JP2001302208A - Reformer - Google Patents

Reformer

Info

Publication number
JP2001302208A
JP2001302208A JP2000128078A JP2000128078A JP2001302208A JP 2001302208 A JP2001302208 A JP 2001302208A JP 2000128078 A JP2000128078 A JP 2000128078A JP 2000128078 A JP2000128078 A JP 2000128078A JP 2001302208 A JP2001302208 A JP 2001302208A
Authority
JP
Japan
Prior art keywords
tube
catalyst
catalyst layer
reforming
reformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000128078A
Other languages
Japanese (ja)
Inventor
Noboru Kinoshita
登 木之下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2000128078A priority Critical patent/JP2001302208A/en
Publication of JP2001302208A publication Critical patent/JP2001302208A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a reformer hardly causing powdering and abrasion of a catalyst, having a large heat transfer area based on the amount of the catalyst, made without using an expensive material, capable of heating the catalyst to a prescribed temperature, small in pressure drop caused by a catalytic layer, and thereby capable of enabling the reformer to be extremely compacted and the cost to be reduced. SOLUTION: The catalytic layer 16 is produced by arranging plural reforming catalysts 11 having cylindrical shapes and through-holes in the axis directions, in series in the axis direction and an outer tube 12 has an inner diameter slightly larger than the outer diameter of the catalyst layer 16. The outer tube 12 is fixed at one terminal 12a, and extended in the axis direction so as to surround the catalytic layer 16 and so as to be longer than the catalytic layer, and closed at the other terminal 12b. The inner tube 14 has an outer diameter slightly smaller than that of the through-hole of the catalytic layer 16, is fixed at one terminal 14a, extended in the through-hole in the axis direction, and opened at the other terminal 14b present at this side of the other terminal 12b of the outer tube 12.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、炭化水素を改質す
る改質装置に関する。
The present invention relates to a reformer for reforming hydrocarbons.

【0002】[0002]

【従来の技術】天然ガス、LPG、ナフサ等の炭化水素
ガスを原料とし、これを水素を含む改質ガスに改質する
改質装置として、従来から種々の形式のものが提案され
ている。
2. Description of the Related Art Various types of reformers have been proposed as reformers that use hydrocarbon gas such as natural gas, LPG, naphtha, etc. as a raw material and reform this into a reformed gas containing hydrogen.

【0003】図3は、特開昭60−264303号の
「改質装置」に開示されている二重管式改質装置であ
る。この図において、1は改質器容器、2は一端部が密
閉されるとともに内管と外管との間に改質触媒層3が設
けられた断面環状の改質管である。この改質管2が容器
1相に複数本並べて配設されている。容器1の上部から
燃焼用空気および燃料ガスを導入して燃焼室4で燃焼さ
せ、高温燃焼ガスを伝熱充填層5を通過させることによ
って改質管2を外面から加熱する。一方、改質触媒層3
に水蒸気と共に原料ガスを導入し、これが改質触媒層で
加熱されることにより改質ガスに改質され、これが改質
管2の頂部で反転して内管を下降する間に改質触媒層3
に熱を与えて温度が低下して外部に取り出される。
FIG. 3 shows a double-tube reformer disclosed in "Reformer" of Japanese Patent Application Laid-Open No. 60-264303. In this figure, reference numeral 1 denotes a reformer container, and 2 denotes a reforming tube having a circular cross section in which one end is sealed and a reforming catalyst layer 3 is provided between an inner tube and an outer tube. A plurality of the reforming tubes 2 are arranged in one phase of the vessel. Combustion air and fuel gas are introduced from the upper part of the vessel 1 and burned in the combustion chamber 4, and the high-temperature combustion gas is passed through the heat transfer packed bed 5 to heat the reforming tube 2 from the outer surface. On the other hand, the reforming catalyst layer 3
The raw material gas is introduced together with steam into the reforming catalyst layer, which is heated to be reformed into a reformed gas. The reformed gas is inverted at the top of the reforming tube 2 and descends through the inner tube. 3
Is heated to lower the temperature to be taken out.

【0004】図4は、特開平2−31832号の「反応
装置」に開示されている二重管式改質装置である。この
図において、容器1の下部から燃焼ガス6が導入され、
改質管2を外面から加熱する。一方、上部から改質触媒
層3に水蒸気と共に原料ガスを導入し、これが改質触媒
層で加熱されて改質ガスに改質し、改質管2の下端で反
転して内管を上昇し改質触媒層3に熱を与えて温度が低
下して外部に取り出される。
FIG. 4 shows a double-tube reformer disclosed in "Reactor" of JP-A-2-31832. In this figure, a combustion gas 6 is introduced from the lower part of the container 1,
The reforming tube 2 is heated from the outside. On the other hand, a raw material gas is introduced into the reforming catalyst layer 3 together with water vapor from above, and is heated by the reforming catalyst layer to reform into a reformed gas. The heat is applied to the reforming catalyst layer 3 to lower the temperature and is taken out.

【0005】[0005]

【発明が解決しようとする課題】上述したように従来の
改質器では、二重管を構成する内管と外管との間に改質
触媒層3が形成され、この改質触媒層3には、ペレット
状又はラシヒリング状の触媒を充填している。しかし、
従来の改質器には、以下の問題点があった。
As described above, in the conventional reformer, the reforming catalyst layer 3 is formed between the inner tube and the outer tube constituting the double tube. Is filled with a pellet or Raschig ring-shaped catalyst. But,
The conventional reformer has the following problems.

【0006】(1)二重管が高温燃焼ガスにより加熱さ
れるため、熱膨張/熱収縮により触媒が二重管内で圧縮
されて粉化したり、温度変化に伴う容積変化によって、
相互に接触している触媒が摩耗しやすい。そのため、従
来は、改質触媒層の半径方向の厚さを触媒粒子の直径の
5倍程度にしてその粉化や摩耗を防止しているが、その
結果、二重管の直径が大きく(例えば3インチ以上)と
なり、触媒量に比較して二重管の伝熱面積が小さく装置
が大型化しコストが高くなる。
(1) Since the double pipe is heated by the high-temperature combustion gas, the catalyst is compressed and powdered in the double pipe due to thermal expansion / thermal shrinkage, and the catalyst changes in volume due to temperature change.
The catalysts in contact with each other are liable to wear. Therefore, conventionally, the radial thickness of the reforming catalyst layer is set to about five times the diameter of the catalyst particles to prevent the powdering and abrasion thereof. As a result, the diameter of the double tube is large (for example, 3 inches or more), and the heat transfer area of the double tube is small compared to the amount of catalyst, so that the apparatus becomes large and the cost increases.

【0007】(2)触媒層の厚さが大きいため、触媒内
側を所定の改質温度(例えば約750℃)まで加熱する
には、二重管の外面を高温(例えば900℃以上)に加
熱する必要が生じる。そのため、二重管の外管に高価な
耐熱材料(例えばインコネル)を使用したり、部分的に
セラミックコーティングを施す等の必要がある。
(2) Due to the large thickness of the catalyst layer, to heat the inside of the catalyst to a predetermined reforming temperature (for example, about 750 ° C.), heat the outer surface of the double tube to a high temperature (for example, 900 ° C. or more). Need to be done. Therefore, it is necessary to use an expensive heat-resistant material (for example, Inconel) for the outer tube of the double tube, or to partially apply a ceramic coating.

【0008】(3)ペレット状又はラシヒリング状の触
媒を改質触媒層3にランダムに充填しているため、触媒
間の流路面積が不均一であり、隙間の狭い部分と広く部
分とで流速の変化が激しく、その結果、圧力損失が大き
い。
(3) Since the reforming catalyst layer 3 is randomly filled with a pellet-shaped or Raschig-ring-shaped catalyst, the flow path area between the catalysts is not uniform, and the flow velocity between the narrow portion and the wide portion is small. Changes drastically, resulting in a large pressure loss.

【0009】本発明は、上述した問題点を解決するため
に創案されたものである。すなわち、本発明の目的は、
触媒の粉化や摩耗がしにくく、触媒量に対する伝熱面積
を大きくでき、高価な材料を用いることなく触媒を所定
温度まで加熱でき、触媒層の圧損が小さく、これにより
装置の大幅なコンパクト化とコストダウンが可能な改質
装置を提供することにある。
The present invention has been made to solve the above problems. That is, the object of the present invention is:
The catalyst is less likely to be powdered and worn, the heat transfer area with respect to the amount of catalyst can be increased, the catalyst can be heated to a predetermined temperature without using expensive materials, and the pressure loss of the catalyst layer is small. And to provide a reformer capable of reducing costs.

【0010】[0010]

【課題を解決するための手段】本発明によれば、外管
(12)と内管(14)との間に触媒層(16)が収容
された二重管(20)を有し、該二重管の外面を加熱
し、外管と内管の間に水蒸気を含む原料ガスを供給して
触媒層で改質し、改質ガスを内管内を通して触媒層と熱
交換させる改質装置において、前記触媒層(16)は、
外径が円筒形状であり軸方向に貫通穴を有する複数の改
質触媒(11)を軸方向に直列に配列したものであり、
前記外管(12)は、触媒層の外径よりわずかに大きい
内径を有し、一端(12a)が固定され、触媒層を囲ん
で軸方向に触媒層よりも長く延び、他端(12b)が閉
じており、前記内管(14)は、触媒層の貫通穴よりも
わずかに小さい外径を有し、一端(14a)が固定さ
れ、貫通穴内を軸方向に延び、他端(14b)が外管の
他端(12b)の手前で開放されている、ことを特徴と
する改質装置が提供される。
According to the present invention, a double tube (20) containing a catalyst layer (16) is provided between an outer tube (12) and an inner tube (14). In a reformer that heats the outer surface of a double tube, supplies a raw material gas containing steam between the outer tube and the inner tube, reforms the catalyst layer, and exchanges the reformed gas with the catalyst layer through the inner tube. The catalyst layer (16)
A plurality of reforming catalysts (11) having a cylindrical outer diameter and having a through hole in the axial direction are arranged in series in the axial direction,
The outer tube (12) has an inner diameter that is slightly larger than the outer diameter of the catalyst layer, one end (12a) is fixed, extends longer than the catalyst layer in the axial direction surrounding the catalyst layer, and the other end (12b). Is closed, the inner tube (14) has an outer diameter slightly smaller than the through hole of the catalyst layer, one end (14a) is fixed, extends in the through hole in the axial direction, and the other end (14b). Is opened before the other end (12b) of the outer tube.

【0011】上記本発明の構成によれば、改質室である
二重管(20)を構成する外管(12)の内径は、触媒
の外径よりもわずかに大きいことから、この管内には、
半径方向には1個の改質触媒(11)が入るだけであ
る。従って、改質触媒を取り巻く外管(12)の伝熱面
積を相対的に大きくでき、単位触媒量当たりの伝熱面積
を極めて大きくできる。
According to the structure of the present invention, the inner diameter of the outer tube (12) constituting the double tube (20), which is the reforming chamber, is slightly larger than the outer diameter of the catalyst. Is
Only one reforming catalyst (11) enters in the radial direction. Therefore, the heat transfer area of the outer tube (12) surrounding the reforming catalyst can be relatively increased, and the heat transfer area per unit catalyst amount can be extremely increased.

【0012】また、改質触媒(11)は、外管内を軸方
向に一列に規則的に並ぶため、流速の変化が少なく触媒
層を通過する際の圧損を小さくすることができる。更
に、改質触媒の外面及び内面は外管(12)及び内管
(14)とわずかな隙間を有しているので、外管(1
2)及び内管(14)が熱膨張/熱収縮しても触媒は圧
縮されず、温度変化によって触媒が摩耗又は粉化するこ
ともない。
Further, since the reforming catalysts (11) are regularly arranged in a line in the axial direction in the outer tube, the change in the flow velocity is small and the pressure loss when passing through the catalyst layer can be reduced. Further, since the outer surface and the inner surface of the reforming catalyst have a small gap with the outer tube (12) and the inner tube (14), the outer tube (1
Even if 2) and the inner tube (14) thermally expand / shrink, the catalyst is not compressed, and the catalyst does not wear or powder due to a temperature change.

【0013】更に、改質触媒(11)の内外両面での管
との隙間は非常に小さく(例えば1mm程度以下に)で
きるため、ガス流速を大きくでき、触媒と管とが直接は
接触していないにもかかわらず管壁部の伝熱抵抗を小さ
くすることができる。また、触媒の中空部に細管を挿入
し、そこに改質ガスを通過させているので、改質ガスの
もつ顕熱を改質反応に利用することができる。従って、
改質室容積当たりの伝熱面積を極めて大きくでき、改質
器がコンパクトになり、かつ、伝熱抵抗が小さく管壁温
度を下げることが可能になることから、二重管(特に外
管)を安価な耐熱材料(例えば耐熱ステンレス)で構成
できコストを下げることができる。
Furthermore, the gap between the reforming catalyst (11) and the tube on both the inner and outer surfaces can be extremely small (for example, about 1 mm or less), so that the gas flow rate can be increased and the catalyst and the tube are in direct contact. Despite the absence, the heat transfer resistance of the tube wall can be reduced. Further, since the thin tube is inserted into the hollow portion of the catalyst and the reformed gas is passed therethrough, the sensible heat of the reformed gas can be used for the reforming reaction. Therefore,
Since the heat transfer area per volume of the reforming chamber can be extremely large, the reformer becomes compact, and the heat transfer resistance is small and the tube wall temperature can be reduced. Can be made of an inexpensive heat-resistant material (for example, heat-resistant stainless steel), and the cost can be reduced.

【0014】本発明の好ましい実施形態によれば、前記
外管(12)の一端(12a)が固定された第1の管板
(22)と、前記内管(14)の一端(14a)が固定
された第2の管板(23)とを有し、第1管板と第2管
板の間に水蒸気を含む原料ガスが供給され、第2管板の
外側から改質ガスが取り出される。この構成により、複
数の二重管(20)それぞれに容易に原料を供給し、改
質ガスを取り出すことができる。
According to a preferred embodiment of the present invention, the first tube plate (22) to which one end (12a) of the outer tube (12) is fixed, and one end (14a) of the inner tube (14) are connected. It has a fixed second tube sheet (23), a raw material gas containing water vapor is supplied between the first tube sheet and the second tube sheet, and the reformed gas is taken out from the outside of the second tube sheet. With this configuration, the raw material can be easily supplied to each of the plurality of double tubes (20), and the reformed gas can be taken out.

【0015】前記改質触媒(11)は、中空円筒形のラ
シヒリングであることが好ましい。この構成により、複
数穴の改質触媒を使用する場合と比較しても、更に単位
触媒量当たりの伝熱面積を大きくできる。
The reforming catalyst (11) is preferably a hollow cylindrical Raschig ring. With this configuration, the heat transfer area per unit catalyst amount can be further increased as compared with the case where a reforming catalyst having a plurality of holes is used.

【0016】[0016]

【発明の実施の形態】以下、本発明の好ましい実施形態
を図面を参照して説明する。なお、各図において共通す
る部分には同一の符号を使用する。図1は、本発明の改
質装置の全体構成図である。この図に示すように、本発
明の改質装置10は、外管12と内管14との間に触媒
層16が収容された複数の二重管20を有し、二重管2
0の外面を高温ガスで加熱し、外管12と内管14の間
に水蒸気を含む原料ガスを供給して触媒層16で改質
し、この改質ガスを内管14内を通して触媒層16と熱
交換させて熱回収するようになっている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to the drawings. Note that the same reference numerals are used for common parts in each drawing. FIG. 1 is an overall configuration diagram of the reforming apparatus of the present invention. As shown in this figure, the reformer 10 of the present invention has a plurality of double tubes 20 containing a catalyst layer 16 between an outer tube 12 and an inner tube 14,
0 is heated with a high-temperature gas, and a raw material gas containing water vapor is supplied between the outer tube 12 and the inner tube 14 to reform the catalyst layer 16. The heat is exchanged for heat recovery.

【0017】図2は、図1の改質管(二重管20)の構
成図である。図1及び図2において、本発明の触媒層1
6は、外径が円筒形状であり軸方向に貫通穴を有する複
数の改質触媒11を軸方向に直列に配列したものであ
る。この改質触媒11は、単位触媒量当たりの伝熱面積
を大きくできるように、中空円筒形のラシヒリングであ
るのが好ましいが、複数(例えば4つ)の貫通穴を有す
る円筒形触媒であってもよい。また、この触媒は、アル
ミナ又はカルシウムアルミネイトに担持した酸化ニッケ
ルが好ましい。触媒の寸法は、例えば外径約17mm、
内径約6mm、長さ17mm程度のものを使用する。
FIG. 2 is a configuration diagram of the reforming tube (double tube 20) of FIG. 1 and 2, the catalyst layer 1 of the present invention
Reference numeral 6 denotes a plurality of reforming catalysts 11 having a cylindrical outer diameter and having through holes in the axial direction, which are arranged in series in the axial direction. The reforming catalyst 11 is preferably a hollow cylindrical Raschig ring so as to increase the heat transfer area per unit catalyst amount, but is a cylindrical catalyst having a plurality of (for example, four) through holes. Is also good. The catalyst is preferably nickel oxide supported on alumina or calcium aluminate. The size of the catalyst is, for example, about 17 mm in outer diameter,
Use an inner diameter of about 6 mm and a length of about 17 mm.

【0018】外管12は、触媒層16の外径よりわずか
に大きい内径を有する。この隙間(外管12と触媒層1
6との隙間)は、外管12の熱膨張/熱収縮の影響を受
けず、伝熱抵抗を小さくでき、かつ圧損が小さい範囲に
設定する。この隙間は例えば1mm以内にするのがよ
い。外管12の一端12aは第1管板22に固定され、
触媒層16を囲んで軸方向に触媒層よりも長く延び、他
端12bは閉じている。この構成により、外管12を自
由に熱膨張させることができる。
The outer tube 12 has an inner diameter slightly larger than the outer diameter of the catalyst layer 16. This gap (the outer tube 12 and the catalyst layer 1
6) is set to a range where the heat transfer resistance can be reduced and the pressure loss is small without being affected by the thermal expansion / contraction of the outer tube 12. This gap is preferably set to, for example, 1 mm or less. One end 12a of the outer tube 12 is fixed to the first tube sheet 22,
It extends longer than the catalyst layer in the axial direction surrounding the catalyst layer 16, and the other end 12b is closed. With this configuration, the outer tube 12 can be freely thermally expanded.

【0019】内管14は、触媒層16の貫通穴よりもわ
ずかに小さい外径を有する。この隙間(内管14と触媒
層16との隙間)は、内管14の熱膨張/熱収縮の影響
を受けず、伝熱抵抗を小さくでき、かつ圧損が小さい範
囲に設定する。この隙間も例えば1mm以内にするのが
よい。内管14の一端14aは第2の管板23に固定さ
れ、貫通穴内を軸方向に延び、他端14bが外管の他端
12bの手前で開放されている。この構成により、内管
14を自由に熱膨張させることができる。
The inner tube 14 has an outer diameter slightly smaller than the through hole of the catalyst layer 16. This gap (gap between the inner tube 14 and the catalyst layer 16) is set to a range where the heat transfer resistance can be reduced and the pressure loss is small without being affected by the thermal expansion / thermal shrinkage of the inner tube 14. This gap is also preferably set to, for example, 1 mm or less. One end 14a of the inner tube 14 is fixed to the second tube sheet 23, extends in the through hole in the axial direction, and the other end 14b is opened short of the other end 12b of the outer tube. With this configuration, the inner tube 14 can be freely thermally expanded.

【0020】また、この例では、第1管板22と第2管
板23の間に水蒸気を含む原料ガスが供給され、第2管
板23の外側から改質ガスが取り出される。更に、二重
管20の外側には、高温ガスが流れ、外管12の外面か
ら触媒層16を加熱するようになっている。この排ガス
は、第1管板22の上部で外部に排出される。二重管2
0を加熱する高温ガスには、従来と同様に燃焼ガスを用
いることができる。この高温ガス(燃焼ガス)は、図示
の例では外部から導入しているが、内部で燃料を燃焼さ
せて発生させてもよい。
In this example, a raw material gas containing water vapor is supplied between the first tube sheet 22 and the second tube sheet 23, and the reformed gas is taken out from the outside of the second tube sheet 23. Further, a high-temperature gas flows outside the double tube 20 to heat the catalyst layer 16 from the outer surface of the outer tube 12. This exhaust gas is discharged outside at an upper portion of the first tube sheet 22. Double tube 2
As the high-temperature gas for heating 0, a combustion gas can be used as in the related art. This high-temperature gas (combustion gas) is introduced from the outside in the example shown in the figure, but may be generated by burning fuel inside.

【0021】改質原料ガスには、天然ガス、LPG、ガ
ソリン、ナフサ、灯油等の炭化水素と水との混合物を用
いる。また、改質器容器1と二重管20との間に構成さ
れる加熱室は、改質管(二重管20)を取り巻くように
構成され、高温の燃焼ガス等の加熱流体が流れ、改質室
に改質反応に必要な熱を供給する。また、従来例に開示
するように、加熱室に伝熱促進材(例えばセラミックボ
ール等)を充填してもよい。
A mixture of a hydrocarbon such as natural gas, LPG, gasoline, naphtha, and kerosene and water is used as the raw material gas. Further, the heating chamber formed between the reformer container 1 and the double pipe 20 is configured to surround the reforming pipe (double pipe 20), and a heating fluid such as a high-temperature combustion gas flows, The heat required for the reforming reaction is supplied to the reforming chamber. Further, as disclosed in the conventional example, the heating chamber may be filled with a heat transfer promoting material (for example, a ceramic ball or the like).

【0022】上述したように、本発明は、改質触媒を規
則的に充填し、中空円筒形の触媒を改質室を構成する管
内にその同一円心状に複数個規則的に配置し、さらに触
媒の中空部に細管を挿入し、この細管内を通じて改質さ
れたガスが流出できるようにしたものである。改質室を
構成する管の内径は、触媒の外径よりもわずかに大きい
ことから、この管内には、半径方向には1個の触媒が入
るだけであり、触媒を取り巻く管壁の面積が最大とな
り、改質室当たりの伝熱面積を極めて大きくできる。
As described above, according to the present invention, a reforming catalyst is regularly charged, and a plurality of hollow cylindrical catalysts are regularly arranged in the same concentric shape in a tube constituting a reforming chamber. Furthermore, a thin tube is inserted into the hollow portion of the catalyst so that the reformed gas can flow out through the inside of the thin tube. Since the inner diameter of the tube constituting the reforming chamber is slightly larger than the outer diameter of the catalyst, only one catalyst enters the tube in the radial direction, and the area of the tube wall surrounding the catalyst is small. This is the maximum, and the heat transfer area per reforming chamber can be extremely large.

【0023】また、触媒は、管内を軸方向に一列に規則
的に並ぶため、触媒層を通過する流体の抵抗が小さくな
り圧損を小さくすることができ、温度変化によって触媒
が摩耗するということもない。また、触媒の内外両面で
の管との隙間は非常に小さく(例えば1mm程度以下
に)できるため、ガス流速を大きくでき、管壁部の伝熱
抵抗を小さくすることが可能となる。また、触媒の中空
部に細管を挿入し、そこに改質ガスを通過させることに
よって、改質ガスのもつ顕熱を改質反応に利用すること
ができる。このように、改質室容積当たりの伝熱面積を
極めて大きくできることによって、改質器がコンパクト
になり、かつ、改質温度が約750℃の場合でも管壁温
度を約810℃程度まで下げることが可能になることか
ら、管および改質器を構成する材料に耐熱ステンレス等
を用いコストを下げることができる。
Further, since the catalyst is regularly arranged in a line in the axial direction in the tube, the resistance of the fluid passing through the catalyst layer is reduced, the pressure loss can be reduced, and the catalyst may be worn due to a temperature change. Absent. In addition, since the gap between the catalyst and the inner and outer surfaces of the tube can be extremely small (for example, about 1 mm or less), the gas flow rate can be increased, and the heat transfer resistance of the tube wall can be reduced. Further, by inserting a thin tube into the hollow portion of the catalyst and letting the reformed gas pass therethrough, the sensible heat of the reformed gas can be used for the reforming reaction. As described above, since the heat transfer area per reforming chamber volume can be made extremely large, the reformer becomes compact, and even when the reforming temperature is about 750 ° C., the tube wall temperature can be reduced to about 810 ° C. Thus, the cost can be reduced by using heat-resistant stainless steel or the like as a material constituting the pipe and the reformer.

【0024】上述した本発明の構成によれば、一般の大
規模プラントで使用されている中空円筒状の比較的大き
い触媒(例えば外径17mm、内径(中空径)6mm、
長さ6〜19mm)を用いても、水素製造能力が数NM
3-1未満、或いは発電能力が数kW未満の燃料電池用
の小型の改質器に容易に適用することができる。
According to the structure of the present invention described above, a relatively large hollow cylindrical catalyst (for example, an outer diameter of 17 mm, an inner diameter (hollow diameter) of 6 mm,
Hydrogen production capacity of several NM
It can be easily applied to a small reformer for a fuel cell having a power generation capacity of less than 3 h -1 or less than several kW.

【0025】なお、本発明は、上述した実施形態及び実
施例に限定されず、本発明の要旨を逸脱しない範囲で種
々に変更できることは勿論である。
It should be noted that the present invention is not limited to the above-described embodiments and examples, and it is needless to say that various changes can be made without departing from the spirit of the present invention.

【0026】[0026]

【発明の効果】上述したように、本発明の改質装置は、
触媒の粉化や摩耗がしにくく、触媒量に対する伝熱面積
を大きくでき、高価な材料を用いることなく触媒を所定
温度まで加熱でき、触媒層の圧損が小さく、これにより
装置の大幅なコンパクト化とコストダウンが可能なとな
る、等の優れた効果を有する。
As described above, the reformer of the present invention is
The catalyst is less likely to be powdered and worn, the heat transfer area with respect to the amount of catalyst can be increased, the catalyst can be heated to a predetermined temperature without using expensive materials, and the pressure loss of the catalyst layer is small. And an excellent effect that cost can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の改質装置の全体構成図である。FIG. 1 is an overall configuration diagram of a reformer of the present invention.

【図2】図1の改質管の構成図である。FIG. 2 is a configuration diagram of a reforming tube of FIG. 1;

【図3】従来の二重管式改質装置の構成図である。FIG. 3 is a configuration diagram of a conventional double-tube reformer.

【図4】従来の二重管式改質装置の別の構成図である。FIG. 4 is another configuration diagram of a conventional double tube reformer.

【符号の説明】[Explanation of symbols]

1 改質器容器、2 改質管、3 改質触媒層、4 燃
焼室、5 伝熱充填層、6 燃焼ガス、10 改質装
置、11 改質触媒、12 外管、12a 一端、12
b 他端、14 内管、14a 一端、14b 他端、
16 触媒層、20 二重管、22 第1管板、23
第2管板
DESCRIPTION OF SYMBOLS 1 Reformer container, 2 reforming pipes, 3 reforming catalyst layers, 4 combustion chambers, 5 heat transfer packed layers, 6 combustion gases, 10 reformers, 11 reforming catalysts, 12 outer tubes, 12a one end, 12
b other end, 14 inner tube, 14a one end, 14b other end,
16 catalyst layer, 20 double tubes, 22 first tube sheet, 23
2nd tube sheet

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 外管(12)と内管(14)との間に触
媒層(16)が収容された二重管(20)を有し、該二
重管の外面を加熱し、外管と内管の間に水蒸気を含む原
料ガスを供給して触媒層で改質し、改質ガスを内管内を
通して触媒層と熱交換させる改質装置において、 前記触媒層(16)は、外径が円筒形状であり軸方向に
貫通穴を有する複数の改質触媒(11)を軸方向に直列
に配列したものであり、 前記外管(12)は、触媒層の外径よりわずかに大きい
内径を有し、一端(12a)が固定され、触媒層を囲ん
で軸方向に触媒層よりも長く延び、他端(12b)が閉
じており、 前記内管(14)は、触媒層の貫通穴よりもわずかに小
さい外径を有し、一端(14a)が固定され、貫通穴内
を軸方向に延び、他端(14b)が外管の他端(12
b)の手前で開放されている、ことを特徴とする改質装
置。
1. A double pipe (20) containing a catalyst layer (16) between an outer pipe (12) and an inner pipe (14). In a reformer in which a raw material gas containing water vapor is supplied between a pipe and an inner pipe to reform the catalyst layer, and the reformed gas exchanges heat with the catalyst layer through the inner pipe, A plurality of reforming catalysts (11) having a cylindrical shape and having through holes in the axial direction are arranged in series in the axial direction, and the outer tube (12) is slightly larger than the outer diameter of the catalyst layer. The inner tube (14) has an inner diameter, one end (12a) is fixed, extends axially longer than the catalyst layer around the catalyst layer, and the other end (12b) is closed. It has an outer diameter slightly smaller than the hole, one end (14a) is fixed, extends in the through hole in the axial direction, and the other end (14b) is other than the outer tube. End (12
A reformer, which is open just before b).
【請求項2】 前記外管(12)の一端(12a)が固
定された第1の管板(22)と、前記内管(14)の一
端(14a)が固定された第2の管板(23)とを有
し、第1管板と第2管板の間に水蒸気を含む原料ガスが
供給され、第2管板の外側から改質ガスが取り出され
る、ことを特徴とする請求項1に記載の改質装置。
2. A first tube sheet (22) to which one end (12a) of the outer tube (12) is fixed, and a second tube sheet to which one end (14a) of the inner tube (14) is fixed. (23), wherein a raw material gas containing steam is supplied between the first tube sheet and the second tube sheet, and the reformed gas is taken out from the outside of the second tube sheet. The reformer according to any one of the preceding claims.
【請求項3】 前記改質触媒(11)は、中空円筒形の
ラシヒリングである、ことを特徴とする請求項1又は2
に記載の改質装置。
3. The method according to claim 1, wherein the reforming catalyst is a hollow cylindrical Raschig ring.
The reforming apparatus according to item 1.
JP2000128078A 2000-04-27 2000-04-27 Reformer Pending JP2001302208A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000128078A JP2001302208A (en) 2000-04-27 2000-04-27 Reformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000128078A JP2001302208A (en) 2000-04-27 2000-04-27 Reformer

Publications (1)

Publication Number Publication Date
JP2001302208A true JP2001302208A (en) 2001-10-31

Family

ID=18637577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000128078A Pending JP2001302208A (en) 2000-04-27 2000-04-27 Reformer

Country Status (1)

Country Link
JP (1) JP2001302208A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018176125A (en) * 2017-04-20 2018-11-15 国立研究開発法人日本原子力研究開発機構 Catalyst loading method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018176125A (en) * 2017-04-20 2018-11-15 国立研究開発法人日本原子力研究開発機構 Catalyst loading method
JP6993664B2 (en) 2017-04-20 2022-01-13 国立研究開発法人日本原子力研究開発機構 Catalyst filling method

Similar Documents

Publication Publication Date Title
US11383978B2 (en) Heat integrated reformer with catalytic combustion for hydrogen production
US11305250B2 (en) Catalytically heated fuel processor with replaceable structured supports bearing catalyst for fuel cell
JP4869696B2 (en) Small cylindrical reformer
CA2038289C (en) Endothermic reaction apparatus
US4909809A (en) Apparatus for the production of gas
AU661877B2 (en) Endothermic reaction apparatus
WO2002098790A1 (en) Cylindrical water vapor reforming unit
JPS62210047A (en) Apparatus for reaction
JP2002510272A (en) Method and apparatus for autothermal reforming of hydrocarbons
US11607657B2 (en) Heat integrated reformer with catalytic combustion for hydrogen production
US20020006369A1 (en) Membrane reactor for gas extraction
Irankhah et al. Performance research on a methane compact reformer integrated with catalytic combustion
JP2703831B2 (en) Fuel reformer
CA2617646C (en) Process for generating synthesis gas using catalyzed structured packing
JP2001302208A (en) Reformer
JP2022121769A (en) Hydrogen generating apparatus
JPS62216634A (en) Reformer for fuel
JPH0335241B2 (en)
JP2517658B2 (en) Hydrocarbon reformer
JPH05186201A (en) Fuel reformer
JP2712766B2 (en) Fuel reformer
JPH01215340A (en) Fuel reformer
JPH03238037A (en) Fuel reforming apparatus
JPS62186935A (en) Reactor
JPH01242136A (en) Endothermic reactor