JPH04160003A - Method and device for producing hydrogen - Google Patents

Method and device for producing hydrogen

Info

Publication number
JPH04160003A
JPH04160003A JP2282981A JP28298190A JPH04160003A JP H04160003 A JPH04160003 A JP H04160003A JP 2282981 A JP2282981 A JP 2282981A JP 28298190 A JP28298190 A JP 28298190A JP H04160003 A JPH04160003 A JP H04160003A
Authority
JP
Japan
Prior art keywords
hydrogen
reaction
reaction tube
reforming
reforming catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2282981A
Other languages
Japanese (ja)
Other versions
JP2631244B2 (en
Inventor
Yoshiaki Takatani
高谷 芳明
Hayamizu Ito
伊東 速水
Yukio Kubo
幸雄 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP2282981A priority Critical patent/JP2631244B2/en
Publication of JPH04160003A publication Critical patent/JPH04160003A/en
Application granted granted Critical
Publication of JP2631244B2 publication Critical patent/JP2631244B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To simultaneously promote a reaction and control the temp. and to excellently follow a change in load in the production of hydrogen by steam- reforming hydrocarbons by using a non-equilibrium reactor by the separation of hydrogen and combining the partial oxidation of a raw gas to be reformed. CONSTITUTION:The raw gas 24 to be reformed consisting essentially of hydrocarbons is supplied to the reaction tube 12 of a fuel reformer 10 packed with a reforming catalyst 18, the catalyst bed 18 is heated 14 from outside the reaction tube 12, oxygen or air 26 is added to the raw gas 24 at the inlet of the bed 18, and the bed 18 is internally heated by the partial oxidation of the raw hydrocarbons to produce the hydrogen-rich reformed gas G. The following means are added in this steam-reforming method. Namely, at least a part of the reaction tube 12 is formed with a hydrogen passable membrane 16, the generated hydrogen is passed through the membrane 16 and separated from the system, and the amt. of oxygen or air to be added for the partial oxidation is controlled (flow control means 28) to optimize the reaction temp. of the bed 18.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、炭化水素を主成分とする改質原料ガスを燃料
改質装N(リフオーマ−)に供給して水蒸気改質し、同
時に、原料炭化水素を部分酸化して改質触媒層を内部か
ら加熱し、水素リッチな改質ガスを製造する水蒸気改質
方法において、生成した水素を水素透過膜を通過させて
反応系から分離するとともに、部分酸化用に添加する酸
素量又は空気量を制御することにより、熱力学的平衡関
係に律速されず、高い反応率で水素を製造することがで
きる、負荷変化追従性に優れた方法及び装置に関するも
のである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention supplies a reforming raw material gas containing hydrocarbons as a main component to a fuel reformer N (reformer) to reform it with steam, and at the same time, In a steam reforming method that partially oxidizes feedstock hydrocarbons and heats the reforming catalyst layer from inside to produce hydrogen-rich reformed gas, the generated hydrogen is passed through a hydrogen permeable membrane and separated from the reaction system. By controlling the amount of oxygen or air added for partial oxidation, a method and device that can produce hydrogen at a high reaction rate without being rate-limited by thermodynamic equilibrium relationships, with excellent load change followability. It is related to.

〔従来の技術〕[Conventional technology]

天然ガス等の炭化水素のスチームリフォーミング反応は
、大きな吸熱を伴い、高温条件下で操作される。したが
って、反応管材料の耐熱温度限界付近での操業となるた
め、原料となる炭化水素とスチームとによるスチームリ
フォーミング反応以外に、触媒層への熱供給手段として
、空気又は酸素を吹き込み、部分酸化(発熱)させる方
法が知られている(特開平2−160603号公報、特
開平1−186570号公報参照)。
Steam reforming reactions of hydrocarbons such as natural gas involve large endotherms and operate under high temperature conditions. Therefore, since the operation is performed near the heat-resistant temperature limit of the reaction tube material, in addition to the steam reforming reaction between the raw material hydrocarbon and steam, air or oxygen is blown in as a means of heat supply to the catalyst layer, resulting in partial oxidation. A method for generating heat is known (see JP-A-2-160603 and JP-A-1-186570).

また、水素選択透過膜を反応管内に組み込み、生成ガス
から水素を分離し、ル・シャトリエ(LeCha te
 I 1er)の反応平衡の原理に従い、反応を促進す
る非平衡型反応器により、低い反応温度でも、高い転化
率で水素を製造することができる方法が知られている(
特開平1−219001号公報、特開昭64−4230
1号公報参照)。
In addition, a hydrogen selective permeation membrane is installed in the reaction tube to separate hydrogen from the generated gas, and Le Chatelier
A method is known in which hydrogen can be produced at a high conversion rate even at low reaction temperatures using a non-equilibrium reactor that promotes the reaction according to the reaction equilibrium principle of I 1er) (
JP-A-1-219001, JP-A-64-4230
(See Publication No. 1).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

燃料電池用の水素を製造する場合には、高い負荷変化追
従性が要求される。反応管が複数本であったりすると、
加熱温度の不均一により、反応管耐熱温度を趙えてしま
い、反応管破損トラブルを引き起こすことがある。
When producing hydrogen for fuel cells, high load change followability is required. If there are multiple reaction tubes,
Uneven heating temperature may lower the allowable temperature of the reaction tube and cause troubles such as breakage of the reaction tube.

