JPH01186570A - Reformation of fuel for fuel cell - Google Patents

Reformation of fuel for fuel cell

Info

Publication number
JPH01186570A
JPH01186570A JP63004037A JP403788A JPH01186570A JP H01186570 A JPH01186570 A JP H01186570A JP 63004037 A JP63004037 A JP 63004037A JP 403788 A JP403788 A JP 403788A JP H01186570 A JPH01186570 A JP H01186570A
Authority
JP
Japan
Prior art keywords
reforming
catalyst layer
reforming catalyst
fuel
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63004037A
Other languages
Japanese (ja)
Other versions
JPH0752649B2 (en
Inventor
Yukio Kubo
幸雄 久保
Yoshiaki Takatani
高谷 芳明
Seiichi Nakanishi
中西 誠一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP63004037A priority Critical patent/JPH0752649B2/en
Publication of JPH01186570A publication Critical patent/JPH01186570A/en
Publication of JPH0752649B2 publication Critical patent/JPH0752649B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To improve the load following property by adding oxygen or air into the reformation raw material gas at the inlet of a reforming catalyst layer, heating from the inside of the reforming catalyst layer by the partial oxidation of raw material hydrocarbon, and heating from the outside of the reforming catalyst. CONSTITUTION:When a load is increased, the partial oxidation heating reaction is performed in a reforming catalyst layer 2 or on the surface of a catalyst itself in addition to the conventional outside heating, the generated heat quantity is directly used for the reforming heat absorbing reaction to obtain quick load change responsiveness. The partial oxidizing O2 is fed by an air compressor 18 and converted into the O2-rich gas by an O2 enriching device 20, or no O2 enriching device is provided, and the air is heated as it is by a heat exchanger 21, then the preset quantity is fed to the reforming catalyst layer 2 via a flow indicator and regulator 22 and its control valve 23. The reformed gas generated by the reformer is fed to an H2 electrode 6 via a flow indicator and regulator 26 and a control valve 27 by the quantity required for a fuel cell.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、天然ガスなどの炭化水素を主成分とする改質
原料を燃料改質装置(リフオーマ−)に供給し水蒸気改
質して、水素リンチな燃料電池用改質ガスを製造する燃
料改質方法において、負荷追従性を著しく向上させるこ
とができる燃料電池用燃料改質方法に関するものである
[Detailed Description of the Invention] [Industrial Application Field] The present invention supplies a reforming raw material mainly composed of hydrocarbons such as natural gas to a fuel reformer (reformer) and steam-reforms it. The present invention relates to a fuel reforming method for fuel cells that can significantly improve load followability in a fuel reforming method for producing hydrogen-rich reformed gas for fuel cells.

〔従来の技術〕[Conventional technology]

従来、燃料電池発電システムの起動方法として特開昭6
2−184774号公報に記載されたものが、また燃料
電池発電プラントの燃料システム制御装置として特開昭
62−186472号公報に記載されたものが知られて
いる。
Conventionally, the method of starting up a fuel cell power generation system was
The device described in Japanese Patent Laid-open No. 2-184774 is known, and the device described in Japanese Patent Application Laid-open No. 186472-1982 is known as a fuel system control device for a fuel cell power generation plant.

これら従来の燃料電池発電システムでは、リフオーマ−
と燃料電池本体との間に、改質ガスのバッファタンクを
設置し、負荷変化時にリフオーマ−発生ガス量と燃料電
池本体で消費する量の偏差を補正し、補助燃料の燃焼量
(外部加熱量)をコントロールしながら、反応温度の調
整を行っている。
In these conventional fuel cell power generation systems, the ref.
A buffer tank for reformed gas is installed between the fuel cell and the fuel cell main body, and when the load changes, the difference between the amount of reformer gas generated and the amount consumed by the fuel cell main body is corrected, and the amount of auxiliary fuel burned (external heating amount) is corrected. ) while adjusting the reaction temperature.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

このため、燃料電池本体に比べて、リフオーマ−の負荷
追従性が悪(、これが燃料電池発電システム開発の重要
課題の一つとなっている。
For this reason, the re-former has poor load followability compared to the fuel cell itself (this is one of the important issues in the development of fuel cell power generation systems).

本発明は上記の点に鑑みなされたもので、部分酸化反応
と水蒸気改質反応を行い、燃料電池の負荷増減および起
動・停止時に部分酸化用に添加する酸素量または空気量
を制御することにより、従来の水蒸気改質反応のみのリ
フオーマ−では限界のあった負荷追従性を著しく向上さ
せることができる燃料電池用燃料改質方法の提供を目的
とするものである。
The present invention has been made in view of the above points, and is achieved by performing a partial oxidation reaction and a steam reforming reaction, and controlling the amount of oxygen or air added for partial oxidation at the time of increasing/decreasing the load of the fuel cell and starting/stopping the fuel cell. The object of the present invention is to provide a fuel reforming method for a fuel cell, which can significantly improve the load followability, which was limited in the conventional reformer using only a steam reforming reaction.

