JP3467759B2 - Control method of outlet temperature of reformer - Google Patents

Control method of outlet temperature of reformer

Info

Publication number
JP3467759B2
JP3467759B2 JP29777493A JP29777493A JP3467759B2 JP 3467759 B2 JP3467759 B2 JP 3467759B2 JP 29777493 A JP29777493 A JP 29777493A JP 29777493 A JP29777493 A JP 29777493A JP 3467759 B2 JP3467759 B2 JP 3467759B2
Authority
JP
Japan
Prior art keywords
gas
reformer
temperature
anode
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29777493A
Other languages
Japanese (ja)
Other versions
JPH07153475A (en
Inventor
孝一 大西
美裕 四十物
Original Assignee
石川島播磨重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石川島播磨重工業株式会社 filed Critical 石川島播磨重工業株式会社
Priority to JP29777493A priority Critical patent/JP3467759B2/en
Publication of JPH07153475A publication Critical patent/JPH07153475A/en
Application granted granted Critical
Publication of JP3467759B2 publication Critical patent/JP3467759B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は燃料ガスを改質してアノ
ードガスとし燃料電池に供給する改質器の出口温度制御
方法に関する。 【0002】 【従来の技術】溶融炭酸塩型燃料電池は、高効率で環境
への影響が少ないなど従来の発電装置にはない特徴とす
るを有しており、水力、火力、原子力に続く発電システ
ムとして注目を集め、現在世界各国で鋭意研究が進めら
れている。 【0003】図3は天然ガスを原料ガスとし、これに水
蒸気を加えた燃料ガスを燃料とする溶融炭酸塩型燃料電
池を用いた発電設備の一例を示す図である。同図におい
て発電設備は、天然ガスと水蒸気とを混合した燃料ガス
1を水素を含むアノードガス2に改質する改質器10
と、アノードガス2と酸素を含むカソードガス3とから
発電する燃料電池12とを一般に備えている。燃料ガス
1は予熱器11で加熱された後改質器10でアノードガ
ス2に改質されて燃料電池に供給され、燃料電池12内
でその大部分を消費してアノード排ガス4となり、改質
器10の燃焼室Coに供給される。 【0004】改質器10にはカソード排ガス7の一部も
供給され、アノード排ガス4中の可燃成分(水素、一酸
化炭素、メタン等)を燃焼室Coで燃焼させて高温の燃
焼ガスを生成し、この熱により改質器10の改質室Re
に供給される燃料ガス1を改質室Reに充填された改質
用触媒によって改質してアノードガス2とする。改質器
10より排出される燃焼排ガス5は空気6と混合して循
環ライン19に供給され、循環ライン19でカソード排
ガス7の一部と混合してカソードガス3となる。カソー
ドガス3は燃料電池12内で反応して高温のカソード排
ガス7となり、一部は循環ライン19へ供給され、一部
は改質器10の燃焼室Coへ供給され、残部は空気6を
圧縮するタービン圧縮機16で動力を回収した後、さら
に図示しない排熱回収蒸気発生器で熱エネルギを回収し
て系外に排出される。 【0005】 【発明が解決しようとする課題】燃料電池12のアノー
ドに供給されるアノードガスの温度は、負荷条件等によ
り定められた計画値があり、この温度で運転する時が最
も効率がよい。また、温度が約490℃以下に低下する
と電解質を凝固させてしまう。しかし、例えば、600
℃というように計画値がある場合、改質器の性能のばら
つき、プロセス条件の計画からのずれ、部分負荷特性の
計画値からのずれなどのため、改質器10出口における
アノードガスの温度が出口における計画値とならない場
合が多く、燃料電池12に不都合な状態を生じさせてい
た。 【0006】本発明は上述の問題点に鑑みてなされたも
ので、改質器出口に温度センサを設け、入口側に設けた
加熱器を制御することにより、改質器出口のアノードガ
スの温度を所定の範囲に設定するようにした改質器の出
口温度制御方法を提供することを目的とする。 【0007】 【課題を解決するための手段】上記目的を達成するた
め、燃料電池のアノード排ガス(4)を燃焼させ、その
熱で燃料ガス(1)をアノードガス(2)に改質し燃料
電池(12)に供給する改質器(10)の出口温度制御
方法において、改質器の出口側に設けられアノードガス
の温度を検出する温度センサ(25)と、改質器の入口
側に設けられアノード排ガスにより燃料ガスを加熱する
熱交換器(20)と、該熱交換器をバイパスしてアノー
ド排ガスを流すバイパスライン(23 )とを備え、前記
温度センサの検出値が所定の温度範囲となるように前記
バイパスラインの流量を制御するようにしたものであ
る。 【0008】 【作用】改質器出口におけるアノードガスの温度と熱交
換器(20)に加える加熱量との関係を負荷条件等の燃
料電池の運転条件ごとに求めておき、運転条件が決まる
とそれに対応した加熱量を熱交換器に加え、改質器出口
温度をフィードバックしながら加熱量を制御することに
より燃料電池に供給するアノードガスの温度を計画値の
範囲に制御することができる。 【0009】また加熱ガスとして燃料電池のアノード排
ガスを用いることによりアノード排ガスの有効利用がで
き、燃料電池の効率が向上する。 【0010】 【実施例】以下、本発明の好ましい実施例を図面を参照
して説明する。図1は本発明の第一実施例を示す。図3
と同一符号は同一の機能を有するものを表す。改質器1
0の入口側に熱交換器20を設ける。熱交換器20には
加熱ガスを供給する供給ライン21と、燃料ガス1と熱
交換した排ガスを放出する排ガスライン22と、供給ラ
イン21と排ガスライン22を結ぶバイパスライン23
が設けられ、バイパスライン23には流量調整弁24が
設けられている。改質器10出口にはアノードガスの温
度を検出する温度センサ25が設けられ、排ガスライン
22にはこのラインの異常温度上昇をおさえるために排
ガスの温度を検出する温度センサ26が設けられてい
る。温度コントローラ27は両温度センサ25,26の
検出値を入力し、運転条件に応じて予め定められたアノ
ードガスの温度となるよう流量調整弁24のフィードバ
ック制御を行う。 【0011】なお、図3に示すように改質器10の入口
には燃料ガス1を予熱する予熱器11が設けられている
ので、熱交換器20はこの予熱器11の機能も兼ねた容
量とすることにより、機器の台数は増加せずコストアッ
プを少なくすることができる。供給ライン21には燃料
電池12のアノード排ガス4を用いる。アノード排ガス
4は燃料電池12の出口では700℃程度はあり、熱交
換器20出口における燃料ガス1の温度は450℃前後
であるので加熱源として適しており、プラントの全体効
率が向上する。 【0012】次に、関連実施例の説明をする。図2は本
