JPS62216634A - Reformer for fuel - Google Patents

Reformer for fuel

Info

Publication number
JPS62216634A
JPS62216634A JP61060073A JP6007386A JPS62216634A JP S62216634 A JPS62216634 A JP S62216634A JP 61060073 A JP61060073 A JP 61060073A JP 6007386 A JP6007386 A JP 6007386A JP S62216634 A JPS62216634 A JP S62216634A
Authority
JP
Japan
Prior art keywords
reaction tube
reaction
reforming
gas
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61060073A
Other languages
Japanese (ja)
Other versions
JPH0722694B2 (en
Inventor
Kazuhito Koyama
一仁 小山
Narihisa Sugita
杉田 成久
Haruichiro Sakaguchi
坂口 晴一郎
Nobuhiro Seiki
信宏 清木
Akio Hanzawa
半澤 晨夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61060073A priority Critical patent/JPH0722694B2/en
Publication of JPS62216634A publication Critical patent/JPS62216634A/en
Publication of JPH0722694B2 publication Critical patent/JPH0722694B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • H01M8/0631Reactor construction specially adapted for combination reactor/fuel cell
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0285Heating or cooling the reactor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To enhance heat transfer capacity near to the tubular wall of a reaction tube by introducing reactive gas into a reactor wherein a reforming catalyst is packed and also the reforming catalyst is held to the surface of the tubular wall, and converting reactive gas into reformed gas. CONSTITUTION:Reactive gas 11 such as a gaseous mixture of i.e. hydrocarbon and steam is fed in a reaction tube 1 via a conduit 3. Since comparatively large endothermic reaction is caused in the reaction tube, the part packed with reforming catalytic particles 9 is heated by a heated catalyst 13 from the outside of the reaction tube 1 to maintain it at 800 deg.C temp. After the reactive gas 11 being the gaseous mixture is introduced into the reaction tube 1 through the conduit 3, reforming reaction is caused in the packed layer of the reforming catalytic particles 9 and on the surface of a reforming catalyst 10 stuck on the surface of the inner wall of the reaction tube 1 and in the inside thereof to reform it to hydrogen-enriched gas.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は燃料改質器に係り、特にコンパクトで迅速な負
荷追従性が要求される燃料電池発電装置に使用されるの
に好適な燃料改質器に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a fuel reformer, and particularly to a fuel reformer suitable for use in a fuel cell power generation device that is required to be compact and quick to follow load. Regarding pawns.

〔従来の技術〕[Conventional technology]

従来より化学工業で用いられている燃料改質器と異なり
、コンパクトで迅速な負荷追従性が要求される燃料電池
発電装置装置に使用する燃料改質器として1例えば米国
特許第4098589号に開示されたものが存在する。
Unlike fuel reformers conventionally used in the chemical industry, a fuel reformer for use in a fuel cell power generation device that is compact and requires quick load followability is disclosed in U.S. Pat. No. 4,098,589, for example. There are things that exist.

この従来例では、二重管の間隙に充填された円筒状の改
質触媒層に流れる反応ガスの流れ方向に対して、燃焼ガ
スおよび改質ガスを対向流とし、改質触媒層を内外より
加熱するとともに、二重管の外側に伝熱粒子を充填する
ことにより燃焼ガスから反応ガスへの伝熱を促進する構
造となっている。
In this conventional example, the combustion gas and reformed gas flow in counterflow to the flow direction of the reaction gas flowing into the cylindrical reforming catalyst layer filled in the gap between the double pipes, and the reforming catalyst layer is inserted into the reforming catalyst layer from the inside and outside. In addition to heating, the outside of the double tube is filled with heat transfer particles to promote heat transfer from the combustion gas to the reaction gas.

また、二重管式反応管内の改質触媒層の半径方向温度分
布改善と伝熱促進に関して、改質触媒層内に金属球を混
入した構造の燃料改質器(実開昭60−89234号)
や改質触媒と接触する反応管内壁面に管軸直交方向の、
あるいは管軸方向の、あるいは螺旋状の溝を形成した燃
料改質器(実開昭60−8[1235号)が存在する。
In addition, with regard to improving the radial temperature distribution and promoting heat transfer of the reforming catalyst layer in the double-tube reaction tube, we have developed a fuel reformer with a structure in which metal spheres are mixed in the reforming catalyst layer (Utility Model Application No. 60-89234). )
Orthogonal to the tube axis, on the inner wall surface of the reaction tube in contact with the reforming catalyst.
Alternatively, there is a fuel reformer (Utility Model Application Publication No. 1235, 1983) in which grooves are formed in the tube axis direction or in a spiral shape.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、上記各種従来例のように、触媒粒子充填層を還
流する流体を外部から加熱する場合では、反応管管壁と
触媒粒子が接触するところの粒子の空隙率は大きいため
1反応ガスの流れの乱れる程度が小さく、かつ触媒粒子
と触媒粒子間との接触に比べると、粒子の反応管管壁間
の接触点の数がかなり少ないので、反応管管壁近傍にお
ける伝熱能力が低下する問題がある。
However, when the fluid flowing back through the catalyst particle packed bed is heated from the outside, as in the various conventional examples described above, the porosity of the particles where the reaction tube wall and the catalyst particles contact is large, so the flow of one reaction gas is The degree of turbulence is small, and the number of contact points between particles and the walls of the reaction tube is quite small compared to the contact between catalyst particles, so the heat transfer ability near the walls of the reaction tube is reduced. There is.

本発明はかかる問題点を解決するために1反応管管壁近
傍の伝熱能力を向上させることにより。
The present invention solves these problems by improving the heat transfer ability near the wall of the reaction tube.

迅速な改質反応を行い得る燃料改質器を提供することを
目的とする。
An object of the present invention is to provide a fuel reformer that can perform a rapid reforming reaction.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成するために1本発明は、改質触媒が充填
された反応管内に反応ガスが供結され、当該反応ガスを
改質ガスに変換してなる燃料改質器において、前記反応
管壁面に改質触媒が保持されてなることを特徴とする燃
料改質器である。
In order to achieve the above object, the present invention provides a fuel reformer in which a reaction gas is connected to a reaction tube filled with a reforming catalyst and the reaction gas is converted into a reformed gas. This is a fuel reformer characterized by having a reforming catalyst held on the wall surface.

〔作用〕[Effect]

上記構成によれば、反応管管壁に保持された触媒により
、反応ガスまたは改質ガスの流れの乱れる程度が大きく
なり、反応管管壁と触媒粒子が接する部分の触媒粒子の
空隙率を小さくすることができる。さらに9反応管管壁
と触媒粒子との間の接触点の数を増加させるので5反応
管管壁近傍における伝熱能力が向上することになる。ま
た1反応管管壁に保持された触媒自身で吸熱反応が起こ
るため、一層伝熱が促進されることになる。
According to the above configuration, the degree of turbulence in the flow of the reaction gas or reformed gas is increased due to the catalyst held on the reaction tube wall, and the porosity of the catalyst particles is reduced at the portion where the reaction tube wall and the catalyst particles are in contact. can do. Furthermore, since the number of contact points between the wall of the 9th reaction tube and the catalyst particles is increased, the heat transfer ability near the wall of the 5th reaction tube is improved. Furthermore, since an endothermic reaction occurs within the catalyst itself held on the wall of one reaction tube, heat transfer is further promoted.

〔実施例〕〔Example〕

次に、本発明に係る燃料改質器の実施例を添付図面に従
って詳説する。
Next, embodiments of the fuel reformer according to the present invention will be described in detail with reference to the accompanying drawings.

第1図は、その一実施例を示す断面構成図である0本実
施例では、単管式反応管で構成される場合の燃料改質器
を示している。
FIG. 1 is a cross-sectional configuration diagram showing one embodiment of the present invention. This embodiment shows a fuel reformer constructed of a single-tube reaction tube.

第1図において、燃料改質器の円筒状の反応管1の一端
にはフランジ2が設けられ、そのフランジ2に対向する
ように、反応ガス11を導く導管3を有するフランジ4
が、パツキン7を挾んで数本のボルト5およびナツト6
により接合されている。
In FIG. 1, a flange 2 is provided at one end of a cylindrical reaction tube 1 of a fuel reformer, and a flange 4 having a conduit 3 for guiding a reaction gas 11 faces the flange 2.
However, while holding the packing 7, I removed several bolts 5 and nuts 6.
It is joined by

燃料改質器の反応管1の他端には、改質ガス12の出口
となる導管8が設けられている。
A conduit 8 serving as an outlet for the reformed gas 12 is provided at the other end of the reaction tube 1 of the fuel reformer.

上記反応管1内には、改質触媒粒子9が充填されており
1反応管1の内管面に改質触媒10が保持されている。
The reaction tube 1 is filled with reforming catalyst particles 9, and a reforming catalyst 10 is held on the inner surface of each reaction tube 1.

この改質触媒10の反応管1壁面への保持は、Wj射、
メッキ等の手段により、触媒を一面にコーティングもし
くは分散して付着保持する方法、多孔質に触媒粒子を拡
散する方法などがある。
This reforming catalyst 10 is held on the wall surface of the reaction tube 1 by Wj radiation,
There are a method in which the catalyst is coated or dispersed over one surface and retained by means of plating, and a method in which the catalyst particles are diffused in a porous structure.

次に1本実施例の動作について説明する。反応ガス11
、例えば炭化水素と水蒸気の混合ガスが導管3を介して
反応管内に供結される。なお、反応ガスとして、この他
アルコール等を用いることも可能である。
Next, the operation of this embodiment will be explained. Reaction gas 11
A mixed gas of, for example, hydrocarbon and steam is connected via conduit 3 into the reaction tube. In addition, it is also possible to use alcohol or the like as the reaction gas.

反応ガスが供結された反応管1内では、比較的大きな吸
熱反応が起きるため1反応管1の外部から加熱触媒13
により改質触媒粒子9が充填されている部分を加熱し、
当該反応管1を約800℃程度の温度に維持するように
する。メタンと水蒸気の混合ガスである反応ガス11は
、導管3より反応管1内に送り込まれたのち、改質触媒
粒子9の充填層および反応管1の内壁面に付着している
改質触媒10の表面および内部にて改質反応を起こし、
水素富化ガスに改質されていく、このとき、反応管1の
外部より熱を供結され、改質反応が持続していく。反応
ガス11は、所定の改質触媒粒子9の充填層を通過する
と、水素富化ガスである改質ガス12となって、導管8
より反応管1外に出ていく、この反応管1から出た水素
富化ガスは。
Because a relatively large endothermic reaction occurs in the reaction tube 1 to which the reaction gas is connected, the heated catalyst 13 is heated from the outside of the reaction tube 1.
heating the part filled with reforming catalyst particles 9,
The reaction tube 1 is maintained at a temperature of about 800°C. The reaction gas 11, which is a mixed gas of methane and water vapor, is sent into the reaction tube 1 through the conduit 3, and then the reforming catalyst 11 adhering to the packed bed of reforming catalyst particles 9 and the inner wall surface of the reaction tube 1 is introduced. A modification reaction occurs on the surface and inside of the
At this time, heat is supplied from the outside of the reaction tube 1 to continue the reforming reaction. When the reaction gas 11 passes through a packed bed of predetermined reforming catalyst particles 9, it becomes a reformed gas 12, which is a hydrogen-enriched gas, and is passed through a conduit 8.
The hydrogen-enriched gas coming out of the reaction tube 1 goes out of the reaction tube 1.

例えば燃料電池発電装置においては、アノードガスとし
て利用される。
For example, in a fuel cell power generation device, it is used as an anode gas.

上記本実施例では、触媒粒子が反応管壁面にコーティン
グされているために1反応流体が反応管壁面を流れる際
の流れの乱れる程度が大きくなるとともに1反応管管壁
と触媒粒子が接するところの粒子の空隙率は小さくなる
。したがって1反応管管壁と触媒粒子との間の接触点の
数が増加するため、反応管管壁近傍における伝熱能力が
向上する。さらに111反応管管壁コーティングされた
触媒それ自身で、吸熱反応が起こるため、加熱媒体13
からの熱供結が一層促進し、伝熱がさらに促進される。
In this example, since the catalyst particles are coated on the wall surface of the reaction tube, the degree of turbulence in the flow when one reaction fluid flows on the wall surface of the reaction tube becomes large, and the contact between the wall surface of one reaction tube and the catalyst particles increases. The porosity of the particles becomes smaller. Therefore, the number of contact points between the wall of one reaction tube and the catalyst particles is increased, so that the heat transfer ability in the vicinity of the wall of the reaction tube is improved. Furthermore, since an endothermic reaction occurs in the catalyst itself coated on the wall of the 111 reaction tube, the heating medium 13
This further promotes heat connection from the inside and further promotes heat transfer.

上記本実施例によれば、燃料改質器の反応管内壁面に改
質触媒を付着するようにしたので、燃料改質器の反応管
の軸方向の温度分布の均一化を図ることができる。すな
わち、触媒層を設けた部分で吸熱反応が起きるため、反
応管の過熱を防ぐことができ、反応管の温度分布が均一
となる。したがって、付着させる改質触媒の位置と、付
着分布状況によって、温度均一化を任意に行うことがで
き、その結果1反応管の寿命を向上させることができる
According to this embodiment, since the reforming catalyst is attached to the inner wall surface of the reaction tube of the fuel reformer, the temperature distribution in the axial direction of the reaction tube of the fuel reformer can be made uniform. That is, since an endothermic reaction occurs in the portion where the catalyst layer is provided, overheating of the reaction tube can be prevented and the temperature distribution of the reaction tube can be made uniform. Therefore, temperature uniformity can be arbitrarily achieved depending on the position of the deposited reforming catalyst and the deposition distribution, and as a result, the life of one reaction tube can be improved.

次に1本発明の第2の実施例を説明する。第2図はその
断面構成図である0本実施例では、二重管式反応管で構
成される場合の燃料改質器を示している。
Next, a second embodiment of the present invention will be described. FIG. 2 is a sectional view of the fuel reformer. In this embodiment, a fuel reformer is constructed of double-tube reaction tubes.

第2図において1反応管1は、それ自身外管41を構成
するとともに、内部に内管14を外管41と同軸位置に
なるように包含している。改質触媒粒子9は、外管41
と内管14との111に形成される環状の隙間に充填さ
れている。一方、外管41および内管14が改質触媒粒
子9と接するそれぞれの壁面には、改質触媒10が溶射
によって付着されている。
In FIG. 2, one reaction tube 1 itself constitutes an outer tube 41 and includes an inner tube 14 therein so as to be coaxial with the outer tube 41. The reforming catalyst particles 9 are inserted into the outer tube 41
An annular gap formed at 111 between the inner tube 14 and the inner tube 14 is filled. On the other hand, the reforming catalyst 10 is attached by thermal spraying to the respective wall surfaces of the outer tube 41 and the inner tube 14 in contact with the reforming catalyst particles 9.

次に1本実施例の動作について説明する。メタンと水蒸
気の混合ガスである反応ガス11は、燃料改質器内の改
質触媒粒子9が充填された充填層に向って流入し、その
充填層内および外管41と内管14との管壁にそれぞれ
付着された改質触媒10の表面および内部にて改質反応
を起こし、水素富化ガスに変わっていく。このとき、改
質反応に必要な熱量の約75%程度が、外管41の外部
から加熱媒体13によって補給される。残りの約25%
の熱量は、改質ガス12が内管14内を通ることによっ
て、反応ガス11との熱交換を行うことで補われる。生
成した改質ガス12は、内管14を経由して燃料改質器
の系外へ導かれる。
Next, the operation of this embodiment will be explained. The reaction gas 11, which is a mixed gas of methane and water vapor, flows toward the packed bed filled with reforming catalyst particles 9 in the fuel reformer, and flows into the packed bed and between the outer pipe 41 and the inner pipe 14. A reforming reaction occurs on the surface and inside of the reforming catalyst 10 attached to each tube wall, and the gas is converted into hydrogen-enriched gas. At this time, about 75% of the heat required for the reforming reaction is supplied from the outside of the outer tube 41 by the heating medium 13. The remaining approximately 25%
The amount of heat is compensated by the reformed gas 12 passing through the inner tube 14 and exchanging heat with the reaction gas 11. The generated reformed gas 12 is led out of the fuel reformer system via the inner pipe 14.

上記本実施例によれば、燃料数1fttoの外管の内壁
面および内管の外壁面に改質触媒を付着するようにした
ので、燃料改質器の反応管の軸方向温度分布均一化を、
付着させる改質触媒の位置と分布状況によって任意に達
成することができるという効果と、二重管の外管径は、
単管式の場合に比べて大きいので、外管の内壁面への改
質触媒の付着が容易であり、かつ内情については外壁面
への改質触媒を付着させればよいので、同じく改質触媒
の付着が容易であるという効果がある。また、溶射等に
よって触媒を付着させるときの条件を変えることで、付
着の状S(大きさ、形状)を変えられるので、反応管管
壁における反応流体の流れの乱れ具合いをさらに増加す
ることもできる。
According to this embodiment, the reforming catalyst is attached to the inner wall surface of the outer tube and the outer wall surface of the inner tube, which has 1 ftto of fuel, so that the temperature distribution in the axial direction of the reaction tube of the fuel reformer can be made uniform. ,
The effect can be achieved arbitrarily depending on the position and distribution of the attached reforming catalyst, and the outer diameter of the double pipe is
Since it is larger than the single tube type, it is easy to attach the reforming catalyst to the inner wall of the outer tube. This has the effect that the catalyst can be easily attached. In addition, by changing the conditions when depositing the catalyst by thermal spraying, etc., the state of deposit S (size, shape) can be changed, so it is possible to further increase the degree of turbulence in the flow of the reaction fluid on the reaction tube wall. can.

次に、本発明の第3の実施例を第3図に従い説明する。Next, a third embodiment of the present invention will be described with reference to FIG.

第3図はその断面構成図を示したものであり、二重管式
の場合である。
FIG. 3 shows a sectional view of the structure, which is a double pipe type.

本実施例では、第2図の実施例に加え、内管14の内壁
面にも改質触媒15を付着させた場合を示す。
In this embodiment, in addition to the embodiment shown in FIG. 2, a reforming catalyst 15 is also attached to the inner wall surface of the inner tube 14.

第3図において、その動作は1反応ガス11が燃料改質
器内の改質触媒粒子の充填層および外管41および内管
14の管壁に付着された改質触媒10の表面および内部
において改質され、改質ガスとなる。この改質ガス12
は、さらに溶射あるいは塗布等によって内管14の内壁
面に付着された改質触媒15と接触することにより、改
質ガス12の一部がさらに改質触媒15の表面および内
部において改質される。
In FIG. 3, the operation is such that a reaction gas 11 is applied to the packed bed of reforming catalyst particles in the fuel reformer and to the surface and inside of the reforming catalyst 10 attached to the pipe walls of the outer pipe 41 and the inner pipe 14. It is reformed and becomes reformed gas. This reformed gas 12
Further, by contacting with the reforming catalyst 15 attached to the inner wall surface of the inner pipe 14 by thermal spraying or coating, a part of the reformed gas 12 is further reformed on the surface and inside of the reforming catalyst 15. .

上記本実施例によれば、第2図の実施例の効果に加えて
、改質ガスがさらに内管の内壁に保持した改質触媒と接
触し、実質的にガスと改質触媒との接触時間が長くなる
ので、改質率を平衡時の改質率、すなわち最大の改質率
に近づけることができる。しかも、その効果をほとんど
圧力損失の増加なしに実現できることになる。
According to the present embodiment described above, in addition to the effects of the embodiment shown in FIG. Since the time becomes longer, the reforming rate can be brought closer to the reforming rate at equilibrium, that is, the maximum reforming rate. Moreover, this effect can be achieved with almost no increase in pressure loss.

次に、本発明の第4の実施例を第4図に従い説明する。Next, a fourth embodiment of the present invention will be described with reference to FIG.

第4図はその断面構成図を示したものであり、単管の反
応管の場合を示している。
FIG. 4 shows a cross-sectional configuration diagram thereof, and shows the case of a single reaction tube.

第4図において、反応管1の内壁面には改質触媒10が
、外壁面には燃焼触媒16がそれぞれ溶射もしくは塗布
等の手段によって付着されている。
In FIG. 4, a reforming catalyst 10 is attached to the inner wall surface of the reaction tube 1, and a combustion catalyst 16 is attached to the outer wall surface by thermal spraying, coating, or the like.

反応管1の内部に導入された反応ガス11は、改質触媒
10の表面および内部にて改質反応を起こし、水素に富
んだ改質ガス12となって反応管1から放出される。一
方、反応管1の外部には1反応管1を取り囲むように、
空気と可燃ガスの混合燃料ガス17が送り込まれ、その
混合燃料ガス17は燃焼触媒16の表面および内部にて
燃焼し。
The reaction gas 11 introduced into the reaction tube 1 undergoes a reforming reaction on the surface and inside of the reforming catalyst 10, and is released from the reaction tube 1 as hydrogen-rich reformed gas 12. On the other hand, on the outside of the reaction tube 1, so as to surround the reaction tube 1,
A mixed fuel gas 17 of air and combustible gas is fed, and the mixed fuel gas 17 burns on the surface and inside of the combustion catalyst 16.

燃焼ガス13となって反応管1より離れる。以上の経過
において、燃焼触媒16での燃焼反応による発熱台が1
反応管1の管壁を通して、改質触媒10での改質反応の
吸熱台を充当される。なお。
It becomes combustion gas 13 and leaves the reaction tube 1. In the above process, the number of heating units due to the combustion reaction in the combustion catalyst 16 is 1.
It passes through the tube wall of the reaction tube 1 and serves as an endothermic table for the reforming reaction in the reforming catalyst 10. In addition.

反応管1内には、改質触媒粒子が充填されていてよい。The reaction tube 1 may be filled with reforming catalyst particles.

本実施例によれば、前記各実施例の効果に加え。According to this embodiment, in addition to the effects of each of the embodiments described above.

燃焼反応による熱の発生する位置と、改質反応によって
熱の吸収される位置との距離を最短にできるので、燃料
改質器の熱効率が向上し、また、燃焼触媒による燃焼と
したため、騒音およびNOx等が少なくできるという効
果がある。
The distance between the location where heat is generated by the combustion reaction and the location where heat is absorbed by the reforming reaction can be minimized, improving the thermal efficiency of the fuel reformer.In addition, since combustion is performed using a combustion catalyst, noise and This has the effect of reducing NOx, etc.

次に1本発明の第5の実施例について説明する。Next, a fifth embodiment of the present invention will be described.

第5図はその断面構成図を示したものであり、単管式の
燃料改質器の場合を示す。
FIG. 5 shows a cross-sectional configuration diagram thereof, and shows the case of a single-tube fuel reformer.

第5図において、反応管1はガス透過性材料で構成され
ている。ガス透過性材料で構成することにより、例えば
水素分子を容易に透過する一方で、酸素分子を透過しに
くいようにすることができる。
In FIG. 5, the reaction tube 1 is constructed of a gas-permeable material. By using a gas-permeable material, it is possible to easily allow hydrogen molecules to pass through, while making it difficult for oxygen molecules to pass through, for example.

ガス透過性材料としては、所定の大きさの孔を数多く有
するセラミックス等がある。
Examples of gas permeable materials include ceramics having many pores of a predetermined size.

上記ガス透過性材料よりなる反応管1の内壁面には、改
質触媒10が溶射等の手段によって付着されている。前
記反応管1の外部には1反応管1を取り囲むように予熱
された空気18が供結されている。一方、反応管1の内
部に導入された反応ガス11は、改質触媒10の表面お
よび内部にて改質反応を受け、水素に富んだ改質ガス1
2となって1反応管1から取り出される。
A reforming catalyst 10 is attached to the inner wall surface of the reaction tube 1 made of the gas permeable material by means such as thermal spraying. Preheated air 18 is connected to the outside of the reaction tube 1 so as to surround the reaction tube 1 . On the other hand, the reaction gas 11 introduced into the reaction tube 1 undergoes a reforming reaction on the surface and inside of the reforming catalyst 10, and the hydrogen-rich reformed gas 1
2 and taken out from 1 reaction tube 1.

上記反応管1の管壁の内壁面から所定の肉J!メ部分で
は、水素分子を容易に透過し、かつ酸素分子は透過され
にくいような構造となっている。すなわち、上記したよ
うに、所定の大きさをもつ多数の孔が1反応管1に設け
られているからである。
A predetermined amount of meat J! from the inner wall surface of the tube wall of the reaction tube 1! The main part has a structure that allows hydrogen molecules to pass through easily and oxygen molecules to hardly pass through. That is, as described above, one reaction tube 1 is provided with a large number of holes having a predetermined size.

ガス選択透過性のある多孔質性材料の使用によって、改
質反応の結果得られた水素19の一部が、多孔質の改質
触媒10およびそのガス選択透過性のある反応管1の管
壁内部を、反応管1の外側方向へ透過する。
By using a porous material having gas selective permeability, a part of the hydrogen 19 obtained as a result of the reforming reaction is transferred to the porous reforming catalyst 10 and the tube wall of the reaction tube 1 having gas selective permeability. The inside of the reaction tube 1 is transmitted toward the outside.

一方、ガス選択透過性を有する反応管管壁部分以外の反
応管管壁は、酸素分子を容易に透過する大きさの孔が、
数多く占めている。これにより、改質反応で得られた水
#J19の一部と、空気18中の酸素とが、多孔質の反
応管1の内部で接触し。
On the other hand, the reaction tube wall other than the reaction tube wall portion having gas selective permeability has pores large enough to allow oxygen molecules to pass through easily.
It occupies a large number. As a result, a part of water #J19 obtained by the reforming reaction and oxygen in the air 18 come into contact inside the porous reaction tube 1.

燃焼反応を起こす。その結果、改質反応による吸熱台の
熱を連続的かつ直接的に補給することができる。反応管
1内には、改質触媒粒子が充填されていてよい。
Causes a combustion reaction. As a result, the heat of the heat absorption table due to the reforming reaction can be continuously and directly replenished. The reaction tube 1 may be filled with reforming catalyst particles.

上記本実施例によれば、多孔質の反応管内部で燃焼反応
を起こさせ、その燃焼熱を改質反応の吸熱台に当てる構
成としたため、燃料改質器の熱効率を向上することがで
きる。
According to this embodiment, the combustion reaction is caused inside the porous reaction tube, and the heat of combustion is applied to the heat absorption table for the reforming reaction, so that the thermal efficiency of the fuel reformer can be improved.

次に、本発明の第6の実施例について説明する。Next, a sixth embodiment of the present invention will be described.

第6図はその断面構成図を示したものであり、単管式の
燃料改質器の場合である。
FIG. 6 shows a cross-sectional configuration diagram of the fuel reformer, which is a single-tube type fuel reformer.

第6図において、前記第5図の実施例で説明したガス透
過性材料よりなる反応管1の内壁面に付着させた改質触
媒10を、その反応管1の内壁面から適当な肉厚部分ま
でに拡散させて保持している。改質触媒(Ni)の拡散
は、セラミックにニッケルを拡散させることにより実現
することができる。
In FIG. 6, the reforming catalyst 10 attached to the inner wall surface of the reaction tube 1 made of the gas-permeable material explained in the embodiment of FIG. It has been diffused and maintained. Diffusion of the reforming catalyst (Ni) can be achieved by diffusing nickel into ceramic.

上記反応管1の外部には1反応管1を取り囲むように、
予熱された空気18が送り込まれている。
On the outside of the reaction tube 1, so as to surround the reaction tube 1,
Preheated air 18 is being fed.

反応ガス11は、前記改質触媒10の拡散部分20にお
いて改質反応を受け、水素に富んだ改質ガス12となっ
て1反応管1から排出される。改質反応の結果得られた
水素19の一部が、反応管1の管壁内で空気18中の酸
素と接触し、燃焼反応を起こすことにより、改質反応に
よる吸熱台の熱を連続的かつ直接的に補給する。
The reaction gas 11 undergoes a reforming reaction in the diffusion section 20 of the reforming catalyst 10, becomes hydrogen-rich reformed gas 12, and is discharged from one reaction tube 1. A part of the hydrogen 19 obtained as a result of the reforming reaction comes into contact with oxygen in the air 18 within the wall of the reaction tube 1 and causes a combustion reaction, thereby continuously dissipating the heat in the heat absorbing table due to the reforming reaction. and supply directly.

上記反応管1に拡散された改質触媒は、コーティングさ
れている場合に比べて、その耐剥離性が向上する。また
、内部に拡散した触媒部分で1反応ガスがかかる部分に
拡散することにより、その部分において改質反応が起こ
る。
The reforming catalyst diffused into the reaction tube 1 has improved peeling resistance compared to a case where the reforming catalyst is coated. Furthermore, when one reaction gas diffuses into the catalyst portion that has diffused into the interior, a reforming reaction occurs in that portion.

上記本実施例によれば、第5図で説明した実施例におけ
る効果に加え、発熱部と吸熱部の位置がさらに近いため
、燃料改質器の熱効率が一層向上する。また1反応管管
壁における温度分布の差が小さくなり1反応管の寿命が
長くなる。
According to this embodiment, in addition to the effects of the embodiment described in FIG. 5, the heat generating part and the heat absorbing part are located closer to each other, so that the thermal efficiency of the fuel reformer is further improved. Furthermore, the difference in temperature distribution on the wall of one reaction tube becomes smaller, and the life of one reaction tube becomes longer.

次に、本発明の第7の実施例について説明する。Next, a seventh embodiment of the present invention will be described.

第7図はその断面構成図を示したものであり、単管式の
燃料改質器である場合を示す。
FIG. 7 shows a cross-sectional configuration diagram thereof, and shows the case where it is a single-tube fuel reformer.

第7図では、第6図で説明した実施例に加えて。In addition to the embodiment described in FIG. 6, FIG.

ガス透過性材料よりなる反応管1の外壁面から、適当な
肉厚部分までに燃焼触媒16を拡散させて保持したこと
を特徴とする。
It is characterized in that the combustion catalyst 16 is diffused and held from the outer wall surface of the reaction tube 1 made of a gas-permeable material to an appropriate wall thickness.

反応管1の外部には1反応管1を取り囲むように、予熱
された空気18が送り込まれており、空気18は、前記
燃焼触媒16(例えばLa−βAQzOsを担体にし、
プラチナをコーティングしたもの)の拡散部分21に入
っていく。一方。
Preheated air 18 is fed into the outside of the reaction tube 1 so as to surround the reaction tube 1.
(coated with platinum) into the diffusion section 21. on the other hand.

反応ガス11は、改質触媒10の拡散部分20において
改質反応を受け、水素に富んだ改質ガス12となって、
反応1から取り出される。その場合、改質反応の結果得
られた水:A19の一部が。
The reaction gas 11 undergoes a reforming reaction in the diffusion section 20 of the reforming catalyst 10 and becomes a hydrogen-rich reformed gas 12.
Taken from reaction 1. In that case, part of the water: A19 obtained as a result of the reforming reaction.

反応管1の管壁内に保持した燃焼触媒16の拡散部分2
1において、空気18中の酸素と接触し。
Diffusion portion 2 of combustion catalyst 16 held within the tube wall of reaction tube 1
1, in contact with oxygen in the air 18.

燃焼反応を起こす、その結果、改質反応に必要な吸熱部
の熱を連続的かつ直接的に供結することができる。
A combustion reaction occurs, and as a result, the heat of the endothermic part necessary for the reforming reaction can be continuously and directly connected.

、 上記本実施例によれば、第6図で説明した実施例に
おける効果に加え、燃焼触媒を用いたことにより、可燃
性ガス濃度が低くても、改質反応に必要な熱量を供結す
ることができる。また1反応管管壁内での燃焼温度を低
下させることができるため1反応管の寿命を一層向上さ
せることができる。
According to this embodiment, in addition to the effects of the embodiment described in FIG. be able to. Furthermore, since the combustion temperature within the wall of one reaction tube can be lowered, the life of one reaction tube can be further improved.

上記第1図〜第7図に説明した燃料改質器は。The fuel reformer illustrated in FIGS. 1 to 7 above is as follows.

例えば燃料電池発電装置に用いることができる。For example, it can be used in a fuel cell power generation device.

燃料電池発電装置に用いることにより、負荷追従性が優
れ、改質効率が高くなるものである。
By using it in a fuel cell power generation device, it has excellent load followability and high reforming efficiency.

〔発明の効果〕〔Effect of the invention〕

以上説明したように1本発明に係る燃料改質器によれば
、改質触媒を反応管壁面に保持させたため1反応管管壁
近傍における伝熱能力が向上し、迅速な改質反応を行う
ことができる。
As explained above, according to the fuel reformer according to the present invention, since the reforming catalyst is held on the wall surface of the reaction tube, the heat transfer ability in the vicinity of the wall of the reaction tube is improved, and a rapid reforming reaction is performed. be able to.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第7図は本発明の各実施例を示す断面構成図で
ある。 ■・・・反応管、9・・・改質触媒粒子、10・・・改
質触媒(コーティング)、16・・・燃焼触媒。
FIGS. 1 to 7 are cross-sectional configuration diagrams showing each embodiment of the present invention. ■... Reaction tube, 9... Reforming catalyst particles, 10... Reforming catalyst (coating), 16... Combustion catalyst.

Claims (1)

【特許請求の範囲】 1、改質触媒が充填された反応管内に反応ガスが供結さ
れ、当該反応ガスを改質ガスに変換してなる燃料改質器
において、前記反応管壁面に改質触媒が保持されてなる
ことを特徴とする燃料改質器。 2、特許請求の範囲第1項において、前記反応管壁に改
質触媒を拡散させることにより、当該反応管壁面に改質
触媒が保持されてなることを特徴とする燃料改質器。 3、特許請求の範囲第1項または第2項において、前記
反応管はガス透過性材料で構成されてなることを特徴と
する燃料改質器。
[Scope of Claims] 1. In a fuel reformer in which a reaction gas is connected to a reaction tube filled with a reforming catalyst and the reaction gas is converted into a reformed gas, reforming is carried out on the wall surface of the reaction tube. A fuel reformer characterized by retaining a catalyst. 2. The fuel reformer according to claim 1, wherein the reforming catalyst is retained on the wall surface of the reaction tube by diffusing the reforming catalyst into the wall of the reaction tube. 3. A fuel reformer according to claim 1 or 2, wherein the reaction tube is made of a gas-permeable material.
JP61060073A 1986-03-18 1986-03-18 Fuel reformer Expired - Lifetime JPH0722694B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61060073A JPH0722694B2 (en) 1986-03-18 1986-03-18 Fuel reformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61060073A JPH0722694B2 (en) 1986-03-18 1986-03-18 Fuel reformer

Publications (2)

Publication Number Publication Date
JPS62216634A true JPS62216634A (en) 1987-09-24
JPH0722694B2 JPH0722694B2 (en) 1995-03-15

Family

ID=13131540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61060073A Expired - Lifetime JPH0722694B2 (en) 1986-03-18 1986-03-18 Fuel reformer

Country Status (1)

Country Link
JP (1) JPH0722694B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0263545A (en) * 1988-08-30 1990-03-02 Toshiaki Kabe Reaction tube
US5167865A (en) * 1989-10-02 1992-12-01 Mitsubishi Petrochemical Engineering Company Limited Apparatus and method for preparing reformed gas by means of electroless plating
US7060118B1 (en) 1998-07-21 2006-06-13 Haldor Topse A/S Synthesis gas production by steam reforming
US7087192B2 (en) 2002-09-26 2006-08-08 Haldor Topsoe A/S Process for the preparation of synthesis gas
US7090789B2 (en) 2003-02-05 2006-08-15 Haldor Topsoe A/S Process and catalyst for treatment of synthesis gas
US7094363B2 (en) 2002-09-26 2006-08-22 Haldor Topsoe A/S Process for the preparation of a synthesis gas
US7241401B2 (en) 2002-09-26 2007-07-10 Haldor Topsoe A/S Process for the production of synthesis gas

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4884808A (en) * 1972-02-05 1973-11-10
JPS4946719A (en) * 1972-09-08 1974-05-04

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4884808A (en) * 1972-02-05 1973-11-10
JPS4946719A (en) * 1972-09-08 1974-05-04

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0263545A (en) * 1988-08-30 1990-03-02 Toshiaki Kabe Reaction tube
US5167865A (en) * 1989-10-02 1992-12-01 Mitsubishi Petrochemical Engineering Company Limited Apparatus and method for preparing reformed gas by means of electroless plating
US7060118B1 (en) 1998-07-21 2006-06-13 Haldor Topse A/S Synthesis gas production by steam reforming
US7087192B2 (en) 2002-09-26 2006-08-08 Haldor Topsoe A/S Process for the preparation of synthesis gas
US7094363B2 (en) 2002-09-26 2006-08-22 Haldor Topsoe A/S Process for the preparation of a synthesis gas
US7241401B2 (en) 2002-09-26 2007-07-10 Haldor Topsoe A/S Process for the production of synthesis gas
US7547332B2 (en) 2002-09-26 2009-06-16 Haldor Topsoe A/S Apparatus for the preparation of synthesis gas
US7717971B2 (en) 2002-09-26 2010-05-18 Haldor Topsoe A/S Process for the production of synthesis gas
US7090789B2 (en) 2003-02-05 2006-08-15 Haldor Topsoe A/S Process and catalyst for treatment of synthesis gas

Also Published As

Publication number Publication date
JPH0722694B2 (en) 1995-03-15

Similar Documents

Publication Publication Date Title
US11383978B2 (en) Heat integrated reformer with catalytic combustion for hydrogen production
US11305250B2 (en) Catalytically heated fuel processor with replaceable structured supports bearing catalyst for fuel cell
JP4718069B2 (en) Compact, lightweight methanol fuel gas autothermal reformer
US6294138B1 (en) Reactor for performing endothermic catalytic reactions
JP4643027B2 (en) Compact and lightweight self-heating reformer
BRPI0810937B1 (en) HIGH AND THERMALLY INTEGRATED AND COMBINED STEAM REFORMER FOR THE PRODUCTION OF HYDROGEN FROM A FUEL SOURCE AND A STEAM REFORMER ASSEMBLY FOR USE IN A FUEL PROCESSING SYSTEM
CN104888664B (en) A kind of self-heating hydrogen supply device and its application
US6923944B2 (en) Membrane reactor for gas extraction
US11607657B2 (en) Heat integrated reformer with catalytic combustion for hydrogen production
CN106582467B (en) A kind of radial direction microchannel coupled reactor and application
JPS62216634A (en) Reformer for fuel
CN114804027A (en) Reaction device for methane autothermal reforming porous medium
JPS5826002A (en) Steam reforming method and reaction tube for steam reforming
JP3432298B2 (en) Fuel reformer
RU2009712C1 (en) Apparatus for catalytic conversion of hydrocarbons
JPH01215340A (en) Fuel reformer
CN114212755A (en) High-efficient compact methyl alcohol hydrogen production ware
JPS58124532A (en) Endothermic reaction apparatus
JP2001302208A (en) Reformer
JPS62186935A (en) Reactor
JPS60241672A (en) Fuel reformer for fuel cell
JPS61287435A (en) Catalytic reaction apparatus