JP4744971B2 - Low quality waste heat recovery system - Google Patents

Low quality waste heat recovery system Download PDF

Info

Publication number
JP4744971B2
JP4744971B2 JP2005221518A JP2005221518A JP4744971B2 JP 4744971 B2 JP4744971 B2 JP 4744971B2 JP 2005221518 A JP2005221518 A JP 2005221518A JP 2005221518 A JP2005221518 A JP 2005221518A JP 4744971 B2 JP4744971 B2 JP 4744971B2
Authority
JP
Japan
Prior art keywords
waste heat
gas
low
quality waste
carbon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005221518A
Other languages
Japanese (ja)
Other versions
JP2007031255A (en
Inventor
隆雄 中垣
斗 小川
忍 茂庭
勝也 山下
誠子 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2005221518A priority Critical patent/JP4744971B2/en
Publication of JP2007031255A publication Critical patent/JP2007031255A/en
Application granted granted Critical
Publication of JP4744971B2 publication Critical patent/JP4744971B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Description

本発明は、エクセルギ率の低い低質な廃熱を効果的に回収する低質廃熱回収システムに関する。   The present invention relates to a low-quality waste heat recovery system that effectively recovers low-quality waste heat with a low rate of exergy.

二酸化炭素(CO)は、地球温暖化を引き起す室温効果ガスの一つとして知られており、最近の環境汚染対策の一つである二酸化炭素の排出削減に関心が高まっている。 Carbon dioxide (CO 2 ) is known as one of room temperature effect gases that cause global warming, and there is an increasing interest in reducing carbon dioxide emissions, which is one of the recent environmental pollution countermeasures.

二酸化炭素削減には、未利用エネルギの有効利用やエネルギ変換効率の向上、二酸化炭素分離回収・隔離などが効果的であり、未利用エネルギの有効利用の一つとして、これまで利用されていなかったエネルギ率の低い低質な廃熱を化学的に回収することが検討されている。   Effective use of unused energy, improvement of energy conversion efficiency, and separation and recovery / sequestration of carbon dioxide are effective in reducing carbon dioxide, and it has not been used as one of the effective uses of unused energy. The chemical recovery of low-quality waste heat with a low energy rate has been studied.

例えば、特許文献1に記載されているように、メタノールを用いて化学的にエネルギを変換する手法が提案されている。   For example, as described in Patent Document 1, a method of chemically converting energy using methanol has been proposed.

メタノールには、銅−亜鉛系の触媒を用いて250℃程度の低質な廃熱でも、水蒸気改質によって質の高いエネルギである水素を生成することができる。   Methanol can produce high-quality energy hydrogen by steam reforming even with low-quality waste heat of about 250 ° C. using a copper-zinc catalyst.

水素は、エクセルギ効率が理論上、83%であり、メタノールのエクセルギ効率である92%よりも低く、電気エネルギに変換する際のエクセルギ損失が本質的に少ないとする特質を持っている。特に、水素は直接的に電気エネルギに変換する燃料電池へ適用できるので、中小規模の発電システムにおいてもエネルギ変換効率、つまり発電効率を大きく向上させることができる。   Hydrogen theoretically has an exergy efficiency of 83%, which is lower than the methanol exergy efficiency of 92%, and has the characteristic of having essentially less exergy loss when converted to electrical energy. In particular, since hydrogen can be applied to a fuel cell that directly converts electric energy, the energy conversion efficiency, that is, the power generation efficiency can be greatly improved even in a small-scale power generation system.

メタノールの水蒸気改質反応は、吸熱反応であり、廃熱の熱エネルギを水素リッチな改質ガスの化学的エネルギとして取り込むことができる。   The steam reforming reaction of methanol is an endothermic reaction, and the heat energy of waste heat can be taken in as chemical energy of the hydrogen-rich reformed gas.

近時、ジメチルエーテル(以下、DMEと記す)が軽油の代替燃料として注目されているが、このDMEも300℃以下で水蒸気改質反応を生じ、水素を発生させることができるため、メタノールの場合と同様に低質な廃熱の熱エネルギを化学的に回収することができる。   Recently, dimethyl ether (hereinafter referred to as DME) has been attracting attention as an alternative fuel for light oil, but this DME can also generate a steam reforming reaction at 300 ° C. or lower and generate hydrogen. Similarly, the heat energy of low-quality waste heat can be recovered chemically.

産業界には、300℃程度の廃熱が全廃熱の4〜8%程度あるとされている。このため燃料の水蒸気改質は、これらの廃熱のエネルギ変換に有効である。   In the industry, waste heat at about 300 ° C. is about 4 to 8% of the total waste heat. For this reason, steam reforming of fuel is effective for energy conversion of these waste heats.

一般に、ごみ焼却設備では、ダイオキシンの発生や炉内の腐食の都合上、高温の蒸気を発生させることが難しい。300℃程度の低温蒸気の発生は可能であるが、この温度域では発電効率が低いため、実際には温水として利用されている場合がほとんどである。天然ガスなどを燃料としてガスタービンと組み合わせたスーパーごみ発電は、高効率な発電方法であるものの、未だ一部にしか普及していない。   Generally, in a waste incineration facility, it is difficult to generate high-temperature steam due to the generation of dioxins and corrosion in the furnace. Although it is possible to generate low temperature steam at about 300 ° C., the power generation efficiency is low in this temperature range, so in practice it is mostly used as hot water. Super garbage power generation combined with a gas turbine using natural gas as a fuel is a highly efficient power generation method, but it is still in widespread use.

一方、高効率なエネルギ変換方法として知られる燃料電池は、燃料ガスとして水素が不可欠であり、一般的に炭化水素系燃料を直接電気化学反応に利用することはできず、改質器を用いて水素を発生させている。改質器で水素発生の際に用いるエネルギは、燃料電池システムの発電効率を低下させる大きな要因となるが、外部の廃熱を利用して発生させた水素を用いれば、エネルギの効果的な利用が可能である。   On the other hand, in fuel cells known as highly efficient energy conversion methods, hydrogen is indispensable as a fuel gas, and generally hydrocarbon fuels cannot be directly used for electrochemical reactions. Hydrogen is generated. The energy used to generate hydrogen in the reformer is a major factor that reduces the power generation efficiency of the fuel cell system. However, if hydrogen generated using external waste heat is used, the energy can be effectively used. Is possible.

また、二酸化炭素分離、融離技術も二酸化炭素削減に有効な手法の一つであるが、二酸化炭素はエネルギ変換における最終排出物であることが多く、新たなエネルギを投じて二酸化炭素を分離回収すれば、それによってさらに二酸化炭素の排出量が増加することになる。   Carbon dioxide separation and ablation technologies are also effective methods for reducing carbon dioxide, but carbon dioxide is often the final emission in energy conversion, and new energy is used to separate and recover carbon dioxide. This will further increase carbon dioxide emissions.

また、二酸化炭素は、燃焼排気中に10%以下に希釈された状態で存在していることが多く、分離回収のためのガスの処理量が膨大になることが二酸化炭素の分離回収を困難にする大きな要因になっている。   In addition, carbon dioxide is often present in a state of being diluted to 10% or less in the combustion exhaust, and the amount of gas processing for separation and recovery becomes enormous, making it difficult to separate and recover carbon dioxide. Has become a major factor.

このような課題を克服すべく、近時、燃料を水蒸気改質し、改質したガスから燃焼前に二酸化炭素を除去する非特許文献1が提案されている。
特開平5−170401号公報 AIChE Journal(1999)、Vol.45、No.2、pp.248−256
In order to overcome such problems, Non-Patent Document 1 has recently been proposed in which fuel is steam reformed and carbon dioxide is removed from the reformed gas before combustion.
JP-A-5-170401 AIChE Journal (1999), Vol. 45, no. 2, pp. 248-256

上述したように、低質廃熱である産業用機器やごみ焼却施設回収では、低質排熱が熱利用以外に殆ど利用されていない。低質廃熱の有効な利用方法の一つとして水蒸気改質を利用し、化学的なエネルギに変換を図るシステムが提案されている。   As described above, in industrial equipment and waste incineration facility recovery, which is low-quality waste heat, low-quality waste heat is hardly used except for heat utilization. As one effective utilization method of low-quality waste heat, a system that uses steam reforming and converts it into chemical energy has been proposed.

しかし、二酸化炭素分離、回収まで含めた未利用エネルギの有効利用については、未だ提案されていない。環境汚染の抑制を必要としている今日、二酸化炭素分離、回収技術の一日も早い実現が望まれている。   However, no effective use of unused energy including carbon dioxide separation and recovery has been proposed yet. Today, where environmental pollution needs to be suppressed, the realization of carbon dioxide separation and recovery technology as soon as possible is desired.

本発明は、このような背景技術に基づいてなされたものであり、低質な廃熱をカスケード的に利用することにより、水素製造および二酸化炭素の分離を同時に行い得ることができるように図った低質廃熱回収システムを提供することを目的とする。   The present invention has been made on the basis of such a background art, and by using the low-quality waste heat in a cascade manner, the low-quality is designed so that hydrogen production and carbon dioxide separation can be performed simultaneously. The purpose is to provide a waste heat recovery system.

本発明に係る低質廃熱回収システムは、上述の目的を達成するために、請求項1に記載したように、廃熱ガスを熱源とし、ジメチルエーテルを改質させて水素ガスを生成する低質廃熱回収システムにおいて、廃熱ガスを通流させる低質廃熱ガス順路系と、この低質廃熱ガス順路系から分岐し、ジメチルエーテルを改質した改質ガスから水素ガスを精製する水素精製系とを備え、前記水素精製系は、前記改質ガスの流れに沿って順に、一酸化炭素変成器、第1圧力温度スイング吸着装置、オフガス系、二酸化炭素吸収器、第2圧力温度スイング吸着装置、および高純度水素ガス回収器を備えたものである。 In order to achieve the above object, a low-quality waste heat recovery system according to the present invention uses a waste heat gas as a heat source and reforms dimethyl ether to produce hydrogen gas as described in claim 1. The recovery system includes a low-quality waste heat gas route system that allows waste heat gas to flow, and a hydrogen purification system that purifies hydrogen gas from a reformed gas that is branched from the low-quality waste heat gas route system and reformed from dimethyl ether. The hydrogen purification system includes, in order along the flow of the reformed gas, a carbon monoxide converter, a first pressure temperature swing adsorption device, an off gas system, a carbon dioxide absorber, a second pressure temperature swing adsorption device, and a high It is equipped with a purity hydrogen gas recovery device .

また、本発明に係る低質廃熱回収システムは、上述の目的を達成するために低質廃熱ガス順路系は、廃熱ガス温度の高い方から低い方に向って順に、改質器、蒸発器、再生器、およびジメチルエーテル気化器を備えたものである。 In order to achieve the above-mentioned object, the low-quality waste heat recovery system according to the present invention is configured so that the low-quality waste heat gas route system sequentially changes the reformer, the evaporation from the higher waste heat gas temperature toward the lower one. A regenerator, a regenerator, and a dimethyl ether vaporizer.

また、本発明に係る低質廃熱回収システムは、上述の目的を達成するために低質廃熱ガス順路系は、廃熱ガス温度の高い方から低い方に向って順に、改質器、蒸発器熱媒加熱器、予熱器、およびジメチルエーテル気化器を備えたものである。 In order to achieve the above-mentioned object, the low-quality waste heat recovery system according to the present invention is configured so that the low-quality waste heat gas route system sequentially changes the reformer, the evaporation from the higher waste heat gas temperature toward the lower one. A heater , a heating medium heater, a preheater, and a dimethyl ether vaporizer.

また、本発明に係る低質廃熱回収システムは、上述の目的を達成するために水素精製系に設けた二酸化炭素吸収器は、低質廃熱ガス順路系に設けた再生器との間に二酸化炭素吸収剤を循環させる二酸化炭素吸収剤循環系を備えたものである。 Further, low quality waste heat recovery system according to the present invention, dioxide in order to achieve the above object, the carbon dioxide absorber provided in the hydrogen purification system is provided between the regenerator provided in low quality waste heat gas route system A carbon dioxide absorbent circulation system for circulating the carbon absorbent is provided.

また、本発明に係る低質廃熱回収システムは、上述の目的を達成するために、廃熱ガスを熱源とし、ジメチルエーテルを改質させて水素ガスを生成する低質廃熱回収システムにおいて、廃熱ガスを通流させる低質廃熱ガス順路系と、この低質廃熱ガス順路系から分岐し、ジメチルエーテルを改質した改質ガスから水素ガスを精製する水素精製系とを備え、前記水素精製系は、前記改質ガスの流れに沿って順に、一酸化炭素変成器、再生器、二酸化炭素吸収器および水素粗精製回収器を備え、前記低質廃熱ガス順路系に設けた熱媒加熱器は、前記水素精製系に設けた前記再生器との間に熱媒体を循環させる熱媒体循環系を備えたものである。 The low-quality waste heat recovery system according to the present invention is a low-quality waste heat recovery system in which waste heat gas is used as a heat source and dimethyl ether is reformed to generate hydrogen gas in order to achieve the above-mentioned object. A low-quality waste heat gas route system for flowing through, and a hydrogen purification system for purifying hydrogen gas from a reformed gas that is branched from the low-quality waste heat gas route system and reformed dimethyl ether, wherein in order along the flow of the reformed gas, carbon monoxide shift converter, the regenerator comprises a carbon dioxide absorber and hydrogen crude recovery equipment, heating medium heater provided in the low-quality waste heat gas route system, the A heat medium circulation system for circulating the heat medium between the regenerator provided in the hydrogen purification system is provided.

また、本発明に係る低質廃熱回収システムは、上述の目的を達成するために再生器は、高純度二酸化炭素回収器を備えたものである。 In the low-quality waste heat recovery system according to the present invention , the regenerator includes a high-purity carbon dioxide recovery unit in order to achieve the above-described object.

本発明に係る低質廃熱回収システムは、低質の廃熱ガスを通流させる低質廃熱ガス順路系と、この低質廃熱ガス順路系から分岐し、ジメチルエーテルを改質した改質ガスから水素ガスを精製する水素精製系を備えたので、水素製造と二酸化炭素の分離とを同時に行い得ることができ、エネルギの有効活用を図ってエネルギを節約することができる。   The low-quality waste heat recovery system according to the present invention includes a low-quality waste heat gas route system for passing a low-quality waste heat gas, a hydrogen gas from a reformed gas that is branched from the low-quality waste heat gas route system and reformed dimethyl ether Since a hydrogen purification system for purifying water is provided, hydrogen production and carbon dioxide separation can be performed simultaneously, and energy can be effectively utilized to save energy.

以下、本発明に係る低質廃熱回収システムの実施形態を図面および図中に付した符号を引用して説明する。   Hereinafter, an embodiment of a low-quality waste heat recovery system according to the present invention will be described with reference to the drawings and the reference numerals attached in the drawings.

図1は、本発明に係る低質廃熱回収システムの第1実施形態を示す概略系統図である。   FIG. 1 is a schematic system diagram showing a first embodiment of a low-quality waste heat recovery system according to the present invention.

本実施形態に係る低質廃熱回収システムは、低質廃熱ガス順路系1を備えるとともに、この低質廃熱ガス順路系1の廃熱ガス温度の高い方から低い方に向って順に、改質器2、蒸発器3、再生器4およびDME(ジメチルエーテル)気化器5を備えている。   The low-quality waste heat recovery system according to the present embodiment includes a low-quality waste heat gas route system 1, and the reformer in order from the higher waste heat gas temperature of the low-quality waste heat gas route system 1 toward the lower one. 2, an evaporator 3, a regenerator 4, and a DME (dimethyl ether) vaporizer 5.

また、本実施形態に係る低質廃熱回収システムは、低質廃熱ガス順路系1の改質器2から分岐して水素精製系2aを設け、この水素精製系2aの改質ガス温度の高い方から低い方に向って順に、二酸化炭素変成器6、冷却器7、二酸化炭素吸収器8、水素粗精製回収器9および高純度二酸化炭素回収器10を備えている。   Further, the low-quality waste heat recovery system according to the present embodiment is provided with a hydrogen purification system 2a branched from the reformer 2 of the low-quality waste heat gas route system 1, and the one having the higher reformed gas temperature of the hydrogen purification system 2a. The carbon dioxide transformer 6, the cooler 7, the carbon dioxide absorber 8, the hydrogen crude refining and recovering device 9, and the high purity carbon dioxide recovering device 10 are provided in order from the lowest to the lowest.

このような構成を備える低質廃熱回収システムにおいて、常温で0.5MPa程度の蒸気圧を持つ液体DMEは、ポンプ(図示せず)で昇圧されてDME気化器5に送られる。   In the low-quality waste heat recovery system having such a configuration, liquid DME having a vapor pressure of about 0.5 MPa at room temperature is pressurized by a pump (not shown) and sent to the DME vaporizer 5.

DME気化器5は、廃熱ガスを熱源として液相のDMEを気化させ、例えば40℃のDMEガスにする。   The DME vaporizer 5 vaporizes liquid phase DME using the waste heat gas as a heat source, for example, into 40 ° C. DME gas.

一方、蒸発器3に供給された水は、ここで廃熱ガスを熱源として気化させ、例えば200℃の水蒸気とし、DME気化器5から供給されるDMEガスとともに改質器2に送られる。   On the other hand, the water supplied to the evaporator 3 is vaporized by using the waste heat gas as a heat source, for example, steam at 200 ° C., and is sent to the reformer 2 together with the DME gas supplied from the DME vaporizer 5.

改質器2は、式(1)で示される反応式に基づいてDMEガスを水蒸気改質させ、水素リッチな改質ガスH、一酸化炭素CO、二酸化炭素CO等を生成する。 The reformer 2 steam-reforms the DME gas based on the reaction formula shown by the formula (1) to generate hydrogen-rich reformed gas H 2 , carbon monoxide CO, carbon dioxide CO 2 and the like.

[化1]
O+HO → 4H+2CO−204KJ/mol+DME ……(1)
また、改質器2は、上述の式(1)で示される反応式に基づく反応と同時に、一酸化炭素COを式(2)に基づいて二酸化炭素COに反応させる。
[Chemical 1]
C 2 H 6 O + H 2 O → 4H 2 + 2CO-204KJ / mol + DME ...... (1)
Further, the reformer 2 reacts carbon monoxide CO with carbon dioxide CO 2 based on the formula (2) simultaneously with the reaction based on the reaction formula shown by the above-described formula (1).

[化2]
CO+HO → H+CO+41KJ/mol ……(2)
また、改質器2で、反応が充分に行われなかった残りの一酸化炭素COは、一酸化炭素変成器6で、式(2)に基づいてシフト反応し、水素、二酸化炭素ガスを生成する。
[Chemical 2]
CO + H 2 O → H + CO 2 +41 KJ / mol (2)
The remaining carbon monoxide CO that has not been sufficiently reacted in the reformer 2 undergoes a shift reaction based on the formula (2) in the carbon monoxide converter 6 to generate hydrogen and carbon dioxide gas. To do.

上述の式(2)は、発熱反応であり、化学平衡的には低温の方が進行し易いが、反応速度の観点から温度250℃前後で反応させることが望まれている。このため、本実施形態は、改質ガスを、例えば温度250℃で一酸化炭素変成器6に送り、ここで発熱反応を行わせる。   The above formula (2) is an exothermic reaction and tends to proceed at a low temperature in terms of chemical equilibrium, but it is desired to react at a temperature of about 250 ° C. from the viewpoint of the reaction rate. For this reason, in this embodiment, the reformed gas is sent to the carbon monoxide converter 6 at a temperature of 250 ° C., for example, and an exothermic reaction is performed here.

改質ガスの発熱反応後、生成された二酸化炭素COは、温度が280℃程度の高温となるので、冷却器7で温度90℃前後になるまで冷却させて二酸化炭素吸収器8で吸収される。 After the exothermic reaction of the reformed gas, the generated carbon dioxide CO 2 has a high temperature of about 280 ° C., so it is cooled by the cooler 7 until the temperature reaches about 90 ° C. and absorbed by the carbon dioxide absorber 8. The

二酸化炭素吸収器8で、二酸化炭素COを吸収するために用いる吸収剤は、アミン酸、アルカリ炭酸塩水溶液等のうち、いずれかが選択される。また、この吸収剤は、二酸化炭素吸収器8と再生器は4との間に設けた二酸化炭素吸収剤循環系13を用いて循環させれる。 The absorbent used for absorbing the carbon dioxide CO 2 by the carbon dioxide absorber 8 is selected from amino acid, alkaline carbonate aqueous solution, and the like. The absorbent is circulated using a carbon dioxide absorbent circulation system 13 provided between the carbon dioxide absorber 8 and the regenerator 4.

改質ガスのうち、二酸化炭素COを吸収剤で吸収させた二酸化炭素吸収器8は、残りを95%以上の粗精製水素ガスに生成し、生成した粗精製水素ガスを水素粗精製回収器9に回収させる。 Among the reformed gases, the carbon dioxide absorber 8 in which carbon dioxide CO 2 is absorbed by the absorbent produces the remaining 95% or more of crude purified hydrogen gas, and the generated crude purified hydrogen gas is a crude hydrogen refiner / collector. 9 to collect.

水素粗精製回収器9で回収した水素ガスは、このまま、例えば発電プラントに供給されるか、あるいは、圧力スイング吸着法を用いて純度を高めて精製した後、例えば発電プラントに供給される。   The hydrogen gas recovered by the crude hydrogen refining / recovering device 9 is supplied to, for example, a power plant as it is, or after being purified by increasing the purity using the pressure swing adsorption method, for example, is supplied to the power plant.

発電プラントは、ガスタービン、ガスエンジン等の内燃機関や燃料電池が適用対象になるが、水素濃度リッチな粗精製水素ガスが出力増加に適していることを考えると、燃料電池の選択が好ましい。   The power plant is applicable to internal combustion engines such as gas turbines and gas engines, and fuel cells. However, considering that the crude hydrogen gas rich in hydrogen concentration is suitable for increasing the output, the fuel cell is preferably selected.

他方、二酸化炭素吸収器8の吸収剤で吸収させた二酸化炭素COは、再生器4に供給され、ここで廃熱ガスを熱源として高純度の二酸化炭素COが生成され、生成された高純度の二酸化炭素COが高純度二酸化炭素回収器10に回収させる。 On the other hand, the carbon dioxide CO 2 absorbed by the absorbent of the carbon dioxide absorber 8 is supplied to the regenerator 4 where high-purity carbon dioxide CO 2 is generated using waste heat gas as a heat source. Pure carbon dioxide CO 2 is recovered by the high purity carbon dioxide collector 10.

次に、本実施形態に係る低質廃熱回収システムの熱・物質収支を説明する。   Next, the heat and material balance of the low-quality waste heat recovery system according to this embodiment will be described.

まず、改質器2および一酸化炭素変成器6で生じる式(1)および式(2)に基づく反応において、DMEが1モルに対して水は3モルを必要とするが、実際には改質器2で炭素析出による触媒失格を防ぐため、水の量を3モル以上必要とされる。   First, in the reaction based on the formula (1) and the formula (2) generated in the reformer 2 and the carbon monoxide converter 6, 3 mol of water is required for 1 mol of DME. In order to prevent disqualification of the catalyst due to carbon deposition in the mass container 2, the amount of water is required to be 3 mol or more.

一方、式(1)および式(2)ともに、水を多くすれば反応が進行し易いが、反応に寄与しない余剰分の水は、二酸化炭素吸収器8内の水溶液濃度を下げる。   On the other hand, in both formulas (1) and (2), the reaction easily proceeds if the amount of water is increased, but the excess water that does not contribute to the reaction lowers the concentration of the aqueous solution in the carbon dioxide absorber 8.

また、水が多いと、蒸発器3の出口の廃熱ガス温度は低下し、再生器4に必要な熱を供給できない。   Moreover, if there is much water, the waste heat gas temperature of the exit of the evaporator 3 will fall, and the regenerator 4 cannot be supplied with the required heat.

このような事象を考慮すると、DMEの1モルに対し、水は3〜5モル程度が適正である。   In consideration of such an event, about 3 to 5 mol of water is appropriate for 1 mol of DME.

熱・物質収支評価の基準としてDME=1mol/sをDME気化器5に供給すると仮定し、改質器2、蒸発器3、再生器4、DME気化器5の4つの廃熱回収機器における温度レベルの制限、回収熱量の熱精算図および設計要項を図2および図3に示す。   Assuming that DME = 1 mol / s is supplied to the DME vaporizer 5 as a standard for evaluating the heat and mass balance, the temperatures in the four waste heat recovery devices of the reformer 2, the evaporator 3, the regenerator 4, and the DME vaporizer 5 are as follows. FIG. 2 and FIG. 3 show the level limit, the heat adjustment chart of the recovered heat quantity, and the design essential points.

これらの図において、改質器2は、最も上流に位置しており、蒸発器3への入力温度レベル制限のみ考慮すればよい。   In these figures, the reformer 2 is located on the most upstream side, and only the input temperature level limitation to the evaporator 3 needs to be considered.

しかし、蒸発器3と再生器4の回収熱量は、改質器2と同程度以上になるため、廃熱ガスが適切な流量でなければ、図3の制限を全て満たすことができない。   However, since the recovered heat amount of the evaporator 3 and the regenerator 4 is approximately equal to or higher than that of the reformer 2, all of the restrictions in FIG. 3 cannot be satisfied unless the waste heat gas has an appropriate flow rate.

廃熱ガスは、燃焼空気や水蒸気等が一般的に考えられる。図2では、空気の比熱を仮定し、廃熱ガス温度を320℃、流量を2.5kg/sとした場合の温度降下を示すが、このケースでは4つの条件を全て満たしている。廃熱ガスの流量を2.5kg/sより多くすれば、冷却手段を用いて適温に維持できるが、逆に少ない場合、システムが成り立たない。   The waste heat gas is generally considered to be combustion air or water vapor. FIG. 2 shows the temperature drop when the specific heat of air is assumed, the waste heat gas temperature is 320 ° C., and the flow rate is 2.5 kg / s. In this case, all four conditions are satisfied. If the flow rate of the waste heat gas is higher than 2.5 kg / s, it can be maintained at an appropriate temperature using the cooling means, but conversely, if it is low, the system cannot be realized.

したがって、図3の制限により、DMEと廃熱ガスの最低流量比が決定される。   Therefore, the minimum flow rate ratio between DME and waste heat gas is determined by the limitation of FIG.

なお、このフローシートでは圧力を0.9MPaとしたが、最終的な水素の形態がガスボンベであれば、圧縮動力を小さくするためにさらに高い圧力で改質させることも可能である。この場合でも蒸発器3やDME気化器5の最適温度が多少高くなる程度で回収熱量に大きな差異は生じない。   In this flow sheet, the pressure is 0.9 MPa. However, if the final form of hydrogen is a gas cylinder, it can be reformed at a higher pressure in order to reduce the compression power. Even in this case, there is no significant difference in the amount of recovered heat as the optimum temperatures of the evaporator 3 and the DME vaporizer 5 become somewhat higher.

このように、本実施形態は、廃熱ガスの温度の高い方から低い方向に向って順に、改質器2、蒸発器3、再生器4およびDME気化器5を配置し、1モルのDMEに対して水を3モル以上、廃熱ガスを2.5kg以上に設定してあるので、低質な廃熱を回収しながら水素を生成し、二酸化炭素を同時に分離回収できるシステムを実現することができる。   As described above, in this embodiment, the reformer 2, the evaporator 3, the regenerator 4, and the DME vaporizer 5 are arranged in order from the higher temperature of the waste heat gas to the lower temperature, and 1 mol of DME is disposed. Since the water is set to 3 mol or more and the waste heat gas is set to 2.5 kg or more, it is possible to realize a system that generates hydrogen while recovering low-quality waste heat and can simultaneously separate and recover carbon dioxide. it can.

図4は、本発明に係る低質廃熱回収システムの第2実施形態を示す概略系統図である。   FIG. 4 is a schematic system diagram showing a second embodiment of the low-quality waste heat recovery system according to the present invention.

なお、第1実施形態に示された構成要素と同一構成要素または反応する構成要素には、同一符号を付し、重複説明を省略する。   In addition, the same code | symbol is attached | subjected to the component same as the component shown by 1st Embodiment, or the component to react, and duplication description is abbreviate | omitted.

本実施形態に係る低質廃熱回収システムは、一酸化炭素変成器6を出る改質ガスが280℃程度の高温であり、二酸化炭素吸収器8に供給する際、90℃まで温度降下させなければならず、この間の余剰エネルギの有効回収を図ったものである。   In the low-quality waste heat recovery system according to the present embodiment, the reformed gas exiting the carbon monoxide converter 6 has a high temperature of about 280 ° C., and when supplied to the carbon dioxide absorber 8, the temperature must be lowered to 90 ° C. Rather, it is intended to effectively recover surplus energy during this period.

すなわち、温度280℃から温度90℃に温度降下させるに要するエネルギ消費は、1mol/sのDME当り44kWになっている。   That is, the energy consumption required to lower the temperature from 280 ° C. to 90 ° C. is 44 kW per 1 mol / s DME.

本実施形態は、このような点に着目し、水素精製系2aの一酸化炭素変成器6と二酸化炭素吸収器8との間に予熱器11を設け、この予熱器11に一酸化炭素変成器6からの改質ガスを熱源とし、水を供給して熱交換させ、熱交換後の温水を蒸発器3や貯湯槽(図示せず)等に供給し、余剰エネルギの有効回収を図っている。   In this embodiment, paying attention to such points, a preheater 11 is provided between the carbon monoxide converter 6 and the carbon dioxide absorber 8 of the hydrogen purification system 2a, and the carbon monoxide converter is provided in the preheater 11. The reformed gas from 6 is used as a heat source, water is supplied for heat exchange, and hot water after the heat exchange is supplied to the evaporator 3, a hot water tank (not shown), etc., to effectively recover surplus energy. .

このように、本実施形態は、一酸化炭素変成器6と二酸化炭素吸収器8との間に予熱器11を設け、予熱器11で発生させた温水を利用する構成にしたので、余剰エネルギを有効に回収することができる。   As described above, in this embodiment, the preheater 11 is provided between the carbon monoxide transformer 6 and the carbon dioxide absorber 8, and the warm water generated by the preheater 11 is used. It can be recovered effectively.

図5は、本発明に係る低質廃熱回収システムの第3実施形態を示す概略系統図である。   FIG. 5 is a schematic system diagram showing a third embodiment of the low-quality waste heat recovery system according to the present invention.

なお、第1実施形態および第2実施形態に示された構成要素と同一構成要素または対応する構成要素には、同一符号を付し、重複説明を省略する。   In addition, the same code | symbol is attached | subjected to the component same as the component shown by 1st Embodiment and 2nd Embodiment, or a corresponding component, and duplication description is abbreviate | omitted.

本実施形態に係る低質廃熱回収システムは、低質廃熱ガス順路系1を流れる廃熱ガスの一部を利用して再生器4を加熱させたものである。   The low-quality waste heat recovery system according to the present embodiment heats the regenerator 4 using a part of the waste heat gas flowing through the low-quality waste heat gas route system 1.

再生器4に必要な熱は、図3に示すように、1mol/sのDME当り300kWを必要としている。   The heat required for the regenerator 4 requires 300 kW per 1 mol / s DME as shown in FIG.

本実施形態は、このような技術事項を考慮したもので、低質廃熱ガス順路系1の蒸発器2と予熱器11との間に熱媒加熱器12を設け、ここで廃熱ガスを熱源として熱媒体を加熱させ、加熱させた熱媒体を改質器2を分岐する水素精製系2aの一酸化炭素変成器6と二酸化炭素吸収器8との間に設けた再生器4に熱媒体循環系12aを介して供給し、高純度の二酸化炭素を生成させた後、熱媒体を熱媒加熱器12に戻して循環させたものである。   In the present embodiment, such technical matters are taken into consideration, and a heating medium heater 12 is provided between the evaporator 2 and the preheater 11 of the low-quality waste heat gas route system 1, and the waste heat gas is supplied to the heat source here. The heat medium is heated as follows, and the heated heat medium is circulated in the regenerator 4 provided between the carbon monoxide converter 6 and the carbon dioxide absorber 8 that branches the reformer 2 from the hydrogen purification system 2a. After supplying through the system 12a and producing high purity carbon dioxide, the heat medium is returned to the heat medium heater 12 and circulated.

この場合、再生器4は、必要とする熱量300kWに対し、その1/6をまかなうことができるようになっている。   In this case, the regenerator 4 can cover 1/6 of the required amount of heat of 300 kW.

なお、再生器4と熱媒加熱器12との間を熱媒体循環系12aを介して循環する熱媒体は、例えばアルキルビフェニール、シリコンオイル等のいずれかが用いられている。   Note that as the heat medium circulating between the regenerator 4 and the heat medium heater 12 via the heat medium circulation system 12a, for example, alkyl biphenyl, silicon oil, or the like is used.

また、水素精製系2aは、再生器4と二酸化炭素吸収器8と間に、例えば液体の炭酸カリウムを循環させる二酸化炭素吸収剤循環系13を設け、この二酸化炭素吸収剤循環系13で炭酸カリウムを循環させ、改質ガスに含まれる二酸化炭素COを吸収させている。 Further, the hydrogen purification system 2 a is provided with a carbon dioxide absorbent circulation system 13 for circulating, for example, liquid potassium carbonate between the regenerator 4 and the carbon dioxide absorber 8. Is circulated to absorb carbon dioxide CO 2 contained in the reformed gas.

このように、本実施形態は、低質廃熱ガス順路系1の蒸発器3と予熱器11との間に熱媒加熱器12を設け、ここで加熱させた熱媒体を再生器4に供給し、再生器4が必要とする熱量の1/6をまかなう構成にしたので、廃熱ガスのエネルギを有効に回収させることができる。   Thus, in this embodiment, the heat medium heater 12 is provided between the evaporator 3 and the preheater 11 of the low-quality waste heat gas path system 1, and the heat medium heated here is supplied to the regenerator 4. Since the configuration is made to cover 1/6 of the amount of heat required by the regenerator 4, the energy of the waste heat gas can be effectively recovered.

図6は、本発明に係る低質廃熱回収システムの第4実施形態を示す概略系統図である。   FIG. 6 is a schematic system diagram showing a fourth embodiment of the low-quality waste heat recovery system according to the present invention.

なお、第1実施形態に示された構成要素と同一構成要素または対応する構成要素には、同一符号を付し、重複説明を省略する。   In addition, the same code | symbol is attached | subjected to the component same as the component shown by 1st Embodiment, or a corresponding component, and duplication description is abbreviate | omitted.

一般に、二酸化炭素処理分野において使用される二酸化炭素吸収器では、二酸化炭素COのみ吸収可能であり、一酸化炭素COは粗精製水素ガスに含まれてしまうため、一酸化炭素変成器を介して一酸化炭素COを二酸化炭素COに転換しているが、一酸化炭素変成器だけでは2%程度にしか二酸化炭素COを転換できないのが現状である。 In general, in a carbon dioxide absorber used in the carbon dioxide treatment field, only carbon dioxide CO 2 can be absorbed, and carbon monoxide CO is contained in the crude purified hydrogen gas. Although converted carbon monoxide CO to carbon dioxide (CO 2), only the carbon monoxide shift converter at present can not convert carbon dioxide CO 2 in only about 2%.

例えば、固体高分子型燃料電池など作動温度の低い燃料電池では、燃料ガス中に含まれる一酸化炭素濃度の許容値が10ppmであり、水素精製系2aの冷却器7と二酸化炭素吸収器8との間に一酸化炭素選択酸化器14を設け、この一酸化炭素選択酸化器14に空気を加え、一酸化炭素変成器6から冷却器7を介して供給される一酸化炭素COを二酸化炭素COに変換させ、変換させた二酸化炭素COを二酸化炭素吸収器8で吸収させ、残った水素リッチな改質ガスを一酸化炭素10ppm以下にして水素粗精製回収器15に回収させたものである。 For example, in a fuel cell having a low operating temperature such as a polymer electrolyte fuel cell, the allowable value of the concentration of carbon monoxide contained in the fuel gas is 10 ppm, and the cooler 7 and the carbon dioxide absorber 8 of the hydrogen purification system 2a Is provided with a carbon monoxide selective oxidizer 14, air is added to the carbon monoxide selective oxidizer 14, and carbon monoxide CO supplied from the carbon monoxide converter 6 through the cooler 7 is converted into carbon dioxide CO. The carbon dioxide CO 2 thus converted is absorbed by the carbon dioxide absorber 8, and the remaining hydrogen-rich reformed gas is reduced to 10 ppm or less of carbon monoxide and recovered by the hydrogen crude purification and recovery device 15. is there.

このように、本実施形態は、水素精製系2aの冷却器7と二酸化炭素吸収器8との間に一酸化炭素選択酸化器14を設け、この一酸化炭素選択酸化器14で一酸化炭素COを選択酸化させて二酸化炭素COに変換させる構成にしたので、一酸化炭素COの濃度が10ppm以下の比較的良質の水素リッチな改質ガスを精製することができ、作動温度の低い燃料電池にも、直接、供することができる。 Thus, in this embodiment, the carbon monoxide selective oxidizer 14 is provided between the cooler 7 and the carbon dioxide absorber 8 of the hydrogen purification system 2a, and the carbon monoxide selective oxidizer 14 uses the carbon monoxide CO. Is selectively oxidized and converted to carbon dioxide CO 2 , so that a relatively high-quality hydrogen-rich reformed gas having a concentration of carbon monoxide CO of 10 ppm or less can be purified, and a fuel cell with a low operating temperature. Can also be served directly.

図7は、本発明に係る低質廃熱回収システムの第5実施形態を示す概略系統図である。   FIG. 7 is a schematic system diagram showing a fifth embodiment of the low-quality waste heat recovery system according to the present invention.

なお、第1実施形態に示された構成要素と同一構成要素または対応する構成要素には、同一符号を付し、重複説明を省略する。   In addition, the same code | symbol is attached | subjected to the component same as the component shown by 1st Embodiment, or a corresponding component, and duplication description is abbreviate | omitted.

本実施形態に係る低質廃熱回収システムは、水素精製系2aの二酸化炭素吸収器8の後流側に圧力スイング吸着装置16と高純度水素ガス回収器17とを設けるとともに、圧力スイング吸着装置16で捕獲した可燃成分を持つ不純ガスを改質器2のバーナ18に供給して燃焼ガスを生成させるオフガス系19を設けたものである。   The low-quality waste heat recovery system according to this embodiment is provided with a pressure swing adsorption device 16 and a high-purity hydrogen gas recovery device 17 on the downstream side of the carbon dioxide absorber 8 of the hydrogen purification system 2a, and the pressure swing adsorption device 16 An off-gas system 19 is provided in which an impure gas having a combustible component captured in step 1 is supplied to the burner 18 of the reformer 2 to generate combustion gas.

圧力スイング吸着装置16は、装置内を、例えば1気圧程度に加圧させ、二酸化炭素吸収器8から供給された改質ガスのうち、水素ガスのみを通過させ、残りの不純ガスを捕獲し、捕獲した不純ガスを回収するとき、装置内を減圧させて取り除くことができるようにしている。   The pressure swing adsorption device 16 pressurizes the inside of the device to, for example, about 1 atm, passes only hydrogen gas out of the reformed gas supplied from the carbon dioxide absorber 8, and captures the remaining impure gas. When collecting the trapped impure gas, the inside of the apparatus can be depressurized and removed.

そして、圧力スイング吸着装置16は、ここを通過する純度99.99%以上の水素ガスを高純度水素ガス回収器17に回収させるとともに、捕獲した可燃成分を持つ不純ガスをオフガス系19を介してバーナ18に供給し、改質器2に燃焼ガスを与えている。   Then, the pressure swing adsorption device 16 causes the high-purity hydrogen gas recovery unit 17 to recover hydrogen gas having a purity of 99.99% or more that passes through the pressure swing adsorption device 16, and the trapped impure gas having combustible components through the off-gas system 19. It is supplied to the burner 18 and combustion gas is given to the reformer 2.

このように、本実施形態は、水素精製系2aの二酸化炭素吸収器8の後流側に圧力スイング吸着装置16を設け、この圧力スイング吸着装置16で水素ガスを通過させて純度を高くするとともに、可燃成分を持つ不純ガスを燃料ガスとしてオフガス系19を介して改質器2のバーナ18に供給する構成にしたので、エネルギを無駄なく有効に活用して改質器の燃焼ガスに供給することができ、その分だけエネルギの消費を節約することができる。   Thus, in this embodiment, the pressure swing adsorption device 16 is provided on the downstream side of the carbon dioxide absorber 8 of the hydrogen purification system 2a, and the hydrogen gas is passed through the pressure swing adsorption device 16 to increase the purity. Since the impure gas having a combustible component is supplied as fuel gas to the burner 18 of the reformer 2 through the off-gas system 19, the energy is effectively utilized without waste and supplied to the combustion gas of the reformer. Energy consumption can be saved accordingly.

なお、本実施形態は、二酸化炭素吸収器8の後流側に圧力スイング吸着装置16を設けたが、この例に限らず、例えば図8に示すように、二酸化炭素吸収器8の後流側と、水素精製系2aの一酸化炭素変成器6と二酸化炭素吸収器8との間のそれぞれに、第1および第2圧力温度スイング吸着装置20a,20bを設けてもよい。   In this embodiment, the pressure swing adsorption device 16 is provided on the downstream side of the carbon dioxide absorber 8. However, the present invention is not limited to this example. For example, as shown in FIG. The first and second pressure temperature swing adsorption devices 20a and 20b may be provided between the carbon monoxide transformer 6 and the carbon dioxide absorber 8 of the hydrogen purification system 2a.

これら第1および第2圧力温度スイング吸着装置20a,20bは、上述の圧力スイング吸着装置16と同様に、装置内の圧力または温度を高めたとき、水素ガスを通過させ、不純ガスを捕獲し、捕獲した不純ガスを取り除くとき、装置内を減圧または減温させて取り除くことができる機能を備えている。   These first and second pressure-temperature swing adsorption devices 20a and 20b, like the above-described pressure swing adsorption device 16, allow hydrogen gas to pass through and trap impure gas when the pressure or temperature in the device is increased, When removing the trapped impure gas, it has a function that can be removed by reducing the pressure or reducing the temperature in the apparatus.

したがって、本実施形態も、第1圧力温度スイング吸着装置20aで捕獲した可燃成分を持った不純ガスをオフガス系19を介して改質器2のバーナ18に供給できるから、エネルギを無駄なく有効に活用することができ、エネルギの消費を節約することができる。   Therefore, this embodiment can also supply impure gas having a combustible component captured by the first pressure temperature swing adsorption device 20a to the burner 18 of the reformer 2 via the off-gas system 19, so that energy can be effectively used without waste. It can be used and energy consumption can be saved.

本発明に係る低質廃熱回収システムの第1実施形態を示す概略系統図。1 is a schematic system diagram showing a first embodiment of a low-quality waste heat recovery system according to the present invention. 本発明に係る低質廃熱回収システムの回収熱量を示す熱精算図。The heat adjustment figure which shows the amount of heat recovery of the low-quality waste heat recovery system which concerns on this invention. 本発明に係る低質廃熱回収システムの設計要項を示す図。The figure which shows the design essential point of the low-quality waste heat recovery system which concerns on this invention. 本発明に係る低質廃熱回収システムの第2実施形態を示す概略系統図。The schematic system diagram which shows 2nd Embodiment of the low-quality waste heat recovery system which concerns on this invention. 本発明に係る低質廃熱回収システムの第3実施形態を示す概略系統図。The schematic system diagram which shows 3rd Embodiment of the low-quality waste heat recovery system which concerns on this invention. 本発明に係る低質廃熱回収システムの第4実施形態を示す概略系統図。The schematic system diagram which shows 4th Embodiment of the low-quality waste heat recovery system which concerns on this invention. 本発明に係る低質廃熱回収システムの第5実施形態を示す概略系統図。The schematic system diagram which shows 5th Embodiment of the low-quality waste heat recovery system which concerns on this invention. 本発明に係る低質廃熱回収システムの第6実施形態を示す概略系統図。The schematic system diagram which shows 6th Embodiment of the low-quality waste heat recovery system which concerns on this invention.

符号の説明Explanation of symbols

1 低質廃熱ガス順路系
2 改質器
2a 水素精製系
3 蒸発器
4 再生器
5 DME(ジメチルエーテル)気化器
6 一酸化炭素変成器
7 冷却器
8 二酸化炭素吸収器
9 水素粗精製回収器
10 高純度二酸化炭素回収器
11 予熱器
12 熱媒加熱器
12a 熱媒体循環系
13 二酸化炭素吸収剤循環系
14 一酸化炭素選択酸化器
15 水素粗精製回収器
16 圧力スイング吸着装置
17 高純度水素ガス回収器
18 バーナ
19 オフガス系
20a 第1圧力温度スイング吸着装置
20b 第2圧力温度スイング吸着装置
DESCRIPTION OF SYMBOLS 1 Low quality waste heat gas route system 2 Reformer 2a Hydrogen purification system 3 Evaporator 4 Regenerator 5 DME (dimethyl ether) vaporizer 6 Carbon monoxide converter 7 Cooler 8 Carbon dioxide absorber 9 Hydrogen crude refiner 10 Purity carbon dioxide collector 11 Preheater 12 Heat medium heater 12a Heat medium circulation system 13 Carbon dioxide absorbent circulation system 14 Carbon monoxide selective oxidizer 15 Hydrogen crude purification and recovery device 16 Pressure swing adsorption device 17 High purity hydrogen gas recovery device 18 Burner 19 Off-gas system 20a First pressure temperature swing adsorption device 20b Second pressure temperature swing adsorption device

Claims (7)

廃熱ガスを熱源とし、ジメチルエーテルを改質させて水素ガスを生成する低質廃熱回収システムにおいて、
廃熱ガスを通流させる低質廃熱ガス順路系と、
この低質廃熱ガス順路系から分岐し、ジメチルエーテルを改質した改質ガスから水素ガスを精製する水素精製系とを備え
前記水素精製系は、前記改質ガスの流れに沿って順に、一酸化炭素変成器、第1圧力温度スイング吸着装置、オフガス系、二酸化炭素吸収器、第2圧力温度スイング吸着装置、および高純度水素ガス回収器を備えたことを特徴とする低質廃熱回収システム。
In a low-quality waste heat recovery system that uses waste heat gas as a heat source and reforms dimethyl ether to produce hydrogen gas,
A low-quality waste heat gas route system for passing waste heat gas,
A hydrogen purification system that purifies hydrogen gas from the reformed gas that is branched from this low-quality waste heat gas route system and reformed dimethyl ether ,
The hydrogen purification system includes, in order along the flow of the reformed gas, a carbon monoxide converter, a first pressure temperature swing adsorption device, an off-gas system, a carbon dioxide absorber, a second pressure temperature swing adsorption device, and a high purity. A low-quality waste heat recovery system equipped with a hydrogen gas recovery unit .
前記低質廃熱ガス順路系は、廃熱ガス温度の高い方から低い方に向って順に、改質器、蒸発器、再生器、およびジメチルエーテル気化器を備えたことを特徴とする請求項1記載の低質廃熱回収システム。 The low-quality waste heat gas route system includes a reformer, an evaporator, a regenerator, and a dimethyl ether vaporizer in order from the highest waste heat gas temperature to the lowest. Low-quality waste heat recovery system. 前記水素精製系に設けた前記二酸化炭素吸収器は、前記低質廃熱ガス順路系に設けた前記再生器との間に二酸化炭素吸収剤を循環させる二酸化炭素吸収剤循環系を備えたことを特徴とする請求項2記載の低質廃熱回収システム。 The carbon dioxide absorber provided on the hydrogen purification system, comprising the carbon dioxide absorbent circulation system for circulating a carbon dioxide absorber between the regenerator provided in the low-quality waste heat gas route system The low-quality waste heat recovery system according to claim 2 . 前記再生器は、高純度二酸化炭素回収器を備えたことを特徴とする請求項2または3記載の低質廃熱回収システム。 The low-quality waste heat recovery system according to claim 2 or 3 , wherein the regenerator includes a high-purity carbon dioxide recovery unit. 廃熱ガスを熱源とし、ジメチルエーテルを改質させて水素ガスを生成する低質廃熱回収システムにおいて、
廃熱ガスを通流させる低質廃熱ガス順路系と、
この低質廃熱ガス順路系から分岐し、ジメチルエーテルを改質した改質ガスから水素ガスを精製する水素精製系とを備え、
前記水素精製系は、前記改質ガスの流れに沿って順に、一酸化炭素変成器、再生器、二酸化炭素吸収器および水素粗精製回収器を備え、
前記低質廃熱ガス順路系に設けた熱媒加熱器は、前記水素精製系に設けた前記再生器との間に熱媒体を循環させる熱媒体循環系を備えたことを特徴とする低質廃熱回収システム。
In a low-quality waste heat recovery system that uses waste heat gas as a heat source and reforms dimethyl ether to produce hydrogen gas,
A low-quality waste heat gas route system for passing waste heat gas,
A hydrogen purification system that purifies hydrogen gas from the reformed gas that is branched from this low-quality waste heat gas route system and reformed dimethyl ether,
The hydrogen purification system includes, in order along the flow of the reformed gas, a carbon monoxide converter, a regenerator, a carbon dioxide absorber, and a hydrogen crude purification and recovery device.
Heating medium heater provided in the low-quality waste heat gas route system, low quality waste heat, comprising the heating medium circulation system that circulates the heating medium between the regenerator provided in the hydrogen purification system Collection system.
前記低質廃熱ガス順路系は、廃熱ガス温度の高い方から低い方に向って順に、改質器、蒸発器、前記熱媒加熱器、予熱器、およびジメチルエーテル気化器を備えたことを特徴とする請求項5記載の低質廃熱回収システム。 The low-quality waste heat gas route system includes a reformer, an evaporator, the heating medium heater, a preheater, and a dimethyl ether vaporizer in order from the highest waste heat gas temperature to the lowest. The low-quality waste heat recovery system according to claim 5 . 前記再生器は、高純度二酸化炭素回収器を備えたことを特徴とする請求項5または6記載の低質廃熱回収システム。 The low-quality waste heat recovery system according to claim 5 or 6 , wherein the regenerator includes a high-purity carbon dioxide recovery unit.
JP2005221518A 2005-07-29 2005-07-29 Low quality waste heat recovery system Expired - Fee Related JP4744971B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005221518A JP4744971B2 (en) 2005-07-29 2005-07-29 Low quality waste heat recovery system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005221518A JP4744971B2 (en) 2005-07-29 2005-07-29 Low quality waste heat recovery system

Publications (2)

Publication Number Publication Date
JP2007031255A JP2007031255A (en) 2007-02-08
JP4744971B2 true JP4744971B2 (en) 2011-08-10

Family

ID=37790946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005221518A Expired - Fee Related JP4744971B2 (en) 2005-07-29 2005-07-29 Low quality waste heat recovery system

Country Status (1)

Country Link
JP (1) JP4744971B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5804860B2 (en) * 2011-01-31 2015-11-04 大阪瓦斯株式会社 Hydrogen production equipment
JP5676317B2 (en) * 2011-03-08 2015-02-25 株式会社日本製鋼所 Hydrogen production method and hydrogen production system
US9819038B2 (en) 2011-03-31 2017-11-14 General Electric Company Fuel cell reforming system with carbon dioxide removal
JP6111855B2 (en) * 2013-05-20 2017-04-12 アイシン精機株式会社 Fuel cell system
JP6153810B2 (en) * 2013-08-06 2017-06-28 千代田化工建設株式会社 Hydrogen supply system
EP3032027B1 (en) 2013-08-06 2019-10-09 Chiyoda Corporation Hydrogen supply system and hydrogen supply method
JP6473345B2 (en) * 2015-02-26 2019-02-20 株式会社神戸製鋼所 Hydrogen production apparatus and hydrogen production method

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62260702A (en) * 1986-05-06 1987-11-13 Mitsubishi Gas Chem Co Inc Production of highly pure hydrogen
JPH05213602A (en) * 1992-01-31 1993-08-24 Japan Atom Energy Res Inst Gaseous hydrogen producing device
JPH05287284A (en) * 1992-04-06 1993-11-02 Mitsubishi Heavy Ind Ltd Process for reforming liquefied natural gas
JPH0640707A (en) * 1984-03-02 1994-02-15 Imperial Chem Ind Plc <Ici> Preparation of synthetic ammonia gas
JPH06321502A (en) * 1993-05-13 1994-11-22 Kawasaki Heavy Ind Ltd Acceleration of dehydrogen reaction and apparatus therefore
JPH11106770A (en) * 1997-10-07 1999-04-20 Nkk Corp Method and apparatus for power generation with dimethyl ether modification gas
JP2000191303A (en) * 1998-12-25 2000-07-11 Sugino Mach Ltd Device and method for producing hydrogen
WO2001004046A1 (en) * 1999-07-13 2001-01-18 Ebara Corporation Method for electric power generation using fuel cell and electric power generation system using fuel cell
JP2001058801A (en) * 1999-08-18 2001-03-06 Toshiba Corp Power generation system to separate carbon dioxide
JP2004144018A (en) * 2002-10-24 2004-05-20 Kansai Electric Power Co Inc:The Dimethyl ether reforming generating system and operating method therefor
JP2004168553A (en) * 2002-11-15 2004-06-17 Mitsubishi Heavy Ind Ltd Manufacturing process for synthetic gas

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0640707A (en) * 1984-03-02 1994-02-15 Imperial Chem Ind Plc <Ici> Preparation of synthetic ammonia gas
JPS62260702A (en) * 1986-05-06 1987-11-13 Mitsubishi Gas Chem Co Inc Production of highly pure hydrogen
JPH05213602A (en) * 1992-01-31 1993-08-24 Japan Atom Energy Res Inst Gaseous hydrogen producing device
JPH05287284A (en) * 1992-04-06 1993-11-02 Mitsubishi Heavy Ind Ltd Process for reforming liquefied natural gas
JPH06321502A (en) * 1993-05-13 1994-11-22 Kawasaki Heavy Ind Ltd Acceleration of dehydrogen reaction and apparatus therefore
JPH11106770A (en) * 1997-10-07 1999-04-20 Nkk Corp Method and apparatus for power generation with dimethyl ether modification gas
JP2000191303A (en) * 1998-12-25 2000-07-11 Sugino Mach Ltd Device and method for producing hydrogen
WO2001004046A1 (en) * 1999-07-13 2001-01-18 Ebara Corporation Method for electric power generation using fuel cell and electric power generation system using fuel cell
JP2001058801A (en) * 1999-08-18 2001-03-06 Toshiba Corp Power generation system to separate carbon dioxide
JP2004144018A (en) * 2002-10-24 2004-05-20 Kansai Electric Power Co Inc:The Dimethyl ether reforming generating system and operating method therefor
JP2004168553A (en) * 2002-11-15 2004-06-17 Mitsubishi Heavy Ind Ltd Manufacturing process for synthetic gas

Also Published As

Publication number Publication date
JP2007031255A (en) 2007-02-08

Similar Documents

Publication Publication Date Title
AU2001292544B2 (en) Joint-cycle high-efficiency fuel cell system with power generating turbine
US9373856B2 (en) Method of recycling and tapping off hydrogen for power generation apparatus
JP4744971B2 (en) Low quality waste heat recovery system
JP2008163944A (en) Reforming system for partial co2 recovery type cycle plant
JP2005532241A (en) No / low exhaust energy supply station
AU2001292544A1 (en) Joint-cycle high-efficiency fuel cell system with power generating turbine
EP2248575B1 (en) Method and system for recovering high-purity CO2 from gasification gas
NO320939B1 (en) Process for exhaust gas treatment in fuel cell system based on solid oxides
JP2004079495A (en) Fuel cell power generation system using gasified refuse gas
CN109831927B (en) Method and power plant for generating electricity and producing H2 gas comprising a Solid Oxide Fuel Cell (SOFC)
EP2392795B1 (en) Water Gas Shift Reactor System for Integrated Gasification Combined Cycle Power Generation Systems
JP2015109767A (en) Power generation system
JP2004018343A (en) Method for generating electric power and hydrogen together from hydrocarbon fuel, its plant and its exhaust heat recovery-type reformer
US20220397057A1 (en) Hybrid power plant with co2 capture
JP2007246305A (en) Hydrogen production system
JP2004224661A (en) Electric power generation/hydrogen preparation combination plant
JPH04334729A (en) Power generating method
US11952276B1 (en) Process for producing hydrogen product having reduced carbon intensity
JP5610950B2 (en) Waste heat energy recovery system
JP2010159193A (en) Hydrogen producing device and hydrogen producing method
JP2007115715A (en) Fuel cell power generating system
JP2006156015A (en) Fuel cell system and fuel gas supply method
JP2006107957A (en) Fuel cell system
WO2024063808A1 (en) Process for producing hydrogen product having reduced carbon intensity
JP2002122030A (en) Facility for co-producing power and hydrogen

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110315

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110511

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees