JPS61287435A - Catalytic reaction apparatus - Google Patents
Catalytic reaction apparatusInfo
- Publication number
- JPS61287435A JPS61287435A JP12647085A JP12647085A JPS61287435A JP S61287435 A JPS61287435 A JP S61287435A JP 12647085 A JP12647085 A JP 12647085A JP 12647085 A JP12647085 A JP 12647085A JP S61287435 A JPS61287435 A JP S61287435A
- Authority
- JP
- Japan
- Prior art keywords
- heat exchanger
- chamber
- combustion
- transfer pipe
- exchanger tube
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/02—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
- B01J8/06—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
- B01J8/062—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes being installed in a furnace
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
- Hydrogen, Water And Hydrids (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は炭化水素燃料から水素を製造する如き供給燃料
から生成ガスを製造するのに用いる触媒反応装置に関す
るものである。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a catalytic reaction apparatus for use in producing a product gas from a feed fuel, such as producing hydrogen from a hydrocarbon fuel.
[従来の技術]
従来、この種触媒反応装置と1ノでは、特開昭53−7
8983号公報に記載されている如き構成のものがある
。[Prior art] Conventionally, this type of catalytic reaction device and 1 No.
There is a structure as described in Japanese Patent No. 8983.
今、上記公知の触媒反応装置について説明すると、第3
図及び輌4図に示す如く、炉a内の下部にプレートbを
設け、該プレートb上に、多数の筒状壁Cを炉軸と平行
にして並べて設け、該各部状壁Cの内側に、該筒状壁C
の内径よりも小さい外径とし且つ上端を閉じた管状リア
クタdを立てて位置させると共に、該管状リアクタdの
内側に所要の間隔を設けてセンタチューブeを配し、更
に該センターチューブeの内側に筒状プラグfを同心状
に配し、上記管状リアクタdの外面と筒状壁Cの内面と
の間の隙間を環状バーナガス通路Qとし、管状リアクタ
dの内面とセンタチューブeの外面との間の隙間を環状
反応室りとし、センタチューブeの内面と筒状プラグf
の外面との間の隙間を環状再生室1としている。又、上
記環状バーナガス通路9の下端には高温ガスの出口導管
jが、環状反応yhの下端には水蒸気及び炭化水素燃料
の混合物の供給導管kが、又、環状再生室iの下端には
反応生成物の出口導管!がそれぞれ接続してあり、環状
バーナガス通路gにはアルミナ球mが充填してあり、環
状反応室りには触媒粒子nが充填しである。Now, to explain the above-mentioned known catalytic reaction device, the third
As shown in Figures 4 and 4, a plate b is provided at the lower part of the furnace a, and on the plate b, a number of cylindrical walls C are arranged parallel to the furnace axis. , the cylindrical wall C
A tubular reactor d, which has an outer diameter smaller than the inner diameter and whose upper end is closed, is placed upright, and a center tube e is placed inside the tubular reactor d with a required spacing, and further inside the center tube e. A cylindrical plug f is arranged concentrically in the cylindrical reactor d. The gap between them is an annular reaction chamber, and the inner surface of the center tube e and the cylindrical plug f
An annular regeneration chamber 1 is defined by the gap between the outer surface of the Further, at the lower end of the annular burner gas passage 9 is an outlet conduit j for high temperature gas, at the lower end of the annular reaction yh is a supply conduit k for a mixture of steam and hydrocarbon fuel, and at the lower end of the annular regeneration chamber i is a reaction conduit k. Product exit conduit! are connected to each other, the annular burner gas passage g is filled with alumina spheres m, and the annular reaction chamber is filled with catalyst particles n.
更に、炉aの上端部には、バーナ燃焼マニホールド0と
空気マニホールドpとが区画して形成してあり、バーナ
燃焼マニホールド0には炉用燃料が導管qを経て供給さ
れるJ:うにしであると共に、空気マニホールドpには
空気が導管rを経て供給されるようにしてあり、バーナ
キャビリティSで燃料と空気の燃焼が行われ、ここで生
じた高温ガスが環状バーナガス通路9を通るようにしで
ある。Furthermore, a burner combustion manifold 0 and an air manifold p are formed separately at the upper end of the furnace a, and the burner combustion manifold 0 is supplied with furnace fuel through a conduit q. At the same time, air is supplied to the air manifold p via a conduit r, combustion of fuel and air is performed in a burner cavity S, and the high temperature gas generated here passes through an annular burner gas passage 9. It's Nishide.
したがって、上記従来の触媒反応装置では、導管により
水蒸気及び炭化水素燃料の混合物を供給すると、該混合
物は環状反応室り内に入り、ここで環状バーナガス通路
g内を下降している高温ガスにより加熱され始め、触媒
粒子nの存在下で反応を開始する。反応室りの上方へ移
動した反応生成物は再生室iを通って下降する。Thus, in the conventional catalytic reactor described above, a conduit supplies a mixture of steam and hydrocarbon fuel which enters the annular reaction chamber where it is heated by the hot gas descending in the annular burner gas passage g. The reaction begins in the presence of catalyst particles n. The reaction products that have moved upwards in the reaction chamber descend through the regeneration chamber i.
[発明が解決しようとする問題点]
ところが、上記従来の触媒反応装置では、■ 管状リア
クタdの−に部が位置しているバーナキャビリティSで
燃焼が行われるが、輻射伝熱にJ:る燃焼潤度の低下に
より低発熱燃料の使用が困難である、
■ アルミナ球11の熱容量が大きいため、炉があたた
まるまでに時間がかかり、短詩間での起動が囲動である
、
■ 触媒粒子nの流動化が生じる、
■ 全体として大型化している、
等の問題がある。[Problems to be Solved by the Invention] However, in the above-mentioned conventional catalytic reaction device, combustion is performed in the burner cavity S located at the - side of the tubular reactor d, but due to radiation heat transfer J: It is difficult to use low-heat-generating fuel due to the decrease in combustion moisture, ■ Due to the large heat capacity of the alumina bulbs 11, it takes time for the furnace to warm up, and the startup is a circling motion, ■ Catalyst particles There are problems such as fluidization of n occurs, ■ overall size increases, etc.
そこで、本発明は、主として短時間での起動、小型化を
図ろうどするものである。Therefore, the present invention is primarily aimed at achieving quick start-up and miniaturization.
[問題点を解決するための手段]
本発明は、炉内に複数本の二重伝熱管を並べて立て、各
外側の伝熱管相互間及び内側の伝熱管の内部に連続した
空孔を有する多孔性金属を嵌め込むと共に、上記外側の
伝熱管の内面と内側の伝熱管の外面との間の反応室に、
連続した空孔を有する多孔性金属をベースとし触媒を嵌
め込み、各反応室下方に水蒸気及び炭化水素の混合物を
供給できるようにし、且つ外側の伝熱管の外側に燃焼ガ
スが導かれるよう各二重伝熱管の上方に燃焼室を位置さ
せた構成とする。[Means for Solving the Problems] The present invention provides a porous structure in which a plurality of double heat exchanger tubes are placed side by side in a furnace, and continuous holes are formed between each outer heat exchanger tube and inside the inner heat exchanger tube. a reaction chamber between the inner surface of the outer heat exchanger tube and the outer surface of the inner heat exchanger tube,
The base is made of a porous metal with continuous pores, and a catalyst is fitted in it, allowing a mixture of steam and hydrocarbons to be supplied to the lower part of each reaction chamber, and each double layer is made of a porous metal with continuous pores so that a mixture of steam and hydrocarbons can be supplied to the lower part of each reaction chamber, and combustion gas is guided to the outside of the outer heat exchanger tube. The combustion chamber is located above the heat exchanger tubes.
[作 用]
燃焼ガスは外側伝熱管相互間に導かれると、多孔性金属
の多数の空孔内を通って流れる。一方、反応室に水蒸気
と炭化水素の混合物が送られると、該混合物は周りの高
温ガスにあたためられて上昇し、この間に触媒により改
質が行われ、水素と他のガスに変換され、水素は反応室
上端部で内側伝熱管内に入って下降し、外部へ取り出さ
れる。[Function] When the combustion gas is guided between the outer heat exchanger tubes, it flows through the numerous pores of the porous metal. On the other hand, when a mixture of water vapor and hydrocarbons is sent to the reaction chamber, the mixture is warmed by the surrounding high-temperature gas and rises. During this time, the mixture is reformed by a catalyst and converted into hydrogen and other gases. enters the inner heat transfer tube at the upper end of the reaction chamber, descends, and is taken out to the outside.
[実 施 例] 以下、本発明の実施例を図面を参照して説明する。[Example] Embodiments of the present invention will be described below with reference to the drawings.
第1図及び第2図に示す如く、縦長とした炉1の内側に
、上端を閉じた大径伝熱管2とその軸心部に位置させた
小径伝熱管3とからなる二重伝熱管を複数本(図では7
本)所定の間隔で並立させ、上記大径伝熱管2の下端は
プレート4で支持させると共に、小径伝熱管3の下端は
上記プレート4を貫通して炉1内の下部に設けたプレー
ト5で支持させ、上記大径伝熱管2と小径伝熱管3との
間の空間を反応室6として該反応室6の下端を、上記プ
レート4と5との間の部屋7に開口させ、更に、小径伝
熱管3は上端を反応室6に開口させ、又、下端をプレー
ト5下方の部屋8に開口さゼる。As shown in FIGS. 1 and 2, a double heat exchanger tube consisting of a large diameter heat exchanger tube 2 with its upper end closed and a small diameter heat exchanger tube 3 located at its axial center is installed inside a vertically elongated furnace 1. Multiple books (7 in the figure)
The lower ends of the large-diameter heat exchanger tubes 2 are supported by a plate 4, and the lower ends of the small-diameter heat exchanger tubes 3 are supported by a plate 5 that penetrates the plate 4 and is provided at the lower part of the furnace 1. The space between the large-diameter heat exchanger tube 2 and the small-diameter heat exchanger tube 3 is defined as a reaction chamber 6, and the lower end of the reaction chamber 6 is opened into the chamber 7 between the plates 4 and 5. The heat exchanger tube 3 has an upper end opened into a reaction chamber 6, and a lower end opened into a chamber 8 below the plate 5.
上記各二重伝熱管を構成する各大径伝熱管2の外部と炉
内壁との間に形成される空間9には、銅又は鉄を主成分
とじ且つ連続した空孔を有する多孔性金属(海綿状金属
)10を適当な大きさに切ってなるものを積み重ねなが
ら嵌め込むと共に、各小径伝熱管3の内部にも同様に切
断加工した多孔性金属10を嵌め込む。一方、反応室6
内には、ニッケルを主成分とし且つ連続した空孔を有す
る如く成形した多孔性金属をベース−〇−
とした触媒11を組み込む。The space 9 formed between the outside of each large-diameter heat exchanger tube 2 constituting each of the double heat exchanger tubes and the furnace inner wall is made of a porous metal (mainly composed of copper or iron and having continuous pores). Spongy metal) 10 cut into appropriate sizes are stacked and fitted, and similarly cut porous metal 10 is fitted inside each small diameter heat exchanger tube 3. On the other hand, reaction chamber 6
Inside, a catalyst 11 based on a porous metal formed of nickel as a main component and formed to have continuous pores is incorporated.
前記各二重伝熱管の上方には、燃焼室12を設けると共
に燃焼室12外周部にエアジャケット13を段cノ、且
つ上記燃焼室12の下部に、多孔性セラミックス(セラ
ミックフオーム)からなる輻射変換体14を設置′Jる
。A combustion chamber 12 is provided above each of the double heat transfer tubes, and an air jacket 13 is provided on the outer periphery of the combustion chamber 12, and a radiant air jacket made of porous ceramic (ceramic foam) is provided at the bottom of the combustion chamber 12. Install the converter 14.
なお、前記多孔性金属をベースとした触媒は、次のよう
にして製造する。Note that the porous metal-based catalyst is manufactured as follows.
すなわち、アルミニウム、珪素やマグネシウム等のアル
カリ土類金属元素や、チタン、ジルコニウム、バナジウ
ム等の遷移金属元素の双方又は一方を含む化合物を水や
有機溶剤に溶がしあるいは懸濁させて溶液を作る。次に
、ニッケルを主成分とした多孔性金属体に脱脂、酸洗処
理を施こして表面を洗浄した後、該多孔性金属体の表面
に、上記溶液を塗布する等して化合物の薄膜を形成し、
次に、上記化合物の薄膜を形成した多孔性金属体を乾燥
させた後、1000℃以上の高温下で長時間酸素を含む
雰囲気中で酸化させ、しかる後、酸化処理したニッケル
を主成分とする多孔性金属体を水素あるいは一酸化炭素
の還元気流中で還元処理することにより製造する。That is, a solution is prepared by dissolving or suspending a compound containing both or one of alkaline earth metal elements such as aluminum, silicon, and magnesium, and transition metal elements such as titanium, zirconium, and vanadium in water or an organic solvent. . Next, the surface of the porous metal body mainly composed of nickel is cleaned by degreasing and pickling, and then the above solution is applied to the surface of the porous metal body to form a thin film of the compound. form,
Next, after drying the porous metal body on which a thin film of the above compound has been formed, it is oxidized in an oxygen-containing atmosphere at a high temperature of 1000° C. or higher for a long time, and then the oxidized nickel is formed as a main component. It is produced by reducing a porous metal body in a reducing gas stream of hydrogen or carbon monoxide.
第1図中、15は部屋7に設けた水蒸気及び炭化水素燃
料の入口、16は水素ガスの出口、17は燃焼ガスの出
口、18は燃焼室12への燃料の入口、19はエアの入
口である。In Fig. 1, 15 is an inlet for steam and hydrocarbon fuel provided in the chamber 7, 16 is an outlet for hydrogen gas, 17 is an outlet for combustion gas, 18 is an inlet for fuel into the combustion chamber 12, and 19 is an inlet for air. It is.
エアの入口19からエアを、又、燃料入口18から燃料
を入れると、燃焼室12内で燃焼が行われる。燃焼室1
2の下側に多孔セラミックスからなる輻射変換体14を
図示の如く設けておくと、該輻射変換体14は輻射熱を
はね返して燃焼室12内にとじ込めるため、燃焼室12
内の温度を高くすることができて燃焼を安定化させるこ
とができ、これにより低発熱量燃料を使用しても燃焼安
定が図れて該低発熱量燃料が利用できることになる。し
たがって、燃焼室12の燃焼が安定していれば、輻射変
換体14はなくてもよいことになる。When air is introduced from the air inlet 19 and fuel is introduced from the fuel inlet 18, combustion occurs within the combustion chamber 12. Combustion chamber 1
If a radiation converter 14 made of porous ceramics is provided on the lower side of the combustion chamber 12 as shown in the figure, the radiation converter 14 can repel radiant heat and trap it in the combustion chamber 12.
The internal temperature can be raised to stabilize combustion, and as a result, even if low calorific value fuel is used, combustion can be stabilized and the low calorific value fuel can be used. Therefore, if the combustion in the combustion chamber 12 is stable, the radiation converter 14 may be omitted.
一方、入口15から水蒸気及び炭化水素燃料、たとえば
、メタンガス(CH4)を供給すると、部屋7から各二
重伝熱管内の反応室6に入る。On the other hand, when steam and hydrocarbon fuel, such as methane gas (CH4), are supplied from the inlet 15, they enter the reaction chamber 6 in each double heat exchanger tube from the chamber 7.
前記燃焼室12で燃焼されで生じた燃焼ガスは各二重伝
熱管の外の空間9に流入する。該空間9には、多孔性金
属体10が嵌め込んであり、該多孔性金属体10は表面
積が大であるため伝熱性能がよく、又、多数の空孔があ
るため燃焼ガスは支障なく通過できる。The combustion gas generated by combustion in the combustion chamber 12 flows into the space 9 outside each double heat exchanger tube. A porous metal body 10 is fitted into the space 9, and the porous metal body 10 has a large surface area, so it has good heat transfer performance, and has a large number of pores, so the combustion gas can flow through it without any problem. Can pass.
上記反応室6に入った水蒸気及びメタンガスは、上記二
重伝熱管外の燃焼ガスにより加熱されて上昇し、上昇過
程で反応室6内に配置した多孔性金属体をベースとでる
触媒11によって、Cト14 +H20−1Co
→−3112CO+[」2O−1CO2→−1」2
の反応が行われる。反応室6で反応を終え1りられた水
素は、反応室6の上端にて小径伝熱管3の内部へ入り、
該伝熱管3内の多孔性金属体10を通過して下降し、部
屋8、出口1Gから取り出される。水蒸気及びメタンガ
スの加熱に利用された燃焼ガスは、出口17からυl出
される。The water vapor and methane gas that entered the reaction chamber 6 are heated by the combustion gas outside the double heat transfer tube and rise, and in the rising process, a catalyst 11 based on a porous metal body disposed inside the reaction chamber 6 causes Cto14 +H20-1Co
→-3112CO+[''2O-1CO2→-1''2 reaction is performed. Hydrogen that has completed the reaction in the reaction chamber 6 enters the inside of the small diameter heat exchanger tube 3 at the upper end of the reaction chamber 6.
It passes through the porous metal body 10 in the heat transfer tube 3 and descends, and is taken out from the chamber 8 and the outlet 1G. The combustion gas used to heat the steam and methane gas is discharged from the outlet 17.
[発明の効果]
一〇−
以上jd(べた如く、本発明の触媒反応装置によれば、
二重伝熱管を複数本並べC各二重伝熱管と炉内壁との空
間及び各二重伝熱管の小径伝熱管内部に多孔性金属体を
嵌め込み、且つ上記二重伝熱管の大径伝熱管と小径伝熱
管との間の反応室に、多孔性金属体をベースとした触媒
を嵌め込んで使用する構成としであるので、次の如き優
れた効果を奏し得る。[Effects of the invention] 10- or more
A plurality of double heat exchanger tubes are arranged C, and a porous metal body is fitted into the space between each double heat exchanger tube and the inner wall of the furnace and inside the small diameter heat exchanger tube of each double heat exchanger tube, and the large diameter heat exchanger tube of the double heat exchanger tube is fitted. Since the structure is such that a catalyst based on a porous metal body is fitted into the reaction chamber between the heat transfer tube and the small-diameter heat exchanger tube, the following excellent effects can be achieved.
ff) 反応室を挾むように外壁部と内壁部に多孔性
金属体を嵌め込んで、該多孔性金属体の高圧表面積を利
用づるようにしであるため、(1) 高い熱通過率が
19られ、装置が小゛型化できる。ff) Since a porous metal body is fitted into the outer wall and the inner wall so as to sandwich the reaction chamber, and the high-pressure surface area of the porous metal body is utilized, (1) a high heat transfer rate is achieved; The device can be made smaller.
■) 熱容量が小さく、短時間で起動ができる。■) It has a small heat capacity and can be started up in a short time.
Oi9 多孔性金属体の開孔率が大きく、通気にJ、
る圧損が小ざい。Oi9 The porosity of the porous metal body is large, making it suitable for ventilation.
The pressure loss is small.
00 伝熱管が二重管でよく、且つ1本を太くでき、
従来の如き中央に設(Jている別の密閉管を必要とせず
、]ンパク1〜にで゛きる。00 The heat transfer tube can be a double tube, and one tube can be made thicker.
There is no need for a separate sealed tube installed in the center as in the conventional case, and it can be made up of 1 to 100 ml.
(II) 多孔性金属体をベースどした触媒を反応室
に使用しているため、触媒の伝熱f11がよくて1本を
太くCきると共に、高流速子におい(も触媒が流動化す
るおそれがイjい。(II) Since a catalyst based on a porous metal body is used in the reaction chamber, the heat transfer f11 of the catalyst is good, and one can be thickened. That's great.
[相] 又、燃焼室の下流部に多孔性セラミックスの輻
射変換体を使用JることにJ:す、輻q4熱を炉内にと
じ込めて記gを高くし燃焼を安定させることができるの
で、低発熱量燃料の利用が可能となる。[Phase] In addition, by using a porous ceramic radiation converter in the downstream part of the combustion chamber, it is possible to trap the radiant heat in the furnace, increase the g, and stabilize combustion. Therefore, it becomes possible to use low calorific value fuel.
第1図は本発明の触媒反応装置の一実施例図、第2図は
第1図のA−A断面図、第3図は従来の触媒反応装置の
切断側面図、第4図は第3図のB方向断面図である。
1は炉、2は大径伝熱管、3は小径伝熱管、6は反応室
、7,8は部屋、9は空間、10は多孔性金属体、11
は触媒、12は燃焼室、13はエアジャケット、14は
輻射変換体を示す。FIG. 1 is an embodiment of the catalytic reaction device of the present invention, FIG. 2 is a sectional view taken along the line A-A in FIG. 1, FIG. 3 is a cut side view of a conventional catalytic reaction device, and FIG. It is a sectional view in the B direction of the figure. 1 is a furnace, 2 is a large diameter heat exchanger tube, 3 is a small diameter heat exchanger tube, 6 is a reaction chamber, 7 and 8 are rooms, 9 is a space, 10 is a porous metal body, 11
12 is a combustion chamber, 13 is an air jacket, and 14 is a radiation converter.
Claims (1)
伝熱管の大径伝熱管の外壁部及び小径伝熱管の内壁部に
、多孔性金属体を嵌め込み、且つ上記大径伝熱管と小径
伝熱管との間の反応室に、多孔性金属体をベースとした
触媒を嵌め込み使用してなり、上記各二重伝熱管の上方
に燃焼室を備えたことを特徴とする触媒反応装置。1) Stand a plurality of double heat exchanger tubes side by side in a furnace, fit a porous metal body into the outer wall of the large diameter heat exchanger tube and the inner wall of the small diameter heat exchanger tube of each double heat exchanger tube, and A catalyst made by fitting a catalyst based on a porous metal body into a reaction chamber between a heat exchanger tube and a small-diameter heat exchanger tube, and comprising a combustion chamber above each of the double heat exchanger tubes. Reactor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12647085A JPS61287435A (en) | 1985-06-11 | 1985-06-11 | Catalytic reaction apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12647085A JPS61287435A (en) | 1985-06-11 | 1985-06-11 | Catalytic reaction apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61287435A true JPS61287435A (en) | 1986-12-17 |
Family
ID=14936013
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12647085A Pending JPS61287435A (en) | 1985-06-11 | 1985-06-11 | Catalytic reaction apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61287435A (en) |
-
1985
- 1985-06-11 JP JP12647085A patent/JPS61287435A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3075757B2 (en) | Endothermic reactor | |
RU2424847C2 (en) | Internal combustion heat exchange reactor for endothermic reaction in fixed bed | |
JP4718069B2 (en) | Compact, lightweight methanol fuel gas autothermal reformer | |
JPH0422827Y2 (en) | ||
US6969411B2 (en) | Compact light weight autothermal reformer assembly | |
US4909809A (en) | Apparatus for the production of gas | |
RU2411075C2 (en) | Compact reforming reactor | |
US6923944B2 (en) | Membrane reactor for gas extraction | |
RU2286308C2 (en) | Radial type device for production of the synthesis gas | |
US20020187089A1 (en) | Membrane reactor for gas extraction | |
JPH04160002A (en) | Method and device for reforming methanol | |
JPS61287435A (en) | Catalytic reaction apparatus | |
JPH0271834A (en) | Steam reforming device | |
JP2646101B2 (en) | Fuel reformer | |
RU2009712C1 (en) | Apparatus for catalytic conversion of hydrocarbons | |
JPH01264903A (en) | Apparatus for reforming hydrocarbon | |
JPS62216634A (en) | Reformer for fuel | |
JPH0335241B2 (en) | ||
RU2615768C1 (en) | Reactor for catalytic steam and steam-carbon-dioxide hydrocarbon conversion | |
JPS61287436A (en) | Catalytic reaction apparatus | |
JPH01208303A (en) | Fuel reformer | |
JPS5978904A (en) | Steam reforming reactor for hydrocarbon | |
JPS5978906A (en) | Steam reforming furnace | |
JPH0891803A (en) | Modifying device of methanol for engine | |
US20040136883A1 (en) | Membrane reactor for gas extraction |