発明に関連する実施例の構成を示す。図3と同一符号は
同一の機能を有するものを表す。本実施例は予熱器11
と改質器10の間に電気ヒータ30を設けたものであ
る。改質器10出口にはアノードガスの温度を検出する
温度センサ21が設けられ、温度コントローラ31は温
度センサ21の検出値を入力し、運転条件に応じて予め
定められたアノードガスの温度となるよう電気ヒータ制
御装置32を制御する。 【0013】改質器10出口におけるアノードガスの温
度を制御する場合、出口側に加熱器を設けることが考え
られるが、本発明のように入口側に設けることにより、
次のような利点がある。改質器10の出口側のアノー
ドガスの温度は600℃程度であるのに対し、入口側の
温度は450℃程度である。このため加熱器の温度設計
条件が緩和され、低質の材料の使用が可能になる。天
然ガスに水蒸気を加えた燃料ガス1が改質器10でアノ
ードガスに改質されると体積が2倍となる。つまり、入
口側に設けた加熱器は出口側に設けた加熱器の半分の流
量を取り扱えばよいので、加熱器をコンパクトに設計す
ることができる。 【0014】メタンを主とする天然ガスと水蒸気を改質
器10で改質触媒と共に加熱すると水素と一酸化炭素を
主体とするアノードガスとなる。この反応式は次の式で
表される。CH4 +H2 O→3H2 +CO上式の左辺は
2モルであり、右辺は4モルである。ゆえに燃料ガス1
は改質されて2倍の体積のアノードガスになる。 【0015】 【発明の効果】以上の説明より明らかなように、本発明
は、改質器の出口側に温度センサを設け、入口側に加熱
器を設けて改質器出口のアノードガスの温度を所定の範
囲内に制御するので、燃料電池を効率良く、かつ燃料電
池を安全に運転することができる。また、加熱器を改質
器の入口側に設けることにより、加熱器の温度条件が緩
和され、加熱されるガスの体積が少なくてすみ、さらに
既存の予熱器と一体にすることが可能になる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling an outlet temperature of a reformer for reforming a fuel gas and supplying the reformed fuel gas as an anode gas to a fuel cell. 2. Description of the Related Art Molten carbonate fuel cells have features that are not present in conventional power generation devices, such as high efficiency and little impact on the environment. Attention has been paid to the system, and intensive research is currently being conducted in various countries around the world. FIG. 3 is a diagram showing an example of a power generation facility using a molten carbonate fuel cell using natural gas as a raw material gas and fuel gas obtained by adding steam to the fuel gas. In the figure, a power generation facility is a reformer 10 for reforming a fuel gas 1 in which natural gas and steam are mixed into an anode gas 2 containing hydrogen.
And a fuel cell 12 that generates power from the anode gas 2 and the cathode gas 3 containing oxygen. The fuel gas 1 is heated by the preheater 11 and then reformed into the anode gas 2 by the reformer 10 and supplied to the fuel cell. The fuel gas 12 consumes most of the fuel gas and becomes the anode exhaust gas 4. Is supplied to the combustion chamber Co of the vessel 10. A part of the cathode exhaust gas 7 is also supplied to the reformer 10, and combustible components (hydrogen, carbon monoxide, methane, etc.) in the anode exhaust gas 4 are burned in a combustion chamber Co to generate a high-temperature combustion gas. This heat causes the reforming chamber Re of the reformer 10 to be heated.
Is reformed by the reforming catalyst filled in the reforming chamber Re to form an anode gas 2. The combustion exhaust gas 5 discharged from the reformer 10 is mixed with the air 6 and supplied to the circulation line 19, where it is mixed with a part of the cathode exhaust gas 7 to form the cathode gas 3. The cathode gas 3 reacts in the fuel cell 12 to become a high-temperature cathode exhaust gas 7, a part of which is supplied to the circulation line 19, a part of which is supplied to the combustion chamber Co of the reformer 10, and the remaining part compresses the air 6. After the power is recovered by the turbine compressor 16, the heat energy is further recovered by a waste heat recovery steam generator (not shown) and discharged outside the system. [0005] The temperature of the anode gas supplied to the anode of the fuel cell 12 has a planned value determined by the load conditions and the like, and the efficiency is highest when operating at this temperature. . When the temperature is lowered to about 490 ° C. or less, the electrolyte is solidified. However, for example, 600
When there is a plan value such as ° C., the temperature of the anode gas at the outlet of the reformer 10 is reduced due to variations in the performance of the reformer, deviations of the process conditions from the plan, deviations of the partial load characteristics from the plan values, and the like. In many cases, the planned value at the exit does not become the planned value, causing an inconvenient state in the fuel cell 12. SUMMARY OF THE INVENTION The present invention has been made in view of the above-described problems. A temperature sensor is provided at an outlet of a reformer, and a heater provided at an inlet side is controlled so that a temperature of an anode gas at an outlet of the reformer is controlled. It is an object of the present invention to provide a method for controlling the outlet temperature of a reformer in which the temperature is set within a predetermined range. In order to achieve the above object, an anode exhaust gas (4) of a fuel cell is burned, and the fuel gas is used to reform the fuel gas (1) to an anode gas (2). In the method for controlling the outlet temperature of a reformer (10) to be supplied to a battery (12), a temperature sensor (25) provided at an outlet side of the reformer and detecting a temperature of an anode gas is provided at an inlet side of the reformer. A heat exchanger (20) provided for heating the fuel gas by the anode exhaust gas ;
And a bypass line (23 ) through which exhaust gas flows , so that the detection value of the temperature sensor falls within a predetermined temperature range.
The flow rate of the bypass line is controlled. The temperature and heat exchange of the anode gas at the outlet of the reformer
The relationship with the amount of heat applied to the heat exchanger (20) is determined for each operating condition of the fuel cell, such as load conditions, and when the operating conditions are determined, the corresponding amount of heat is added to the heat exchanger, and the outlet temperature of the reformer is determined. The temperature of the anode gas supplied to the fuel cell can be controlled within the range of the planned value by controlling the heating amount while feeding back the temperature. [0009] It is effective use of the anode exhaust gas by using the anode exhaust gas of the fuel cell as a heating gas, thereby improving the efficiency of the fuel cell. Preferred embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 shows a first embodiment of the present invention. FIG.
The same reference numerals denote those having the same function. Reformer 1
A heat exchanger 20 is provided on the inlet side of the zero. The heat exchanger 20 has a supply line 21 for supplying a heating gas, an exhaust gas line 22 for discharging exhaust gas heat-exchanged with the fuel gas 1, and a bypass line 23 connecting the supply line 21 and the exhaust gas line 22.
The bypass line 23 is provided with a flow control valve 24. A temperature sensor 25 for detecting the temperature of the anode gas is provided at the outlet of the reformer 10, and a temperature sensor 26 for detecting the temperature of the exhaust gas is provided in the exhaust gas line 22 in order to suppress an abnormal temperature rise in this line. . The temperature controller 27 receives the detection values of the two temperature sensors 25 and 26 and performs feedback control of the flow control valve 24 so that the temperature of the anode gas is predetermined according to the operating conditions. Since a preheater 11 for preheating the fuel gas 1 is provided at the inlet of the reformer 10 as shown in FIG. 3, the heat exchanger 20 has a capacity which also functions as the preheater 11. By doing so, it is possible to reduce the cost increase without increasing the number of devices. The supply line 21 uses the anode exhaust gas 4 from the fuel cell 12. The anode exhaust gas 4 has a temperature of about 700 ° C. at the outlet of the fuel cell 12 and the temperature of the fuel gas 1 at the outlet of the heat exchanger 20 is about 450 ° C., so that it is suitable as a heating source, and the overall efficiency of the plant is improved. Next, a related embodiment will be described. FIG. 2 shows the configuration of an embodiment related to the present invention. 3 have the same functions. In this embodiment, the preheater 11 is used.
An electric heater 30 is provided between the fuel cell and the reformer 10. At the outlet of the reformer 10, a temperature sensor 21 for detecting the temperature of the anode gas is provided, and the temperature controller 31 inputs the detected value of the temperature sensor 21 to reach a predetermined anode gas temperature according to the operating conditions. The electric heater control device 32 is controlled as follows. When the temperature of the anode gas at the outlet of the reformer 10 is controlled, it is conceivable to provide a heater on the outlet side, but by providing the heater on the inlet side as in the present invention,
There are the following advantages. The temperature of the anode gas on the outlet side of the reformer 10 is about 600 ° C., while the temperature on the inlet side is about 450 ° C. For this reason, the temperature design conditions of the heater are relaxed, and low-quality materials can be used. When the fuel gas 1 obtained by adding steam to natural gas is reformed into an anode gas by the reformer 10, the volume is doubled. That is, the heater provided on the inlet side only needs to handle half the flow rate of the heater provided on the outlet side, so that the heater can be designed to be compact. When natural gas mainly composed of methane and steam are heated together with the reforming catalyst in the reformer 10, an anode gas mainly composed of hydrogen and carbon monoxide is obtained. This reaction equation is represented by the following equation. CH 4 + H 2 O → 3H 2 + CO In the above formula, the left side is 2 mol and the right side is 4 mol. Therefore fuel gas 1
Is reformed to twice the volume of anode gas. As is apparent from the above description, the present invention provides a temperature sensor on the outlet side of the reformer, a heater on the inlet side, and the temperature of the anode gas at the outlet of the reformer. Is controlled within a predetermined range, so that the fuel cell can be operated efficiently and the fuel cell can be safely operated. Further, by providing the heater on the inlet side of the reformer, the temperature condition of the heater is relaxed, the volume of the gas to be heated can be reduced, and it is possible to integrate with the existing preheater. .

