JP2006156015A - Fuel cell system and fuel gas supply method - Google Patents

Fuel cell system and fuel gas supply method Download PDF

Info

Publication number
JP2006156015A
JP2006156015A JP2004342314A JP2004342314A JP2006156015A JP 2006156015 A JP2006156015 A JP 2006156015A JP 2004342314 A JP2004342314 A JP 2004342314A JP 2004342314 A JP2004342314 A JP 2004342314A JP 2006156015 A JP2006156015 A JP 2006156015A
Authority
JP
Japan
Prior art keywords
fuel
exhaust gas
water
condensed water
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004342314A
Other languages
Japanese (ja)
Inventor
Shinji Amo
伸二 天羽
Teruhiro Sakurai
輝浩 桜井
Hisataka Yakabe
久孝 矢加部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2004342314A priority Critical patent/JP2006156015A/en
Publication of JP2006156015A publication Critical patent/JP2006156015A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel cell system capable of obtaining a total amount of water necessary for fuel reforming from fuel exhaust gas. <P>SOLUTION: In a solid oxide type fuel cell 1 having a fuel reformer 11, a desired amount of fuel exhaust gas from a fuel electrode 2 side is divided into division passages 6, and distributed fuel exhaust gas is sent to a condenser 12 for generating condensed water. The condensed water is mixed with raw fuel G without using other service water and sent to the fuel reformer 11, and then, the reformed fuel gas is sent to the fuel electrode 2. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、固体酸化物型燃料電池を用いた燃料電池システムとその燃料極への燃料ガス供給方法に関する。   The present invention relates to a fuel cell system using a solid oxide fuel cell and a method for supplying fuel gas to a fuel electrode thereof.

特許文献1、特許文献2等に記載のように、燃料電池の1つとして固体酸化物型燃料電池(SOFC)が知られている。SOFCは作動温度が800℃〜1000℃と高く、純水素だけでなくメタン、一酸化炭素等も燃料として直接発電に利用できる。そのために、都市ガスやLPガスをSOFCの燃料として用いることが行われるが、都市ガスは、主成分であるメタンに加え、炭素数C〜Cであるエタン、プロパン、ブタン等を含んでいるので、メタンおよびC以上の炭化水素を、最終的に、水素、一酸化炭素に改質する改質処理が行われ、改質後の燃料ガスが燃料としてSOFCの燃料極に送られる。 As described in Patent Document 1, Patent Document 2, and the like, a solid oxide fuel cell (SOFC) is known as one of fuel cells. SOFC has a high operating temperature of 800 ° C. to 1000 ° C., and not only pure hydrogen but also methane, carbon monoxide and the like can be directly used for power generation as fuel. For this purpose, city gas and LP gas are used as SOFC fuel, and city gas contains ethane, propane, butane, etc. having C 2 to C 4 in addition to methane as a main component. Therefore, a reforming process for reforming methane and C 2 or more hydrocarbons to hydrogen and carbon monoxide is finally performed, and the reformed fuel gas is sent as fuel to the fuel electrode of the SOFC.

上記した改質処理は、一般的に、原燃料としての都市ガスと加熱水蒸気とを混合し、それを改質触媒と接触させることにより行われる。前記特許文献1、2には、原燃料(都市ガス)と加熱水蒸気との混合を、市水を水蒸気化して都市ガスと混合するか、SOFCの燃料極側の燃料排ガスは高温でありかつ発電生成物である水(水蒸気)を含んでいることから、水蒸気を含んだ排ガスを原燃料(都市ガス)と混合するか、あるいは、その双方により行うことが記載されている。   The above-described reforming treatment is generally performed by mixing city gas as raw fuel and heated steam and bringing them into contact with a reforming catalyst. In Patent Documents 1 and 2, mixing of raw fuel (city gas) and heated steam is mixed with city gas by steaming city water, or the fuel exhaust gas on the fuel electrode side of SOFC is hot and generates power. Since it contains water (steam) as a product, it is described that exhaust gas containing steam is mixed with raw fuel (city gas) or both.

特開平7−230816号公報Japanese Patent Laid-Open No. 7-230816 特開2003−229164号公報JP 2003-229164 A

燃料改質に伴う水蒸気供給に際して、市水を用いる場合、市水に含まれる不純物を除くための水処理装置を別途設けることが必要となる。燃料排ガスに含まれる水分(水蒸気)は市水と比較すると純度の高い水分であり、水蒸気を含む燃料排ガスから改質に必要な純水を得ることができれば、発電システム内での水供給を実質的に完結することができ、システム外に設ける水供給施設や水処理施設を省略できるか、大きく簡素化することができて、燃料電池システムの簡素化が図られる。   When city water is used for supplying steam accompanying fuel reforming, it is necessary to separately provide a water treatment device for removing impurities contained in city water. The water (steam) contained in the fuel exhaust gas has a higher purity than that of city water. If pure water required for reforming can be obtained from the fuel exhaust gas containing water vapor, the water supply in the power generation system is substantially reduced. The water supply facility and water treatment facility provided outside the system can be omitted or greatly simplified, and the fuel cell system can be simplified.

SOFCを備える燃料電池システムの場合、燃料排ガス中には燃料改質に必要とされる充分な水分量と充分な熱量とが含まれており、理論上は、外部から市水を導入することなく所要の燃料改質を行うことができる。しかし、SOFCは作動温度が800℃〜1000℃と高く、燃料排ガスの温度もそのように高温度であって、その温度に耐え得るファン等が汎用品として存在しないことから、燃料排ガスを循環させて原燃料としての都市ガスに混合することはきわめて困難であり、事実上は不可能に近い。適宜の熱交換器を通過させて燃料排ガスの温度をある程度まで下げることはできるが、燃料排ガスを全量熱交換させると、その熱量の大きさから潜熱まで回収することは容易でなく、コジェネシステムでの場合のように大がかりな外部凝縮器を別途配置しないと凝縮水が得られない。   In the case of a fuel cell system equipped with SOFC, the fuel exhaust gas contains a sufficient amount of water and a sufficient amount of heat required for fuel reforming, and theoretically without introducing city water from the outside. The required fuel reforming can be performed. However, the operating temperature of SOFC is as high as 800 ° C to 1000 ° C, and the temperature of the fuel exhaust gas is so high, and there is no fan that can withstand that temperature as a general-purpose product. Therefore, it is extremely difficult to mix with city gas as raw fuel, and it is practically impossible. Although it is possible to reduce the temperature of the fuel exhaust gas to some extent by passing it through an appropriate heat exchanger, it is not easy to recover from the magnitude of the heat to the latent heat if the fuel exhaust gas is completely heat exchanged. Condensed water cannot be obtained unless a large external condenser is separately provided as in the case of.

そのようなことから、発電装置としてのSOFCを備える燃料電池システムにおいて、原燃料の改質に必要な純水の全量を燃料排ガスから調達することは、実機レベルでは実用化に至っていないのが実情である。本発明は、上記のような事情に鑑みてなされたものであり、燃料改質器を備えた固体酸化物型燃料電池(SOFC)を備える燃料電池システムにおいて、燃料改質に必要な純水の全量を燃料排ガス中から調達することを、発電装置としての実機レベルで可能とした燃料電池システム、および電池燃料極への燃料ガス供給方法を提供することを目的とする。   For this reason, in a fuel cell system equipped with SOFC as a power generation device, the procurement of the entire amount of pure water necessary for reforming raw fuel from fuel exhaust gas has not yet been put into practical use at the actual equipment level. It is. The present invention has been made in view of the above circumstances, and in a fuel cell system including a solid oxide fuel cell (SOFC) including a fuel reformer, pure water required for fuel reforming is provided. It is an object of the present invention to provide a fuel cell system and a method for supplying fuel gas to a battery fuel electrode, which make it possible to procure the entire amount from fuel exhaust gas at the actual machine level as a power generator.