〔問題点を解決するための手段および作用〕本発明の燃
料電池用燃料改質方法は、炭化水素を主成物とする改質
原料ガスを、改質触媒を収納した燃料改質装置の反応管
に供給するとともに、反応管外部から改質触媒層を加熱
し水蒸気改質して、水素リッチな燃料電池用改質ガスを
製造する燃料改質方法において、 改質触媒層入口の改質原料ガス中に酸素または空気を添
加し、原料炭化水素の部分酸化により改質触媒層内部か
ら加熱するとともに、改質触媒層外部から加熱すること
により、改質反応に必要な熱を供給することからなって
いる。
[Means and effects for solving the problems] The fuel reforming method for fuel cells of the present invention is characterized in that a reforming raw material gas containing hydrocarbons as a main component is reacted in a fuel reforming device containing a reforming catalyst. In a fuel reforming method in which hydrogen-rich reformed gas for fuel cells is produced by heating the reforming catalyst layer from outside the reaction tube and steam reforming the reformed raw material at the inlet of the reforming catalyst layer. The heat required for the reforming reaction is supplied by adding oxygen or air to the gas and heating it from inside the reforming catalyst layer through partial oxidation of the feedstock hydrocarbon, as well as heating from the outside of the reforming catalyst layer. It has become.

本発明の方法においては、つぎのような制御方法が適宜
採用される。
In the method of the present invention, the following control method is appropriately adopted.

(1)  反応管外部から改質触媒層の加熱に供給する
熱量を一定とし、部分酸化用に改質原料ガス中に添加す
る酸素量または空気量を制御することにより、改質触媒
層の反応温度を最適に制御する。
(1) By keeping the amount of heat supplied from the outside of the reaction tube for heating the reforming catalyst layer constant and controlling the amount of oxygen or air added to the reforming raw material gas for partial oxidation, the reaction of the reforming catalyst layer is Optimal control of temperature.

(2)燃料電池発電システムの発電負荷に応じて、反応
管外部から改質触媒層の加熱に供、給する熱量を比例制
御するとともに、部分酸化用に改質原料ガス中に添加す
る酸素量または空気量を制御し、改質触媒層の反応温度
を最適に制御する。
(2) Proportional control of the amount of heat supplied from outside the reaction tube to heat the reforming catalyst layer according to the power generation load of the fuel cell power generation system, and the amount of oxygen added to the reforming raw material gas for partial oxidation. Alternatively, the amount of air is controlled to optimally control the reaction temperature of the reforming catalyst layer.

(3)燃料改質装置の起動時に、改質触媒層入口の改質
原料ガス中に部分酸化用の酸素または空気を添加し、改
質触媒層内部で部分酸化発熱反応を起こさせ、この反応
熱と、反応管外部から改質触媒層への伝熱とを併用し、
燃料改質装置の起動昇温時間を短縮する。
(3) When starting up the fuel reformer, oxygen or air for partial oxidation is added to the reforming raw material gas at the inlet of the reforming catalyst layer to cause a partial oxidation exothermic reaction inside the reforming catalyst layer. Using a combination of heat and heat transfer from the outside of the reaction tube to the reforming catalyst layer,
Shorten the startup temperature rise time of the fuel reformer.

(4)燃料電池発電システムの発電負荷急増時に、改質
原料および吸熱量の増加に伴う改質触媒層の反応温度の
降下を防ぎ、温度を一定に維持するため、反応管外部か
らの加熱量の制御以外に、改質原料ガス中に部分酸化用
の酸素または空気を添加し、原料炭化水素の部分酸化発
熱により、改質触媒層を直接加熱し、改質触媒層の反応
温度を最適条件に維持する。
(4) When the power generation load of the fuel cell power generation system suddenly increases, the amount of heating from outside the reaction tube is increased to prevent the reaction temperature of the reforming catalyst layer from dropping due to the increase in reforming raw material and heat absorption and to maintain the temperature constant. In addition to controlling this, oxygen or air for partial oxidation is added to the reforming raw material gas, and the reforming catalyst layer is directly heated by the heat generated by partial oxidation of the raw material hydrocarbon, thereby adjusting the reaction temperature of the reforming catalyst layer to the optimal condition. to be maintained.

(5)燃料電池発電システムの発電負荷急減時に、改質
原料および吸熱量の減少に伴う改質触媒層の反応温度の
上昇を防ぎ、温度を一定に維持するため、反応管外部か
らの加熱量の制御以外に、改質原料ガス中に添加する部
分酸化用の酸素または空気を滅し、原料炭化水素の部分
酸化発熱量を減じることにより、改質触媒層の反応温度
を最適条件に維持する。
(5) When the power generation load of the fuel cell power generation system suddenly decreases, the amount of heating from outside the reaction tube is increased to prevent the reaction temperature of the reforming catalyst layer from rising due to the decrease in the reforming raw material and the amount of heat absorbed, and to maintain the temperature constant. In addition to this control, the reaction temperature of the reforming catalyst layer is maintained at an optimal condition by eliminating oxygen or air for partial oxidation added to the reforming raw material gas and reducing the calorific value of partial oxidation of the raw material hydrocarbon.

(6)燃料電池発電システム停止時に、改質触媒層入口
の改質原料ガス中に添加する部分酸化用の酸素または空
気の供給を停止し、改質触媒層の直接加熱を停止して、
停止時間を短縮する。
(6) When the fuel cell power generation system is stopped, the supply of oxygen or air for partial oxidation added to the reforming raw material gas at the inlet of the reforming catalyst layer is stopped, and direct heating of the reforming catalyst bed is stopped,
Reduce downtime.

〔実 施 例〕〔Example〕

以下、本発明の実施例を図面に基づいて説明する。第1
図は本発明の方法を実施する装置の一例を示している。
Embodiments of the present invention will be described below based on the drawings. 1st
The figure shows an example of a device for carrying out the method of the invention.

第1図において、1は燃料改質装置(リフオーマ−)で
、改質触媒層2を有する反応管3、反応管を加熱する燃
焼器4とからなっている。5はH2極6、電解液7.0
□極8からなる燃料電池である。
In FIG. 1, reference numeral 1 denotes a fuel reformer, which is comprised of a reaction tube 3 having a reforming catalyst layer 2, and a combustor 4 for heating the reaction tube. 5 is H2 pole 6, electrolyte 7.0
□It is a fuel cell consisting of 8 poles.

第1図を用いて、燃料電池(Fuel Ce1l、以下
、FCと略す)の負荷増大時(25%→100%)の動
作について説明する。
The operation of the fuel cell (Fuel Cell, hereinafter abbreviated as FC) when the load increases (from 25% to 100%) will be described with reference to FIG.

pc出力の増加の要請が需要者から発せられると、DC
/ACインバータ10(直流/交流変換器)から出力負
荷設定器11に対し、負荷増大の信号が伝達される。
When a demand for an increase in PC output is issued by a customer, the DC
A load increase signal is transmitted from the /AC inverter 10 (DC/AC converter) to the output load setting device 11.

出力負荷設定器11では、この信号命令に従い、DC,
/ACインバータ10の負荷設定を変化させるとともに
、リフォーミングガス原料である原料天然ガスの流量を
増大させる。この天然ガス流量変化量は、予め設定され
た条件となるように出力演算器12により計算され、天
然ガスの流量指示・調整器13に信号を伝達し、この調
整器13はそのコントロール弁14にて、所定流量に調
節する。
In the output load setter 11, according to this signal command, DC,
/The load setting of the AC inverter 10 is changed, and the flow rate of the raw material natural gas, which is the reforming gas raw material, is increased. The amount of change in the natural gas flow rate is calculated by the output calculator 12 so as to meet preset conditions, and a signal is transmitted to the natural gas flow rate indicator/regulator 13, which in turn controls the control valve 14. Adjust the flow rate to the specified value.

なお原料天然ガスは、リフオーマ−反応条件圧力まで、
ブースターポンプ15などで昇圧されて供給される。
The raw material natural gas is up to the pressure of the reformer reaction conditions.
It is pressurized and supplied by a booster pump 15 or the like.

原料天然ガスとスチームとは特定の比で混合され、これ
がリフォーミング反応の原料ガスとなり、このスチーム
/カーボン比(S/C)を所定値とするために、天然ガ
ス変化に応じて流量指示・調整器16は流量指示・調整
器13から発する信号により、スチーム流量を制御する
。この流量制御はコントロール弁17により行われる。
The raw material natural gas and steam are mixed at a specific ratio, and this becomes the raw material gas for the reforming reaction.In order to maintain this steam/carbon ratio (S/C) at a predetermined value, the flow rate is instructed and determined according to changes in the natural gas. The regulator 16 controls the steam flow rate based on the signal issued from the flow rate indicator/regulator 13. This flow rate control is performed by a control valve 17.

上記のようにしてリフォーミング原料の制御が行われる
。しかしFC負荷増大に伴うリフォーミング反応による
改質ガス発生量の増大のためには、この吸熱反応量の増
大に見合う熱源の増大が必要である。なお天然ガスのリ
フォーミング主反応は、C:H4+ 2HzO→CO□
+4Ht (吸熱)である。
The reforming raw material is controlled as described above. However, in order to increase the amount of reformed gas generated by the reforming reaction as the FC load increases, it is necessary to increase the heat source to match the increase in the amount of endothermic reaction. The main reforming reaction of natural gas is C:H4+ 2HzO→CO□
+4Ht (endothermic).

つまり、25%負荷でバランスしていた状態の系に、原
料ガスを100%負荷の分量だけ入れると、吸熱量の増
加により、改質触媒層2の温度が低下し、系のバランス
がくずれてしまうことになる。
In other words, when feed gas is introduced in an amount equivalent to 100% load into a system that is balanced at 25% load, the temperature of the reforming catalyst layer 2 decreases due to an increase in the amount of heat absorbed, causing the system to become unbalanced. It will end up being put away.

そこで従来技術では、この熱量を補うために、改質触媒
層2を収納する反応管3の外部を加熱する燃焼器4(バ
ーナー)の燃焼量を増加させるために、助熱用天然ガス
流量を増加させ、反応温度を一定に維持するようなシス
テムが構成されている。
Therefore, in the conventional technology, in order to compensate for this amount of heat, the flow rate of natural gas for auxiliary heating is increased in order to increase the combustion amount of the combustor 4 (burner) that heats the outside of the reaction tube 3 that houses the reforming catalyst layer 2. A system is constructed to increase the reaction temperature and maintain it constant.

ところが、このような反応管3外部からの間接的な加熱
では、負荷変化に対する応答速度は、燃焼ガスと改質触
媒層2とが反応管3を介して熱移動(熱交換)を行うた
め、伝熱速度に律速されてしまい5あまり迅速な負荷変
化が期待できない。
However, in such indirect heating from the outside of the reaction tube 3, the response speed to load changes is low because heat transfer (heat exchange) occurs between the combustion gas and the reforming catalyst layer 2 via the reaction tube 3. Since the rate is limited by the heat transfer rate, a very rapid load change cannot be expected.

そこで本発明の方法では、上記のような従来の外部加熱
に加え、以下に説明する部分酸化発熱反応を改質触媒N
2内部または触媒自身の表面上で行わせ、その発熱量を
ダイレクトにリフォーミング吸熱反応に用い、迅速な負
荷変化応答性を有する。ようにtR成するものである。
Therefore, in the method of the present invention, in addition to the conventional external heating as described above, the partial oxidation exothermic reaction described below is carried out using the reforming catalyst N.
2. It is carried out internally or on the surface of the catalyst itself, and its calorific value is directly used for the endothermic reforming reaction, and it has a rapid response to load changes. This is how tR is formed.

部分酸化及熱というのは、リフォーミング原料に少量の
0□(空気)を入れ、下記のような、一種の触媒酸化(
燃焼)反応を併発させるものである。
Partial oxidation heat is a type of catalytic oxidation (
(combustion) reactions occur simultaneously.

CHa + 2(Ig→CO□+2H20CO+1/2
0x→C0t H,+t/20z→H20 この部分酸化用Otは、空気コンプレッサー18により
供給され、O1富化装置20により島リッチガスとする
か、またはOf富化装置を設けずにそのまま空気として
熱交換器21により昇温した後、流量指示・調整器22
およびそのコントロール弁23により、所定量をリフオ
ーマ−の改質触媒層2に供給する。
CHa + 2 (Ig→CO□+2H20CO+1/2
0x→C0t H, +t/20z→H20 This Ot for partial oxidation is supplied by the air compressor 18 and converted into island-rich gas by the O1 enrichment device 20, or heat exchanged as air without providing an Of enrichment device. After the temperature is raised by the device 21, the flow rate indicator/regulator 22
The control valve 23 supplies a predetermined amount to the reforming catalyst layer 2 of the reformer.

この供給量は、改質触媒層2に接続された温度指示・調
整器24の出力信号、天然ガス原料ラインの流量指示・
調整器13の出力信号を受けて、演算器25により適正
な0□流量または空気流量を供給するように、流量指示
・調整器22に信号を人力する。
This supply amount is determined by the output signal of the temperature indicator/regulator 24 connected to the reforming catalyst layer 2, the flow rate indicator/regulator of the natural gas raw material line, etc.
Upon receiving the output signal from the regulator 13, a signal is manually input to the flow rate indicator/regulator 22 so that the arithmetic unit 25 supplies an appropriate 0□ flow rate or air flow rate.

ここで、システムの制御は、温度指示・調整器24を一
定に維持するという基本パターンのもとに第3図および
第4図に示す比較例、実施例を示したが1反応点度を最
適条件に変化させながら、FC負荷変化に対応するパタ
ーンも可能である。
Here, the control of the system is based on the basic pattern of maintaining the temperature indicator/regulator 24 constant, and the comparative examples and examples shown in FIGS. It is also possible to create a pattern that corresponds to changes in the FC load while changing the conditions.

このようにして、リフオーマ−で発生する改質ガス(O
Xを主成分とし、C01CO,、未反応CI(4、I(
,0を含むガス)を流量指示・調整器26およびコント
ロール弁27により、FCの必要量だけFCの1(tt
i6に供給する。
In this way, the reformed gas (O
X is the main component, C01CO,, unreacted CI(4, I(
.
Supply to i6.

H2極6では、改質ガスのうち約70〜80%が発電の
ための電気科学反応に利用されるが、残りのFCオフガ
ス(H!、 Go、 Cot、H,Oを含むガス)は、
リフオーマ−加熱用燃料ガスとして、コントロール弁2
8を有するラインでリフオーマ−の燃焼器4に戻され、
空気が加えられて燃焼し、リフォーミング反応熱源とし
て利用される。
In H2 pole 6, about 70-80% of the reformed gas is used for electrochemical reactions for power generation, but the remaining FC off-gas (gas containing H!, Go, Cot, H, O) is
Control valve 2 is used as fuel gas for reheater heating.
8 is returned to the combustor 4 of the re-former,
Air is added and combusted, which is used as a heat source for the reforming reaction.

