the reformed gas sent out from the reformed gas generating means during steady operation can be increased.

前記熱交換器の加熱流体流路上流側に水を蒸発させる蒸発器を設置し、生成された水蒸気が前記被加熱流体流路に供給されるように構成してもよい。このように構成することで、供給した水を確実に蒸発させた後に前記被加熱流体流路に充填された改質触媒に供給できるため、水の蒸発による改質触媒の劣化等を防止できる効果がある。   An evaporator that evaporates water may be installed on the upstream side of the heating fluid channel of the heat exchanger, and the generated water vapor may be supplied to the heated fluid channel. By configuring in this way, the supplied water can be reliably evaporated and then supplied to the reforming catalyst filled in the heated fluid passage, so that the deterioration of the reforming catalyst due to water evaporation can be prevented. There is.

また、前記被加熱流体流路に、炭化水素系燃料と水または水蒸気に加え、空気を供給する手段を備えてもよい。LNGや灯油といった燃料種では、改質触媒部に少量の空気を投入することで、改質反応を安定に進行させることができる効果がある。   The heated fluid channel may be provided with means for supplying air in addition to hydrocarbon fuel and water or water vapor. With fuel types such as LNG and kerosene, there is an effect that the reforming reaction can proceed stably by introducing a small amount of air into the reforming catalyst section.

また、前記熱回収器のアノード排ガスが供給される燃焼部には、炭化水素系燃料を供給する手段を備えることが望ましい。このように構成すれば、起動時には、前記熱回収器のアノード排ガスが供給される燃焼部に炭化水素系燃料を供給して前記被加熱流体流路に充填された改質触媒を昇温し、前記被加熱流体流路に充填された改質触媒による改質反応開始を促進することができる。アノード排ガスが発生した時点で前記炭化水素系燃料の供給を停止すればよい。   In addition, it is desirable that the combustion part to which the anode exhaust gas of the heat recovery unit is supplied is provided with means for supplying hydrocarbon fuel. If constituted in this way, at the time of start-up, the temperature of the reforming catalyst filled in the heated fluid flow path is increased by supplying hydrocarbon fuel to the combustion part to which the anode exhaust gas of the heat recovery device is supplied, The start of the reforming reaction by the reforming catalyst filled in the heated fluid channel can be promoted. The supply of the hydrocarbon-based fuel may be stopped when the anode exhaust gas is generated.

また、起動時には、アノード排ガスを燃焼する熱回収器に設置した熱交換器内部の改質触媒が改質反応を行うために十分な温度となっていない。そのため、熱回収器内の熱交換器の、改質触媒を充填した被加熱流体流路から発生する水素量が少ない状態となっている。この場合、改質ガス生成手段内部の改質触媒部で水素を発生させる。具体的には、改質ガス生成手段内部の改質触媒に供給する部分酸化空気量を定常運転状態よりも増加し、改質反応を進行させる。この方法により、短時間で水素を発生させることが可能となる。   In addition, at the time of start-up, the temperature of the reforming catalyst inside the heat exchanger installed in the heat recovery unit that burns the anode exhaust gas is not sufficient to perform the reforming reaction. Therefore, the amount of hydrogen generated from the heated fluid passage filled with the reforming catalyst in the heat exchanger in the heat recovery device is small. In this case, hydrogen is generated in the reforming catalyst section inside the reformed gas generating means. Specifically, the amount of partially oxidized air supplied to the reforming catalyst inside the reformed gas generating means is increased from the steady operation state, and the reforming reaction proceeds. This method makes it possible to generate hydrogen in a short time.

本発明によれば、熱回収器の熱交換器を大きくすることなく、また、原料の熱分解等を発生させることなく、熱回収器の熱放散量を低減することが可能となり、水素製造装置の効率を向上させることが可能となる。   According to the present invention, it is possible to reduce the amount of heat dissipated in the heat recovery unit without increasing the heat exchanger of the heat recovery unit and without causing thermal decomposition of the raw material. It is possible to improve the efficiency.

(第1の実施の形態)
本発明の第1の実施の形態に係る燃料電池発電システムの要部構成を図1に示す。本実施の形態では、燃料として都市ガスを使用した例を示すが、他の炭化水素系燃料例えばLPG、灯油などでも同様である。
(First embodiment)
FIG. 1 shows a main configuration of the fuel cell power generation system according to the first embodiment of the present invention. In the present embodiment, an example in which city gas is used as fuel is shown, but the same applies to other hydrocarbon fuels such as LPG and kerosene.

図示の燃料電池発電システムは、水素製造装置2と、水素製造装置2の改質ガス出口に接続され、弁44を介装した改質ガス供給管34と、改質ガス供給管34に接続された固体高分子形燃料電池(以下、PEFCという)1と、PEFC1に空気供給管36で接続された空気ブロア20と、PEFC1のアノード排ガス出口に接続されたアノード排ガス供給管26と、弁44上流側の改質ガス供給管34とアノード排ガス供給管26を弁45を介して接続する改質ガスバイパス管46と、を含んで構成されている。   The illustrated fuel cell power generation system is connected to the hydrogen production apparatus 2, the reformed gas outlet of the hydrogen production apparatus 2, and connected to the reformed gas supply pipe 34 and the reformed gas supply pipe 34 with a valve 44 interposed therebetween. The polymer electrolyte fuel cell (hereinafter referred to as PEFC) 1, the air blower 20 connected to the PEFC 1 by the air supply pipe 36, the anode exhaust gas supply pipe 26 connected to the anode exhaust gas outlet of the PEFC 1, and the valve 44 upstream The reformed gas supply pipe 34 and the reformed gas bypass pipe 46 connecting the anode exhaust gas supply pipe 26 via a valve 45 are included.

水素製造装置2は、改質ガス生成手段である水素製造装置本体2aと、前記アノード排ガス供給管26の下流端に、内装された起動バーナ10のアノード排ガス入り口を接続して配置された熱回収器3と、前記起動バーナ10の下方から都市ガスを供給する都市ガスブロア16と、起動バーナ10に空気供給管27で空気を供給する空気ブロア15と、熱回収器3に内装された熱交換器(改質触媒)12の被加熱流体流路入り側に都市ガス供給管24で接続された都市ガスブロア17と、都市ガス供給管24に水供給管25で接続された水ポンプ18と、熱交換器(改質触媒)12の被加熱流体流路出側と水素製造装置本体2aを接続する原料供給管42と、水素製造装置本体2aに空気供給管43で接続された空気ブロア14と、水素製造装置本体2aに水供給管38で接続された水ポンプ19と、水素製造装置本体2aと前記都市ガス供給管24を接続する水蒸気供給管39と、水素製造装置本体2a中の気体温度を計測する温度計測手段である温度計測器21と、温度計測器21の出力を入力として空気ブロア14を制御する制御器22と、を含んで構成されている。   The hydrogen production apparatus 2 includes a hydrogen production apparatus main body 2a, which is a reformed gas generation means, and a heat recovery unit disposed at the downstream end of the anode exhaust gas supply pipe 26 by connecting the anode exhaust gas inlet of the startup burner 10 installed therein. 3, a city gas blower 16 for supplying city gas from below the activation burner 10, an air blower 15 for supplying air to the activation burner 10 through an air supply pipe 27, and a heat exchanger incorporated in the heat recovery unit 3. (Reforming catalyst) Heat exchange with a city gas blower 17 connected by a city gas supply pipe 24 to the heated fluid flow path entrance side of the reforming catalyst 12 and a water pump 18 connected by a water supply pipe 25 to the city gas supply pipe 24 A raw material supply pipe 42 for connecting the heated fluid flow path outlet side of the reactor (reforming catalyst) 12 and the hydrogen production apparatus main body 2a, an air blower 14 connected to the hydrogen production apparatus main body 2a by an air supply pipe 43, hydrogen Manufacturing The water pump 19 connected to the apparatus main body 2a by the water supply pipe 38, the water vapor supply pipe 39 connecting the hydrogen production apparatus main body 2a and the city gas supply pipe 24, and the gas temperature in the hydrogen production apparatus main body 2a are measured. A temperature measuring device 21 that is a temperature measuring means and a controller 22 that controls the air blower 14 by using the output of the temperature measuring device 21 as an input are configured.

水素製造装置本体2aは、原料混合部4と、原料混合部4に接続された起動バーナ9と、起動バーナ9に隣接して配置された燃焼触媒5と、燃焼触媒5を通過した気体が流入する位置に配置された改質触媒6と、改質触媒6を通過した気体が流入する位置に配置された熱交換器13と、熱交換器13を通過した気体が流入する位置に配置されたCO転化器7と、CO転化器7を通過した気体が流入する位置に配置され、出側に改質ガス出口を備えたCO除去器8と、を含んで構成されている。   The hydrogen production apparatus main body 2a is supplied with a raw material mixing unit 4, a starting burner 9 connected to the raw material mixing unit 4, a combustion catalyst 5 disposed adjacent to the starting burner 9, and a gas that has passed through the combustion catalyst 5. The reforming catalyst 6 disposed at a position where the gas passes through the reforming catalyst 6, the heat exchanger 13 disposed at a position where the gas passing through the reforming catalyst 6 flows in, and the position where the gas passing through the heat exchanger 13 flows in. A CO converter 7 and a CO remover 8 that is disposed at a position where the gas that has passed through the CO converter 7 flows in and that has a reformed gas outlet on the outlet side are included.

前記水供給管38の水素製造装置本体2a側は熱交換器13の被加熱流体入り側に接続され、水蒸気供給管39の水素製造装置本体2a側は熱交換器13の被加熱流体出側に接続されている。空気供給管43と原料供給管42の水素製造装置本体2a側は、いずれも原料混合部4に接続されている。また、前記温度計測器21の測定端は、改質触媒6の後流の気体温度を計測するように配置され、制御器22は、温度計測器21で測定される温度を入力として、前記測定される温度が一定温度となるように改質触媒6上流より供給する空気流量を調整するよう構成されている。   The hydrogen production apparatus main body 2a side of the water supply pipe 38 is connected to the heated fluid inlet side of the heat exchanger 13, and the hydrogen production apparatus main body 2a side of the water vapor supply pipe 39 is connected to the heated fluid outlet side of the heat exchanger 13. It is connected. Both the air supply pipe 43 and the raw material supply pipe 42 are connected to the raw material mixing unit 4 on the hydrogen production apparatus main body 2a side. Further, the measurement end of the temperature measuring device 21 is arranged to measure the gas temperature downstream of the reforming catalyst 6, and the controller 22 receives the temperature measured by the temperature measuring device 21 as an input. The flow rate of air supplied from the upstream of the reforming catalyst 6 is adjusted so that the temperature to be maintained is a constant temperature.

熱回収器3は、下部に配置された起動バーナ10と、起動バーナ10の上方に配置された燃焼触媒11と、燃焼触媒11の上方に配置され、粒状改質触媒23を充填した熱交換器(改質触媒)12を含んで構成されている。   The heat recovery unit 3 includes a starting burner 10 disposed in the lower part, a combustion catalyst 11 disposed above the starting burner 10, and a heat exchanger disposed above the combustion catalyst 11 and filled with the granular reforming catalyst 23. (Reforming catalyst) 12 is included.

熱交換器(改質触媒)12の具体的構造を図2に示す。2枚のプレス加工した薄板を合わせて作成した熱交換器(改質触媒)12は、鉛直面内で蛇行する被加熱流体流路を備え、この被加熱流体流路下部に粒状改質触媒23を充填してある。熱交換器の被加熱流体流路上側入り口には原料である都市ガス供給管24と水供給管25とが接続されている。都市ガス供給管24は図1に示す都市ガスブロア17に接続されている。また、水供給管25は、図1に示す水ポンプ18に接続されている。   A specific structure of the heat exchanger (reforming catalyst) 12 is shown in FIG. A heat exchanger (reforming catalyst) 12 prepared by combining two pressed thin plates is provided with a heated fluid channel that snakes in a vertical plane, and a granular reforming catalyst 23 is provided below the heated fluid channel. Is filled. A city gas supply pipe 24 and a water supply pipe 25, which are raw materials, are connected to the heated fluid passage upper side entrance of the heat exchanger. The city gas supply pipe 24 is connected to the city gas blower 17 shown in FIG. The water supply pipe 25 is connected to the water pump 18 shown in FIG.

本実施の形態の運転手順を以下に示す。   The operation procedure of this embodiment is shown below.

まず、起動時において、燃焼触媒5、改質触媒6を昇温するために、都市ガスブロア16、空気ブロア15を運転して都市ガス及び空気を起動バーナ9に供給し、起動バーナ9を点火する。同時に熱回収器3の燃焼触媒11を昇温するために起動バーナ10を点火する。   First, at the time of startup, in order to raise the temperature of the combustion catalyst 5 and the reforming catalyst 6, the city gas blower 16 and the air blower 15 are operated to supply city gas and air to the startup burner 9, and the startup burner 9 is ignited. . At the same time, the starting burner 10 is ignited to raise the temperature of the combustion catalyst 11 of the heat recovery unit 3.

燃焼触媒5、燃焼触媒11の温度がそれぞれ所定温度となった時点で、空気量を増加し、燃焼場を燃焼触媒5、燃焼触媒11に移行する。その後、各熱交換器に水を供給し、各部が所定温度となった時点で、都市ガスブロア17で熱交換器(改質触媒)12に供給する都市ガス量を増加、空気ブロア14で原料混合部4に供給する空気量を減少し、改質触媒6で水素が発生する条件に移行する。   When the temperature of each of the combustion catalyst 5 and the combustion catalyst 11 reaches a predetermined temperature, the amount of air is increased and the combustion field is shifted to the combustion catalyst 5 and the combustion catalyst 11. Thereafter, water is supplied to each heat exchanger, and when each part reaches a predetermined temperature, the amount of city gas supplied to the heat exchanger (reforming catalyst) 12 is increased by the city gas blower 17 and the raw material is mixed by the air blower 14. The amount of air supplied to the unit 4 is decreased, and the condition shifts to a condition where hydrogen is generated in the reforming catalyst 6.

このとき、水素発生状態に移行してしばらくの間は改質ガス中に少量の一酸化炭素(CO)が含まれるので、所定時間は弁44を閉じ弁45を開いてPEFC1をバイパスし、改質ガスの全量を熱回収器3に戻す。   At this time, since the reformed gas contains a small amount of carbon monoxide (CO) for a while after the transition to the hydrogen generation state, the valve 44 is closed and the valve 45 is opened for a predetermined time to bypass the PEFC 1 and The whole quantity of quality gas is returned to the heat recovery unit 3.

熱回収器3に改質ガスが戻ってくる状態になると同時に、熱回収器3の燃焼触媒5に都市ガスブロア16で供給する都市ガスの量を低減あるいは停止する。   At the same time as the reformed gas returns to the heat recovery unit 3, the amount of city gas supplied to the combustion catalyst 5 of the heat recovery unit 3 by the city gas blower 16 is reduced or stopped.

このとき、熱回収器3の熱交換器(改質触媒)12上部で、供給した水が蒸発し、蒸気となり、都市ガスと混合した状態で、熱回収器3の熱交換器(改質触媒)12の被加熱流体流路下部に充填した粒状改質触媒23に供給される。ここでは、熱交換器(改質触媒)12下部に設置した燃焼触媒11からの燃焼熱により、粒状改質触媒23が加熱される。この熱により、粒状改質触媒23に供給された都市ガスと水蒸気の一部が以下に示す反応を進行させ、水素を発生する。   At this time, the supplied water evaporates in the upper part of the heat exchanger (reforming catalyst) 12 of the heat recovery unit 3 to become steam and is mixed with the city gas, and then the heat exchanger (reforming catalyst) of the heat recovery unit 3. ) 12 is supplied to the granular reforming catalyst 23 filled in the lower part of the heated fluid flow path. Here, the granular reforming catalyst 23 is heated by the combustion heat from the combustion catalyst 11 installed in the lower part of the heat exchanger (reforming catalyst) 12. Due to this heat, part of the city gas and water vapor supplied to the granular reforming catalyst 23 proceeds with the following reaction to generate hydrogen.

CH + HO → 3H + CO
すなわち、熱回収器3の熱交換器(改質触媒)12出口部では、都市ガスと水蒸気と水素と一酸化炭素を含んだ反応ガスとなっており、このガスが原料供給管42を経て水素製造装置本体2aに供給される。この反応ガスが水素製造装置本体2a内部の改質触媒6でさらに水素を多く含む改質ガスに変換される。このとき、改質反応に必要となる熱量を確保するために空気を空気ブロア14で供給するが、この空気量は改質触媒6の温度を所定温度になるように調整する必要がある。そのため、改質触媒6出口部に温度計測器21の計測端を設置し、この温度が所定温度(580〜620℃)となるように制御器22により、空気ブロア14の送風量を調整した。
CH 4 + H 2 O → 3H 2 + CO
That is, at the outlet of the heat exchanger (reforming catalyst) 12 of the heat recovery unit 3, a reaction gas containing city gas, water vapor, hydrogen, and carbon monoxide is obtained, and this gas passes through the raw material supply pipe 42 and becomes hydrogen. It is supplied to the manufacturing apparatus main body 2a. This reaction gas is converted into a reformed gas containing more hydrogen by the reforming catalyst 6 inside the hydrogen production apparatus main body 2a. At this time, air is supplied by the air blower 14 in order to ensure the amount of heat necessary for the reforming reaction, and this air amount needs to be adjusted so that the temperature of the reforming catalyst 6 becomes a predetermined temperature. Therefore, the measuring end of the temperature measuring device 21 is installed at the outlet of the reforming catalyst 6, and the air flow rate of the air blower 14 is adjusted by the controller 22 so that the temperature becomes a predetermined temperature (580 to 620 ° C.).

起動時には、熱回収器3内部が粒状改質触媒23の作用に十分な温度となっていないため、熱回収器3内の熱交換器(改質触媒)12内部に設置した粒状改質触媒23を通過した反応ガス中の水素濃度は低く、多量の都市ガスが残っている。そのため、反応ガス中に残っているCHをHに変換するために大量の熱が必要となり、この熱を確保するために、水素製造装置本体2aに投入する空気量を所定値より多めに投入する必要がある。 At the time of start-up, since the temperature inside the heat recovery unit 3 is not sufficient for the action of the granular reforming catalyst 23, the granular reforming catalyst 23 installed inside the heat exchanger (reforming catalyst) 12 in the heat recovery unit 3. The hydrogen concentration in the reaction gas that passed through is low, and a large amount of city gas remains. For this reason, a large amount of heat is required to convert CH 4 remaining in the reaction gas into H 2, and in order to secure this heat, the amount of air supplied to the hydrogen production apparatus main body 2a is made larger than a predetermined value. It is necessary to input.

一方、定常運転となると、熱回収器3の温度は、PEFC1からアノード排ガス供給管26を経て供給されるアノード排ガス中に含まれる水素とメタンガスにより十分高温となり、これらの熱により熱回収器3内に設置した熱交換器(改質触媒)12内部で改質反応が進行し、およそ40%(dry)の水素を含んだ改質ガスとなる。このとき、熱回収器3内部の熱交換器(改質触媒)12では、燃焼触媒11に近い粒状改質触媒23で大量の熱が消費され、さらに後流すなわち粒状改質触媒23が充填されていない熱交換器部分で熱交換器に供給された水の蒸発、都市ガスの予熱に熱が消費される。このため、熱回収器3から排出される排ガスの温度は120℃まで低下し、アノード排ガスによって発生した熱が有効に利用される。   On the other hand, in the steady operation, the temperature of the heat recovery unit 3 becomes sufficiently high due to the hydrogen and methane gas contained in the anode exhaust gas supplied from the PEFC 1 via the anode exhaust gas supply pipe 26, and these heats cause the heat recovery unit 3 to have a high temperature. The reforming reaction proceeds inside the heat exchanger (reforming catalyst) 12 installed in, and becomes a reformed gas containing about 40% (dry) hydrogen. At this time, in the heat exchanger (reforming catalyst) 12 inside the heat recovery unit 3, a large amount of heat is consumed by the granular reforming catalyst 23 close to the combustion catalyst 11, and further, that is, the downstream, that is, the granular reforming catalyst 23 is filled. Heat is consumed in evaporation of water supplied to the heat exchanger and preheating of city gas in the heat exchanger part that is not. For this reason, the temperature of the exhaust gas discharged | emitted from the heat recovery device 3 falls to 120 degreeC, and the heat generated by the anode exhaust gas is effectively used.

つぎに、熱回収器3内部の熱交換器(改質触媒)12で発生した反応ガスは、原料供給管42を経て水素製造装置本体2aに供給され、反応ガス中に残る原料(都市ガスと水蒸気)が水素に変換される。このとき、改質反応に必要な熱を補うために水素製造装置本体2aの原料混合部4に、空気ブロア14で空気を供給する。ここで、供給される空気量は、先に述べたように、改質触媒6出口温度が同じく所定温度(580〜620℃)となるように制御器22で制御されるが、熱回収器3内部の熱交換器(改質触媒)12で部分的に改質反応が進行し、反応ガス中のメタン量は少なくなっているので、その分空気量を低減することができる。   Next, the reaction gas generated in the heat exchanger (reforming catalyst) 12 inside the heat recovery unit 3 is supplied to the hydrogen production apparatus main body 2a through the raw material supply pipe 42, and the raw material (city gas and Steam) is converted to hydrogen. At this time, air is supplied by the air blower 14 to the raw material mixing unit 4 of the hydrogen production apparatus main body 2a in order to supplement heat necessary for the reforming reaction. Here, the amount of air to be supplied is controlled by the controller 22 so that the outlet temperature of the reforming catalyst 6 becomes the predetermined temperature (580 to 620 ° C.) as described above. Since the reforming reaction partially proceeds in the internal heat exchanger (reforming catalyst) 12 and the amount of methane in the reaction gas is reduced, the amount of air can be reduced accordingly.

このときの具体的なガス量および各部の温度の例を図3に示す。また、比較のために従来技術における各部の温度の例を図中に示す。従来技術において、PEFC1のアノード排ガス中には、10.2kcal/分の熱量が含まれており、このガスを熱回収器で燃焼し、熱回収器に内装された熱交換器を流れる原料ガスで熱回収している。熱回収した原料ガス(都市ガス、空気、水蒸気)の温度は約500℃であり、一方、熱回収器の排ガス温度は約300℃であり、排ガスによって放出される熱量は約4.0kcal/分であった。また、500℃に予熱された原料を水素製造装置本体に投入し、約14.5LN/分の空気を投入することによって得られる改質ガス中の水素濃度は約47%であった。   An example of the specific gas amount and the temperature of each part at this time is shown in FIG. For comparison, an example of the temperature of each part in the prior art is shown in the figure. In the prior art, the amount of heat of 10.2 kcal / min is contained in the anode exhaust gas of PEFC1, and this gas is combusted in the heat recovery unit, and the raw material gas flowing through the heat exchanger incorporated in the heat recovery unit Heat recovery. The temperature of the recovered heat source gas (city gas, air, water vapor) is about 500 ° C, while the exhaust gas temperature of the heat recovery unit is about 300 ° C, and the amount of heat released by the exhaust gas is about 4.0 kcal / min. Met. Further, the hydrogen concentration in the reformed gas obtained by charging the raw material preheated to 500 ° C. into the main body of the hydrogen production apparatus and introducing air of about 14.5 LN / min was about 47%.

これに対し、本実施の形態によれば、PEFC1のアノード排ガス中に、10.2kcal/分の熱量が含まれている条件の場合、熱回収器3に設置した熱交換器(改質触媒)12の粒状改質触媒23を充填した部分で、改質反応(吸熱反応)の一部が進行するために、熱回収器3の熱交換器(改質触媒)12より排出される改質ガスは、水素濃度40%(dry)、メタン45%(dry)の約500℃のガスとなる。部分的に進行する改質反応(吸熱反応)により、アノード排ガス中の熱を利用することとなるので、熱回収器3の排ガス温度は120℃となり、排ガスにより放出される熱量は1.7kcal/分まで低減された。また、500℃に予熱された改質ガスを小型水素製造装置に投入し、約10LN/分の空気を投入することによって得られる改質ガス中の水素濃度は54%となり、7%向上することが確認できた。また、本実施の形態により、発電効率を2.5ポイント向上できることが分かった。   On the other hand, according to the present embodiment, the heat exchanger (reforming catalyst) installed in the heat recovery unit 3 when the amount of heat of 10.2 kcal / min is contained in the anode exhaust gas of PEFC1. The reformed gas discharged from the heat exchanger (reforming catalyst) 12 of the heat recovery unit 3 because a part of the reforming reaction (endothermic reaction) proceeds at the portion filled with the 12 granular reforming catalysts 23. Becomes a gas of about 500 ° C. with a hydrogen concentration of 40% (dry) and methane of 45% (dry). Since the heat in the anode exhaust gas is used by the reforming reaction (endothermic reaction) that partially proceeds, the exhaust gas temperature of the heat recovery device 3 becomes 120 ° C., and the amount of heat released by the exhaust gas is 1.7 kcal / Reduced to minutes. Moreover, the hydrogen concentration in the reformed gas obtained by introducing the reformed gas preheated to 500 ° C. into the small hydrogen production device and introducing air of about 10 LN / min is 54%, which is an improvement of 7%. Was confirmed. Moreover, it turned out that a power generation efficiency can be improved by 2.5 points by this Embodiment.

本実施の形態の場合、PEFC1の運転状況の変動によって、アノード排ガスの熱量(水素量)が変化した場合においても、熱回収器3内部に設置した粒状改質触媒23での反応量が自動的に変化し、熱放散量を抑えることができるという利点がある。   In the case of the present embodiment, even when the heat amount (hydrogen amount) of the anode exhaust gas changes due to fluctuations in the operation status of the PEFC 1, the reaction amount at the granular reforming catalyst 23 installed inside the heat recovery device 3 is automatically set. There is an advantage that the amount of heat dissipation can be suppressed.

例えば、PEFC1での水素消費量が少なくなった場合、すなわち、PEFC1での発電量が低減した場合、アノード排ガス中の水素量が増加することとなる。このとき、熱回収器3の燃焼触媒5では、水素量が増加することで燃焼温度が高くなる。従来構造では、熱交換器で熱交換される熱量は概略同じなので、熱量が増加した分は、排ガスから放出されていた。   For example, when the amount of hydrogen consumed in PEFC1 decreases, that is, when the amount of power generation in PEFC1 decreases, the amount of hydrogen in the anode exhaust gas increases. At this time, in the combustion catalyst 5 of the heat recovery unit 3, the combustion temperature increases as the amount of hydrogen increases. In the conventional structure, since the amount of heat exchanged by the heat exchanger is substantially the same, the increased amount of heat was released from the exhaust gas.

これに対し、本実施の形態では、熱回収器3の燃焼触媒5の燃焼温度が高くなると、熱交換器(改質触媒)12内部の被加熱流体流路に充填された粒状改質触媒23の温度が高くなる。改質反応は、温度が高くなるほど、反応量が増加するので、改質触媒部での改質反応(吸熱反応)量が増加し、その分、熱を吸収することとなる。そのため、排ガス温度はほとんど変化することなく、熱放散量も増加することはない。   On the other hand, in the present embodiment, when the combustion temperature of the combustion catalyst 5 of the heat recovery device 3 becomes high, the granular reforming catalyst 23 filled in the heated fluid flow path inside the heat exchanger (reforming catalyst) 12. Temperature rises. As the temperature of the reforming reaction increases, the amount of reaction increases, so the amount of reforming reaction (endothermic reaction) in the reforming catalyst portion increases, and heat is absorbed accordingly. Therefore, the exhaust gas temperature hardly changes and the heat dissipation amount does not increase.

本実施の形態によれば、熱回収器の熱交換器を大きくすることなく、また、原料の熱分解等を発生させることなく、熱回収器の熱放散量を低減することが可能となり、水素製造装置の効率を向上させることが可能となった。
(第2の実施形態)
次に、本発明に基づく第2の実施の形態を、図面を参照して説明する。本実施の形態が前記第1の実施の形態と異なるのは熱回収器の構造のみで、システム構成は第1の実施の形態と同じであるので熱回収器の構造のみを図4に示す。
According to the present embodiment, it is possible to reduce the amount of heat dissipated in the heat recovery device without increasing the heat exchanger of the heat recovery device and without causing thermal decomposition of the raw material. It has become possible to improve the efficiency of manufacturing equipment.
(Second Embodiment)
Next, a second embodiment according to the present invention will be described with reference to the drawings. The present embodiment is different from the first embodiment only in the structure of the heat recovery unit, and the system configuration is the same as that of the first embodiment. Therefore, only the structure of the heat recovery unit is shown in FIG.

本実施の形態の熱回収器3aが前記第1の実施の形態の熱回収器3と異なるのは、燃焼触媒11と熱交換器(改質触媒)12との間に新たに蒸発器31が設置されている点と、水供給管25は蒸発器31に内装された熱交換器31aの被加熱流体流路の入り側に接続され、前記被加熱流体流路の出側が都市ガス供給管24に接続されている点である。この場合、構造が複雑となるが、供給した水を確実に蒸発させた後に熱交換器(改質触媒)12に充填された粒状改質触媒23に供給できるため、水の蒸発による粒状改質触媒23の劣化等を防止できる効果がある。   The heat recovery device 3a of the present embodiment is different from the heat recovery device 3 of the first embodiment in that an evaporator 31 is newly provided between the combustion catalyst 11 and the heat exchanger (reforming catalyst) 12. The installed point and the water supply pipe 25 are connected to the inlet side of the heated fluid passage of the heat exchanger 31a built in the evaporator 31, and the outlet side of the heated fluid passage is the city gas supply pipe 24. It is a point connected to. In this case, the structure becomes complicated, but since the supplied water can be reliably evaporated and then supplied to the granular reforming catalyst 23 packed in the heat exchanger (reforming catalyst) 12, the granular reforming by evaporation of water is possible. There is an effect of preventing deterioration of the catalyst 23 and the like.

本実施の形態によれば、前記第1の実施の形態における効果に加え、粒状改質触媒23の劣化等を防止できる効果が得られる。
(第3の実施形態)
本発明に基づく第3の実施の形態の要部構成を図5に示す。本実施の形態が前記第1の実施の形態と異なるのは、都市ガス供給管24に空気供給管33が接続され、空気供給管33を介して都市ガス供給管24に空気を送り込む空気ブロア32が配置されている点である。他の構成は前記第1の実施の形態と同じであるので同一の符号を付して説明を省略する。
According to the present embodiment, in addition to the effect in the first embodiment, an effect of preventing the deterioration of the granular reforming catalyst 23 and the like can be obtained.
(Third embodiment)
FIG. 5 shows a main configuration of the third embodiment based on the present invention. The present embodiment is different from the first embodiment in that an air supply pipe 33 is connected to the city gas supply pipe 24 and air is supplied to the city gas supply pipe 24 through the air supply pipe 33. Is the point where is placed. Since other configurations are the same as those of the first embodiment, the same reference numerals are given and description thereof is omitted.

都市ガス供給管24に空気を送り込むのは、LNGや灯油といった燃料種などでは、改質触媒部に少量の空気を投入することで、改質反応を安定に進行させることができるためであり、基本的な考え方、効果は第1の実施の形態と同等である。   The reason why the air is sent to the city gas supply pipe 24 is that, for fuel types such as LNG and kerosene, the reforming reaction can proceed stably by introducing a small amount of air into the reforming catalyst section. The basic concept and effect are the same as those of the first embodiment.

本発明の第1の実施の形態に係る燃料電池発電システムの要部構成を示す系統図である。1 is a system diagram showing a main configuration of a fuel cell power generation system according to a first embodiment of the present invention. 図1に示す第1の実施の形態の熱回収器の構成を示す断面図である。It is sectional drawing which shows the structure of the heat recovery device of 1st Embodiment shown in FIG. 本発明の第1の実施の形態の燃料電池発電システムと従来の燃料電池発電システムの各部の状態特性を比較して示す図である。It is a figure which compares and shows the state characteristic of each part of the fuel cell power generation system of the 1st Embodiment of this invention, and the conventional fuel cell power generation system. 本発明の第2の実施の形態に係る燃料電池発電システムの熱回収器の構成を示すブロック図である。It is a block diagram which shows the structure of the heat recovery device of the fuel cell power generation system which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施の形態に係る燃料電池発電システムの要部構成を示す系統図である。It is a systematic diagram which shows the principal part structure of the fuel cell power generation system which concerns on the 3rd Embodiment of this invention.

符号の説明Explanation of symbols

1 PEFC
2 水素製造装置
3 熱回収器
4 原料混合部
5 燃焼触媒
6 改質触媒
7 CO転化器
8 CO除去器
9 起動バーナ
10 起動バーナ
11 燃焼触媒
12 熱交換器(改質触媒)
13 熱交換器
14,15 空気ブロア
16,17 都市ガスブロア
18,19 水ポンプ
20 空気ブロア
21 温度計測器
22 制御器
23 粒状改質触媒
24 都市ガス供給管
25 水供給管
26 アノード排ガス供給管
27 空気供給管
28 水用熱交換器
29 都市ガス用熱交換器
30 空気用熱交換器
31 蒸発器
32 空気ブロア
33 空気供給管
34 改質ガス供給管
36 空気供給管
38 水供給管
39 水蒸気供給管
42 原料供給管
43 空気供給管
44,45 弁
46 改質ガスバイパス管
1 PEFC
DESCRIPTION OF SYMBOLS 2 Hydrogen production apparatus 3 Heat recovery device 4 Raw material mixing part 5 Combustion catalyst 6 Reforming catalyst 7 CO converter 8 CO remover 9 Startup burner 10 Startup burner 11 Combustion catalyst 12 Heat exchanger (reforming catalyst)
DESCRIPTION OF SYMBOLS 13 Heat exchanger 14,15 Air blower 16,17 City gas blower 18,19 Water pump 20 Air blower 21 Temperature measuring device 22 Controller 23 Granular reforming catalyst 24 City gas supply pipe 25 Water supply pipe 26 Anode exhaust gas supply pipe 27 Air Supply pipe 28 Water heat exchanger 29 City gas heat exchanger 30 Air heat exchanger 31 Evaporator 32 Air blower 33 Air supply pipe 34 Reformed gas supply pipe 36 Air supply pipe 38 Water supply pipe 39 Water vapor supply pipe 42 Raw material supply pipe 43 Air supply pipe 44, 45 Valve 46 Reformed gas bypass pipe

Claims (7)

炭化水素系燃料、酸素又は空気および水又は水蒸気を原料とし内装した改質触媒による改質反応により水素を含む改質ガスを生成する改質ガス生成手段と、生成された改質ガスを燃料として発電する燃料電池と、前記燃料電池のアノード排ガスを燃焼して熱回収する熱回収器とを有してなる燃料電池発電システムであって、前記熱回収器を、改質触媒が充填された被加熱流体流路を備えた熱交換器を含んで構成し、前記被加熱流体流路に炭化水素系燃料と水または水蒸気を供給する手段と、前記被加熱流体流路を通過した流体を前記改質ガス生成手段に導く管路と、を備えた燃料電池発電システム。   Hydrocarbon fuel, reformed gas generating means for generating reformed gas containing hydrogen by a reforming reaction by a reforming catalyst using oxygen or air and water or steam as raw materials, and the generated reformed gas as fuel A fuel cell power generation system comprising: a fuel cell for generating electricity; and a heat recovery device for recovering heat by burning anode exhaust gas of the fuel cell, wherein the heat recovery device is covered with a reforming catalyst. A heat exchanger including a heated fluid flow path, a means for supplying hydrocarbon fuel and water or water vapor to the heated fluid flow path, and a fluid passing through the heated fluid flow path A fuel cell power generation system comprising: a conduit leading to the quality gas generating means. 請求項1記載の燃料電池発電システムにおいて、前記改質ガス生成手段の改質触媒の改質ガス出口に改質ガスの温度を計測する温度計測手段を設け、さらに、前記温度計測手段による計測値が予め定められた温度範囲となるように前記改質ガス生成手段に供給する空気量を調整する制御器を設けたことを特徴とする燃料電池発電システム。   2. The fuel cell power generation system according to claim 1, further comprising: a temperature measuring unit that measures the temperature of the reformed gas at a reformed gas outlet of the reforming catalyst of the reformed gas generating unit; and further, a measured value by the temperature measuring unit. A fuel cell power generation system provided with a controller for adjusting the amount of air supplied to the reformed gas generation means so that is in a predetermined temperature range. 請求項1又は2記載の燃料電池発電システムにおいて、前記被加熱流体流路に、炭化水素系燃料と水または水蒸気に加え、空気を供給する手段を備えたことを特徴とする燃料電池発電システム。   3. The fuel cell power generation system according to claim 1, further comprising means for supplying air in addition to the hydrocarbon fuel and water or water vapor to the heated fluid flow path. 請求項1乃至3のいずれかに記載の燃料電池発電システムにおいて、前記熱交換器の加熱流体流路上流側に水を蒸発させる蒸発器が設置され、生成された水蒸気が前記被加熱流体流路に供給されるように構成されていることを特徴とする燃料電池発電システム。   The fuel cell power generation system according to any one of claims 1 to 3, wherein an evaporator for evaporating water is installed upstream of the heating fluid channel of the heat exchanger, and the generated water vapor flows into the heated fluid channel. It is comprised so that it may be supplied to, The fuel cell power generation system characterized by the above-mentioned. 請求項1乃至4のいずれかに記載の燃料電池発電システムにおいて、前記熱回収器のアノード排ガスが供給される燃焼部に、炭化水素系燃料を供給する手段を備えたことを特徴とする燃料電池発電システム。   5. The fuel cell power generation system according to claim 1, further comprising means for supplying hydrocarbon fuel to a combustion part to which anode exhaust gas of the heat recovery unit is supplied. Power generation system. 請求項1乃至5のいずれかに記載の燃料電池発電システムを運転する燃料電池発電システム運転方法であって、前記改質ガス生成手段に供給する空気量を、起動時には定常運転時より多くすることを特徴とする燃料電池発電システム運転方法。   6. A fuel cell power generation system operating method for operating the fuel cell power generation system according to claim 1, wherein an amount of air supplied to the reformed gas generating means is increased at startup than during steady operation. A method for operating a fuel cell power generation system. 請求項5に記載の燃料電池発電システムを運転する燃料電池発電システム運転方法であって、起動時には、前記熱回収器のアノード排ガスが供給される燃焼部に炭化水素系燃料を供給し、アノード排ガスが発生した時点で前記炭化水素系燃料の供給を停止する手順を含んでなることを特徴とする燃料電池発電システム運転方法。
6. A fuel cell power generation system operating method for operating the fuel cell power generation system according to claim 5, wherein at the time of start-up, a hydrocarbon-based fuel is supplied to a combustion section to which anode exhaust gas of the heat recovery unit is supplied, and anode exhaust gas A method for operating a fuel cell power generation system, comprising a step of stopping the supply of the hydrocarbon-based fuel at the time when the occurrence of the fuel is generated.
JP2005114699A 2005-04-12 2005-04-12 Fuel cell power generation system Pending JP2006294464A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005114699A JP2006294464A (en) 2005-04-12 2005-04-12 Fuel cell power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005114699A JP2006294464A (en) 2005-04-12 2005-04-12 Fuel cell power generation system

Publications (1)

Publication Number Publication Date
JP2006294464A true JP2006294464A (en) 2006-10-26

Family

ID=37414796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005114699A Pending JP2006294464A (en) 2005-04-12 2005-04-12 Fuel cell power generation system

Country Status (1)

Country Link
JP (1) JP2006294464A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009504558A (en) * 2005-08-16 2009-02-05 エネルディ ゲゼルシャフト ミット ベシュレンクテル ハフツング Fuel cell system and method for operating reformer
CN115029718A (en) * 2022-06-15 2022-09-09 阳光氢能科技有限公司 Hydrogen production system and control method thereof
CN117778092A (en) * 2024-01-12 2024-03-29 青岛品品好粮油集团有限公司 Improved peanut oil production method and green body steaming and boiling device thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009504558A (en) * 2005-08-16 2009-02-05 エネルディ ゲゼルシャフト ミット ベシュレンクテル ハフツング Fuel cell system and method for operating reformer
CN115029718A (en) * 2022-06-15 2022-09-09 阳光氢能科技有限公司 Hydrogen production system and control method thereof
CN117778092A (en) * 2024-01-12 2024-03-29 青岛品品好粮油集团有限公司 Improved peanut oil production method and green body steaming and boiling device thereof

Similar Documents

Publication Publication Date Title
EP1840997B1 (en) Method of starting solid oxide fuel cell system
JP4546736B2 (en) Steam generator for PEM fuel cell power equipment
US6838062B2 (en) Integrated fuel processor for rapid start and operational control
JP5282103B2 (en) Hydrogen recycling type MCFC power generation system
US6926748B2 (en) Staged lean combustion for rapid start of a fuel processor
JP2009099264A (en) Solid oxide fuel cell power generation system and its starting method
JPH07230816A (en) Internally modified solid electrolyte fuel cell system
JP2001080904A (en) Fuel reformer
JP2006294464A (en) Fuel cell power generation system
JP4136624B2 (en) Liquid fuel reforming method and apparatus
JP2007179851A (en) Liquid fuel solid polymer fuel cell system and method of stopping same
JP2007109590A (en) Reforming device for fuel cell, and fuel cell system equipped with the reforming device for fuel cell
JP2001313053A (en) Fuel cell system
JP4486832B2 (en) Steam reforming system
JP2005294207A (en) Fuel cell system
JP2004196584A (en) Method of stopping hydrogen production apparatus and fuel cell system operation
JP4145573B2 (en) Start-up method of reformer
WO2012032744A1 (en) Fuel cell system
JPH07106881B2 (en) Fuel cell reformer device
JP2006315874A (en) Method for starting fuel cell power generation system
KR102586411B1 (en) High-efficiency fuel processing device with durability that enables stable hydrogen production and carbon monoxide removal through heat exchange optimization
JP2003303610A (en) Fuel cell system and its operating method and auto- thermal reforming device
JPH04243538A (en) Method and device for controlling catalyst layer temperature of fuel reformer for fuel battery use
JP2006156015A (en) Fuel cell system and fuel gas supply method
JP2006347788A (en) Method for controlling load of reforming system