本発明による燃料電池システムは、基本的に、燃料改質器を備えた固体酸化物型燃料電池の燃料極側からの燃料排ガス流路に燃料排ガス分配路を設け、該分配路に分配した水蒸気を含む燃料排ガス中から潜熱を回収して凝縮水を得ることのできる凝縮器を配置し、生成した凝縮水を原燃料と混合して燃料改質器に送り込むようになっていることを特徴とする。   The fuel cell system according to the present invention basically includes a fuel exhaust gas distribution path in a fuel exhaust gas flow path from the fuel electrode side of a solid oxide fuel cell equipped with a fuel reformer, and water vapor distributed to the distribution path. It is characterized by the fact that a condenser capable of recovering latent heat from fuel exhaust gas containing water to obtain condensed water is arranged, and the generated condensed water is mixed with raw fuel and sent to the fuel reformer. To do.

また、本発明による燃料ガス供給方法は、基本的に、燃料改質器を備えた固体酸化物型燃料電池の燃料極への燃料ガス供給方法であって、燃料極側からの水蒸気を含む燃料排ガスの所望量を分配路に分配させ、該所望量に分配した燃料排ガスを凝縮器に送り込んで凝縮水を生成し、他の市水を用いることなく生成した凝縮水のみを原燃料と混合した後、燃料改質器に送り込み、改質後の燃料ガスを燃料極へ送り込むことを特徴とする。   The fuel gas supply method according to the present invention is basically a fuel gas supply method to a fuel electrode of a solid oxide fuel cell equipped with a fuel reformer, and includes a fuel containing water vapor from the fuel electrode side. The desired amount of exhaust gas is distributed to the distribution passage, the fuel exhaust gas distributed to the desired amount is sent to the condenser to generate condensed water, and only the condensed water generated without using other city water is mixed with the raw fuel. Thereafter, the fuel gas is fed into a fuel reformer, and the reformed fuel gas is fed into the fuel electrode.

本発明では、固体酸化物型燃料電池(SOFC)の運転中に、供給される原燃料(例えば都市ガス)の改質に必要な量(あるいはそれよりもわずかに多い量)の純水を生成できるだけの水蒸気を含む量の燃料排ガスを、燃料排ガスの全量から分配して使用する。そして、凝縮器で分配した燃料排ガスから潜熱まで回収して凝縮水を生成し、それを、他の市水等を用いることなく、原燃料と混合して所用の改質を行う。高温の燃料排ガスの全量ではなく、分配した量に対する熱回収処理であり、通常入手できる凝縮器で十分対処可能となる。また、市水を使用しないので、外部に水浄化装置等を設置する必要がないか、もしくは水浄化装置を簡略化することができて、システムへの水供給をシステム内で完結することができるので、システムの簡素化が図れる。凝縮水の生成に寄与しなかった燃料排ガスは、高い熱エネルギーを保有したままで、他の排熱利用部に回すことができ、全体としての熱効率も向上する。   In the present invention, during operation of a solid oxide fuel cell (SOFC), pure water is produced in an amount (or slightly larger amount) necessary for reforming the supplied raw fuel (for example, city gas). An amount of fuel exhaust gas containing as much water vapor as possible is distributed from the total amount of fuel exhaust gas. And it collect | recovers from fuel exhaust gas distributed with the condenser to latent heat, produces | generates condensed water, mixes it with raw fuel, without using other city water etc., and performs the required modification | reformation. This is a heat recovery process for the distributed amount, not the total amount of the high-temperature fuel exhaust gas, and it can be sufficiently handled by a normally available condenser. Moreover, since city water is not used, it is not necessary to install a water purification device or the like outside, or the water purification device can be simplified and water supply to the system can be completed within the system. Therefore, the system can be simplified. The fuel exhaust gas that has not contributed to the generation of condensed water can be sent to another exhaust heat utilization section while retaining high thermal energy, and the overall thermal efficiency is also improved.

分配量をどの程度とするかは、当該燃料電池システムで使用する固体酸化物型燃料電池の発電容量あるいは運転時の能力負荷割合等によって変動するので、実際の運転環境に合わせて、計算によりあるいは実測しながら、最適な量を選定すればよい。そのために、分配路への燃料排ガスの分配量を連続的にあいるは段階的に調節することのできる流量調整手段を備えることは好ましい。実運転で燃料改質に必要となる最大燃料排ガス量を予め予測しておき、その量の燃料排ガスを分配する固定バイパス路を分配路として設けるようにしてもよい。この場合、低負荷運転時に多少のエルネギーロスが生じるが、システムはより簡素化とされる。   The amount of distribution varies depending on the power generation capacity of the solid oxide fuel cell used in the fuel cell system or the capacity load ratio during operation. An optimum amount may be selected while actually measuring. Therefore, it is preferable to provide a flow rate adjusting means capable of adjusting the distribution amount of the fuel exhaust gas to the distribution path continuously or stepwise. The maximum amount of fuel exhaust gas required for fuel reforming in actual operation may be predicted in advance, and a fixed bypass path that distributes that amount of fuel exhaust gas may be provided as a distribution path. In this case, some energy loss occurs during low-load operation, but the system is further simplified.

凝縮水は加熱あるいは水蒸気化して原燃料と混合することが望まれる。そのために、凝縮器に、生成した凝縮水と流入する燃料排ガスとの熱交換手段を備えるようにし、生成した凝縮水を燃料排ガスの熱と凝縮器で熱交換して加熱した後、原燃料と混合するように構成することは、より好ましくかつ現実的に態様となる。また、分配した燃料排ガスは量的には少なくなっているとしても、依然として大きな熱量を備えているので、凝縮器での熱回収負担を低減するために、分配した燃料排ガスが凝縮器に至る途中で、燃料排ガスと他の材料との間で所用の熱交換を行えるようにシステムを構築することは望ましい。熱交換を行う他の材料として、例えば、空気極に送られる空気(酸化剤)、都市ガスのような原燃料、改質後の燃料ガス等が上げられる。   It is desirable that the condensed water is heated or steamed and mixed with the raw fuel. For this purpose, the condenser is provided with a heat exchanging means between the generated condensed water and the flowing fuel exhaust gas, and the generated condensed water is heated by exchanging heat with the heat of the fuel exhaust gas with the condenser, It is more preferable and realistic to configure the mixing. Also, even if the distributed fuel exhaust gas is small in quantity, it still has a large amount of heat, so that the distributed fuel exhaust gas reaches the condenser in order to reduce the heat recovery burden on the condenser. Therefore, it is desirable to construct a system so that the desired heat exchange can be performed between the fuel exhaust gas and other materials. Examples of other materials for performing heat exchange include air (oxidant) sent to the air electrode, raw fuel such as city gas, and reformed fuel gas.

本発明において、固体酸化物型燃料電池および燃料改質器は、前記した特許文献1や2に記載されるような、従来知られたものをそのまま用いることができる。また、凝縮器も同様であり、既存の凝縮器をそのまま用いることができる。さらに、本発明において、起動時や急激な負荷変動時等のように、改質に必要な量の水蒸気を含んだ燃料排ガスを調達できないことが起こり得ることが予測される場合には、市水を補助的に供給できるようにしておくこともできる。   In the present invention, conventionally known solid oxide fuel cells and fuel reformers as described in Patent Documents 1 and 2 described above can be used as they are. The same applies to the condenser, and the existing condenser can be used as it is. Further, in the present invention, when it is predicted that it may be impossible to procure fuel exhaust gas containing the amount of steam necessary for reforming, such as at the time of start-up or sudden load fluctuations, Can also be supplied in an auxiliary manner.

本発明によれば、燃料改質器を備えた固体酸化物型燃料電池(SOFC)を備える発電装置としての燃電池システムにおいて、燃料改質に必要な純水の全量を燃料排ガス中から調達することが実機レベルで可能となる。   According to the present invention, in a fuel cell system as a power generator equipped with a solid oxide fuel cell (SOFC) equipped with a fuel reformer, the entire amount of pure water required for fuel reforming is procured from the fuel exhaust gas. This is possible at the actual machine level.

以下、図面を参照して本発明の実施の形態を説明する。図1は本発明による燃料電池システムを示す系統図である。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a system diagram showing a fuel cell system according to the present invention.

図1において、1は固体酸化物型燃料電池(SOFC)の発電部であり、燃料極2と空気極3をを持つ。発電に伴い、燃料極2および空気極3からは1000℃程度の排ガスが排出される。燃料極2からの燃料排ガスは発電生成物としての水(水蒸気)を含んでいる。燃料排ガスの排ガス流路4には、流量調整機能を備えた分配弁5が設けられ、そこから分配管路6が分配している。   In FIG. 1, reference numeral 1 denotes a power generation unit of a solid oxide fuel cell (SOFC), which has a fuel electrode 2 and an air electrode 3. Along with power generation, exhaust gas at about 1000 ° C. is discharged from the fuel electrode 2 and the air electrode 3. The fuel exhaust gas from the fuel electrode 2 contains water (steam) as a power generation product. A distribution valve 5 having a flow rate adjusting function is provided in the exhaust gas flow path 4 of the fuel exhaust gas, and a distribution pipe 6 is distributed from there.

SOFCの燃料極2側には原燃料である都市ガスを改質した燃料ガスが供給され、空気極3には空気(酸化剤)が供給される。この例において、空気供給路7には空気用の熱交換器8が配置されており、燃料供給路9には燃料用の熱交換器10と改質器11が配置されている。燃料供給路9には、限定されるものではないがこの例では原燃料として都市ガスGが供給される。   A fuel gas obtained by reforming city gas, which is a raw fuel, is supplied to the fuel electrode 2 side of the SOFC, and air (oxidant) is supplied to the air electrode 3. In this example, an air heat exchanger 8 is arranged in the air supply path 7, and a fuel heat exchanger 10 and a reformer 11 are arranged in the fuel supply path 9. Although not limited to the fuel supply path 9, the city gas G is supplied as raw fuel in this example.

分配弁5で分配された量の燃料排ガスは分配管路6を通り、改質器11および空気用の熱交換器8、燃料用の熱交換器10で熱を放出しながら、凝縮器12に流入する。凝縮器12は流入した燃料排ガスから水蒸気の持つ顕熱までを回収し、それにより凝縮水が生成される。水以外の成分は排ガスとして排出される。生成された凝縮水はシスターン13に集められ、そこから水管路14を通り、凝縮器12内を流れる燃料排ガスと熱交換して加熱される。   The amount of fuel exhaust gas distributed by the distribution valve 5 passes through the distribution pipe 6, and is discharged to the condenser 12 while releasing heat from the reformer 11, the heat exchanger 8 for air, and the heat exchanger 10 for fuel. Inflow. The condenser 12 recovers from the fuel exhaust gas that has flowed in to the sensible heat of water vapor, thereby generating condensed water. Components other than water are discharged as exhaust gas. The produced condensed water is collected in the cistern 13, passes through the water conduit 14 from there, and is heated by exchanging heat with the fuel exhaust gas flowing in the condenser 12.

加熱された凝縮水は、燃料供給路9内を流れる原燃料(都市ガスG)と共に燃料用の熱交換器10に流入してさらに加熱された後、改質器11に流入し、一例として、CH+HO→CO+3H のような従来知られた反応が進み、原燃料はSOFC用の燃料ガスに改質される。そして改質された燃料ガスがSOFC1の燃料極2に供給され、SOFC1内では、空気極3に供給された空気(酸素)との間で、H+1/2O→HO+電気、の反応が進行して電気が得られると共に、生成された水(HO)は燃料排ガスと共に排出される。 The heated condensed water flows into the heat exchanger 10 for fuel together with the raw fuel (city gas G) flowing in the fuel supply path 9 and further heated, and then flows into the reformer 11. A conventionally known reaction such as CH 4 + H 2 O → CO + 3H 2 proceeds, and the raw fuel is reformed into a fuel gas for SOFC. Then, the reformed fuel gas is supplied to the fuel electrode 2 of the SOFC 1, and in the SOFC 1, H 2 + 1 / 2O 2 → H 2 O + electricity with the air (oxygen) supplied to the air electrode 3. As the reaction proceeds, electricity is obtained, and the generated water (H 2 O) is discharged together with the fuel exhaust gas.

前記したように、SOFCでの燃料排ガスは1000℃程度の高温であり熱量が大きく、また多量の水分を含む。その全量を通常の熱交換手段(凝縮器)により熱交換しても、その熱量の大きさから顕熱までを回収することができず、凝縮水を得るのは容易でない。本発明のシステムでは、必要量の燃料排ガスのみを例えば分配弁5により分岐させた後、通常の凝縮器12に分配し、そこで熱回収して凝縮水の生成を行うようにしたので、システム内で改質に必要な水を供給することを実機レベルで行うことが可能となる。   As described above, the fuel exhaust gas in SOFC has a high temperature of about 1000 ° C., a large amount of heat, and contains a large amount of moisture. Even if the entire amount is heat-exchanged by a normal heat exchanging means (condenser), it is not easy to recover condensed water from the magnitude of the heat amount to sensible heat. In the system of the present invention, only a necessary amount of fuel exhaust gas is branched by, for example, the distribution valve 5 and then distributed to a normal condenser 12 where heat is recovered and condensed water is generated. Therefore, it is possible to supply water necessary for reforming at the actual machine level.

図2は燃料排ガス分配率とSOFCの能力負荷との関係の一例を示すグラフである。この例では、負荷100%のときに70%程度の燃料排ガス分配を必要とし、負荷50%では85%程度の燃料排ガス分配を必要としている。そして、両者はほぼ直線的に変化する関係にあることがわかる。このことから、排ガス流路4に配置した流量調整機能を備えた分配弁5をSOFCの能力負荷に応じて制御することにより、高い熱効率で運転を行えることがわかる。一方、最大分配率が85%程度であることから、流量調整機能を備えた分配弁5を用いることなく、固定分配量の分配弁を備えておいても、支障なくSOFCの運転を継続して行いうることもわかる。   FIG. 2 is a graph showing an example of the relationship between the fuel exhaust gas distribution ratio and the SOFC capacity load. In this example, about 70% fuel exhaust gas distribution is required at a load of 100%, and about 85% fuel exhaust gas distribution is required at a load of 50%. And it turns out that both have the relation which changes substantially linearly. From this, it can be seen that the operation can be performed with high thermal efficiency by controlling the distribution valve 5 provided with the flow rate adjusting function arranged in the exhaust gas flow path 4 according to the capacity load of the SOFC. On the other hand, since the maximum distribution rate is about 85%, the operation of the SOFC can be continued without any trouble even if a distribution valve with a fixed distribution amount is provided without using the distribution valve 5 having a flow rate adjustment function. You can see what you can do.

なお、特に図示しないが、必要時(例えば、起動時や急激な負荷変動時等)に燃料改質に市水を供給できるシステムをさらに組み込むことも可能である。   Although not particularly illustrated, it is also possible to further incorporate a system that can supply city water for fuel reforming when necessary (for example, at the time of start-up or sudden load fluctuation).

本発明による燃料電池システムを示す系統図。1 is a system diagram showing a fuel cell system according to the present invention. 燃料排ガス分配率とSOFCの能力負荷との関係を示すグラフ。The graph which shows the relationship between a fuel exhaust gas distribution rate and the capacity load of SOFC.

符号の説明Explanation of symbols

1…固体酸化物型燃料電池(SOFC)、2…燃料極、3…空気極、4…燃料排ガス流路、5…分配弁、6…分配管路、7…空気供給路、8…空気用の熱交換器、9…燃料供給路、10…燃料用の熱交換器、11…燃料改質器、12…凝縮器、13…シスターン、14…水管路、G…都市ガス(原燃料)   DESCRIPTION OF SYMBOLS 1 ... Solid oxide fuel cell (SOFC), 2 ... Fuel electrode, 3 ... Air electrode, 4 ... Fuel exhaust gas flow path, 5 ... Distribution valve, 6 ... Distribution pipe line, 7 ... Air supply path, 8 ... For air 9 ... Fuel supply path, 10 ... Fuel heat exchanger, 11 ... Fuel reformer, 12 ... Condenser, 13 ... Sistern, 14 ... Water pipeline, G ... City gas (raw fuel)

Claims (5)

燃料改質器を備えた固体酸化物型燃料電池の燃料極側からの燃料排ガス流路に燃料排ガス分配路を設け、該分配路に分配した水蒸気を含む燃料排ガス中から潜熱を回収して凝縮水を得ることのできる凝縮器を配置し、生成した凝縮水を原燃料と混合して燃料改質器に送り込むようになっていることを特徴とする燃料電池システム。   A fuel exhaust gas flow path is provided in the fuel exhaust gas flow path from the fuel electrode side of a solid oxide fuel cell equipped with a fuel reformer, and latent heat is recovered from the fuel exhaust gas containing water vapor distributed to the distribution path and condensed. A fuel cell system characterized in that a condenser capable of obtaining water is arranged, and the produced condensed water is mixed with raw fuel and sent to a fuel reformer. 分配路への燃料排ガスの分配量を調節することのできる流量調整手段をさらに有することを特徴とする請求項1に記載の燃料電池システム。   The fuel cell system according to claim 1, further comprising a flow rate adjusting means capable of adjusting a distribution amount of the fuel exhaust gas to the distribution path. 凝縮器は生成した凝縮水と流入する燃料排ガスとの熱交換手段を備えており、生成された凝縮水は凝縮器での熱交換により加熱された後、原燃料と混合するようになっていることを特徴とする請求項1または2に記載の燃料電池システム。   The condenser is provided with a heat exchange means between the generated condensed water and the flowing fuel exhaust gas, and the generated condensed water is heated by heat exchange in the condenser and then mixed with the raw fuel. The fuel cell system according to claim 1 or 2, wherein 燃料改質器を備えた固体酸化物型燃料電池の燃料極への燃料ガス供給方法であって、燃料極側からの水蒸気を含む燃料排ガスの所望量を分配路に分配させ、該所望量に分配した燃料排ガスを凝縮器に送り込んで凝縮水を生成し、他の市水を用いることなく生成した凝縮水のみを原燃料と混合した後、燃料改質器に送り込み、改質後の燃料ガスを燃料極へ送り込むことを特徴とする燃料ガス供給方法。   A fuel gas supply method to a fuel electrode of a solid oxide fuel cell including a fuel reformer, wherein a desired amount of fuel exhaust gas including water vapor from the fuel electrode side is distributed to a distribution path, and the desired amount is obtained. The distributed fuel exhaust gas is sent to the condenser to generate condensed water, and only the condensed water generated without using other city water is mixed with the raw fuel, then sent to the fuel reformer, and the reformed fuel gas Is supplied to the fuel electrode. 生成された凝縮水を熱交換器で熱交換することにより加熱し、加熱された凝縮水を原燃料と混合することを特徴とする請求項4に記載の燃料ガス供給方法。   5. The fuel gas supply method according to claim 4, wherein the generated condensed water is heated by exchanging heat with a heat exchanger, and the heated condensed water is mixed with raw fuel.
JP2004342314A 2004-11-26 2004-11-26 Fuel cell system and fuel gas supply method Pending JP2006156015A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004342314A JP2006156015A (en) 2004-11-26 2004-11-26 Fuel cell system and fuel gas supply method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004342314A JP2006156015A (en) 2004-11-26 2004-11-26 Fuel cell system and fuel gas supply method

Publications (1)

Publication Number Publication Date
JP2006156015A true JP2006156015A (en) 2006-06-15

Family

ID=36634057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004342314A Pending JP2006156015A (en) 2004-11-26 2004-11-26 Fuel cell system and fuel gas supply method

Country Status (1)

Country Link
JP (1) JP2006156015A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009037871A (en) * 2007-08-01 2009-02-19 Honda Motor Co Ltd Fuel cell system and its operation method
JP2011129363A (en) * 2009-12-17 2011-06-30 Eneos Celltech Co Ltd Cogeneration system
JP2011171217A (en) * 2010-02-22 2011-09-01 Mazda Motor Corp Fuel cell system
JP2012033270A (en) * 2010-07-28 2012-02-16 Nippon Telegr & Teleph Corp <Ntt> Solid oxide fuel battery and method of recovering carbon dioxide thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004039449A (en) * 2002-07-03 2004-02-05 Mitsubishi Heavy Ind Ltd Fuel cell module and combined power generation system
JP2004063341A (en) * 2002-07-30 2004-02-26 Nissan Motor Co Ltd Fuel cell system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004039449A (en) * 2002-07-03 2004-02-05 Mitsubishi Heavy Ind Ltd Fuel cell module and combined power generation system
JP2004063341A (en) * 2002-07-30 2004-02-26 Nissan Motor Co Ltd Fuel cell system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009037871A (en) * 2007-08-01 2009-02-19 Honda Motor Co Ltd Fuel cell system and its operation method
JP2011129363A (en) * 2009-12-17 2011-06-30 Eneos Celltech Co Ltd Cogeneration system
JP2011171217A (en) * 2010-02-22 2011-09-01 Mazda Motor Corp Fuel cell system
JP2012033270A (en) * 2010-07-28 2012-02-16 Nippon Telegr & Teleph Corp <Ntt> Solid oxide fuel battery and method of recovering carbon dioxide thereof

Similar Documents

Publication Publication Date Title
JP5331819B2 (en) MCFC power generation system
US9373856B2 (en) Method of recycling and tapping off hydrogen for power generation apparatus
JP4744971B2 (en) Low quality waste heat recovery system
JP6974402B2 (en) Plants that consume reformed gas and methods for reforming raw material gas
JP2006156015A (en) Fuel cell system and fuel gas supply method
JPH07230819A (en) Internally modified solid electrolyte fuel cell system having self-heat exchange type heat insulating prereformer
JP2001313053A (en) Fuel cell system
JP2005294207A (en) Fuel cell system
JPH0552036B2 (en)
KR101439671B1 (en) Heating integration type fuel cell module
JP4751589B2 (en) Fuel cell power generation system
KR101295237B1 (en) Fuel cell system
JP5964082B2 (en) Power generation system and fuel cell cooling method
JP3670467B2 (en) Fuel cell power generation system
JP2006294464A (en) Fuel cell power generation system
JP2008273795A (en) Hydrogen production apparatus and hydrogen production method
JP3467759B2 (en) Control method of outlet temperature of reformer
JPH08339815A (en) Fuel cell power generation device
JP2006164953A (en) Fuel supply system of high temperature type fuel cell and high temperature type fuel cell device
JP3936310B2 (en) Fuel cell surplus steam condensing type steam separator
JP2002241108A (en) Fuel reforming apparatus and fuel cell power generation apparatus
JP2000340243A (en) Fuel cell power generating system
JP2004168620A (en) Apparatus and method of reforming fuel and turbine power generating system
JP2017027682A (en) Fuel battery system
JP5550327B2 (en) Solid oxide fuel cell power generation system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110208