第2図は、燃焼器4の燃料として、FCオフガスのみを
用い、天然ガスは用いない場合を示している。
FIG. 2 shows a case where only FC off-gas is used as the fuel for the combustor 4, and natural gas is not used.

リフオーマ−の冷態起動時には、改質触媒層2の反応温
度(温度指示・調整器24の指示温度)を触媒酸化反応
が起こり得る温度(400℃程度)まで、助燃用天然ガ
スまたは/およびFCオフガスの燃焼による加熱などの
方法で昇温した後、原料天然ガスおよび部分酸化用0λ
または空気を改質触媒層2に供給し、改質触媒層2内部
からも熱を供給して昇温時間を短縮する。
When starting up the reformer in a cold state, the reaction temperature of the reforming catalyst layer 2 (the temperature indicated by the temperature indicator/regulator 24) is raised to the temperature at which the catalytic oxidation reaction can occur (approximately 400°C) using natural gas for auxiliary combustion or/and FC. After raising the temperature by heating by burning off gas, etc., the raw natural gas and 0λ for partial oxidation are heated.
Alternatively, air is supplied to the reforming catalyst layer 2 and heat is also supplied from inside the reforming catalyst layer 2 to shorten the temperature rise time.

上記の予熱昇温時には、改質触媒層2を温Ntまたはそ
の他の不活性ガスの循環により昇温することができる。
At the time of preheating and raising the temperature described above, the temperature of the reforming catalyst layer 2 can be raised by circulating hot Nt or other inert gas.

30ばターボコンプレッサー、31は空気予熱器、32
は空気コンプレッサー、33は蒸気発生器である。
30 is a turbo compressor, 31 is an air preheater, 32
is an air compressor, and 33 is a steam generator.

第3図は第1図に示す装置を用いて負荷増加時・起動時
のみ部分酸化を行った場合の結果と、従来法による結果
とを示している。第3図において、実線は本発明におけ
る場合を示し、破線は従来法における場合を示している
。リフオーマ−触媒反応温度が負荷変動時に安定に達す
る時間は、本発明の方法では従来法の1ノ10〜1/2
i縮された。
FIG. 3 shows the results obtained when partial oxidation was performed using the apparatus shown in FIG. 1 only at the time of load increase/startup, and the results obtained using the conventional method. In FIG. 3, the solid line shows the case according to the present invention, and the broken line shows the case according to the conventional method. In the method of the present invention, the time required for the reformer catalyst reaction temperature to stabilize during load fluctuation is 1/10 to 1/2 of that of the conventional method.
I was shortened.

また第4図は第1図に示す装置を用いて負荷変化追従パ
ターンを測定した結果(実線で示す)と、従来法による
結果(破線で示す)とを示している。
Further, FIG. 4 shows the results of measuring the load change follow-up pattern using the apparatus shown in FIG. 1 (indicated by a solid line) and the results obtained by the conventional method (indicated by a broken line).

この場合も、本発明の方法では、リフオーマ−触媒反応
温度が安定に達する時間が従来法の1/10〜1/20
に短縮された。
In this case as well, in the method of the present invention, the time required for the reformer-catalyst reaction temperature to reach stability is 1/10 to 1/20 that of the conventional method.
It was shortened to .

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の方法は、従来のリフオー
マ−が改質触媒層外部の燃焼ガスからの伝熱のみで、反
応熱を供給するのに対し、改質触媒層内部で原料炭化水
素の部分酸化による熱を同一触媒層の水蒸気改質(吸熱
)反応に利用するため、部分酸化用の酸素添加量または
空気添加量を制御することにより、(1)負荷追従性が
向上する。
As explained above, in the method of the present invention, whereas conventional reformers supply reaction heat only by heat transfer from combustion gas outside the reforming catalyst layer, Since the heat generated by partial oxidation is used for the steam reforming (endothermic) reaction in the same catalyst layer, by controlling the amount of oxygen or air added for partial oxidation, (1) load followability is improved.

(2)バッファタンクが不用となりコンパクト化を図る
ことができる。(3)起動・停止時においても、部分酸
化を併用した改質触媒層内部の熱供給により、起動・停
止時間が大幅に短縮できる、などの効果を有している。
(2) A buffer tank is not required, and the system can be made more compact. (3) Even during startup and shutdown, the heat supply inside the reforming catalyst layer combined with partial oxidation has the effect that startup and shutdown times can be significantly shortened.

【図面の簡単な説明】 第1図は本発明の燃料電池用燃料改質方法を実施する装
置の一例を示すフローシート、第2図は本発明の方法を
実施する装置の他の例を示すフローシート、第3図は第
1図に示す装置を用いて負荷増加時・起動時のみ部分酸
化を行った場合の結果と、従来法による結果と示す説明
図、第4図は第1図に示す装置を用いて負荷変化追従パ
ターンを測定した結果と、従来法による結果とを示す説
明図である。 1・・・燃料改質装置(リフオーマ−)、2・・・改質
触媒層、3・・・反応管、4・・・燃焼器、5・・・燃
料電池、6・・・Hつ極、7・・・電解液、8・・・0
□極、10・・・DC/ACインバータ、11・・・出
力負荷設定器、12・・・出力演算器、13.16.2
2.26・・・2it量指示・調整器、14.17.2
3.27.28・・・コントロール弁、15・・・ブー
スターポンプ、18.32・・・空気コンプレッサー、
20・・・0□富化装置、21・・・熱交換器、24・
・・温度指示・*!ff器、25・・・演算器、30・
・・ターボコンプレッサー、31・・・空気予熱器、3
3・・・蒸気発生器
[Brief Description of the Drawings] Fig. 1 is a flow sheet showing an example of an apparatus for carrying out the fuel reforming method for fuel cells of the present invention, and Fig. 2 shows another example of an apparatus for carrying out the method of the present invention. Flow sheet, Figure 3 is an explanatory diagram showing the results when partial oxidation is performed only during load increase/startup using the apparatus shown in Figure 1, and the results of the conventional method, Figure 4 is the same as Figure 1. FIG. 2 is an explanatory diagram showing the results of measuring a load change tracking pattern using the device shown in FIG. DESCRIPTION OF SYMBOLS 1...Fuel reformer (reformer), 2...Reforming catalyst layer, 3...Reaction tube, 4...Combustor, 5...Fuel cell, 6...H two poles , 7...electrolyte, 8...0
□Pole, 10...DC/AC inverter, 11...Output load setter, 12...Output calculator, 13.16.2
2.26...2it amount indicator/adjuster, 14.17.2
3.27.28... Control valve, 15... Booster pump, 18.32... Air compressor,
20...0□ Enrichment device, 21... Heat exchanger, 24...
・・Temperature instruction・*! FF unit, 25... Arithmetic unit, 30.
...Turbo compressor, 31...Air preheater, 3
3...Steam generator

Claims (1)

【特許請求の範囲】 1 炭化水素を生成物とする改質原料ガスを、改質触媒
を収納した燃料改質装置の反応管に供給するとともに、
反応管外部から改質触媒層を加熱し水蒸気改質して、水
素リッチな燃料電池用改質ガスを製造する燃料改質方法
において、改質触媒層入口の改質原料ガス中に酸素また
は空気を添加し、原料炭化水素の部分酸化により改質触
媒層内部から加熱するとともに、改質触媒層外部から加
熱することにより、改質反応に必要な熱を供給すること
を特徴とする燃料電池用燃料改質方法。 2 反応管外部から改質触媒層の加熱に供給する熱量を
一定とし、部分酸化用に改質原料ガス中に添加する酸素
量または空気量を制御することにより、改質触媒層の反
応温度を最適に制御する請求項1記載の燃料電池用燃料
改質方法。 3 燃料電池発電システムの発電負荷に応じて、反応管
外部から改質触媒層の加熱に供給する熱量を比例制御す
るとともに、部分酸化用に改質原料ガス中に添加する酸
素量または空気量を制御し、改質触媒層の反応温度を最
適に制御する請求項1記載の燃料電池用燃料改質方法。 4 燃料改質装置の起動時に、改質触媒層入口の改質原
料ガス中に部分酸化用の酸素または空気を添加し、改質
触媒層内部で部分酸化発熱反応を起こさせ、この反応熱
と、反応管外部から改質触媒層への伝熱とを併用し、燃
料改質装置の起動昇温時間を短縮する請求項1記載の燃
料電池用燃料改質方法。 5 燃料電池発電システムの発電負荷急増時に、改質原
料および吸熱量の増加に伴う改質触媒層の反応温度の降
下を防ぎ、温度を一定に維持するため、反応管外部から
の加熱量の制御以外に、改質原料ガス中に部分酸化用の
酸素または空気を添加し、原料炭化水素の部分酸化発熱
により、改質触媒層を直接加熱し、改質触媒層の反応温
度を最適条件に維持する請求項1記載の燃料電池用燃料
改質方法。 6 燃料電池発電シスシムの発電負荷急減時に、改質原
料および吸熱量の減少に伴う改質触媒層の反応温度の上
昇を防ぎ、温度を一定に維持するため、反応管外部から
の加熱量の制御以外に、改質原料ガス中に添加する部分
酸化用の酸素または空気を減じ、原料炭化水素の部分酸
化発熱量を減じることにより、改質触媒層の反応温度を
最適条件に維持する請求項1記載の燃料電池用燃料改質
方法。 7 燃料電池発電システム停止時に、改質触媒層入口の
改質原料ガス中に添加する部分酸化用の酸素または空気
の供給を停止し、改質触媒層の直接加熱を停止して、停
止時間を短縮する請求項1記載の燃料電池用燃料改質方
法。
[Claims] 1. Supplying a reforming raw material gas containing hydrocarbons as a product to a reaction tube of a fuel reformer containing a reforming catalyst,
In a fuel reforming method in which hydrogen-rich reformed gas for fuel cells is produced by heating the reforming catalyst bed from outside the reaction tube and steam reforming it, oxygen or air is present in the reforming raw material gas at the inlet of the reforming catalyst bed. For fuel cells, the heat necessary for the reforming reaction is supplied by heating from inside the reforming catalyst layer through partial oxidation of the raw material hydrocarbon and heating from the outside of the reforming catalyst layer. Fuel reforming method. 2. By keeping the amount of heat supplied from the outside of the reaction tube for heating the reforming catalyst layer constant and controlling the amount of oxygen or air added to the reforming raw material gas for partial oxidation, the reaction temperature of the reforming catalyst layer can be controlled. 2. The fuel reforming method for fuel cells according to claim 1, wherein the method is optimally controlled. 3 Depending on the power generation load of the fuel cell power generation system, the amount of heat supplied from the outside of the reaction tube to heat the reforming catalyst layer is proportionally controlled, and the amount of oxygen or air added to the reforming raw material gas for partial oxidation is controlled. 2. The fuel reforming method for a fuel cell according to claim 1, wherein the reaction temperature of the reforming catalyst layer is optimally controlled. 4 When starting up the fuel reformer, oxygen or air for partial oxidation is added to the reforming raw material gas at the inlet of the reforming catalyst layer to cause a partial oxidation exothermic reaction inside the reforming catalyst layer, and this reaction heat and 2. The fuel reforming method for a fuel cell according to claim 1, wherein heat transfer from the outside of the reaction tube to the reforming catalyst layer is used in combination to shorten the start-up temperature rise time of the fuel reformer. 5. When the power generation load of the fuel cell power generation system suddenly increases, the amount of heating from outside the reaction tube is controlled in order to prevent the reaction temperature of the reforming catalyst layer from dropping due to the increase in the reforming raw material and the amount of heat absorbed, and to maintain the temperature constant. In addition, oxygen or air for partial oxidation is added to the raw material gas for reforming, and the heat generated by partial oxidation of the raw material hydrocarbon directly heats the reforming catalyst layer to maintain the reaction temperature of the reforming catalyst layer at the optimum condition. The method for reforming fuel for a fuel cell according to claim 1. 6 When the power generation load of the fuel cell power generation system sim suddenly decreases, the amount of heating from outside the reaction tube is controlled in order to prevent the reaction temperature of the reforming catalyst layer from rising due to the decrease in the reforming raw material and the amount of heat absorbed, and to maintain the temperature constant. In addition, the reaction temperature of the reforming catalyst layer is maintained at the optimum condition by reducing the amount of oxygen or air added to the reforming raw material gas for partial oxidation and reducing the calorific value of partial oxidation of the raw material hydrocarbon. The fuel reforming method for fuel cells described above. 7. When the fuel cell power generation system is stopped, the supply of oxygen or air for partial oxidation added to the reforming raw material gas at the inlet of the reforming catalyst bed is stopped, direct heating of the reforming catalyst bed is stopped, and the stop time is 2. The fuel reforming method for fuel cells according to claim 1, wherein the fuel reforming method is shortened.
JP63004037A 1988-01-12 1988-01-12 Fuel reforming method for fuel cell Expired - Fee Related JPH0752649B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63004037A JPH0752649B2 (en) 1988-01-12 1988-01-12 Fuel reforming method for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63004037A JPH0752649B2 (en) 1988-01-12 1988-01-12 Fuel reforming method for fuel cell

Publications (2)

Publication Number Publication Date
JPH01186570A true JPH01186570A (en) 1989-07-26
JPH0752649B2 JPH0752649B2 (en) 1995-06-05

Family

ID=11573763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63004037A Expired - Fee Related JPH0752649B2 (en) 1988-01-12 1988-01-12 Fuel reforming method for fuel cell

Country Status (1)

Country Link
JP (1) JPH0752649B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04160003A (en) * 1990-10-19 1992-06-03 Kawasaki Heavy Ind Ltd Method and device for producing hydrogen
EP0790657A1 (en) * 1996-02-14 1997-08-20 Daimler-Benz Aktiengesellschaft Method for operating a fuel cell system
WO1998008264A3 (en) * 1996-08-23 1998-07-23 Univ Delft Tech Method of operating a molten carbonate fuel cell, a fuel cell, a fuel cell stack and an apparatus provided therewith
US6165633A (en) * 1996-03-26 2000-12-26 Toyota Jidosha Kabushiki Kaisha Method of and apparatus for reforming fuel and fuel cell system with fuel-reforming apparatus incorporated therein
JP2002326805A (en) * 2001-04-27 2002-11-12 Daikin Ind Ltd Reformer and fuel cell system which is equipped with this
US6887286B1 (en) 1998-07-08 2005-05-03 Toyota Jidosha Kabushiki Kaisha Fuel reformer device
US7070633B2 (en) 2000-12-22 2006-07-04 Honda Giken Kogyo Kabushiki Kaisha Fuel gas generating apparatus for a fuel cell
KR100786462B1 (en) * 2006-05-17 2007-12-17 삼성에스디아이 주식회사 reformer with oxygen supplier and fuel cell system using the same
JP2008074657A (en) * 2006-09-21 2008-04-03 Hitachi Zosen Corp Method for starting self-heating reforming reaction at a low temperature
JP2009023873A (en) * 2007-07-19 2009-02-05 Hitachi Zosen Corp Method for increasing temperature of reforming type hydrogen generation apparatus to startup temperature
JP2010006650A (en) * 2008-06-27 2010-01-14 Japan Energy Corp Method for operating oxidation autothermal reforming apparatus
JP2010006654A (en) * 2008-06-27 2010-01-14 Japan Energy Corp Method for operating oxidation autothermal reforming apparatus
US7726952B2 (en) * 2003-02-03 2010-06-01 Ab Volvo Arrangement and method for compressed air systems in vehicles

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04160003A (en) * 1990-10-19 1992-06-03 Kawasaki Heavy Ind Ltd Method and device for producing hydrogen
EP0790657A1 (en) * 1996-02-14 1997-08-20 Daimler-Benz Aktiengesellschaft Method for operating a fuel cell system
US6165633A (en) * 1996-03-26 2000-12-26 Toyota Jidosha Kabushiki Kaisha Method of and apparatus for reforming fuel and fuel cell system with fuel-reforming apparatus incorporated therein
WO1998008264A3 (en) * 1996-08-23 1998-07-23 Univ Delft Tech Method of operating a molten carbonate fuel cell, a fuel cell, a fuel cell stack and an apparatus provided therewith
US6322916B1 (en) * 1996-08-23 2001-11-27 Technische Universiteit Delft Method of operating a molten carbonate fuel cell, a fuel cell, a fuel cell stack and an apparatus provided therewith
US6887286B1 (en) 1998-07-08 2005-05-03 Toyota Jidosha Kabushiki Kaisha Fuel reformer device
US7070633B2 (en) 2000-12-22 2006-07-04 Honda Giken Kogyo Kabushiki Kaisha Fuel gas generating apparatus for a fuel cell
JP2002326805A (en) * 2001-04-27 2002-11-12 Daikin Ind Ltd Reformer and fuel cell system which is equipped with this
US7726952B2 (en) * 2003-02-03 2010-06-01 Ab Volvo Arrangement and method for compressed air systems in vehicles
KR100786462B1 (en) * 2006-05-17 2007-12-17 삼성에스디아이 주식회사 reformer with oxygen supplier and fuel cell system using the same
JP2008074657A (en) * 2006-09-21 2008-04-03 Hitachi Zosen Corp Method for starting self-heating reforming reaction at a low temperature
JP2009023873A (en) * 2007-07-19 2009-02-05 Hitachi Zosen Corp Method for increasing temperature of reforming type hydrogen generation apparatus to startup temperature
JP2010006650A (en) * 2008-06-27 2010-01-14 Japan Energy Corp Method for operating oxidation autothermal reforming apparatus
JP2010006654A (en) * 2008-06-27 2010-01-14 Japan Energy Corp Method for operating oxidation autothermal reforming apparatus

Also Published As

Publication number Publication date
JPH0752649B2 (en) 1995-06-05

Similar Documents

Publication Publication Date Title
US6585785B1 (en) Fuel processor apparatus and control system
JPS59213601A (en) Control device of reforming reaction
JPH01186570A (en) Reformation of fuel for fuel cell
KR20050000396A (en) Fuel reforming system and warmup method thereof
JPH07192742A (en) Catalyst layer temperature control system of fuel reformer for fuel cell
JPH11144749A (en) Method of controlling generation of fuel cell
JP3722868B2 (en) Fuel cell system
JP2001313053A (en) Fuel cell system
JPH03167759A (en) Catalyst temperature controller of fuel reformer for use in fuel cell
JPH07106881B2 (en) Fuel cell reformer device
JP2533616B2 (en) Combustion control device for catalytic combustor for fuel cell
JPH04243538A (en) Method and device for controlling catalyst layer temperature of fuel reformer for fuel battery use
JPH06349510A (en) Temperature control device for fuel reformer for fuel cell
JPH06215785A (en) Fuel cell generating system
WO2006007319A2 (en) Maintaining oxygen/carbon ratio with temperature controlled valve
JPH0647441B2 (en) Fuel reformer for fuel cell
JPH10302820A (en) Fuel cell power generating facility
JPH02160602A (en) Reforming of fuel for fuel cell
JP2006294464A (en) Fuel cell power generation system
JPH01265462A (en) Control method for fuel cell power generation device
JPH05303971A (en) Molten carbonate fuel cell generating system
JPH07169474A (en) Methanol switching type fuel cell system
US20050155754A1 (en) Reformate cooling system for use in a fuel processing subsystem
JP2000302405A (en) Apparatus for producing hydrogen
JPH04366560A (en) Method and device for controlling combustor temperature of fuel cell generator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees