JPH04243538A - Method and device for controlling catalyst layer temperature of fuel reformer for fuel battery use - Google Patents

Method and device for controlling catalyst layer temperature of fuel reformer for fuel battery use

Info

Publication number
JPH04243538A
JPH04243538A JP3006633A JP663391A JPH04243538A JP H04243538 A JPH04243538 A JP H04243538A JP 3006633 A JP3006633 A JP 3006633A JP 663391 A JP663391 A JP 663391A JP H04243538 A JPH04243538 A JP H04243538A
Authority
JP
Japan
Prior art keywords
gas
flow rate
fuel
supply system
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3006633A
Other languages
Japanese (ja)
Inventor
Isamu Osawa
勇 大澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP3006633A priority Critical patent/JPH04243538A/en
Publication of JPH04243538A publication Critical patent/JPH04243538A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To provide a method and device for controlling the temp. of the catalyst layer of a fuel reformer for fuel battery use reducing the loss of heat and power, even if there is an excessive off-gas emission from the battery affording a heating source for heating the catalyst layer in a reaction pipe of a fuel reformer. CONSTITUTION:There is provided an off-gas emission system provided with a flow rate control value branched from an off-gas supply system for supplying an off-gas from a fuel battery to the burner of a fuel reformer, a flow rate control valve is controlled, so that the temp. of a catalyst layer in a reaction pipe becomes a predetermined value, so as to regulate the flow rate of the off-gas to be supplied to the burner, a ratio control is made of combustion air flow rate, so that an air/fuel ratio of the off-gas flow rate to the combustion air flow rate becomes a predetermined value and the off-gas is burned by the burner to control the temp. of the catalyst layer.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、燃料電池とともに燃料
電池発電装置に組込まれる燃料改質器において、炭化水
素系やアルコール系の原燃料を触媒層を内蔵する反応管
に通流し、燃料電池から排出されるオフガスにより反応
管を加熱して水蒸気改質する際、前記触媒層の温度を制
御する燃料電池用燃料改質器の触媒層温度制御方法及び
その装置に関する。
[Industrial Application Field] The present invention is a fuel reformer that is incorporated into a fuel cell power generation device together with a fuel cell. The present invention relates to a catalyst layer temperature control method and apparatus for a fuel reformer for a fuel cell, which controls the temperature of the catalyst layer when steam reforming is performed by heating a reaction tube with off-gas discharged from the fuel reformer.

【0002】0002

【従来の技術】燃料改質器は燃料電池と組合わせられて
燃料電池発電装置が構成される。ここで燃料改質器は、
天然ガスのような炭化水素系やメタノールのようなアル
コール系の原燃料を、改質触媒が充填されてなる触媒層
を内蔵する反応管に通流し、バーナでの燃焼による熱媒
体により反応管を加熱して水素に富むガスに改質して改
質ガスを生成する。
2. Description of the Related Art A fuel reformer is combined with a fuel cell to construct a fuel cell power generation device. Here, the fuel reformer is
Raw fuel such as hydrocarbons such as natural gas or alcohols such as methanol is passed through a reaction tube containing a catalyst layer filled with a reforming catalyst, and the reaction tube is heated by a heat medium generated by combustion in a burner. It is heated and reformed into hydrogen-rich gas to produce reformed gas.

【0003】一方、燃料電池は、上記の改質ガスが燃料
として、また空気が酸化剤として供給されて電池反応を
起こして発電する。この際燃料電池の燃料電極から電池
反応に寄与しない未使用の水素を含むオフガスは燃料改
質器のバーナで燃焼させる燃料として使用される。
On the other hand, in a fuel cell, the above-mentioned reformed gas is supplied as a fuel and air is supplied as an oxidizing agent to cause a cell reaction and generate electricity. At this time, off-gas containing unused hydrogen that does not contribute to the cell reaction from the fuel electrode of the fuel cell is used as fuel to be burned in the burner of the fuel reformer.

【0004】このような燃料電池発電装置として、原燃
料、例えばメタン等を主成分とする天然ガスを水蒸気改
質する燃料改質器を備えた図2に示す系統のものが知ら
れている。
As such a fuel cell power generation device, a system shown in FIG. 2 is known which is equipped with a fuel reformer for steam reforming raw fuel, for example, natural gas whose main component is methane or the like.

【0005】図2において燃料改質器1は炉容器2内に
改質触媒が充填されてなる触媒層3を内蔵する反応管4
と、炉容器2の上部にバーナ5とを備えている。燃料電
池7はりん酸電解質を保持する電解質層8と、これを挟
持する燃料電極9,空気電極10と、これらの電極に改
質ガスと空気とをそれぞれ供給する燃料室11と空気室
12とを備えている。
In FIG. 2, a fuel reformer 1 includes a reaction tube 4 containing a catalyst layer 3 filled with a reforming catalyst in a furnace vessel 2.
and a burner 5 at the top of the furnace vessel 2. The fuel cell 7 includes an electrolyte layer 8 that holds a phosphoric acid electrolyte, a fuel electrode 9 and an air electrode 10 that sandwich this, and a fuel chamber 11 and an air chamber 12 that supply reformed gas and air to these electrodes, respectively. It is equipped with

【0006】脱硫器13は天然ガスの原燃料に含まれる
有機硫黄を硫化水素の形で除去する。また一酸化炭素変
成器14は燃料改質器1で水蒸気改質されたガス中に含
まれる一酸化炭素を変成してその濃度を低減する。
The desulfurizer 13 removes organic sulfur contained in natural gas raw fuel in the form of hydrogen sulfide. Further, the carbon monoxide shift converter 14 transforms carbon monoxide contained in the gas steam-reformed by the fuel reformer 1 to reduce its concentration.

【0007】原燃料供給系15は熱交換器16を備えて
脱硫器13に接続し、脱硫器13を通流する天然ガスの
原燃料が流れる。
The raw fuel supply system 15 includes a heat exchanger 16 and is connected to the desulfurizer 13, through which the raw fuel of natural gas flows.

【0008】水蒸気供給系17は脱流器13の出口部の
原燃料供給系15に接続され、脱流器13で脱硫された
天然ガスに付加する水蒸気が流れる。
[0008] The steam supply system 17 is connected to the raw fuel supply system 15 at the outlet of the destreamer 13, and steam to be added to the natural gas desulfurized in the destreamer 13 flows therethrough.

【0009】改質原料ガス供給系18は熱交換器19を
備えて脱硫器13の出口部の原燃料供給系15と水蒸気
供給系17との合流点と燃料改質器1の反応管4の入口
とに接続され、脱硫された天然ガスと水蒸気とからなる
改質原料ガスが流れる。
The reforming raw material gas supply system 18 is equipped with a heat exchanger 19 and is connected between the junction of the raw fuel supply system 15 and the steam supply system 17 at the outlet of the desulfurizer 13 and the reaction tube 4 of the fuel reformer 1. The reforming raw material gas consisting of desulfurized natural gas and steam flows through the inlet.

【0010】改質ガス供給系20は一酸化炭素変成器1
4を備え、反応管4の出口と燃料電池7の燃料室11と
に接続され、燃料改質器1で水蒸気改質され、一酸化炭
素変成器14で一酸化炭素濃度が低減された改質ガスが
流れる。
[0010] The reformed gas supply system 20 is connected to the carbon monoxide shift converter 1
4, connected to the outlet of the reaction tube 4 and the fuel chamber 11 of the fuel cell 7, subjected to steam reforming in the fuel reformer 1, and having a reduced carbon monoxide concentration in the carbon monoxide shift converter 14. Gas flows.

【0011】水素リサイクル系22は一酸化炭素変成器
14の出口部の改質ガス供給系20と原燃料供給系15
とに接続され、原燃料供給系15を流れる天然ガスに含
まれる有機硫黄を脱流器13にて硫化水素の形にして脱
硫するための水素添加用として改質ガスの一部が流れる
The hydrogen recycling system 22 includes a reformed gas supply system 20 at the outlet of the carbon monoxide shift converter 14 and a raw fuel supply system 15.
A part of the reformed gas flows for hydrogenation to desulfurize the organic sulfur contained in the natural gas flowing through the raw fuel supply system 15 into hydrogen sulfide in the desulfurizer 13 .

【0012】オフガス供給系23は燃料電池7の燃料室
11と燃料改質器1のバーナ5とに接続され、燃料室1
1から排出されてバーナ5に供給する電池反応に寄与し
ない水素を含むオフガスが流れる。なお、空気供給系2
4はブロワ25を備えて空気室12に接続され、空気室
12に供給する反応空気が流れる。なお26は空気室1
2から排出される排空気が流れる空気排出系である。
The off-gas supply system 23 is connected to the fuel chamber 11 of the fuel cell 7 and the burner 5 of the fuel reformer 1.
An off-gas containing hydrogen that does not contribute to the battery reaction is discharged from the burner 5 and supplied to the burner 5 . In addition, air supply system 2
4 is equipped with a blower 25 and is connected to the air chamber 12, through which reaction air to be supplied to the air chamber 12 flows. Note that 26 is air chamber 1
This is an air exhaust system through which the exhaust air discharged from 2 flows.

【0013】燃焼空気供給系27はブロワ28を備えて
バーナ5に接続され、バーナ5に送る燃焼空気が流れる
。なお29はバーナ5での燃焼による燃焼ガスを熱交換
器19を経て外部に排出する排ガス系である。
The combustion air supply system 27 includes a blower 28 and is connected to the burner 5, through which combustion air to be sent to the burner 5 flows. Note that 29 is an exhaust gas system that discharges combustion gas from combustion in the burner 5 to the outside through the heat exchanger 19.

【0014】このような構成により、原燃料供給系15
を経て供給された天然ガスは水素リサイクル系22を経
て供給される改質ガスが添加され、熱交換器16にて予
熱された後脱硫器13に流入し、脱硫される。脱硫され
た天然ガスは水蒸気供給系17を経て供給される水蒸気
が付加されて熱交換器19にて予熱された後燃料改質器
1の反応管4に流入する。
With such a configuration, the raw fuel supply system 15
The natural gas supplied through the hydrogen recycle system 22 is added with reformed gas supplied through the hydrogen recycle system 22, and after being preheated in the heat exchanger 16, it flows into the desulfurizer 13 and is desulfurized. The desulfurized natural gas is added with steam supplied through a steam supply system 17 and preheated in a heat exchanger 19, and then flows into the reaction tube 4 of the fuel reformer 1.

【0015】反応管4に流入した天然ガスと水蒸気とか
らなる改質原料ガスは反応管4内の触媒層3を通流する
。そしてバーナ5にてオフガス供給系23を経て供給さ
れるオフガスが燃焼空気供給系27を経てブロワ28の
駆動により供給される燃焼空気により燃焼して生じた熱
媒体により反応管4を加熱して触媒層3を通流する改質
原料ガスを水素を主成分とするガスに水蒸気改質する。 なお、燃焼ガスは排ガス系29を経て外部に排出される
The reformed raw material gas consisting of natural gas and steam that has entered the reaction tube 4 flows through the catalyst layer 3 within the reaction tube 4 . Then, in the burner 5, the off-gas supplied via the off-gas supply system 23 is combusted by the combustion air supplied via the combustion air supply system 27 by the drive of the blower 28, and the reaction tube 4 is heated by the heat medium generated to catalyze the catalyst. The reforming raw material gas flowing through the layer 3 is steam-reformed into a gas containing hydrogen as a main component. Note that the combustion gas is exhausted to the outside via the exhaust gas system 29.

【0016】この際の反応はメタンの場合には下記の式
で表わされる。 CH4 +H2 O  →  2H2 +CO
In the case of methane, the reaction at this time is expressed by the following formula. CH4 +H2 O → 2H2 +CO

【001
7】反応管4から送出される水素を主成分とするガスは
改質ガス供給系20を経て一酸化炭素変成器13に送出
され、ここで余剰の水蒸気とともに一酸化炭素は変成さ
れ、一酸化炭素濃度の低い水素に富むガスに改質された
改質ガスになる。
001
7] The gas mainly composed of hydrogen sent out from the reaction tube 4 is sent to the carbon monoxide shift converter 13 via the reformed gas supply system 20, where carbon monoxide is converted together with excess water vapor and converted into monoxide. The reformed gas is reformed into a hydrogen-rich gas with a low carbon concentration.

【0018】この際の反応は下記の式で表わされる。 CO+H2 O  →  H2 +COThe reaction at this time is represented by the following formula. CO + H2 O → H2 + CO

【0019】こ
のようにして得られた改質ガスは燃料電池7に供給され
、ブロワ25の駆動により空気供給系24を経て供給さ
れる空気とにより燃料電池7は電池反応を起こして発電
する。なお空気室12からは電池反応に寄与しない酸素
を含む排空気が空気排出系26を経て外部に排出される
The reformed gas thus obtained is supplied to the fuel cell 7, and the fuel cell 7 causes a cell reaction with the air supplied through the air supply system 24 by driving the blower 25 to generate electricity. Note that exhaust air containing oxygen that does not contribute to the battery reaction is exhausted from the air chamber 12 to the outside via an air exhaust system 26.

【0020】ところで燃料電池7に供給される改質ガス
は、燃料電池7の燃料電極9への改質ガスの等配性及び
全体の熱バランスを考慮して燃料電池7が発電する電力
量に対応する改質ガス量より約20%多くしている。し
たがってオフガス中にはこの余分の20%程度の水素を
含み、これが燃料改質器1のバーナ5に送られて燃焼さ
れ、この燃焼熱により反応管4を加熱して天然ガスを水
蒸気改質している。
By the way, the reformed gas supplied to the fuel cell 7 is determined based on the amount of power generated by the fuel cell 7, taking into consideration the isodistribution of the reformed gas to the fuel electrode 9 of the fuel cell 7 and the overall heat balance. The amount of reformed gas is approximately 20% larger than the corresponding amount of reformed gas. Therefore, the off-gas contains about 20% of this excess hydrogen, which is sent to the burner 5 of the fuel reformer 1 and burned, and the heat of combustion heats the reaction tube 4 to steam reform the natural gas. ing.

【0021】しかしながら、燃料電池で発電する際、負
荷変動、特に負荷増加に直ちに追従できるように燃料電
池に供給する改質ガス量は通常前記20%程度より多い
過剰な改質ガス量としている。これは、もし改質ガス量
が不足すると、燃料改質器7のバーナ5に供給されるオ
フガス量が不足して燃焼熱が不十分になり、このため改
質反応が十分起こらずに、原燃料そのものが燃料電池に
供給されて効率低下を起こしたり、また、燃料電池の電
極へのガスの不等配が生じ、電池を損傷させたりするか
らである。
However, when generating electricity with a fuel cell, the amount of reformed gas supplied to the fuel cell is usually an excess amount of reformed gas greater than the above-mentioned 20% so that it can immediately follow load fluctuations, especially load increases. This is because if the amount of reformed gas is insufficient, the amount of off-gas supplied to the burner 5 of the fuel reformer 7 will be insufficient, resulting in insufficient combustion heat, and as a result, the reforming reaction will not occur sufficiently and the raw material This is because the fuel itself may be supplied to the fuel cell, causing a decrease in efficiency, or the gas may be distributed unevenly to the electrodes of the fuel cell, causing damage to the cell.

【0022】しかしながら、上記のように過剰気味の改
質ガスが供給されて行なわれる電池反応により生じるオ
フガスは過剰の燃料となってバーナに供給され、このた
めバーナでの燃焼による熱媒体の余剰な燃焼熱により触
媒層の温度を過剰に上昇させるので、燃焼空気量を余剰
にして熱媒体を冷却し、燃焼熱を低下させて触媒層の温
度を所定値に制御している。この触媒層の温度の制御は
下記のようにして行なわれる。
[0022] However, as mentioned above, the off-gas generated by the cell reaction that is carried out when an excessive amount of reformed gas is supplied becomes excess fuel and is supplied to the burner. Since the temperature of the catalyst layer is excessively increased due to the heat of combustion, the amount of combustion air is made surplus to cool the heat medium, and the heat of combustion is lowered to control the temperature of the catalyst layer to a predetermined value. The temperature of this catalyst layer is controlled as follows.

【0023】図2において、反応管4内の触媒層3の改
質ガス出口の温度を温度検出器30で検出し、この検出
温度が触媒層3の改質反応に適切な温度の所定値になる
ようにブロワ28の回転数を制御して燃焼空気量を制御
し、触媒層の温度を所定値に制御している。
In FIG. 2, the temperature at the reformed gas outlet of the catalyst layer 3 in the reaction tube 4 is detected by a temperature detector 30, and the detected temperature reaches a predetermined value appropriate for the reforming reaction of the catalyst layer 3. The number of rotations of the blower 28 is controlled to control the amount of combustion air so that the temperature of the catalyst layer is controlled to a predetermined value.

【0024】[0024]

【発明が解決しようとする課題】上記のように燃料電池
の負荷変動に直ちに追従できるように燃料電池への過剰
な改質ガス量の供給に伴って排出される過剰なオフガス
を燃料改質器のバーナで燃焼させる場合、反応管の触媒
層の温度を所定値にするため、余剰の燃焼空気量により
燃焼により生じる熱媒体を冷却するのは、ブロワの駆動
動力を増加させるとともに、余剰の燃焼空気により燃焼
熱を外部に棄てることになり、動力及び熱損失が大きく
なるという欠点がある。
[Problem to be Solved by the Invention] As mentioned above, in order to be able to immediately follow the load fluctuations of the fuel cell, the excess off-gas that is discharged due to the supply of an excessive amount of reformed gas to the fuel cell is transferred to the fuel reformer. When burning with a burner, in order to maintain the temperature of the catalyst layer in the reaction tube at a predetermined value, the heating medium generated by combustion is cooled using the amount of excess combustion air.In addition to increasing the blower driving power, the excess combustion This has the disadvantage that combustion heat is dissipated to the outside by air, resulting in large power and heat losses.

【0025】本発明の目的は、燃料電池から過剰なオフ
ガスが排出されても燃料改質器の触媒層の温度制御を動
力及び熱損失を低減させて行なうことのできる燃料電池
用燃料改質器の触媒層温度制御方法及びその装置を提供
することである。
An object of the present invention is to provide a fuel reformer for a fuel cell, which is capable of controlling the temperature of the catalyst layer of the fuel reformer while reducing power and heat loss even when excessive off-gas is discharged from the fuel cell. An object of the present invention is to provide a catalyst layer temperature control method and apparatus thereof.

【0026】[0026]

【課題を解決するための手段】上記課題を解決するため
に、本発明によれば炭化水素系又はアルコール系の原燃
料が供給される、改質触媒が充填されてなる触媒層を内
蔵する反応管と、燃料電池から排出され、オフガス供給
系を経て供給される未使用水素を含むオフガスをブロワ
を備える燃焼空気供給系を経て供給される燃焼空気によ
り燃焼させるバーナとを備え、このバーナの燃焼で生じ
た熱媒体により前記反応管を加熱して前記原燃料を水素
に富むガスに改質して燃料電池に供給する燃料改質器に
おける触媒層の温度を制御する制御方法において、反応
管内の触媒層の温度を温度検出器で検出し、この検出温
度が所定温度になるようにオフガス供給系から分岐し外
部にオフガスを送出するオフガス排出系に設けた流量制
御弁を制御してオフガス供給系を流れるオフガス流量を
制御し、かつオフガス供給系に設けたオフガス流量検出
器で検出したオフガス流量と燃焼空気供給系に設けた空
気流量検出器で検出した燃焼空気量との空燃比が所定値
になるようにブロワから送気される燃焼空気量を制御す
るものとする。
[Means for Solving the Problems] In order to solve the above problems, according to the present invention, a reaction system containing a catalyst bed filled with a reforming catalyst is supplied with hydrocarbon-based or alcohol-based raw fuel. a burner for combusting off-gas containing unused hydrogen discharged from the fuel cell and supplied via an off-gas supply system with combustion air supplied via a combustion air supply system including a blower; In a control method for controlling the temperature of a catalyst layer in a fuel reformer in which the raw fuel is reformed into a hydrogen-rich gas by heating the reaction tube with a heat transfer medium generated in a fuel cell and supplied to a fuel cell, The temperature of the catalyst layer is detected by a temperature detector, and the off-gas supply system is controlled by controlling the flow control valve installed in the off-gas exhaust system, which branches off from the off-gas supply system and sends off-gas to the outside so that the detected temperature reaches a predetermined temperature. The air-fuel ratio between the off-gas flow rate detected by the off-gas flow rate detector installed in the off-gas supply system and the combustion air amount detected by the air flow rate detector installed in the combustion air supply system reaches a predetermined value. The amount of combustion air sent from the blower shall be controlled so that

【0027】また上記の燃料改質器における触媒層の温
度を制御する燃料電池用燃料改質器の触媒層温度制御装
置において、反応管内の温度を検出する温度検出器と、
オフガス供給系から分岐し、外部にオフガスを送出する
オフガス排出系と、このオフガス排出系に設けられ、オ
フガス供給系に流れるオフガス流量を制御する流量制御
弁と、前記温度検出器による触媒層の検出温度と触媒層
の所定温度の目標値との偏差から流量制御弁を制御する
制御手段と、オフガス供給系に設けられ、オフガスの流
量を検出するオフガス流量検出器と、燃焼空気供給系に
設けられ、燃焼空気流量を検出する空気流量検出器と、
オフガス流量検出器及び空気流量検出器で検出したオフ
ガス流量と燃焼空気流量との空燃比が所定値になるよう
にブロワから送気される燃焼空気流量を制御する比率制
御手段とを備えるものとする。
[0027] Furthermore, in the catalyst layer temperature control device for a fuel reformer for a fuel cell that controls the temperature of the catalyst layer in the fuel reformer, a temperature detector for detecting the temperature inside the reaction tube;
an off-gas exhaust system that branches off from the off-gas supply system and sends off-gas to the outside; a flow control valve provided in the off-gas exhaust system that controls the flow rate of off-gas flowing into the off-gas supply system; and detection of the catalyst layer by the temperature detector. A control means for controlling a flow rate control valve based on the deviation between the temperature and a target value of a predetermined temperature of the catalyst layer; an off-gas flow rate detector provided in the off-gas supply system for detecting the flow rate of off-gas; and an off-gas flow rate detector provided in the combustion air supply system for detecting the flow rate of off-gas , an air flow detector for detecting combustion air flow;
It shall be equipped with a ratio control means for controlling the combustion air flow rate sent from the blower so that the air-fuel ratio between the off-gas flow rate detected by the off-gas flow rate detector and the air flow rate detector and the combustion air flow rate becomes a predetermined value. .

【0028】[0028]

【作用】燃料電池から排出される未使用水素を含むオフ
ガスは前述のように燃料電池の発電する電力量に対応す
る量より過剰に排出される。したがって反応管内の触媒
層の温度を温度検出器で検出し、この検出温度と触媒層
の所定温度の目標値との偏差からオフガス供給系から分
岐したオフガス排出系に設けられた流量制御弁を制御し
てオフガス供給系を流れるオフガス流量を制御すること
により触媒層の温度を所定値になるようにする。
[Operation] As described above, off-gas containing unused hydrogen is discharged from the fuel cell in excess of the amount corresponding to the amount of electric power generated by the fuel cell. Therefore, the temperature of the catalyst layer in the reaction tube is detected by a temperature detector, and the flow control valve installed in the off-gas exhaust system branched from the off-gas supply system is controlled based on the deviation between this detected temperature and the target value of the predetermined temperature of the catalyst layer. By controlling the flow rate of off-gas flowing through the off-gas supply system, the temperature of the catalyst layer is kept at a predetermined value.

【0029】この際、オフガス供給系に設けられたオフ
ガス流量検出器で検出したオフガス流量と燃焼空気供給
系に設けた空気流量検出器で検出した燃焼空気流量との
空燃比が所定値になるようにブロワから送気される燃焼
空気量を制御して、バーナではオフガスが所定の空燃比
で燃焼するようにする。
At this time, the air-fuel ratio between the off-gas flow rate detected by the off-gas flow rate detector provided in the off-gas supply system and the combustion air flow rate detected by the air flow rate detector provided in the combustion air supply system is set to a predetermined value. The amount of combustion air sent from the blower is controlled so that the off-gas is combusted in the burner at a predetermined air-fuel ratio.

【0030】なお、流量制御弁により流量制御されたオ
フガス供給系を流れるオフガス以外のオフガスはオフガ
ス排出系を経て外部に供給され、有効な熱源として利用
できる。
Note that off-gas other than the off-gas flowing through the off-gas supply system whose flow rate is controlled by the flow rate control valve is supplied to the outside through the off-gas exhaust system and can be used as an effective heat source.

【0031】[0031]

【実施例】以下図面に基づいて本発明の実施例について
説明する。図1は本発明の実施例による燃料電池用燃料
改質器の触媒層温度制御装置を備えた燃料電池発電装置
の系統図である。なお図2において図1の従来例と同一
部品には同じ符号を付し、その説明を省略する。図1に
おいて従来例と異なるのは下記の通りである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Examples of the present invention will be described below based on the drawings. FIG. 1 is a system diagram of a fuel cell power generation apparatus equipped with a catalyst layer temperature control device of a fuel reformer for fuel cells according to an embodiment of the present invention. In FIG. 2, parts that are the same as those in the conventional example shown in FIG. The differences in FIG. 1 from the conventional example are as follows.

【0032】オフガス供給系23から分岐し、オフガス
の燃焼熱を回収する、例えば温水ボイラや他の流体を加
熱する熱交換器のような熱回収装置33にオフガスを供
給するオフガス排出系34を設け、このオフガス排出系
34に流量制御弁35を設けている。温度調節器36は
触媒層3の温度検出器30の検出温度の信号が入力され
、この検出温度と触媒層の所定温度の目標値との偏差か
ら流量制御弁35を制御する。
An off-gas exhaust system 34 is provided which branches off from the off-gas supply system 23 and supplies the off-gas to a heat recovery device 33, such as a hot water boiler or a heat exchanger for heating other fluids, which recovers the combustion heat of the off-gas. , this off-gas exhaust system 34 is provided with a flow rate control valve 35 . The temperature regulator 36 receives a signal of the temperature detected by the temperature detector 30 of the catalyst layer 3, and controls the flow rate control valve 35 based on the deviation between this detected temperature and a target value of a predetermined temperature of the catalyst layer.

【0033】オフガス流量検出器40はオフガス供給系
23に設けられ、オフガス供給系23を流れるオフガス
流量を検出する。空気流量検出器37は燃焼空気供給系
27に設けられ、燃焼空気供給系27に流れる燃焼空気
流量を検出する。空燃比設定器38はオフガス流量と燃
焼空気流量との空燃比を所定値に設定する。比率調節器
39はオフガス流量検出器40での検出オフガス流量の
信号と空気流量検出器37で検出された燃焼空気流量の
検出燃焼空気流量の信号とが入力され、比率設定器38
からの設定空燃比になるようにブロワ28の回転数を制
御して燃焼空気流量を制御する。
The off-gas flow rate detector 40 is provided in the off-gas supply system 23 and detects the off-gas flow rate flowing through the off-gas supply system 23. The air flow rate detector 37 is provided in the combustion air supply system 27 and detects the flow rate of combustion air flowing into the combustion air supply system 27. The air-fuel ratio setter 38 sets the air-fuel ratio between the off-gas flow rate and the combustion air flow rate to a predetermined value. The ratio adjuster 39 receives a signal of the off-gas flow rate detected by the off-gas flow rate detector 40 and a signal of the combustion air flow rate detected by the air flow rate detector 37, and the ratio controller 38
The rotation speed of the blower 28 is controlled to control the combustion air flow rate so that the air-fuel ratio is set to the set air-fuel ratio.

【0034】このような構成により、温度検出器30で
反応管4内の触媒層3の温度を検出し、この検出温度の
信号が温度調節器36に入力され、検出温度と触媒層3
の所定温度の目標値との偏差から温度調節器36により
流量制御弁35が制御され、触媒層3の温度が所定温度
になるようにするオフガス流量がオフガス供給系23に
流れる。なお、オフガス供給系23を流れるオフガス以
外のオフガスは流量制御弁35を流れて熱回収装置33
に送出され、オフガスの燃焼により熱を回収する。
With this configuration, the temperature detector 30 detects the temperature of the catalyst layer 3 in the reaction tube 4, and the signal of this detected temperature is input to the temperature controller 36, and the detected temperature and the catalyst layer 3 are inputted into the temperature controller 36.
The flow rate control valve 35 is controlled by the temperature regulator 36 based on the deviation of the predetermined temperature from the target value, and the off-gas flow rate that makes the temperature of the catalyst layer 3 reach the predetermined temperature flows into the off-gas supply system 23. Note that off-gas other than the off-gas flowing through the off-gas supply system 23 flows through the flow rate control valve 35 and is transferred to the heat recovery device 33.
The heat is recovered by combustion of the off-gas.

【0035】この際、オフガス供給系23を流れるオフ
ガス流量と燃焼空気供給系27を流れる燃焼空気流量と
の空燃比は次記のようにして所定値に制御される。すな
わち、オフガス流量検出器40での検出オフガス流量の
信号と空気流量検出器37での検出燃焼空気流量の信号
とが入力される比率調節器39により、空燃比設定器3
7で設定された空燃比になるようにブロワ28の回転数
を制御して燃焼空気流量を制御する。したがってオフガ
ス供給系23を流れる制御されたオフガスはバーナ5で
所定の空燃比で燃焼する。
At this time, the air-fuel ratio between the flow rate of off-gas flowing through the off-gas supply system 23 and the flow rate of combustion air flowing through the combustion air supply system 27 is controlled to a predetermined value as described below. That is, the air-fuel ratio setter 3 is controlled by the ratio controller 39 into which the signal of the off-gas flow rate detected by the off-gas flow rate detector 40 and the signal of the combustion air flow rate detected by the air flow rate detector 37 are input.
The rotational speed of the blower 28 is controlled to control the combustion air flow rate so as to achieve the air-fuel ratio set in step 7. Therefore, the controlled off-gas flowing through the off-gas supply system 23 is combusted in the burner 5 at a predetermined air-fuel ratio.

【0036】本実施例では炭化水素系の原燃料を水蒸気
改質する際の触媒層の温度制御について説明したが、ア
ルコール系の原燃料を水蒸気改質する際の触媒層の温度
制御においても同じ作用が得られる。
In this example, temperature control of the catalyst layer when steam reforming hydrocarbon raw fuel is explained, but the same applies to temperature control of the catalyst layer when steam reforming alcohol raw fuel. Effect can be obtained.

【0037】[0037]

【発明の効果】以上の説明から明らかなように、本発明
によれば反応管内の触媒層の温度が所定値になるように
燃料電池から燃料改質器のバーナにオフガス供給系を経
て供給するオフガス流量をオフガス排出系に設けた流量
制御弁により制御し、かつオフガス供給系に流れる制御
されたオフガス流量と燃焼空気流量との空燃比は所定値
になるように燃焼空気流量を制御するようにしたことに
より、反応管内の触媒層の温度は所定の空燃比で制御さ
れたオフガスのバーナでの燃焼による燃焼熱により所定
値に制御されるので、余剰の燃焼空気量をバーナに供給
する必要がなくなり、このため熱損失やブロワの動力損
失が低減するとともに、オフガス供給系に流れる以外の
オフガスはオフガス排出系に流れ、このオフガスを有効
に利用できるという効果がある。
As is clear from the above description, according to the present invention, gas is supplied from the fuel cell to the burner of the fuel reformer via the off-gas supply system so that the temperature of the catalyst layer in the reaction tube becomes a predetermined value. The off-gas flow rate is controlled by a flow control valve provided in the off-gas exhaust system, and the combustion air flow rate is controlled so that the air-fuel ratio between the controlled off-gas flow rate flowing into the off-gas supply system and the combustion air flow rate is a predetermined value. As a result, the temperature of the catalyst layer in the reaction tube is controlled to a predetermined value by the combustion heat generated by the combustion of off-gas in the burner, which is controlled at a predetermined air-fuel ratio, so there is no need to supply excess combustion air to the burner. Therefore, heat loss and power loss of the blower are reduced, and the off-gas other than the off-gas that does not flow to the off-gas supply system flows to the off-gas discharge system, which has the effect that this off-gas can be used effectively.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の実施例による燃料電池用燃料改質器の
触媒層温度制御装置を備えた燃料電池発電装置の系統図
FIG. 1 is a system diagram of a fuel cell power generation device equipped with a catalyst layer temperature control device of a fuel reformer for fuel cells according to an embodiment of the present invention.

【図2】従来の燃料電池用燃料改質器の触媒層温度制御
装置を備えた燃料電池発電装置の系統図
[Figure 2] System diagram of a fuel cell power generation device equipped with a conventional catalyst layer temperature control device of a fuel reformer for fuel cells

【符号の説明】[Explanation of symbols]

1    燃料電池改質器 3    触媒層 4    反応管 5    バーナ 7    燃料電池 23    オフガス供給系 27    燃焼空気供給系 28    ブロワ 30    温度検出器 34    オフガス排出系 35    流量制御弁 36    温度調節器 37    空気流量検出器 38    空燃比設定器 39    比率調節器 40    オフガス流量検出器 1 Fuel cell reformer 3 Catalyst layer 4 Reaction tube 5 Burner 7 Fuel cell 23 Off-gas supply system 27 Combustion air supply system 28 Blower 30 Temperature detector 34 Off-gas exhaust system 35 Flow control valve 36 Temperature controller 37 Air flow rate detector 38 Air-fuel ratio setting device 39 Ratio adjuster 40 Off gas flow rate detector

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】炭化水素系又はアルコール系の原燃料が供
給される改質触媒が充填されてなる触媒層を内蔵する反
応管と、燃料電池から排出され、オフガス供給系を経て
供給される未使用水素を含むオフガスをブロワを備える
燃焼空気供給系を経て供給される燃焼空気により燃焼さ
せるバーナとを備え、このバーナでの燃焼で生じた熱媒
体により前記反応管を加熱して前記原燃料を水素に富む
ガスに改質して燃料電池に供給する燃料改質器における
触媒層の温度を制御する方法において、反応管内の触媒
層の温度を温度検出器で検出し、この検出温度が所定温
度になるようにオフガス供給系から分岐し外部にオフガ
スを送出するオフガス排出系に設けた流量制御弁を制御
してオフガス供給系を流れるオフガス流量を制御し、か
つオフガス供給系に設けたオフガス流量検出器で検出し
たオフガス流量と燃焼空気供給系に設けた空気流量検出
器で検出した燃焼空気量との空燃比が所定値になるよう
にブロワから送気される燃焼空気量を制御することを特
徴とする燃料電池用燃料改質器の触媒層温度制御方法。
Claim 1: A reaction tube containing a catalyst layer filled with a reforming catalyst to which hydrocarbon-based or alcohol-based raw fuel is supplied; and a burner that burns the off-gas containing hydrogen with combustion air supplied through a combustion air supply system equipped with a blower, and heats the reaction tube with the heat medium generated by combustion in the burner to produce the raw fuel. In a method of controlling the temperature of a catalyst layer in a fuel reformer that reformes hydrogen-rich gas and supplies it to a fuel cell, the temperature of the catalyst layer in a reaction tube is detected by a temperature detector, and this detected temperature is set to a predetermined temperature. The off-gas flow rate flowing through the off-gas supply system is controlled by controlling the flow rate control valve installed in the off-gas exhaust system that branches from the off-gas supply system and sends off-gas to the outside, and the off-gas flow rate detection system installed in the off-gas supply system It is characterized by controlling the amount of combustion air sent from the blower so that the air-fuel ratio between the off-gas flow rate detected by the combustion air flow rate detector and the combustion air amount detected by the air flow rate detector installed in the combustion air supply system becomes a predetermined value. A method for controlling the temperature of a catalyst layer in a fuel reformer for a fuel cell.
【請求項2】炭化水素系又はアルコール系の原燃料が供
給される改質触媒が充填されてなる触媒層を内蔵する反
応管と、燃料電池から排出され、オフガス供給系を経て
供給される未使用水素を含むオフガスをブロワを備える
燃焼空気供給系を経て供給される燃焼空気により燃焼す
るバーナとを備え、このバーナでの燃焼で生じた熱媒体
により前記反応管を加熱して前記原燃料を水素に富むガ
スに改質して燃料電池に供給する燃料改質器における触
媒層の温度を制御する制御装置において、反応管内の温
度を検出する温度検出器と、オフガス供給系から分岐し
、外部にオフガスを送出するオフガス排出系と、このオ
フガス排出系に設けられ、オフガス供給系に流れるオフ
ガス流量を制御する流量制御弁と、前記温度検出器によ
る触媒層の検出温度と触媒層の所定温度の目標値との偏
差から流量制御弁を制御する制御手段と、オフガス供給
系に設けられ、オフガスの流量を検出するオフガス流量
検出器と、燃焼空気供給系に設けられ、燃焼空気流量を
検出する空気流量検出器と、オフガス流量検出器及び空
気流量検出器で検出したオフガス流量と燃焼空気流量と
の空燃比が所定値になるようにブロワから送気される燃
焼空気流量を制御する比率制御手段とを備えたことを特
徴とする燃料電池用燃料改質器の触媒層温度制御装置。
Claim 2: A reaction tube containing a catalyst layer filled with a reforming catalyst to which hydrocarbon-based or alcohol-based raw fuel is supplied, and a reaction tube that is discharged from the fuel cell and supplied via an off-gas supply system. and a burner that burns the off-gas containing hydrogen with combustion air supplied through a combustion air supply system equipped with a blower, and heats the reaction tube with the heat medium generated by combustion in the burner to convert the raw fuel. A control device that controls the temperature of the catalyst layer in a fuel reformer that reformes hydrogen-rich gas and supplies it to a fuel cell includes a temperature detector that detects the temperature inside the reaction tube, and a temperature sensor that branches off from the off-gas supply system and connects the external an off-gas exhaust system that sends off-gas to the off-gas exhaust system; a flow rate control valve that is installed in the off-gas exhaust system to control the flow rate of off-gas flowing to the off-gas supply system; a control means for controlling a flow rate control valve based on the deviation from a target value; an off-gas flow rate detector provided in the off-gas supply system to detect the flow rate of off-gas; and an air-flow detector provided in the combustion air supply system to detect the flow rate of combustion air. a flow rate detector, a ratio control means for controlling the flow rate of combustion air supplied from the blower so that the air-fuel ratio between the off-gas flow rate detected by the off-gas flow rate detector and the air flow rate detector and the combustion air flow rate becomes a predetermined value; A catalyst layer temperature control device for a fuel reformer for a fuel cell, comprising:
JP3006633A 1991-01-24 1991-01-24 Method and device for controlling catalyst layer temperature of fuel reformer for fuel battery use Pending JPH04243538A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3006633A JPH04243538A (en) 1991-01-24 1991-01-24 Method and device for controlling catalyst layer temperature of fuel reformer for fuel battery use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3006633A JPH04243538A (en) 1991-01-24 1991-01-24 Method and device for controlling catalyst layer temperature of fuel reformer for fuel battery use

Publications (1)

Publication Number Publication Date
JPH04243538A true JPH04243538A (en) 1992-08-31

Family

ID=11643769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3006633A Pending JPH04243538A (en) 1991-01-24 1991-01-24 Method and device for controlling catalyst layer temperature of fuel reformer for fuel battery use

Country Status (1)

Country Link
JP (1) JPH04243538A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002042840A (en) * 2000-07-24 2002-02-08 Toyota Motor Corp Fuel cell type cogeneration system
WO2003088401A3 (en) * 2002-04-11 2004-11-11 Webasto Thermosysteme Gmbh Method and device for controlling a reformer for fuel cells
JP2006331676A (en) * 2005-05-23 2006-12-07 Honda Motor Co Ltd Fuel cell system and its operation method
JP2007200771A (en) * 2006-01-27 2007-08-09 Fuji Electric Holdings Co Ltd Reforming catalyst temperature control system and control method of fuel cell power generator

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002042840A (en) * 2000-07-24 2002-02-08 Toyota Motor Corp Fuel cell type cogeneration system
WO2003088401A3 (en) * 2002-04-11 2004-11-11 Webasto Thermosysteme Gmbh Method and device for controlling a reformer for fuel cells
JP2006331676A (en) * 2005-05-23 2006-12-07 Honda Motor Co Ltd Fuel cell system and its operation method
JP4555149B2 (en) * 2005-05-23 2010-09-29 本田技研工業株式会社 Fuel cell system and operation method thereof
US8404394B2 (en) 2005-05-23 2013-03-26 Honda Motor Co., Ltd. Fuel cell system and method of operating the fuel cell system
JP2007200771A (en) * 2006-01-27 2007-08-09 Fuji Electric Holdings Co Ltd Reforming catalyst temperature control system and control method of fuel cell power generator

Similar Documents

Publication Publication Date Title
US20030093950A1 (en) Integrated fuel processor for rapid start and operational control
JP2009099264A (en) Solid oxide fuel cell power generation system and its starting method
KR100623572B1 (en) Fuel reforming system and warmup method thereof
US20190190050A1 (en) Solid oxide fuel cell system
JPH07230816A (en) Internally modified solid electrolyte fuel cell system
JPH01186570A (en) Reformation of fuel for fuel cell
JPH07192742A (en) Catalyst layer temperature control system of fuel reformer for fuel cell
JP3362947B2 (en) Fuel cell generator
JPH04243538A (en) Method and device for controlling catalyst layer temperature of fuel reformer for fuel battery use
JP2001313053A (en) Fuel cell system
JPH07230819A (en) Internally modified solid electrolyte fuel cell system having self-heat exchange type heat insulating prereformer
JP2007109590A (en) Reforming device for fuel cell, and fuel cell system equipped with the reforming device for fuel cell
JPH07106881B2 (en) Fuel cell reformer device
JP2007026998A (en) Fuel cell temperature control method for fused carbonate type fuel cell power generator, and device for the same
KR100464203B1 (en) Heating system for fuel cell and control method thereof
JPH03167759A (en) Catalyst temperature controller of fuel reformer for use in fuel cell
JP2006294464A (en) Fuel cell power generation system
JP4917791B2 (en) Fuel cell system
JPH11339829A (en) Phosphoric acid fuel cell power generating device
JPS6348774A (en) Combustion gas controller of fuel reformer
JPH04284365A (en) Fuel cell power generating device
JPH05303971A (en) Molten carbonate fuel cell generating system
JP3467759B2 (en) Control method of outlet temperature of reformer
JP2002175828A (en) Fuel-reforming system for fuel cell
JP3137143B2 (en) Temperature control method for fuel cell power plant and fuel cell power plant equipped with temperature control device