【図面の簡単な説明】 【図1】本発明の第1実施例の構成を示す図である。 【図2】本発明に関連する実施例の構成を示す図であ
る。 【図3】従来の溶融炭酸塩型燃料電池を用いた発電設備
の全体構成図である。 【符号の説明】 1 燃料ガス 2 アノードガス 3 カソードガス 4 アノード排ガス 5 燃焼排ガス 6 空気 7 カソード排ガス 10 改質器 11 予熱器 12 燃料電池 16 タービン圧縮機 19 循環ライン 20 熱交換器(加熱器) 21 供給ライン 22 排ガスライン 23 バイパスライン 24 流量調整弁 25、26 温度センサ 27、31 温度コントローラ 30 電気ヒータ(加熱器) 32 電気ヒータ制御装置
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing a configuration of a first embodiment of the present invention. FIG. 2 is a diagram showing a configuration of an embodiment related to the present invention. FIG. 3 is an overall configuration diagram of a power generation facility using a conventional molten carbonate fuel cell. [Description of Signs] 1 Fuel gas 2 Anode gas 3 Cathode gas 4 Anode exhaust gas 5 Combustion exhaust gas 6 Air 7 Cathode exhaust gas 10 Reformer 11 Preheater 12 Fuel cell 16 Turbine compressor 19 Circulation line 20 Heat exchanger (heater) Reference Signs List 21 supply line 22 exhaust gas line 23 bypass line 24 flow control valve 25, 26 temperature sensor 27, 31 temperature controller 30 electric heater (heater) 32 electric heater control device

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−82463(JP,A) 特開 平4−32163(JP,A) 特開 昭61−183102(JP,A) 特開 平6−342669(JP,A) 特開 平6−176786(JP,A) 実開 平1−63072(JP,U) 実開 平1−132062(JP,U) (58)調査した分野(Int.Cl.7,DB名) H01M 8/04 H01M 8/06 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-2-82463 (JP, A) JP-A-4-32163 (JP, A) JP-A-61-183102 (JP, A) JP-A-6-183102 342669 (JP, A) JP-A-6-176786 (JP, A) JP-A-1-63072 (JP, U) JP-A-1-1322062 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 8/04 H01M 8/06

Claims (1)

(57)【特許請求の範囲】 【請求項1】 燃料電池のアノード排ガス(4)を燃焼
させ、その熱で燃料ガス(1)をアノードガス(2)に
改質し燃料電池(12)に供給する改質器(10)の出
口温度制御方法において、改質器の出口側に設けられア
ノードガスの温度を検出する温度センサ(25)と、改
質器の入口側に設けられアノード排ガスにより燃料ガス
を加熱する熱交換器(20)と、該熱交換器をバイパス
してアノード排ガスを流すバイパスライン(23)と
備え、前記温度センサの検出値が所定の温度範囲となる
ように前記バイパスラインの流量を制御することを特徴
とする改質器の出口温度制御方法。
(57) [Claims 1] An anode exhaust gas (4) of a fuel cell is burned, and the fuel gas reforms the fuel gas (1) into an anode gas (2) to produce a fuel cell (12). In the method for controlling the outlet temperature of the reformer (10) to be supplied, a temperature sensor (25) provided on the outlet side of the reformer and detecting the temperature of the anode gas, and an anode exhaust gas provided on the inlet side of the reformer. A heat exchanger (20) for heating the fuel gas and bypassing the heat exchanger
And a bypass line (23) through which anode exhaust gas flows to control the flow rate of the bypass line so that the value detected by the temperature sensor falls within a predetermined temperature range. Method.
JP29777493A 1993-11-29 1993-11-29 Control method of outlet temperature of reformer Expired - Fee Related JP3467759B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29777493A JP3467759B2 (en) 1993-11-29 1993-11-29 Control method of outlet temperature of reformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29777493A JP3467759B2 (en) 1993-11-29 1993-11-29 Control method of outlet temperature of reformer

Publications (2)

Publication Number Publication Date
JPH07153475A JPH07153475A (en) 1995-06-16
JP3467759B2 true JP3467759B2 (en) 2003-11-17

Family

ID=17851011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29777493A Expired - Fee Related JP3467759B2 (en) 1993-11-29 1993-11-29 Control method of outlet temperature of reformer

Country Status (1)

Country Link
JP (1) JP3467759B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8404394B2 (en) 2005-05-23 2013-03-26 Honda Motor Co., Ltd. Fuel cell system and method of operating the fuel cell system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4945878B2 (en) * 2003-01-10 2012-06-06 パナソニック株式会社 Hydrogen generator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8404394B2 (en) 2005-05-23 2013-03-26 Honda Motor Co., Ltd. Fuel cell system and method of operating the fuel cell system

Also Published As

Publication number Publication date
JPH07153475A (en) 1995-06-16

Similar Documents

Publication Publication Date Title
CN114583222A (en) Combined power generation system based on solid oxide fuel cell and internal combustion engine
JPS60195880A (en) Power generation system using solid electrolyte fuel cell
JP4154680B2 (en) Fuel cell power generator that injects steam into the anode exhaust gas line
JPH07230819A (en) Internally modified solid electrolyte fuel cell system having self-heat exchange type heat insulating prereformer
JP3467759B2 (en) Control method of outlet temperature of reformer
JPH10302819A (en) Fuel cell generating set
JP3928675B2 (en) Combined generator of fuel cell and gas turbine
JP3208970B2 (en) Fuel cell temperature control method and apparatus
JP3139574B2 (en) Fuel cell generator
JP3513933B2 (en) Fuel cell power generator
JPH08339815A (en) Fuel cell power generation device
JP3377523B2 (en) Fuel cell system
JPS63241872A (en) Fuel cell generating plant
JP3239540B2 (en) Temperature control method of reformer
JPH10275625A (en) Fuel cell generator
JP3741288B2 (en) Method and apparatus for controlling cathode temperature of molten carbonate fuel cell power generation facility
JP3137143B2 (en) Temperature control method for fuel cell power plant and fuel cell power plant equipped with temperature control device
JPH0778626A (en) Fuel cell power-generating device
JPH04243538A (en) Method and device for controlling catalyst layer temperature of fuel reformer for fuel battery use
JP3509948B2 (en) Fuel cell power generator
JPH0945349A (en) Fuel cell power generation device
JP3263936B2 (en) Fuel cell generator
JP3331569B2 (en) Fuel cell generator
JPH07169485A (en) Fuel cell generating system
JPH0722049A (en) Fuel cell testing device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees