JP2022121769A - Hydrogen generating apparatus - Google Patents

Hydrogen generating apparatus Download PDF

Info

Publication number
JP2022121769A
JP2022121769A JP2021018654A JP2021018654A JP2022121769A JP 2022121769 A JP2022121769 A JP 2022121769A JP 2021018654 A JP2021018654 A JP 2021018654A JP 2021018654 A JP2021018654 A JP 2021018654A JP 2022121769 A JP2022121769 A JP 2022121769A
Authority
JP
Japan
Prior art keywords
partition
carbon monoxide
partition wall
air mixing
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021018654A
Other languages
Japanese (ja)
Inventor
吉宏 豊島
Yoshihiro Toyoshima
豊 吉田
Yutaka Yoshida
柾峻 西崎
Masatoshi Nishizaki
憲有 武田
Kenyu Takeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2021018654A priority Critical patent/JP2022121769A/en
Publication of JP2022121769A publication Critical patent/JP2022121769A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Abstract

To provide a low-cost hydrogen generating apparatus which reduces the manufacturing cost by reducing the welding portions between an air mixing cylinder and an outer cylinder of an evaporator when the air mixing part and the heat transfer buffer section are configured in the outer peripheral portion of the evaporator.SOLUTION: A hydrogen generating apparatus 100 of the invention includes following arrangement constitution: when a second mixing channel 143 constituting an air mixing section and a heat transfer buffer section 125 are arranged on the outer peripheral portion of an evaporator 121, the upper portion of a third partition wall 134 forming the heat transfer buffer portion 125 arranged between the outer peripheral side of the evaporator 121 and the inner peripheral side of a carbon monoxide reducer 123 and the lower portion of an air mixing cylinder 135 are arranged so as to overlap in the radial direction, wherein the inner peripheral surface of the upper end of the third partition wall 134 abuts on the lower peripheral surface of the air mixing cylinder 135, thereby the lower inner peripheral portion of the air mixing cylinder 135 is substantially in close contact with the first partition wall 132, and the lower inner peripheral portion of the air mixing cylinder 135 is not joined to the first partition wall 132.SELECTED DRAWING: Figure 1

Description

本開示は、水素生成装置に関する。 The present disclosure relates to hydrogen generators.

特許文献1は、一酸化炭素低減器から流出した一酸化炭素を含む水素含有ガスと空気を混合して、一酸化炭素除去器へ供給する空気混合部を有する水素生成装置を開示する。 Patent Literature 1 discloses a hydrogen generator having an air mixing section that mixes a hydrogen-containing gas containing carbon monoxide that has flowed out of a carbon monoxide reducer with air and supplies the mixture to a carbon monoxide remover.

また、特許文献1では、蒸発器の外周を構成する隔壁と一酸化炭素低減器の内側の隔壁とが互いに間隔を有して対向して形成される伝熱緩衝部を備える構成を開示する。 In addition, Patent Document 1 discloses a configuration in which a partition wall forming the outer periphery of the evaporator and a partition wall inside the carbon monoxide reducer are provided with a heat transfer buffer formed facing each other with a gap therebetween.

特許文献2は、空気と一酸化炭素低減器から流出する水素含有ガスの混合を促進する空気混合部が、空気混合部を構成する空気混合筒の上下を蒸発器外筒に接して構成された水素生成装置を開示する。 In Patent Document 2, an air mixing section that promotes mixing of air and a hydrogen-containing gas flowing out of a carbon monoxide reducer is configured such that the top and bottom of the air mixing cylinder that constitutes the air mixing section are in contact with the evaporator outer cylinder. A hydrogen generator is disclosed.

特許文献3は、作成方法として、外筒に螺旋状に形成した丸棒(螺旋棒)をセットして内筒を拡管することにより作成する蒸発器を開示する。この蒸発器は、内筒と、外筒と、内筒と外筒との間に密着させた螺旋棒と、を備える。 Patent document 3 discloses an evaporator manufactured by setting a helically formed round bar (spiral bar) in an outer cylinder and expanding the inner cylinder as a manufacturing method. The evaporator includes an inner cylinder, an outer cylinder, and a helical rod tightly fitted between the inner cylinder and the outer cylinder.

特表2014-530159号公報Japanese Patent Publication No. 2014-530159 特開2018-118863号公報JP 2018-118863 A 国際公開第2007/125870号WO2007/125870

本開示は、蒸発器外周部に、空気混合部と伝熱緩衝部を構成する場合において、空気混合筒と蒸発器外筒の溶接個所を削減して製造コストを削減した、低コストの水素生成装置を提供する。 The present disclosure is a low-cost hydrogen generation that reduces manufacturing costs by reducing the number of welding points between the air mixing cylinder and the evaporator outer cylinder when configuring the air mixing part and the heat transfer buffer part on the outer peripheral part of the evaporator. Provide equipment.

本開示における、水素生成装置は、加熱部と、燃焼筒と、加熱部隔壁と、第1隔壁と、第2隔壁と、燃焼ガス流路と、蒸発器と、改質器と、リターン流路と、一酸化炭素低減器と、一酸化炭素除去器と、空気混合筒と、区画部材と、空気供給管と、伝熱緩衝部と、第3隔壁と、を備えている。 In the present disclosure, the hydrogen generator includes a heating section, a combustion cylinder, a heating section partition, a first partition, a second partition, a combustion gas flow path, an evaporator, a reformer, and a return flow path. , a carbon monoxide reducer, a carbon monoxide remover, an air mixing cylinder, a partition member, an air supply pipe, a heat transfer buffer, and a third partition.

加熱部は、可燃ガスを燃焼して、燃焼排ガスを排出するように構成される。燃焼筒は、加熱部の外周を囲むように構成される。加熱部隔壁は、燃焼筒の外周を囲むように構成される。 The heating unit is configured to burn the combustible gas and discharge flue gas. The combustion cylinder is configured to surround the outer periphery of the heating section. The heating part partition wall is configured to surround the outer periphery of the combustion tube.

第1隔壁は、加熱部隔壁の外周を囲むように構成される。第2隔壁は、第1隔壁の外周を囲むように構成される。燃焼ガス流路は、燃焼筒と加熱部隔壁との間に形成され、上方に燃焼排ガスを流すように構成される。 The first partition wall is configured to surround the outer periphery of the heating part partition wall. The second partition is configured to surround the outer periphery of the first partition. The combustion gas flow path is formed between the combustion cylinder and the partition wall of the heating section, and configured to flow the combustion exhaust gas upward.

蒸発器は、加熱部隔壁と第1隔壁との間の上部に形成され、加熱部隔壁を介して伝わる熱で、原料ガスと水を加熱して、水を蒸発させるように構成される。 The evaporator is formed in the upper part between the heating part partition and the first partition, and is configured to heat the raw material gas and water with heat transmitted through the heating part partition and evaporate the water.

改質器は、加熱部隔壁と第1隔壁との間の下部に、改質触媒を充填して形成される。また、改質器は、加熱部隔壁を介して伝わる熱で、原料ガスと水蒸気との混合ガスから改質反応で一酸化炭素を含む一次水素含有ガスを生成するように構成される。 The reformer is formed by filling a reforming catalyst in a lower portion between the partition wall of the heating section and the first partition wall. Further, the reformer is configured to generate a primary hydrogen-containing gas containing carbon monoxide through a reforming reaction from a mixed gas of raw material gas and water vapor by heat transferred through the partition wall of the heating section.

リターン流路は、第1隔壁と第2隔壁との間に形成され、改質器から流出した水素含有ガスを上方に流すように構成される。 The return channel is formed between the first partition and the second partition, and configured to flow upward the hydrogen-containing gas that has flowed out of the reformer.

一酸化炭素低減器は、第1隔壁と第2隔壁との間で、蒸発器の外周側に隣接する部分に変成触媒を充填して形成される。また、一酸化炭素低減器は、改質器から流出した一次水素含有ガスに含まれる一酸化炭素の濃度を変性反応で低減して二次水素含有ガスとして排出するように構成される。 The carbon monoxide reducer is formed by filling a portion adjacent to the outer peripheral side of the evaporator between the first partition wall and the second partition wall with a shift catalyst. Also, the carbon monoxide reducer is configured to reduce the concentration of carbon monoxide contained in the primary hydrogen-containing gas that has flowed out of the reformer through a modification reaction, and discharge it as a secondary hydrogen-containing gas.

一酸化炭素除去器は、第1隔壁と第2隔壁との間で、一酸化炭素低減器の上方で、蒸発器の外周側に隣接する部分に選択酸化触媒を充填して形成される。また、一酸化炭素除去器は、一酸化炭素低減器から排出される二次水素含有ガスの一酸化炭素の濃度を選択酸化反応で更に低減して三次水素含有ガスとして排出するように構成される。 The carbon monoxide remover is formed between the first partition wall and the second partition wall, above the carbon monoxide reducer and by filling a portion adjacent to the outer peripheral side of the evaporator with a selective oxidation catalyst. In addition, the carbon monoxide remover is configured to further reduce the concentration of carbon monoxide in the secondary hydrogen-containing gas discharged from the carbon monoxide reducer by a selective oxidation reaction and discharge it as a tertiary hydrogen-containing gas. .

空気混合筒は、一酸化炭素低減器と一酸化炭素除去器と第1隔壁と第2隔壁とで囲まれた空間を、内周側空間である第2混合流路と外周側空間とに区画するように構成される。また、空気混合筒は、筒状で、上端内周部が第1隔壁に接合される。 The air mixing cylinder divides the space surrounded by the carbon monoxide reducer, the carbon monoxide remover, the first partition wall, and the second partition wall into a second mixing flow path, which is an inner peripheral space, and an outer peripheral space. configured to Also, the air mixing cylinder has a cylindrical shape, and the upper end inner peripheral portion is joined to the first partition wall.

区画部材は、ドーナツ盤形状で、内周側端部が空気混合筒に固定され、外周側端部が第2隔壁に固定される。また、区画部材は、外周側空間を外周側上部空間であるヘッダー流路と外周側下部空間である第1混合流路とに区画するように構成される。空気供給管は、第1混合流路に空気を供給するように構成される。 The partition member has a donut disk shape, and has an inner peripheral side end fixed to the air mixing cylinder and an outer peripheral side end fixed to the second partition wall. Further, the partitioning member is configured to partition the outer peripheral space into the header channel, which is the outer peripheral upper space, and the first mixing channel, which is the outer peripheral lower space. The air supply tube is configured to supply air to the first mixing channel.

伝熱緩衝部は、一酸化炭素低減器と第1隔壁との間に、一酸化炭素低減器と蒸発器との第1隔壁を介した熱交換が抑制されるように設けられる。第3隔壁は、一酸化炭素低減器と伝熱緩衝部とを仕切るように構成される。 The heat transfer buffer is provided between the carbon monoxide reducer and the first partition so as to suppress heat exchange between the carbon monoxide reducer and the evaporator through the first partition. The third partition is configured to separate the carbon monoxide reducer and the heat transfer buffer.

空気混合筒は、燃焼筒を挟んで空気供給管の先端と対向する位置で第1混合流路の空気と混合された二次水素含有ガスを第2混合流路に流入させる第2混合流路入口と、円周方向に複数設けられ第2混合流路の空気と混合された二次水素含有ガスをヘッダー流路に流出させる吹き出し穴と、を有する。 The air mixing tube is a second mixing channel that allows the secondary hydrogen-containing gas mixed with the air in the first mixing channel to flow into the second mixing channel at a position facing the tip of the air supply pipe with the combustion tube interposed therebetween. It has an inlet, and a plurality of blowout holes provided in the circumferential direction for causing the secondary hydrogen-containing gas mixed with the air in the second mixing flow path to flow out to the header flow path.

そして、本開示における水素生成装置は、第3隔壁の上端部の内周面が空気混合筒の下部外周面と当接することによって、空気混合筒の下端内周部を第1隔壁に略密着させており、空気混合筒の下端内周部が第1隔壁に接合されていないことを特徴とする。 In the hydrogen generator according to the present disclosure, the inner peripheral surface of the upper end of the third partition contacts the lower outer peripheral surface of the air mixing cylinder, thereby bringing the inner peripheral portion of the lower end of the air mixing cylinder into close contact with the first partition. and the inner peripheral portion of the lower end of the air mixing tube is not joined to the first partition wall.

本開示における、水素生成装置は、空気混合部の下部を蒸発器外筒に溶接することなく空気混合部の下部から第1混合流路へのガスの流出が抑制され、空気混合部の機能を維持することができる。そのため、蒸発器外周部に空気混合部と伝熱緩衝部を構成する場合において、空気混合筒と蒸発器外筒の溶接個所を減らして製造コストを削減した、低コストの水素生成装置を提供することができる。 In the hydrogen generator according to the present disclosure, the outflow of gas from the lower portion of the air mixing portion to the first mixing passage is suppressed without welding the lower portion of the air mixing portion to the evaporator outer cylinder, and the function of the air mixing portion is improved. can be maintained. Therefore, when configuring the air mixing section and the heat transfer buffer section on the outer periphery of the evaporator, the number of welding points between the air mixing cylinder and the evaporator outer cylinder is reduced to provide a low-cost hydrogen generator in which the manufacturing cost is reduced. be able to.

実施の形態1における水素生成装置の構成を示す縦断面図1 is a vertical cross-sectional view showing the configuration of a hydrogen generator according to Embodiment 1. FIG. 実施の形態1における空気混合部付近の構成を示す要部縦断面図Principal part vertical cross-sectional view showing the configuration around the air mixing part in Embodiment 1 図2のA-A断面図AA sectional view of FIG. 図2のB-B断面図BB sectional view of FIG.

(本開示の基礎となった知見等)
発明者らが本開示に想到するに至った当時、水素生成装置においては、蒸発器の外周部に、空気混合部と伝熱緩衝部を配置する製品設計が一般的であった。
(Knowledge, etc. on which this disclosure is based)
At the time when the inventors arrived at the present disclosure, it was common for hydrogen generators to be designed so that an air mixing section and a heat transfer buffer section were arranged around the outer periphery of the evaporator.

蒸発器の外周部に空気混合部に配置するのは、蒸発器と接する空気混合部内でガスを周方向に旋回させることにより、水素含有ガスに空気を均一に混合する混合距離の確保と、水素含有ガスと蒸発器との熱交換を促進させて水素含有ガスを選択酸化反応に適した温度へ低下させるためである。これにより、装置を大型化させることのなくコンパクトな空気混合部を形成することができる。 The reason why the air mixing section is arranged on the outer periphery of the evaporator is to swirl the gas in the circumferential direction in the air mixing section that is in contact with the evaporator, thereby ensuring a mixing distance for uniformly mixing the air with the hydrogen-containing gas and the hydrogen This is to promote heat exchange between the contained gas and the evaporator, thereby lowering the temperature of the hydrogen-containing gas to a temperature suitable for the selective oxidation reaction. Thereby, a compact air mixing section can be formed without increasing the size of the device.

一酸化炭素低減器と蒸発器との間に伝熱緩衝部を配置するのは、低温の蒸発器により一酸化炭素低減器の内周側の温度が低くなり過ぎるのを抑制し、径方向の温度分布を低減して一酸化炭素低減器に搭載する変成触媒層全体を変成反応に適した温度分布とするためである。これにより、一酸化炭素低減器の機能を維持したまま、変成触媒の搭載量を低減することができる。 Disposing the heat transfer buffer between the carbon monoxide reducer and the evaporator suppresses the temperature on the inner peripheral side of the carbon monoxide reducer from becoming too low due to the low-temperature evaporator, This is to reduce the temperature distribution so that the entire shift catalyst layer mounted on the carbon monoxide reducer has a temperature distribution suitable for the shift reaction. As a result, it is possible to reduce the load of the shift conversion catalyst while maintaining the function of the carbon monoxide reducer.

また、空気混合部を構成する空気混合筒の上下部および伝熱緩衝部を構成する隔壁は、蒸発器の外周と接続している。空気混合筒の上下部および伝熱緩衝部を構成する隔壁と蒸発器の外周の接続部から水素含有ガスが漏れないように、空気混合筒の上下部および伝熱緩衝部を構成する隔壁は蒸発器の外周に溶接される。 Further, the upper and lower portions of the air mixing cylinder that constitutes the air mixing portion and the partition wall that constitutes the heat transfer buffer portion are connected to the outer periphery of the evaporator. In order to prevent hydrogen-containing gas from leaking from the connection between the upper and lower parts of the air mixing cylinder and the heat transfer buffer and the outer periphery of the evaporator, the partition walls constituting the upper and lower parts of the air mixing cylinder and the heat transfer buffer are evaporating. Welded to the outer circumference of the vessel.

蒸発器外筒への溶接は、溶接時の熱ひずみにより、内部の螺旋棒と蒸発器外筒の接触状態へ悪影響を与える可能性がある。 Welding to the evaporator outer cylinder may adversely affect the contact state between the internal helical rod and the evaporator outer cylinder due to thermal strain during welding.

蒸発器外筒に混合筒など気密を要する部品を取り付けるには、螺旋棒の密着が緩くならないように、全周をできるだけ入熱が均一になるように、かつ気密性を確実に確保するために溶接速度を落として溶接する必要があり、溶接費用が高価となる。 When attaching parts that require airtightness, such as a mixing cylinder, to the outer cylinder of the evaporator, it is necessary to ensure that the tightness of the spiral rod is not loose, that the heat input is as uniform as possible, and that airtightness is ensured. Welding needs to be performed at a reduced welding speed, resulting in high welding costs.

そうした状況下において、発明者らは、蒸発器外周部に空気混合部と伝熱緩衝部を構成しつつ、製造コストを削減するという課題を解決するために、本開示の主題を構成するに至った。 Under such circumstances, the inventors have come to constitute the main subject of the present disclosure in order to solve the problem of reducing the manufacturing cost while configuring the air mixing section and the heat transfer buffer section in the outer peripheral portion of the evaporator. rice field.

そこで、本開示は、蒸発器外周部に空気混合部と伝熱緩衝部を構成する場合において、空気混合筒と蒸発器外筒の溶接個所を減らして製造コストを削減した、低コストの水素生成装置を提供する。 Therefore, the present disclosure provides low-cost hydrogen generation that reduces manufacturing costs by reducing the number of welding points between the air mixing cylinder and the evaporator outer cylinder when configuring the air mixing part and the heat transfer buffer part in the outer peripheral part of the evaporator. Provide equipment.

以下、図面を参照しながら実施の形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明、または、実質的に同一の構成に対する重複説明を省略する場合がある。 Hereinafter, embodiments will be described in detail with reference to the drawings. However, more detailed description than necessary may be omitted. For example, detailed descriptions of well-known matters or redundant descriptions of substantially the same configurations may be omitted.

なお、添付図面および以下の説明は、当業者が本開示を十分に理解するために提供されるのであって、これらにより特許請求の範囲に記載の主題を限定することを意図していない。 It should be noted that the accompanying drawings and the following description are provided to allow those skilled in the art to fully understand the present disclosure and are not intended to limit the claimed subject matter thereby.

(実施の形態1)
以下、図1~図4を用いて、実施の形態1を説明する。
(Embodiment 1)
Embodiment 1 will be described below with reference to FIGS. 1 to 4. FIG.

[1-1.構成]
図1に、本実施の形態における水素生成装置の構成を示す縦断面図を例示する。図1に示すように、水素生成装置100は主に、同心円状に配置された複数の隔壁により区画される空間に、加熱部120と、蒸発器121、改質器122と、一酸化炭素低減器123と、一酸化炭素除去器124と、伝熱緩衝部125と、第1混合流路142と第2混合流路143とから構成される空気混合部と、を形成して構成される。また、最外周の隔壁の外周部は、断熱材170により覆われる。
[1-1. Constitution]
FIG. 1 illustrates a longitudinal sectional view showing the configuration of the hydrogen generator in this embodiment. As shown in FIG. 1, the hydrogen generator 100 mainly includes a heating unit 120, an evaporator 121, a reformer 122, and a carbon monoxide reducer in a space partitioned by a plurality of concentric partition walls. 123 , a carbon monoxide remover 124 , a heat transfer buffer 125 , and an air mixing section composed of a first mixing channel 142 and a second mixing channel 143 . Moreover, the outer peripheral portion of the outermost partition wall is covered with a heat insulating material 170 .

同心円状の隔壁は、中心側から、燃焼筒130、加熱部隔壁131、第1隔壁132、第2隔壁133、の順で配置される。加熱部隔壁131と第2隔壁133のそれぞれの下端は、第2隔壁133の下側の開口部を覆う底板に接合される。 The concentric partition walls are arranged in the order of the combustion cylinder 130, the heating part partition wall 131, the first partition wall 132, and the second partition wall 133 from the center side. Lower ends of the heating part partition 131 and the second partition 133 are joined to a bottom plate covering the lower opening of the second partition 133 .

燃焼筒130の内側から外側に加熱部120の燃焼排ガスが折り返すことができるように、燃焼筒130の下端と底板との間に隙間が空いている。 A gap is provided between the lower end of the combustion tube 130 and the bottom plate so that the combustion exhaust gas of the heating part 120 can be folded back from the inside to the outside of the combustion tube 130 .

第1隔壁132の内側から外側に改質器122から流出した一次水素含有ガスが折り返すことができるように、第1隔壁132の下端と底板との間に隙間が空いている。 A gap is provided between the lower end of the first partition 132 and the bottom plate so that the primary hydrogen-containing gas that has flowed out of the reformer 122 can return from the inside to the outside of the first partition 132 .

第3隔壁134は、第1隔壁132の外周側の一部と間隔を空けて覆うように配置される。第3隔壁134の下端は、第1隔壁132に固定(接合)される。 The third partition 134 is arranged to cover a portion of the outer peripheral side of the first partition 132 with a gap therebetween. A lower end of the third partition 134 is fixed (joined) to the first partition 132 .

空気混合筒135は、第1隔壁132の外周側の一部と間隔を空けて覆うように配置される。空気混合筒135の上端は第1隔壁132に固定(接合)される。空気混合筒135の下部は、第3隔壁134の上部の内側に径方向に重なるように配置される。区画部材136は、空気混合筒135と第2隔壁133との間の空間を上下に分割するように配置される。これらの隔壁にはステンレス材を用いる。 The air mixing cylinder 135 is arranged so as to cover a portion of the outer peripheral side of the first partition 132 with a gap therebetween. The upper end of the air mixing cylinder 135 is fixed (joined) to the first partition wall 132 . The lower portion of the air mixing tube 135 is arranged to radially overlap the inner side of the upper portion of the third partition wall 134 . The partition member 136 is arranged so as to vertically divide the space between the air mixing tube 135 and the second partition 133 . A stainless steel material is used for these partition walls.

加熱部120は、同心円状の中心部に配置される。加熱部120は都市ガスなどの原料ガスや、発電スタックから戻ってきた水素を含むオフガスなどの可燃ガスを燃焼させるバーナである。また、加熱部120の外周を囲む燃焼筒130と、更にその外周を囲む加熱部隔壁131との間に、環状の燃焼ガス流路140が形成される。燃焼ガス流路140の上部には燃焼ガス管163が接続される。 The heating unit 120 is arranged at the center of the concentric circles. The heating unit 120 is a burner that burns raw material gas such as city gas and combustible gas such as hydrogen-containing off-gas returned from the power generation stack. An annular combustion gas flow path 140 is formed between the combustion cylinder 130 surrounding the outer circumference of the heating section 120 and the heating section partition wall 131 further surrounding the outer circumference. A combustion gas pipe 163 is connected to the upper portion of the combustion gas flow path 140 .

蒸発器121は、加熱部隔壁131と第1隔壁132との間の上部に、螺旋棒を加熱部隔壁131と第1隔壁132と密着させて形成した螺旋状の流路から形成される。また、蒸発器121の上部に、原料供給管161が接続される。 The evaporator 121 is formed of a helical flow path formed by closely contacting a helical rod between the heating part partition 131 and the first partition 132 . A raw material supply pipe 161 is connected to the upper portion of the evaporator 121 .

改質器122は、加熱部隔壁131と第1隔壁132との間の下部、つまり、蒸発器121の下方に配置される。改質器122は、環状の空間に粒状の改質触媒を充填したものであって、改質触媒の層の上面と下面は、気体を通し触媒粒子を通さないような、穴の空いた板などで覆われる。 The reformer 122 is arranged below the heating section partition 131 and the first partition 132 , that is, below the evaporator 121 . The reformer 122 has an annular space filled with granular reforming catalyst, and the upper and lower surfaces of the reforming catalyst layer are perforated plates that allow gas to pass through and prevent catalyst particles from passing through. etc. is covered.

改質触媒としては、白金、ロジウム、ルテニウム、ニッケルなどをアルミナ担体に坦持した触媒粒子などが用いられる。また、改質器122の外周側には、第1隔壁132と第2隔壁133との間の環状のリターン流路141が形成される。 As the reforming catalyst, catalyst particles obtained by supporting platinum, rhodium, ruthenium, nickel, etc. on an alumina carrier are used. An annular return channel 141 is formed between the first partition 132 and the second partition 133 on the outer peripheral side of the reformer 122 .

一酸化炭素低減器123は、第2隔壁133と第3隔壁134との間の環状の空間に粒状の変成触媒を充填したものであって、変成触媒の層の上面と下面は、気体を通し触媒粒子を通さないような、穴の空いた板などで覆われる。変成触媒としては、白金、銅、亜鉛などをアルミナ担体に坦持した触媒粒子などが用いられる。 The carbon monoxide reducer 123 is such that the annular space between the second partition 133 and the third partition 134 is filled with granular shift catalyst, and the upper and lower surfaces of the shift catalyst layer are gas-permeable. It is covered with a perforated plate that does not let catalyst particles pass through. As the conversion catalyst, catalyst particles in which platinum, copper, zinc or the like is supported on an alumina carrier are used.

伝熱緩衝部125は、一酸化炭素低減器123の内周側の、第1隔壁132と第3隔壁134との間の環状の空間である。 The heat transfer buffer 125 is an annular space between the first partition 132 and the third partition 134 on the inner peripheral side of the carbon monoxide reducer 123 .

空気混合部は、一酸化炭素低減器123および伝熱緩衝部125の上部に形成される、第1混合流路142と、第2混合流路143と、から構成される。 The air mixing section is composed of a first mixing channel 142 and a second mixing channel 143 formed above the carbon monoxide reducer 123 and the heat transfer buffer 125 .

第1混合流路142は、空気混合筒135と第2隔壁133との間の環状の空間の、上部の区画部材136と、下部の一酸化炭素低減器123との間に形成される流路である。第2混合流路143は、空気混合筒135と第1隔壁132との間に形成される流路である。また、第1混合流路142には、空気供給管137が接続される。 The first mixing channel 142 is a channel formed between the upper partitioning member 136 and the lower carbon monoxide reducer 123 in the annular space between the air mixing cylinder 135 and the second partition wall 133. is. The second mixing channel 143 is a channel formed between the air mixing tube 135 and the first partition wall 132 . Also, an air supply pipe 137 is connected to the first mixing channel 142 .

空気混合筒135は、空気供給管137と反対側に配置された、第1混合流路142と第2混合流路143とを連通する第2混合流路入口150と、第2混合流路143とヘッダー流路144を連通する周方向に複数配置された吹き出し穴151と、を備える。第2混合流路入口150は、周方向の一方向のみ開口部を有する。 The air mixing cylinder 135 has a second mixing channel inlet 150 that communicates with the first mixing channel 142 and the second mixing channel 143 arranged on the opposite side of the air supply pipe 137, and the second mixing channel 143 and a plurality of blowout holes 151 arranged in the circumferential direction communicating with the header flow path 144 . The second mixing channel inlet 150 has an opening only in one circumferential direction.

ここで、空気混合筒135は、蒸発器121を形成した後、空気混合筒135の上端を第1隔壁132へ溶接して固定(接合)される。空気混合筒135の下端は第1隔壁132と溶接せず、空気混合筒135の下端内周部は第1隔壁132に略密着させるように構成する。 Here, after the evaporator 121 is formed, the air mixing cylinder 135 is fixed (bonded) by welding the upper end of the air mixing cylinder 135 to the first partition wall 132 . The lower end of the air mixing cylinder 135 is not welded to the first partition 132 , and the inner peripheral portion of the lower end of the air mixing cylinder 135 is configured to be in close contact with the first partition 132 .

次に、第3隔壁134を、第3隔壁134の上部が空気混合筒135の下部を覆うように第1隔壁132の外側を摺動させて配置した後、第3隔壁134の下端を第1隔壁132へ溶接することにより固定(接合)して、伝熱緩衝部125を形成する。 Next, the third partition wall 134 is placed by sliding the outer side of the first partition wall 132 so that the upper part of the third partition wall 134 covers the lower part of the air mixing cylinder 135, and then the lower end of the third partition wall 134 is moved to the first position. It is fixed (joined) by welding to the partition wall 132 to form the heat transfer buffer portion 125 .

蒸発器121は、その外筒である第1隔壁132に螺旋棒をセットして、内筒である加熱部隔壁131を拡管することにより、螺旋棒を加熱部隔壁131と第1隔壁132とに密着させる。 In the evaporator 121, a helical rod is set on the first partition wall 132, which is the outer cylinder, and the heating part partition wall 131, which is the inner cylinder, is expanded, so that the helical rod is attached to the heating part partition wall 131 and the first partition wall 132. make close contact.

蒸発器121外周に空気混合筒135および第3隔壁134など、接続部のガスの気密を要する部品を取り付けるには、蒸発器121の外筒である第1隔壁132と螺旋棒との密着が緩くならないように、全周をできるだけ入熱が均一になるように、かつ気密性を確実に確保するために速度を落としてTIG溶接する。 In order to attach the air mixing cylinder 135 and the third partition 134 to the outer periphery of the evaporator 121, the contact between the first partition 132, which is the outer cylinder of the evaporator 121, and the helical rod is loose. TIG welding is performed at a slow speed so that the heat input is as uniform as possible and airtightness is ensured.

ヘッダー流路144は、空気混合筒135と、第2隔壁133と、区画部材136と、一酸化炭素除去器124と、により囲まれる空間からなる。 The header channel 144 consists of a space surrounded by the air mixing cylinder 135 , the second partition 133 , the partition member 136 and the carbon monoxide remover 124 .

一酸化炭素除去器124は、第1隔壁132と第2隔壁133との間の環状の空間に選択酸化触媒を充填したものであって、選択酸化触媒の層の上面と下面は、気体を通し触媒粒子を通さないような、穴の空いた板などで覆われる。選択酸化触媒としては、白金やルテニウムなどをアルミナ担体に坦持した触媒粒子などが用いられる。一酸化炭素除去器124の上部空間には、生成ガス管162が接続される。 The carbon monoxide remover 124 has a selective oxidation catalyst filled in the annular space between the first partition 132 and the second partition 133, and the upper and lower surfaces of the selective oxidation catalyst layer are gas-permeable. It is covered with a perforated plate that does not let catalyst particles pass through. As the selective oxidation catalyst, catalyst particles in which platinum, ruthenium, or the like is supported on an alumina carrier are used. A product gas pipe 162 is connected to the upper space of the carbon monoxide remover 124 .

断熱材170は、水素生成装置100からの放熱を防ぐマイクロポーラス材である。 The heat insulator 170 is a microporous material that prevents heat dissipation from the hydrogen generator 100 .

[1-2.動作]
以上のように構成された本実施の形態の水素生成装置100について、以下その動作と作用を説明する。
[1-2. motion]
The operation and effects of the hydrogen generator 100 of the present embodiment configured as described above will be described below.

加熱部120は、供給された可燃ガスを燃焼して燃焼排ガスを排出する。加熱部120から流出した燃焼排ガスは、燃焼筒130の下端と底板との間の隙間を通って、燃焼筒130の内側から外側に折り返して、燃焼ガス流路140を上方に通流し、燃焼ガス管163から外部へ排出される。 The heating unit 120 burns the supplied combustible gas and discharges flue gas. The combustion exhaust gas that has flowed out from the heating part 120 passes through the gap between the lower end of the combustion tube 130 and the bottom plate, turns back from the inside to the outside of the combustion tube 130, and flows upward through the combustion gas flow path 140, and the combustion gas It is discharged from the pipe 163 to the outside.

原料供給管161から蒸発器121へ供給された原料ガスと水は、蒸発器121内の螺旋状の流路を通流し、加熱部隔壁131および第1隔壁132を介して伝わる熱で約400度の高温の水蒸気と原料ガスとなり、改質器122へと流出する。ここで、原料ガスはメタンを主成分とする脱硫された都市ガスである。 The raw material gas and water supplied from the raw material supply pipe 161 to the evaporator 121 flow through the spiral flow path in the evaporator 121, and the heat transmitted through the heating part partition 131 and the first partition 132 reaches about 400 degrees Celsius. high-temperature steam and raw material gas, and flow out to the reformer 122 . Here, the raw material gas is desulfurized city gas containing methane as a main component.

改質器122では、改質触媒の作用により、原料ガスと水蒸気とを改質反応させ約10%の一酸化炭素を含む一次水素含有ガスを生成する。改質反応は吸熱反応であるが、改質反応が十分に進行するように加熱部隔壁131を介して燃焼ガス流路140から熱が供給される。改質器122出口でのガス温度は約700度となる。 In the reformer 122, the raw material gas and steam are reformed by the action of the reforming catalyst to generate a primary hydrogen-containing gas containing approximately 10% carbon monoxide. Although the reforming reaction is an endothermic reaction, heat is supplied from the combustion gas flow path 140 through the heating section partition wall 131 so that the reforming reaction proceeds sufficiently. The gas temperature at the outlet of the reformer 122 is about 700 degrees.

改質器122から流出した一次水素含有ガスは、第1隔壁132の下端と底板との間の隙間を通って、第1隔壁132の内側から外側に折り返して、リターン流路141を上方に通流し、第1隔壁132を介して改質器122と蒸発器121へ熱を供給する。 The primary hydrogen-containing gas that has flowed out of the reformer 122 passes through the gap between the lower end of the first partition 132 and the bottom plate, turns back from the inside to the outside of the first partition 132, and passes upward through the return flow path 141. The heat is supplied to the reformer 122 and the evaporator 121 through the first partition 132 .

一酸化炭素低減器123へ供給された一次水素含有ガスは、一酸化炭素低減器123に搭載される変成触媒の作用により、一次水素含有ガスにおける一酸化炭素の濃度が変成反応により1%以下に低減された二次水素含有ガスとなり、一酸化炭素低減器123から第1混合流路142へ流出する。 In the primary hydrogen-containing gas supplied to the carbon monoxide reducer 123, the concentration of carbon monoxide in the primary hydrogen-containing gas is reduced to 1% or less by a shift reaction due to the action of the shift catalyst mounted on the carbon monoxide reducer 123. It becomes reduced secondary hydrogen-containing gas and flows out from the carbon monoxide reducer 123 to the first mixing flow path 142 .

変成反応は発熱反応であるが、伝熱緩衝部125を介して一酸化炭素低減器123の内周側に配置された蒸発器121と熱交換することにより、一酸化炭素低減器123は変成反応に適した約200度から300度の範囲に保たれる。 The transformation reaction is an exothermic reaction, but by exchanging heat with the evaporator 121 arranged on the inner peripheral side of the carbon monoxide reducer 123 via the heat transfer buffer 125, the carbon monoxide reducer 123 is able to perform the transformation reaction. is kept in the range of about 200 to 300 degrees suitable for

第1混合流路142へ流入した二次水素含有ガスは、空気供給管137から供給された空気と混合されながら、燃焼筒130を挟んで空気供給管137の先端と対向する位置にある第2混合流路入口150から第2混合流路143に流入する。 The secondary hydrogen-containing gas that has flowed into the first mixing passage 142 is mixed with the air supplied from the air supply pipe 137 while being mixed with the air supplied from the air supply pipe 137. It flows into the second mixing channel 143 from the mixing channel inlet 150 .

第2混合流路143に流入した空気と混合された二次水素含有ガスは、第2混合流路143内を円周方向に旋回するように通流して、第2混合流路入口150の上方に円周方向に複数設けられ吹き出し穴151からヘッダー流路144へ流出する。第1混合流路142と第2混合流路143の空気混合部でのガスの詳細な流れは後述する。 The secondary hydrogen-containing gas mixed with the air that has flowed into the second mixing channel 143 flows in the second mixing channel 143 so as to swirl in the circumferential direction, and flows above the second mixing channel inlet 150. , and flows out from the outlet holes 151 into the header flow path 144 . The detailed gas flow in the air mixing portions of the first mixing channel 142 and the second mixing channel 143 will be described later.

均一に空気と混合された二次水素含有ガスは、ヘッダー流路144から一酸化炭素除去器124へ供給される。空気と混合された二次水素含有ガスは、一酸化炭素除去器124に搭載される選択酸化触媒の作用により、二次水素含有ガスにおける一酸化炭素の濃度が選択酸化反応によって更に低減されて、一酸化炭素の濃度が約10ppmの三次水素含有ガスとなる。 The secondary hydrogen-containing gas uniformly mixed with air is supplied from header flow path 144 to carbon monoxide remover 124 . In the secondary hydrogen-containing gas mixed with air, the concentration of carbon monoxide in the secondary hydrogen-containing gas is further reduced by a selective oxidation reaction due to the action of the selective oxidation catalyst mounted on the carbon monoxide remover 124, A tertiary hydrogen-containing gas with a carbon monoxide concentration of about 10 ppm is obtained.

選択酸化反応は発熱反応であるが、一酸化炭素除去器124の内周側に配置された蒸発器121と熱交換することにより、一酸化炭素除去器124は選択酸化反応に適した約120度から160度の範囲に保たれる。 The selective oxidation reaction is an exothermic reaction, but by exchanging heat with the evaporator 121 arranged on the inner peripheral side of the carbon monoxide remover 124, the carbon monoxide remover 124 is heated to about 120°C suitable for the selective oxidation reaction. to 160 degrees.

三次水素含有ガスは、一酸化炭素除去器124の出口空間に開口した生成ガス管162から、水素生成装置100の外部に接続された燃料電池スタック(図示せず)等へ供給される。 The tertiary hydrogen-containing gas is supplied to a fuel cell stack (not shown) or the like connected to the outside of the hydrogen generator 100 from a product gas pipe 162 opened to the outlet space of the carbon monoxide remover 124 .

図2~図4を用いて、空気混合部でのガスの詳細な流れを説明する。 The detailed gas flow in the air mixing section will be described with reference to FIGS. 2 to 4. FIG.

図2に、実施の形態1における空気混合部付近の構成を示す縦断面図を例示する。 FIG. 2 illustrates a vertical cross-sectional view showing the configuration around the air mixing section in Embodiment 1. As shown in FIG.

図3に、実施の形態1における空気混合部の流入部付近のガスの流れを示す横断面図を例示する。図3は、図2のA-A断面図である。 FIG. 3 illustrates a cross-sectional view showing the flow of gas in the vicinity of the inflow part of the air mixing part in Embodiment 1. As shown in FIG. FIG. 3 is a cross-sectional view taken along line AA of FIG.

空気混合部は、第1混合流路142と第2混合流路143とから構成される。第1混合流路142には、空気供給管137から空気と、一酸化炭素低減器123出口から一酸化炭素濃度が低減された二次水素含有ガスとが供給される。 The air mixing section is composed of a first mixing channel 142 and a second mixing channel 143 . The first mixing passage 142 is supplied with air from the air supply pipe 137 and secondary hydrogen-containing gas with reduced carbon monoxide concentration from the outlet of the carbon monoxide reducer 123 .

空気供給管137から供給された空気は、二次水素含有ガスと混合されながら、空気供給管137と反対側に配置された第2混合流路入口150から第2混合流路143へ流入する。 The air supplied from the air supply pipe 137 flows into the second mixing passage 143 from the second mixing passage inlet 150 arranged on the opposite side of the air supply pipe 137 while being mixed with the secondary hydrogen-containing gas.

第2混合流路入口150は、周方向の一方向のみ開口部を有する。通流する空気と二次水素含有ガスとの混合ガスは、第2混合流路143内を周方向に旋回するように混合部内を流れる。これにより、二次水素含有ガスと空気とを混合する混合距離を確保し、混合ガスと蒸発器121との熱交換を促進している。 The second mixing channel inlet 150 has an opening only in one circumferential direction. The mixed gas of the flowing air and the secondary hydrogen-containing gas flows in the mixing section so as to swirl in the second mixing channel 143 in the circumferential direction. This secures a mixing distance for mixing the secondary hydrogen-containing gas and air, and promotes heat exchange between the mixed gas and the evaporator 121 .

図4に、実施の形態1における空気混合部の流出部付近のガスの流れを示す横断面図を例示する。図4は、図2に示すB-B断面図である。 FIG. 4 illustrates a cross-sectional view showing gas flow in the vicinity of the outflow portion of the air mixing section in Embodiment 1. As shown in FIG. FIG. 4 is a cross-sectional view taken along line BB shown in FIG.

混合ガスは、第2混合流路143内を周方向に旋回して空気との混合の促進と蒸発器121との熱交換後に、第2混合流路143上部に設けられた吹き出し穴151から一酸化炭素除去器124へ供給される。 After the mixed gas is swirled in the second mixing passage 143 in the circumferential direction to promote mixing with air and heat exchange with the evaporator 121, the mixed gas is discharged from the blowout hole 151 provided in the upper part of the second mixing passage 143. It is supplied to carbon oxide remover 124 .

図2に示すように、空気混合筒135の下端内周部は第1隔壁132に溶接により接合されていないが、第3隔壁134の上端部の内周面が、空気混合筒135の下部外周面と当接することによって、空気混合筒135の下端内周部を第1隔壁132に略密着させている。 As shown in FIG. 2, the inner periphery of the lower end of the air mixing tube 135 is not welded to the first partition 132, but the inner peripheral surface of the upper end of the third partition 134 is connected to the outer periphery of the lower end of the air mixing tube 135. The lower end inner peripheral portion of the air mixing cylinder 135 is brought into substantially close contact with the first partition wall 132 by contacting the surface.

第1混合流路142と伝熱緩衝部125の間と、空気混合筒135の下端内周部と第1隔壁132の間の流路抵抗は大きくなり、伝熱緩衝部125と第1混合流路142の間のガスの通流が抑制される。 The flow path resistance between the first mixing channel 142 and the heat transfer buffer portion 125 and between the lower end inner peripheral portion of the air mixing tube 135 and the first partition wall 132 increases, and the heat transfer buffer portion 125 and the first mixed flow The flow of gas between passages 142 is suppressed.

また、第3隔壁134により空気混合筒135の下部が径方向に規制されるため、空気混合筒135下部と第1隔壁132の接触状態が維持されるため、空気混合筒135下部を第1隔壁132に溶接することなく第2混合流路143の下部から伝熱緩衝部125へのガスの流出が抑制される。 Further, since the lower portion of the air mixing cylinder 135 is regulated in the radial direction by the third partition 134, the contact state between the lower portion of the air mixing cylinder 135 and the first partition 132 is maintained. Without welding to 132, outflow of gas from the lower part of the second mixing channel 143 to the heat transfer buffer 125 is suppressed.

[1-3.効果等]
以上のように、本実施の形態において、水素生成装置100は、加熱部120と、燃焼筒130と、加熱部隔壁131と、第1隔壁132と、第2隔壁133と、燃焼ガス流路140と、蒸発器121と、改質器122と、リターン流路141と、一酸化炭素低減器123と、一酸化炭素除去器124と、空気混合筒135と、区画部材136と、空気供給管137と、伝熱緩衝部125と、第3隔壁134と、を備えている。
[1-3. effects, etc.]
As described above, in the present embodiment, the hydrogen generator 100 includes the heating portion 120, the combustion cylinder 130, the heating portion partition wall 131, the first partition wall 132, the second partition wall 133, the combustion gas flow path 140 , evaporator 121, reformer 122, return channel 141, carbon monoxide reducer 123, carbon monoxide remover 124, air mixing cylinder 135, partitioning member 136, and air supply pipe 137 , a heat transfer buffer 125 , and a third partition 134 .

加熱部120は、可燃ガスを燃焼して、燃焼排ガスを排出するように構成される。燃焼
筒130は、加熱部120の外周を囲むように構成される。加熱部隔壁131は、燃焼筒130の外周を囲むように構成される。
The heating unit 120 is configured to burn combustible gas and discharge flue gas. Combustion cylinder 130 is configured to surround the outer circumference of heating unit 120 . The heating part partition 131 is configured to surround the outer circumference of the combustion cylinder 130 .

第1隔壁132は、加熱部隔壁131の外周を囲むように構成される。第2隔壁133は、第1隔壁132の外周を囲むように構成される。燃焼ガス流路140は、燃焼筒130と加熱部隔壁131との間に形成され、上方に燃焼排ガスを流すように構成される。 The first partition 132 is configured to surround the outer circumference of the heating portion partition 131 . The second partition 133 is configured to surround the outer periphery of the first partition 132 . The combustion gas flow path 140 is formed between the combustion cylinder 130 and the heating section partition 131 and configured to flow the combustion exhaust gas upward.

蒸発器121は、加熱部隔壁131と第1隔壁132との間の上部に形成され、加熱部隔壁131を介して伝わる熱で、原料ガスと水を加熱して、水を蒸発させるように構成される。 The evaporator 121 is formed in the upper part between the heating part partition 131 and the first partition 132, and is configured to heat the raw material gas and water with the heat transmitted through the heating part partition 131 and evaporate the water. be done.

改質器122は、加熱部隔壁131と第1隔壁132との間の下部に、改質触媒を充填して形成される。また、改質器122は、加熱部隔壁131を介して伝わる熱で、原料ガスと水蒸気との混合ガスから改質反応で一酸化炭素を含む一次水素含有ガスを生成するように構成される。 The reformer 122 is formed by filling a reforming catalyst in the lower portion between the heating part partition 131 and the first partition 132 . Further, the reformer 122 is configured to generate a primary hydrogen-containing gas containing carbon monoxide through a reforming reaction from a mixed gas of raw material gas and water vapor by heat transmitted through the heating section partition wall 131 .

リターン流路141は、第1隔壁132と第2隔壁133との間に形成され、改質器122から流出した水素含有ガスを上方に流すように構成される。 The return flow path 141 is formed between the first partition 132 and the second partition 133 and configured to allow the hydrogen-containing gas that has flowed out of the reformer 122 to flow upward.

一酸化炭素低減器123は、第1隔壁132と第2隔壁133との間で、蒸発器121の外周側に隣接する部分に変成触媒を充填して形成される。また、一酸化炭素低減器123は、改質器122から流出した一次水素含有ガスに含まれる一酸化炭素の濃度を変性反応で低減して二次水素含有ガスとして排出するように構成される。 The carbon monoxide reducer 123 is formed by filling a portion adjacent to the outer periphery of the evaporator 121 between the first partition 132 and the second partition 133 with a shift catalyst. Also, the carbon monoxide reducer 123 is configured to reduce the concentration of carbon monoxide contained in the primary hydrogen-containing gas that has flowed out of the reformer 122 through a modification reaction, and discharge it as a secondary hydrogen-containing gas.

一酸化炭素除去器124は、第1隔壁132と第2隔壁133との間で、一酸化炭素低減器123の上方で、蒸発器121の外周側に隣接する部分に選択酸化触媒を充填して形成される。また、一酸化炭素除去器124は、一酸化炭素低減器123から排出される二次水素含有ガスの一酸化炭素の濃度を選択酸化反応で更に低減して三次水素含有ガスとして排出するように構成される。 The carbon monoxide remover 124 fills a portion of the carbon monoxide remover 124 between the first partition 132 and the second partition 133 above the carbon monoxide reducer 123 and adjacent to the outer peripheral side of the evaporator 121 with a selective oxidation catalyst. It is formed. In addition, the carbon monoxide remover 124 is configured to further reduce the carbon monoxide concentration of the secondary hydrogen-containing gas discharged from the carbon monoxide reducer 123 by a selective oxidation reaction and discharge it as a tertiary hydrogen-containing gas. be done.

空気混合筒135は、一酸化炭素低減器123と一酸化炭素除去器124と第1隔壁132と第2隔壁133とで囲まれた空間を、内周側空間である第2混合流路143と外周側空間とに区画するように構成される。また、空気混合筒135は、筒状で、上端内周部が第1隔壁132に接合される。 The air mixing cylinder 135 divides the space surrounded by the carbon monoxide reducer 123, the carbon monoxide remover 124, the first partition 132, and the second partition 133 into the second mixing channel 143, which is the inner space. It is configured so as to be partitioned into a space on the outer peripheral side. The air mixing tube 135 has a tubular shape, and the upper end inner peripheral portion thereof is joined to the first partition wall 132 .

区画部材136は、ドーナツ盤形状で、内周側端部が空気混合筒135に固定され、外周側端部が第2隔壁133に固定される。また、区画部材136は、外周側空間を外周側上部空間であるヘッダー流路144と外周側下部空間である第1混合流路142とに区画するように構成される。空気供給管137は、第1混合流路142に空気を供給するように構成される。 The partitioning member 136 has a donut disk shape, and has an inner peripheral side end fixed to the air mixing cylinder 135 and an outer peripheral side end fixed to the second partition wall 133 . In addition, the dividing member 136 is configured to divide the outer peripheral space into a header channel 144 that is an outer peripheral upper space and a first mixing channel 142 that is an outer peripheral lower space. Air supply tube 137 is configured to supply air to first mixing channel 142 .

伝熱緩衝部125は、一酸化炭素低減器123と第1隔壁132との間に、一酸化炭素低減器123と蒸発器121との第1隔壁132を介した熱交換が抑制されるように設けられる。第3隔壁134は、一酸化炭素低減器123と伝熱緩衝部125とを仕切るように構成される。 The heat transfer buffer 125 is arranged between the carbon monoxide reducer 123 and the first partition 132 so that heat exchange between the carbon monoxide reducer 123 and the evaporator 121 via the first partition 132 is suppressed. be provided. Third partition 134 is configured to separate carbon monoxide reducer 123 and heat transfer buffer 125 .

空気混合筒135は、燃焼筒130を挟んで空気供給管137の先端と対向する位置で第1混合流路142の空気と混合された二次水素含有ガスを第2混合流路143に流入させる第2混合流路入口150と、円周方向に複数設けられ第2混合流路143の空気と混合された二次水素含有ガスをヘッダー流路144に流出させる吹き出し穴151と、を有
する。
The air mixing cylinder 135 allows the secondary hydrogen-containing gas mixed with the air in the first mixing channel 142 to flow into the second mixing channel 143 at a position facing the tip of the air supply pipe 137 with the combustion cylinder 130 interposed therebetween. It has a second mixing channel inlet 150 and a plurality of blowout holes 151 provided in the circumferential direction for causing the secondary hydrogen-containing gas mixed with the air in the second mixing channel 143 to flow out to the header channel 144 .

そして、本開示における水素生成装置100は、第3隔壁134の上端部の内周面が空気混合筒135の下部外周面と当接することによって、空気混合筒135の下端内周部を第1隔壁132に略密着させており、空気混合筒135の下端内周部が第1隔壁132に接合されていないことを特徴とする。 In the hydrogen generator 100 according to the present disclosure, the inner peripheral surface of the upper end of the third partition 134 contacts the lower outer peripheral surface of the air mixing cylinder 135, so that the inner peripheral surface of the lower end of the air mixing cylinder 135 is moved to the first partition. 132 , and the inner peripheral portion of the lower end of the air mixing cylinder 135 is not joined to the first partition 132 .

これにより、第1混合流路142と伝熱緩衝部125の間の流路抵抗が大きくなる。また、第3隔壁134により空気混合筒135の下部が径方向に規制されるため、空気混合筒135下部と第1隔壁132の接触状態が維持される。 As a result, the channel resistance between the first mixing channel 142 and the heat transfer buffer 125 increases. Further, since the lower portion of the air mixing tube 135 is radially restricted by the third partition 134, the contact state between the lower portion of the air mixing tube 135 and the first partition 132 is maintained.

以上により、空気混合筒135下部を第1隔壁132に溶接(接合)することなく空気混合部の下部から第1混合流路142へのガスの流出が抑制され、空気混合部の機能を維持することができる。 As described above, the outflow of gas from the lower part of the air mixing section to the first mixing flow path 142 is suppressed without welding (joining) the lower part of the air mixing cylinder 135 to the first partition 132, and the function of the air mixing section is maintained. be able to.

そのため、蒸発器121の外周部に空気混合部と伝熱緩衝部125を構成する場合において、空気混合筒135と蒸発器121の外周である第1隔壁132との溶接個所を減らして製造コストを削減した、低コストの水素生成装置100を提供することができる。 Therefore, when the air mixing portion and the heat transfer buffering portion 125 are formed on the outer periphery of the evaporator 121, the number of welding points between the air mixing tube 135 and the first partition 132, which is the outer periphery of the evaporator 121, is reduced, thereby reducing the manufacturing cost. A reduced, low-cost hydrogen generator 100 can be provided.

なお、上述の実施の形態は、本開示における技術を例示するためのものであるから、特許請求の範囲またはその均等の範囲において種々の変更、置き換え、付加、省略などを行うことができる。 Note that the above-described embodiment is for illustrating the technology in the present disclosure, and various changes, replacements, additions, omissions, etc. can be made within the scope of the claims or equivalents thereof.

本開示は、原料ガスと水から水素を生成するエネルギー機器に適用可能である。具体的には、水素製造装置、燃料電池システムなどに、本開示は適用可能である。 INDUSTRIAL APPLICABILITY The present disclosure is applicable to energy equipment that generates hydrogen from raw material gas and water. Specifically, the present disclosure is applicable to hydrogen production devices, fuel cell systems, and the like.

100 水素生成装置
120 加熱部
121 蒸発器
122 改質器
123 一酸化炭素低減器
124 一酸化炭素除去器
125 伝熱緩衝部
130 燃焼筒
131 加熱部隔壁
132 第1隔壁
133 第2隔壁
134 第3隔壁
135 空気混合筒
136 区画部材
137 空気供給管
140 燃焼ガス流路
141 リターン流路
142 第1混合流路
143 第2混合流路
144 ヘッダー流路
150 第2混合流路入口
151 吹き出し穴
161 原料供給管
162 生成ガス管
163 燃焼ガス管
170 断熱材
REFERENCE SIGNS LIST 100 hydrogen generator 120 heating unit 121 evaporator 122 reformer 123 carbon monoxide reducer 124 carbon monoxide remover 125 heat transfer buffer 130 combustion cylinder 131 heating unit partition 132 first partition 133 second partition 134 third partition 135 Air mixing tube 136 Partition member 137 Air supply pipe 140 Combustion gas channel 141 Return channel 142 First mixing channel 143 Second mixing channel 144 Header channel 150 Second mixing channel inlet 151 Blowout hole 161 Raw material supply pipe 162 Product gas pipe 163 Combustion gas pipe 170 Thermal insulation

Claims (1)

可燃ガスを燃焼して燃焼排ガスを排出する加熱部と、
前記加熱部の外周を囲む燃焼筒と、
前記燃焼筒の外周を囲む加熱部隔壁と、
前記加熱部隔壁の外周を囲む第1隔壁と、
前記第1隔壁の外周を囲む第2隔壁と、
前記燃焼筒と前記加熱部隔壁との間に形成され上方に前記燃焼排ガスを流す燃焼ガス流路と、
前記加熱部隔壁と前記第1隔壁との間の上部に形成され前記加熱部隔壁を介して伝わる熱で原料ガスと水を加熱して前記水を蒸発させる蒸発器と、
前記加熱部隔壁と前記第1隔壁との間の下部に改質触媒を充填して形成され前記加熱部隔壁を介して伝わる熱で前記原料ガスと水蒸気との混合ガスから改質反応で一酸化炭素を含む一次水素含有ガスを生成する改質器と、
前記第1隔壁と前記第2隔壁との間に形成され前記改質器から流出した前記水素含有ガスを上方に流すリターン流路と、
前記第1隔壁と前記第2隔壁との間で、前記蒸発器の外周側に隣接する部分に変成触媒を充填して形成され、前記改質器から流出した前記一次水素含有ガスに含まれる一酸化炭素の濃度を変性反応で低減して二次水素含有ガスとして排出する一酸化炭素低減器と、
前記第1隔壁と前記第2隔壁との間で、前記一酸化炭素低減器の上方で、前記蒸発器の外周側に隣接する部分に選択酸化触媒を充填して形成され、前記一酸化炭素低減器から排出される前記二次水素含有ガスの一酸化炭素の濃度を選択酸化反応で更に低減して三次水素含有ガスとして排出する一酸化炭素除去器と、
前記一酸化炭素低減器と前記一酸化炭素除去器と前記第1隔壁と前記第2隔壁とで囲まれた空間を、内周側空間である第2混合流路と外周側空間とに区画し上端内周部が前記第1隔壁に接合される筒状の空気混合筒と、
内周側端部が前記空気混合筒に固定され、外周側端部が前記第2隔壁に固定され、前記外周側空間を外周側上部空間であるヘッダー流路と外周側下部空間である第1混合流路とに区画するドーナツ盤形状の区画部材と、
前記第1混合流路に空気を供給する空気供給管と、
前記一酸化炭素低減器と前記第1隔壁との間に、前記一酸化炭素低減器と前記蒸発器との前記第1隔壁を介した熱交換が抑制されるように設けられた、前記第1混合流路と連通する伝熱緩衝部と、
前記一酸化炭素低減器と前記伝熱緩衝部とを仕切る第3隔壁と、
を備えた水素生成装置であって、
前記空気混合筒は、前記燃焼筒を挟んで前記空気供給管の先端と対向する位置で前記第1混合流路の空気と混合された前記二次水素含有ガスを前記第2混合流路に流入させる第2混合流路入口と、円周方向に複数設けられ前記第2混合流路の空気と混合された前記二次水素含有ガスを前記ヘッダー流路に流出させる吹き出し穴と、を有し、
前記第3隔壁の上端部の内周面が前記空気混合筒の下部外周面と当接することによって前記空気混合筒の下端内周部を前記第1隔壁に略密着させており、
前記空気混合筒の下端内周部が前記第1隔壁に接合されていない、水素生成装置。
a heating unit that burns combustible gas and discharges combustion exhaust gas;
a combustion cylinder surrounding the outer periphery of the heating part;
a heating part partition surrounding the outer periphery of the combustion cylinder;
a first partition surrounding the outer periphery of the heating part partition;
a second partition surrounding the outer periphery of the first partition;
a combustion gas flow path formed between the combustion cylinder and the partition wall of the heating section for upwardly flowing the combustion exhaust gas;
an evaporator that is formed in an upper portion between the heating part partition and the first partition and heats a raw material gas and water with heat transferred through the heating part partition to evaporate the water;
A reforming catalyst is filled in the lower part between the partition wall of the heating part and the first partition wall, and the heat transmitted through the partition wall of the heating part forms monoxidation from the mixed gas of the raw material gas and water vapor through a reforming reaction. a reformer that produces a primary hydrogen-containing gas containing carbon;
a return passage formed between the first partition and the second partition for upwardly flowing the hydrogen-containing gas that has flowed out of the reformer;
Between the first partition wall and the second partition wall, a portion adjacent to the outer peripheral side of the evaporator is filled with a shift conversion catalyst, and the first portion contained in the primary hydrogen-containing gas that has flowed out of the reformer a carbon monoxide reducer that reduces the concentration of carbon oxide by a denaturation reaction and discharges it as a secondary hydrogen-containing gas;
Between the first partition wall and the second partition wall, a portion above the carbon monoxide reducer and adjacent to the outer peripheral side of the evaporator is filled with a selective oxidation catalyst to form the carbon monoxide reducer. a carbon monoxide remover that further reduces the concentration of carbon monoxide in the secondary hydrogen-containing gas discharged from the device by a selective oxidation reaction and discharges it as a tertiary hydrogen-containing gas;
A space surrounded by the carbon monoxide reducer, the carbon monoxide remover, the first partition wall, and the second partition wall is divided into a second mixing flow path, which is an inner peripheral space, and an outer peripheral space. a cylindrical air mixing cylinder whose upper end inner circumference is joined to the first partition;
The inner peripheral side end portion is fixed to the air mixing cylinder, the outer peripheral side end portion is fixed to the second partition wall, and the outer peripheral side space is divided into a header flow path which is an outer peripheral side upper space and a first outer peripheral side space which is an outer peripheral side lower space. A doughnut-shaped partitioning member partitioned into a mixing channel,
an air supply pipe that supplies air to the first mixing channel;
The first gas is provided between the carbon monoxide reducer and the first partition so as to suppress heat exchange between the carbon monoxide reducer and the evaporator through the first partition. a heat transfer buffer communicating with the mixing channel;
a third partition partitioning the carbon monoxide reducer and the heat transfer buffer;
A hydrogen generator comprising
The air mixing cylinder flows the secondary hydrogen-containing gas mixed with the air in the first mixing passage into the second mixing passage at a position facing the tip of the air supply pipe with the combustion cylinder interposed therebetween. and a plurality of blowout holes provided in the circumferential direction for causing the secondary hydrogen-containing gas mixed with the air in the second mixing passage to flow out to the header flow passage,
The inner peripheral surface of the upper end of the third partition is in contact with the outer peripheral surface of the lower part of the air mixing cylinder, so that the inner peripheral part of the lower end of the air mixing cylinder is substantially in close contact with the first partition,
The hydrogen generator, wherein the inner peripheral portion of the lower end of the air mixing tube is not joined to the first partition wall.
JP2021018654A 2021-02-09 2021-02-09 Hydrogen generating apparatus Pending JP2022121769A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021018654A JP2022121769A (en) 2021-02-09 2021-02-09 Hydrogen generating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021018654A JP2022121769A (en) 2021-02-09 2021-02-09 Hydrogen generating apparatus

Publications (1)

Publication Number Publication Date
JP2022121769A true JP2022121769A (en) 2022-08-22

Family

ID=82932902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021018654A Pending JP2022121769A (en) 2021-02-09 2021-02-09 Hydrogen generating apparatus

Country Status (1)

Country Link
JP (1) JP2022121769A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7373706B2 (en) 2021-02-16 2023-11-06 パナソニックIpマネジメント株式会社 hydrogen generator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7373706B2 (en) 2021-02-16 2023-11-06 パナソニックIpマネジメント株式会社 hydrogen generator

Similar Documents

Publication Publication Date Title
JP4145785B2 (en) Cylindrical steam reformer
JP3403416B2 (en) Reformer
US7803202B2 (en) Reformer unit for generating hydrogen from a starting material comprising a hydrocarbon-water mixture
JP2009078954A (en) Reforming apparatus
EP2407224A1 (en) Catalytic combustor for a reformer for a fuel cell
JP2022121769A (en) Hydrogen generating apparatus
US20130065144A1 (en) Hydrogen production apparatus and fuel cell system
JP4464230B2 (en) Reforming apparatus and method, and fuel cell system
JP2001342002A (en) Fuel reformer
JP5895169B2 (en) Hydrogen generator
JP5329944B2 (en) Steam reformer for fuel cell
JP2011178613A (en) Multiple cylindrical steam reformer
WO2013150798A1 (en) Hydrogen generator
JP4431455B2 (en) Reformer
JP2011207701A (en) Hydrogen production apparatus and fuel cell system
JP5274986B2 (en) Multi-cylinder steam reformer for fuel cells
JP2023073554A (en) Hydrogen generator, and manufacturing method therefor
JP2024066791A (en) Hydrogen Generator
JP2005314210A (en) Reforming device
JP2023065735A (en) CO catalyst unit
JP2023078531A (en) Method of manufacturing hydrogen production device
JP5263030B2 (en) Hydrogen generator
JP2023113226A (en) Method for manufacturing hydrogen generator
JP4450754B2 (en) Fuel reformer
JP2015147696A (en) Hydrogen generation device, and fuel cell system

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20221021