このように、高温下で大きな吸熱を伴う炭化水素(天然
ガス等)のスチームリフォーミング反応では、反応管材
料の耐熱制限、高効率化のため、反応温度の低減が望ま
れている。
As described above, in the steam reforming reaction of hydrocarbons (such as natural gas), which involves large endothermic heat absorption at high temperatures, it is desired to reduce the reaction temperature in order to limit the heat resistance of reaction tube materials and to improve efficiency.

本発明は上記の諸点に鑑みなされたもので、水素分離に
よる非平衡型反応器を用いる方法と、部分酸化反応によ
る方法とを組み合わせて、反応促進と温度制御とを同時
に達成できるようにし、負荷変化追従性に優れた水素製
造方法及び装置を提供することを目的とするものである
The present invention was made in view of the above points, and combines a method using a non-equilibrium reactor using hydrogen separation with a method using a partial oxidation reaction to simultaneously achieve reaction acceleration and temperature control. The object of the present invention is to provide a method and apparatus for producing hydrogen with excellent change followability.

〔課題を解決するための手段及び作用〕上記の目的を達
成するために、本発明の水素製造方法は、炭化水素を主
成分とする改質原料ガスを、改質触媒を充填した燃料改
質装置の反応管に供給するとともに、反応管外部から改
質触媒層を加熱し、同時に改質触媒層入口の改質原料ガ
ス中に酸素又は空気を添加し、原料炭化水素の部分酸化
により、改質触媒層内部から加熱して水素リッチな改質
ガスを製造する水蒸気改質方法において、反応管の少な
くとも一部を水素透過膜で形成し、生成した水素を水素
透過膜を通過させて反応系から分離するとともに、改質
触媒層の反応温度が最適となるように、部分酸化用に添
加する酸素量又は空気量を制御することを特徴としてい
る。
[Means and effects for solving the problem] In order to achieve the above object, the hydrogen production method of the present invention converts a reforming raw material gas containing hydrocarbons as a main component into a fuel reformer filled with a reforming catalyst. At the same time, the reforming catalyst layer is heated from the outside of the reaction tube, and at the same time oxygen or air is added to the reforming raw material gas at the inlet of the reforming catalyst bed to partially oxidize the raw material hydrocarbon. In the steam reforming method in which hydrogen-rich reformed gas is produced by heating from inside the catalyst layer, at least a portion of the reaction tube is formed with a hydrogen permeable membrane, and the generated hydrogen is passed through the hydrogen permeable membrane to form the reaction system. It is characterized by controlling the amount of oxygen or air added for partial oxidation so that the reaction temperature of the reforming catalyst layer is optimized.

水素透過膜としては、耐熱性多孔質セラミックス膜を用
いるのが望ましい。
As the hydrogen permeable membrane, it is desirable to use a heat-resistant porous ceramic membrane.

また、改質触媒として、酸化ジルコニウム、酸化マグネ
シウム、酸化珪素、酸化アルミニウムからなる群より選
ばれた酸化物を主成分とする耐熱性無機質からなる多孔
質の触媒担体に、ロジウムを担持して形成した触媒を使
用するのが望ましい。
In addition, as a reforming catalyst, rhodium is supported on a porous catalyst carrier made of a heat-resistant inorganic material whose main component is an oxide selected from the group consisting of zirconium oxide, magnesium oxide, silicon oxide, and aluminum oxide. It is desirable to use a catalyst that has

この改質触媒は、低温域での活性に優れ、かつ、部分酸
化反応に対しても高活性を示す。
This reforming catalyst has excellent activity in a low temperature range and also shows high activity in partial oxidation reactions.

そして、本発明の水素製造装置は、第1図を参照して説
明すれば、改質触媒を充填し、炭化水素と水蒸気と酸素
又は空気とを導入する反応管12と、この反応管12を
外部から加熱する加熱器14とを備えた水蒸気改質装置
において、反応管12の少なくとも一部が水素透過膜1
6で形成され、原料供給管24又は反応管12に接続さ
れた酸素供給管26又は空気供給管に、改質触媒層の温
度により作動する流量調節手段28が設けられたことを
特徴としている。
The hydrogen production apparatus of the present invention will be described with reference to FIG. 1, which includes a reaction tube 12 filled with a reforming catalyst and into which hydrocarbons, steam, and oxygen or air are introduced, and this reaction tube 12. In a steam reformer equipped with a heater 14 that heats from the outside, at least a portion of the reaction tube 12 is connected to the hydrogen permeable membrane 1.
6 and connected to the raw material supply pipe 24 or the reaction tube 12, the oxygen supply pipe 26 or the air supply pipe is provided with a flow rate regulating means 28 that is operated depending on the temperature of the reforming catalyst layer.

本発明においては、部分酸化発熱反応を併発させ、この
反応により発熱した熱エネルギーをスチームリフォーミ
ング反応の吸熱に利用し、メンブレンリアクターにより
、反応が促進される分だけ、熱供給を迅速に行うことが
でき、かつ、改質負荷変化への追従性を向上させること
ができる。
In the present invention, a partial oxidation exothermic reaction is caused to occur simultaneously, the thermal energy generated by this reaction is used for absorbing heat in the steam reforming reaction, and the membrane reactor quickly supplies heat by the amount that the reaction is promoted. In addition, it is possible to improve followability to changes in reforming load.

【実施例〕【Example〕

以下、図面を参照して本発明の好適な実施例を詳細に説
明する。ただしこの実施例に記載されている構成機器の
形状、その相対配置などは、とくに特定的な記載がない
限りは、本発明の範囲をそれらのみに限定する趣旨のも
のではなく、単なる説明例にすぎない。
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. However, unless there is a specific description, the shapes of the components described in this example, their relative positions, etc. are not intended to limit the scope of the present invention to these, but are merely illustrative examples. Only.

第1図は本発明の方法を実施する水素製造装置の一実施
例を示し、第2rgJはメンブレンリアクターの詳細断
面を示している。10は水蒸気改質装置で、炭化水素と
水蒸気と酸素又は空気とを導入する反応管12と、この
反応管12を外部から加熱する加熱器14とからなって
いる。反応管12の内部には、多孔質担体の表面に耐熱
性多孔質セラミックスからなる水素透過膜16をコーテ
ィングした管状体が設けられ、この管状体の外壁と反応
管12の内壁との間に改質触媒が充填されて改質触媒層
18を形成して、メンブレンリアクター20が構成され
ている。22は燃料電池である。
FIG. 1 shows an embodiment of a hydrogen production apparatus implementing the method of the present invention, and 2rgJ shows a detailed cross section of a membrane reactor. Reference numeral 10 denotes a steam reformer, which includes a reaction tube 12 into which hydrocarbons, steam, and oxygen or air are introduced, and a heater 14 which heats the reaction tube 12 from the outside. Inside the reaction tube 12, there is provided a tubular body in which the surface of a porous carrier is coated with a hydrogen-permeable membrane 16 made of heat-resistant porous ceramics, and between the outer wall of this tubular body and the inner wall of the reaction tube 12 there is a A membrane reactor 20 is configured by filling a reforming catalyst to form a reforming catalyst layer 18. 22 is a fuel cell.

水素透過vi16を透過したH2リッチガスと、水素透
過膜16を透過せずに改質触媒層18を通過したH2プ
アーガスとは、メンブレンリアクター20の出口部で混
合して、改質ガスとして燃料電池22に供給される。な
お、HzリッチガスとHzプアーガスとを混合せずに、
hリッチガスのみを改質ガスとして燃料電池22に供給
する場合もある。
The H2-rich gas that has permeated through the hydrogen permeation membrane 16 and the H2-poor gas that has passed through the reforming catalyst layer 18 without permeating through the hydrogen permeation membrane 16 are mixed at the outlet of the membrane reactor 20 and sent to the fuel cell 22 as a reformed gas. is supplied to In addition, without mixing Hz rich gas and Hz poor gas,
In some cases, only the h-rich gas is supplied to the fuel cell 22 as a reformed gas.

管状体の全部を水素透過膜でコーティングしてもよく、
又は管状体の一部を水素透過膜でコーティングしてもよ
い。
The entire tubular body may be coated with a hydrogen permeable membrane,
Alternatively, a portion of the tubular body may be coated with a hydrogen permeable membrane.

原料供給管24又は反応管12には酸素供給管26又は
空気供給管が接続されており、この酸素供給管26に、
改質触媒層18の温度により作動する流量調節手段28
が設けられている。30は温度指示調節器である。
An oxygen supply pipe 26 or an air supply pipe is connected to the raw material supply pipe 24 or the reaction tube 12, and to this oxygen supply pipe 26,
Flow rate adjustment means 28 that operates depending on the temperature of the reforming catalyst layer 18
is provided. 30 is a temperature indicating regulator.

つぎに、メンブレンリアクター20の作用について詳細
に説明する。
Next, the operation of the membrane reactor 20 will be explained in detail.

改質触媒層18の内側に、Itガスを選択的に透過する
耐熱性の膜材(セラミックス多孔質膜、Pd合金膜等)
を挿入し、外部からの触媒層の加熱により、下記の炭化
水素のリフォーミング反応を行わせる。また、原料に炭
化水素とスチーム以外に、酸素(又は空気)を混合し、
部分酸化発熱反応を起こさせ、負荷変化時に、触媒層内
部から直接力「熱し、負荷追従性を向上させる。
A heat-resistant membrane material (porous ceramic membrane, Pd alloy membrane, etc.) that selectively permeates It gas is placed inside the reforming catalyst layer 18.
is inserted, and the following hydrocarbon reforming reaction is carried out by heating the catalyst layer from the outside. In addition, in addition to hydrocarbons and steam, oxygen (or air) is mixed into the raw material,
A partial oxidation exothermic reaction is caused, and when the load changes, heat is applied directly from inside the catalyst layer, improving load followability.

CH4+ 2HJ tj Co□+4Hz上記の反応は
、熱力学的平衡条件(温度、圧力、H,O/CH4原料
モル比等)により、到達可能な反応率が決まってしまう
のが、従来の“平衡型反応器”である。
CH4+ 2HJ tj Co□+4Hz In the above reaction, the achievable reaction rate is determined by thermodynamic equilibrium conditions (temperature, pressure, H, O/CH4 raw material molar ratio, etc.), which is the conventional "equilibrium type" reaction. "Reactor".

ところが、H!を選択的に透過する膜材を組み込んだメ
ンブレンリアクター20では、上記の反応式の右辺のH
2を反応の系外に分離除去していくため、熱力学的な平
衡(バランス)が崩されるので、ル・シャトリニーブラ
ウンの法則(Le Chatelier−Braun’
s law)で−船釣に知られるように、反応は系の状
態を熱力学的平衡に戻す方向、即ち、消失したH2を生
成する前記反応式の右辺側に進むようになる。このよう
な“非平衡型反応器”であるメンブレンリアクター20
を用いれば、従来の平衡型の反応器よりも、低温で高反
応率が達成できる。
However, H! In the membrane reactor 20 incorporating a membrane material that selectively permeates the
Since 2 is separated and removed from the reaction system, the thermodynamic equilibrium is disrupted, so Le Chatelier-Braun's law
As is known from boat fishing, the reaction proceeds in the direction that returns the state of the system to thermodynamic equilibrium, that is, on the right side of the reaction equation that produces the disappeared H2. Membrane reactor 20, which is such a “non-equilibrium reactor”
Using this method, higher reaction rates can be achieved at lower temperatures than with conventional equilibrium reactors.

なお、第1図において、メンブレンリアクタ−20出口
で、膜透過側のH2リッチガスと、未透過側のhプアー
ガスとを混合して、燃料電池用燃料として利用している
が、反応系(内)というのは、この場合、メンブレンリ
アクター内であり、これを出たガスは反応系外にあるた
め、混合しても反応平衡には関係ないことになる。
In Fig. 1, at the outlet of the membrane reactor 20, the H2-rich gas on the membrane permeation side and the H-poor gas on the non-permeation side are mixed and used as fuel for the fuel cell. This is because, in this case, the gas is inside the membrane reactor and the gas exiting it is outside the reaction system, so mixing has no effect on the reaction equilibrium.

また、部分酸化反応を併用しているので、空気を酸化剤
とした場合、0□は部分酸化反応(CO,+O。
In addition, since a partial oxidation reaction is also used, when air is used as an oxidizing agent, 0□ is a partial oxidation reaction (CO, +O.

→COz+2Ht、 CHa+5AOt→CO+2Hz
 、  CH4+20g−Co!+28!01CO+ 
+AOt→COt 、8g + y20g→Hg0)に
より消費されるが、N、は不活性ガスとして改質ガス中
に残存し、Hzガスの分圧を低下させるため、燃料電池
用の燃料としては、Ha分圧が高い方が発電効率が高く
なる。このため、残N8を分離して燃料電池に供給する
方が好ましい。
→COz+2Ht, CHa+5AOt→CO+2Hz
, CH4+20g-Co! +28!01CO+
+AOt→COt, 8g + y20g→Hg0), but N remains in the reformed gas as an inert gas and reduces the partial pressure of Hz gas, so Ha is used as fuel for fuel cells. The higher the partial pressure, the higher the power generation efficiency. For this reason, it is preferable to separate the remaining N8 and supply it to the fuel cell.

したがって、このような部分酸化反応を併用しているの
で、上記のように、膜で分離したガスを混合しないで、
膜を透過したH2リッチガスを燃料電池に供給するシス
テムとする方が好ましい。
Therefore, since such a partial oxidation reaction is used in combination, the gases separated by the membrane are not mixed together as described above.
It is preferable to use a system that supplies the H2-rich gas that has passed through the membrane to the fuel cell.

このように、メンブレンリアクター20を用いることに
より、改質ガス中のH7分圧を向上させ、燃料電池の発
電効率を高めるという効果も奏される。
In this way, by using the membrane reactor 20, the H7 partial pressure in the reformed gas is improved, and the power generation efficiency of the fuel cell is also increased.

つぎに、耐熱性多孔質セラミックス膜の製造方法につい
て説明する。アルミナ系のセラミックス多孔質H!分離
膜を第3図のフローチャートに示すような手順で試作し
た。以下に、その詳細な説明を行う。
Next, a method for manufacturing a heat-resistant porous ceramic membrane will be explained. Alumina ceramic porous H! A separation membrane was prototyped according to the procedure shown in the flowchart of FIG. A detailed explanation will be given below.

(1)セラミックス多孔質担体 外径10■、内径8■のAItOiを主成分とする多孔
質管をセラミックス多孔質担体として用いた。この多孔
質担体は、0.2〜2.0pmの分布範囲で平均1.6
 It mの細孔径を有していた。
(1) Ceramic porous carrier A porous tube mainly composed of AItOi and having an outer diameter of 10 cm and an inner diameter of 8 cm was used as the ceramic porous carrier. This porous carrier has a distribution range of 0.2-2.0 pm with an average of 1.6
It had a pore size of It m.

(2)原料ゾルの調製 アルミニウム・イソプロポキシド(化学式二Al (O
CR(CH3) 、)りを原料塩とし、これに、0.5
mol−Al/I−液となるように蒸留水を加え、溶解
させた後、ロータリーエバポレーターにこのアルミニウ
ム・イソプロポキシド水溶液を充填し、撹拌混合しなか
ら75°Cの恒温浴槽で加熱して、24時間かけて加水
分解反応を起こさせて、γ−^100H(ベーマイト・
アルミナ)のゾル溶液を調製した。このr−A100H
ゾル溶液は、そのまま放置しておくと、ゾル状の白色懸
濁液からゲル状(でんぷん糊のような状態)に変質して
しまうため、ゾル状態を維持するために、1規定の塩酸
水溶液を滴下しながら50℃に加温しつつ混合し、pH
中2.5程度の酸性にすると、長時間ゾル状態に安定さ
せることができた。
(2) Preparation of raw material sol Aluminum isopropoxide (chemical formula 2Al (O
CR(CH3),) is used as a raw material salt, and 0.5
Distilled water was added and dissolved to form a mol-Al/I-liquid, and then the aluminum isopropoxide aqueous solution was filled into a rotary evaporator, stirred and mixed, and then heated in a constant temperature bath at 75°C. , a hydrolysis reaction takes place over 24 hours to produce γ-^100H (boehmite.
A sol solution of alumina) was prepared. This r-A100H
If the sol solution is left as it is, it will change from a sol-like white suspension to a gel-like state (like a starch paste), so in order to maintain the sol state, a 1N hydrochloric acid aqueous solution is added. Mix while heating to 50℃ while dropping, and adjust the pH.
By making it acidic to about 2.5 medium, it was possible to stabilize it in a sol state for a long time.

次に、加温・混合中に蒸発した水の分だけ、再度、蒸留
水を補充し、所定のA1モル濃度(0,5+wol−A
l/I−液)に最終調整した。
Next, distilled water is replenished again for the amount of water that evaporated during heating and mixing, and the predetermined A1 molar concentration (0,5+wol-A
The final adjustment was made to l/I-liquid).

(3)  デイツプ・コーティング セラミックス多孔担体の外表面にのみ、ゾル溶液をコー
ティングさセるため、多孔担体チューブの先端部をゴム
栓などで口封じしておいた。
(3) Deep coating In order to coat only the outer surface of the porous ceramic carrier with the sol solution, the tip of the porous carrier tube was sealed with a rubber plug or the like.

このように準備しておいて、セラミックス多孔担体を鉛
直になるように糸でつり下げ、7−A100Hゾル溶液
を入れた円筒状容器(メスシリンダー)に降下させ、ゾ
ル溶液に約10秒間浸漬させた後、10cm/winの
一定の引き上げ速度で液から引き上げた。
Having prepared the porous ceramic carrier in this way, it was hung vertically with a thread, lowered into a cylindrical container (graduated cylinder) containing a 7-A100H sol solution, and immersed in the sol solution for about 10 seconds. After that, it was pulled out of the liquid at a constant lifting speed of 10 cm/win.

このような操作(デイツプ・コーティング)で、多孔体
外表面に均一なゾル溶液をコーティングした。
Through such an operation (dip coating), the outer surface of the porous body was coated with a uniform sol solution.

(4)乾燥・焼成 デイシブ・コーティングした多孔質体チューブを、ダス
ト等が浮遊していない清浄な室内で、−昼夜、室温下で
乾燥させた。乾燥が終了した後、焼成炉にて、50°C
/hで800°Cまで昇温し、2時間保持した後、徐冷
した。この焼成により、多孔質担体表面にコーティング
されたアルミナゾルは、γ−A 100)1からα−A
1gOsあるいはTAIxOsに変成し、数十〜数百オ
ングストロームの微細孔を有する緻密なアルミナ薄膜コ
ーティング層が形成された。このようなオンダストロー
ム級の微細孔を均一に形成するためには、これまでのデ
イツプ・コーティングと乾燥・焼成操作を数回繰り返す
必要がある。本例では4〜8回繰り返した。
(4) Drying and Firing The Dish-coated porous tube was dried at room temperature day and night in a clean room free from floating dust. After drying, heat at 50°C in a kiln.
The temperature was raised to 800°C at a speed of 2 hours, held for 2 hours, and then slowly cooled. By this firing, the alumina sol coated on the surface of the porous carrier changes from γ-A 100)1 to α-A
A dense alumina thin film coating layer having micropores of several tens to hundreds of angstroms was formed. In order to uniformly form such Ondustrum-level micropores, it is necessary to repeat the deep coating, drying, and firing operations several times. In this example, it was repeated 4 to 8 times.

このようなオンダストロームオーダーの微細孔をガスが
透過する場合、気体分子の平均自由行程よりも孔径が小
さいと、クヌーセン(Knudsen)拡散となり、気
体分子量の逆数の平方根に比例して、拡散速度が速くな
るという原理により、■、のような分子量の小さい気体
の方が、Cotのような分子量の大きい気体よりも、多
孔質膜を速く透過するため、この透過速度の差により、
混合ガスの分離が行われる。
When gas permeates through such ondustrom-order micropores, if the pore diameter is smaller than the mean free path of the gas molecules, Knudsen diffusion occurs, and the diffusion rate increases in proportion to the square root of the reciprocal of the gas molecular weight. Due to the principle that gases with small molecular weights such as
Separation of the gas mixture takes place.

上記の通り試作したアルミナ質多孔質ガス分離膜のガス
分離性能を、コーティング回数毎に、Hl、N2各のガ
ス成分について測定した結果、第4図のように、はとん
ど理論分離係数に近い高性能の膜材が得られた。なお、
第4図におけるqはガスの透過速度(Nsl/CI#膜
面積/see/ate)である。
The gas separation performance of the alumina porous gas separation membrane prototyped as described above was measured for each gas component of Hl and N2 for each coating number, and as shown in Figure 4, it almost reached the theoretical separation coefficient. A membrane material with similar high performance was obtained. In addition,
q in FIG. 4 is the gas permeation rate (Nsl/CI#membrane area/see/ate).

〔発明の効果〕〔Effect of the invention〕

本発明は上記のように構成されているので、つぎのよう
な効果を奏する。
Since the present invention is configured as described above, it has the following effects.

(1)炭化水素のリフォーミング反応生成物である水素
を、水素透過膜を通して選択的に反応系外に分離するこ
とにより、熱力学的平衡関係から得られる反応率以上の
高い転化率を得ることができる。また、部分酸化発熱反
応を触媒層で起こさせることにより、この熱を不足する
反応熱源とすることができる。これにより、水素透過膜
を備えた反応器(非平衡型反応器)の反応促進効果を維
持するとともに、急激な改質負荷変化への追従性を向上
させることができる。
(1) By selectively separating hydrogen, which is a hydrocarbon reforming reaction product, out of the reaction system through a hydrogen-permeable membrane, a conversion rate higher than that obtained from thermodynamic equilibrium can be obtained. I can do it. In addition, by causing the partial oxidation exothermic reaction to occur in the catalyst layer, this heat can be used as a heat source for the reaction. Thereby, it is possible to maintain the reaction promoting effect of the reactor (non-equilibrium type reactor) equipped with a hydrogen permeable membrane, and to improve followability to sudden changes in reforming load.

(2)請求項3では、改質触媒として、リフォーミング
反応と部分酸化反応との両反応に対して、低温での活性
に優れた触媒を用いているので、上記(1)項の効果を
より発揮させることができる。
(2) In claim 3, since a catalyst with excellent activity at low temperatures is used for both the reforming reaction and the partial oxidation reaction, the effect of the above (1) can be achieved. You can make more use of it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法を実施する水素製造装置の一実施
例を示すフローシート、第2図は第1図におけるメンブ
レンリアクターの断面説明図、第3図はセラミックス多
孔質分離膜の製造方法の一例を示すフローチャート、第
4図は第3図に示す方法により試作したセラミックス多
孔質分離膜のガス分離性能とコーティング回数との関係
を示すグラフである。 10・・・水蒸気改質装置、12・・・反応管、14・
・・加熱器、16・・・水素透過膜、18・・・改質触
媒層、20・・・メンブレンリアクター、22・・・燃
料電池、24・・・原料供給管、26・・・酸素供給管
、28・・・流量調節手段、3ト・・温度指示調節器 第7図 mカーt (Hzリ−、trtix) 第づ図
Fig. 1 is a flow sheet showing an example of a hydrogen production device implementing the method of the present invention, Fig. 2 is a cross-sectional explanatory diagram of the membrane reactor in Fig. 1, and Fig. 3 is a method for producing a ceramic porous separation membrane. FIG. 4 is a graph showing the relationship between the gas separation performance and the number of coatings of a ceramic porous separation membrane prototyped by the method shown in FIG. 3. 10... Steam reformer, 12... Reaction tube, 14...
... Heater, 16 ... Hydrogen permeable membrane, 18 ... Reforming catalyst layer, 20 ... Membrane reactor, 22 ... Fuel cell, 24 ... Raw material supply pipe, 26 ... Oxygen supply Pipe, 28...Flow rate adjustment means, 3T...Temperature indication controller Fig. 7 m cart (Hz Lee, trtix) Fig. 5

Claims (1)

【特許請求の範囲】 1 炭化水素を主成分とする改質原料ガスを、改質触媒
を充填した燃料改質装置の反応管に供給するとともに、
反応管外部から改質触媒層を加熱し、同時に改質触媒層
入口の改質原料ガス中に酸素又は空気を添加し、原料炭
化水素の部分酸化により、改質触媒層内部から加熱して
水素リッチな改質ガスを製造する水蒸気改質方法におい
て、 反応管の少なくとも一部を水素透過膜で形成し、生成し
た水素を水素透過膜を通過させて反応系から分離すると
ともに、改質触媒層の反応温度が最適となるように、部
分酸化用に添加する酸素量又は空気量を制御することを
特徴とする水素製造方法。 2 水素透過膜として、耐熱性多孔質セラミックス膜を
用いることを特徴とする請求項1記載の水素製造方法。 3 改質触媒として、酸化ジルコニウム、酸化マグネシ
ウム、酸化珪素、酸化アルミニウムからなる群より選ば
れた酸化物を主成分とする耐熱性無機質からなる多孔質
の触媒担体に、ロジウムを担持して形成した触媒を使用
することを特徴とする請求項1又は2記載の水素製造方
法。 4 改質触媒を充填し、炭化水素と水蒸気と酸素又は空
気とを導入する反応管(12)と、この反応管(12)
を外部から加熱する加熱器(14)とを備えた水蒸気改
質装置において、反応管(12)の少なくとも一部が水
素透過膜(16)で形成され、原料供給管(24)又は
反応管(12)に接続された酸素供給管(26)又は空
気供給管に、改質触媒層の温度により作動する流量調節
手段(28)が設けられたことを特徴とする水素製造装
置。
[Claims] 1. Supplying a reforming raw material gas containing hydrocarbons as a main component to a reaction tube of a fuel reformer filled with a reforming catalyst,
The reforming catalyst bed is heated from the outside of the reaction tube, and at the same time, oxygen or air is added to the reforming raw material gas at the inlet of the reforming catalyst bed, and by partial oxidation of the raw material hydrocarbon, it is heated from inside the reforming catalyst bed and hydrogen is generated. In the steam reforming method for producing rich reformed gas, at least a part of the reaction tube is formed with a hydrogen permeable membrane, and the generated hydrogen is separated from the reaction system by passing through the hydrogen permeable membrane, and the reforming catalyst layer is separated from the reaction system. A hydrogen production method characterized by controlling the amount of oxygen or air added for partial oxidation so that the reaction temperature is optimal. 2. The hydrogen production method according to claim 1, wherein a heat-resistant porous ceramic membrane is used as the hydrogen permeable membrane. 3 As a reforming catalyst, rhodium was supported on a porous catalyst carrier made of a heat-resistant inorganic material whose main component is an oxide selected from the group consisting of zirconium oxide, magnesium oxide, silicon oxide, and aluminum oxide. The method for producing hydrogen according to claim 1 or 2, characterized in that a catalyst is used. 4. A reaction tube (12) filled with a reforming catalyst and into which hydrocarbons, steam, and oxygen or air are introduced, and this reaction tube (12)
In a steam reformer equipped with a heater (14) for externally heating the reaction tube (12), at least a part of the reaction tube (12) is formed of a hydrogen permeable membrane (16), and the raw material supply tube (24) or the reaction tube ( A hydrogen production device characterized in that an oxygen supply pipe (26) or an air supply pipe connected to 12) is provided with a flow rate regulating means (28) that is operated depending on the temperature of the reforming catalyst layer.
JP2282981A 1990-10-19 1990-10-19 Method and apparatus for producing hydrogen for fuel cells Expired - Fee Related JP2631244B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2282981A JP2631244B2 (en) 1990-10-19 1990-10-19 Method and apparatus for producing hydrogen for fuel cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2282981A JP2631244B2 (en) 1990-10-19 1990-10-19 Method and apparatus for producing hydrogen for fuel cells

Publications (2)

Publication Number Publication Date
JPH04160003A true JPH04160003A (en) 1992-06-03
JP2631244B2 JP2631244B2 (en) 1997-07-16

Family

ID=17659653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2282981A Expired - Fee Related JP2631244B2 (en) 1990-10-19 1990-10-19 Method and apparatus for producing hydrogen for fuel cells

Country Status (1)

Country Link
JP (1) JP2631244B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999025649A1 (en) * 1997-11-17 1999-05-27 Johnson Matthey Public Limited Company Hydrogen generator
WO2001016022A1 (en) * 1999-08-31 2001-03-08 Shell Internationale Research Maatschappij B.V. Catalytic oxidation process with flow control system
US6268075B1 (en) 1997-12-16 2001-07-31 Xcellsis Gmbh Process for the water vapor reforming of a hydrocarbon or a hydrocarbon derivative, reforming system operable thereby, and fuel cell operating process
US6294149B1 (en) 1997-12-16 2001-09-25 Xcellsis Gmbh Process for operating a water vapor reforming system, a reforming system operable thereby and a fuel cell system operating process
JP2003095608A (en) * 2001-09-21 2003-04-03 Toyota Motor Corp Start-up method of apparatus for generating hydrogen having hydrogen separation membrane
US6730271B2 (en) 1997-06-10 2004-05-04 Toyota Jidosha Kabushiki Kaisha Fuel-cell system with autothermal fuel-reforming apparatus incorporating input air regulation
US6887286B1 (en) 1998-07-08 2005-05-03 Toyota Jidosha Kabushiki Kaisha Fuel reformer device
JP2006199509A (en) * 2005-01-18 2006-08-03 Iwatani Internatl Corp Reformer
JP2009234799A (en) * 2008-03-25 2009-10-15 Ngk Spark Plug Co Ltd Hydrogen production apparatus
JP2010201304A (en) * 2009-03-02 2010-09-16 Ngk Insulators Ltd Hydrogen separator and method of operating the same
JP2012067165A (en) * 2010-09-22 2012-04-05 Japan Steel Works Ltd:The Method and system for recovering and utilizing waste energy
JP2014073926A (en) * 2012-10-03 2014-04-24 Ngk Spark Plug Co Ltd Holding member and hydrogen production apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6442301A (en) * 1987-08-06 1989-02-14 Chiyoda Chem Eng Construct Co Production of hydrogen
JPH01186570A (en) * 1988-01-12 1989-07-26 Kawasaki Heavy Ind Ltd Reformation of fuel for fuel cell
JPH01219001A (en) * 1988-02-25 1989-09-01 Hidekazu Kikuchi Production of hydrogen
JPH02160603A (en) * 1988-12-15 1990-06-20 Kawasaki Heavy Ind Ltd Reforming of fuel for fuel cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6442301A (en) * 1987-08-06 1989-02-14 Chiyoda Chem Eng Construct Co Production of hydrogen
JPH01186570A (en) * 1988-01-12 1989-07-26 Kawasaki Heavy Ind Ltd Reformation of fuel for fuel cell
JPH01219001A (en) * 1988-02-25 1989-09-01 Hidekazu Kikuchi Production of hydrogen
JPH02160603A (en) * 1988-12-15 1990-06-20 Kawasaki Heavy Ind Ltd Reforming of fuel for fuel cell

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6730271B2 (en) 1997-06-10 2004-05-04 Toyota Jidosha Kabushiki Kaisha Fuel-cell system with autothermal fuel-reforming apparatus incorporating input air regulation
WO1999025649A1 (en) * 1997-11-17 1999-05-27 Johnson Matthey Public Limited Company Hydrogen generator
US6294149B1 (en) 1997-12-16 2001-09-25 Xcellsis Gmbh Process for operating a water vapor reforming system, a reforming system operable thereby and a fuel cell system operating process
US6268075B1 (en) 1997-12-16 2001-07-31 Xcellsis Gmbh Process for the water vapor reforming of a hydrocarbon or a hydrocarbon derivative, reforming system operable thereby, and fuel cell operating process
US6887286B1 (en) 1998-07-08 2005-05-03 Toyota Jidosha Kabushiki Kaisha Fuel reformer device
JP2003508324A (en) * 1999-08-31 2003-03-04 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Catalytic oxidation method using flow control system
WO2001016022A1 (en) * 1999-08-31 2001-03-08 Shell Internationale Research Maatschappij B.V. Catalytic oxidation process with flow control system
US6852307B1 (en) 1999-08-31 2005-02-08 Shell Oil Company Catalytic oxidation process with flow control system
JP2003095608A (en) * 2001-09-21 2003-04-03 Toyota Motor Corp Start-up method of apparatus for generating hydrogen having hydrogen separation membrane
JP2006199509A (en) * 2005-01-18 2006-08-03 Iwatani Internatl Corp Reformer
JP2009234799A (en) * 2008-03-25 2009-10-15 Ngk Spark Plug Co Ltd Hydrogen production apparatus
JP2010201304A (en) * 2009-03-02 2010-09-16 Ngk Insulators Ltd Hydrogen separator and method of operating the same
JP2012067165A (en) * 2010-09-22 2012-04-05 Japan Steel Works Ltd:The Method and system for recovering and utilizing waste energy
JP2014073926A (en) * 2012-10-03 2014-04-24 Ngk Spark Plug Co Ltd Holding member and hydrogen production apparatus

Also Published As

Publication number Publication date
JP2631244B2 (en) 1997-07-16

Similar Documents

Publication Publication Date Title
JPH04160003A (en) Method and device for producing hydrogen
AU766490B2 (en) Hydrogen-selective silica based membrane
US20080019902A1 (en) Process for producing hydrogen
KR20000017367A (en) Ceramic Membrane for Endothermic Reaction
JPH10192695A (en) Reactor for performing endothermic catalytic reaction
JP2004171989A (en) Hydrogen generator for fuel cell
Al-Nakoua et al. Combined steam and dry reforming of methane in narrow channel reactors
JPH0733242B2 (en) Fuel reforming method for fuel cell
AU2478801A (en) Catalytic monolith made of ceria and titania
JP2020033280A (en) Method for manufacturing methane and manufacturing system
NO166799B (en) METHOD AND APPARATUS FOR SECONDARY CONVERSION OF HYDROCARBONES USING VAPOR AND A METAL METAL CATALYST ON A CARRIER.
Nomura et al. Pore size control of a molecular sieve silica membrane prepared by a counter diffusion CVD method
JP4071427B2 (en) Reactor system for selective catalytic oxidation of hydrocarbon substrates
JP4871312B2 (en) Method for producing hydrogen gas separator
US7632778B2 (en) Device for the generation of hydrogen
KR20170001226A (en) A heat-exchange reactor producing hydrogen from carbon compound
JP4288179B2 (en) Hydrogen generator
JP3197095B2 (en) Hydrogen production equipment
JP6694108B2 (en) Encapsulation catalyst for carbon dioxide reforming of methane and method for producing synthesis gas using the same
JPH02160601A (en) Production of hydrogen by methanol reforming and apparatus therefor
JP3197097B2 (en) Hydrogen production equipment
JP3432298B2 (en) Fuel reformer
JPS62216634A (en) Reformer for fuel
JP2005281024A (en) Method for producing hydrogen, and membrane reactor used therefor
JPS61197404A (en) Apparatus for generation of gas having specific water content

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees