JP5329944B2 - Steam reformer for fuel cell - Google Patents

Steam reformer for fuel cell Download PDF

Info

Publication number
JP5329944B2
JP5329944B2 JP2008334376A JP2008334376A JP5329944B2 JP 5329944 B2 JP5329944 B2 JP 5329944B2 JP 2008334376 A JP2008334376 A JP 2008334376A JP 2008334376 A JP2008334376 A JP 2008334376A JP 5329944 B2 JP5329944 B2 JP 5329944B2
Authority
JP
Japan
Prior art keywords
catalyst layer
cylindrical
cylindrical body
cylinder
steam reformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008334376A
Other languages
Japanese (ja)
Other versions
JP2010157402A (en
Inventor
正浩 白木
純 小宮
久幸 斎宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2008334376A priority Critical patent/JP5329944B2/en
Publication of JP2010157402A publication Critical patent/JP2010157402A/en
Application granted granted Critical
Publication of JP5329944B2 publication Critical patent/JP5329944B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a steam reforming device in which various problems in a conventional steam reformer are solved and cost reduction is promoted. <P>SOLUTION: The steam reforming device for a fuel cell includes a cylindrical steam reformer which is equipped with a plurality of cylindrical bodies consisting of a first cylindrical body, a second cylindrical body, and a third cylindrical body with sequentially larger diameters coaxially arranged leaving spacings in between, and a burner in the center part of the circumferential direction of the first cylindrical body in which the upper part gap out of the gaps partitioned by the first cylindrical body and the second cylindrical body in the circumferential direction is used as a pre-heating layer of a mixture flow of raw material fuel and raw material water, and equipped with a reforming catalyst layer in the lower part gap, and a cylindrical steam reformer in which a reforming gas flow passage is constituted that is reversed at the lower end of the second cylindrical body in the gap partitioned in the circumferential direction by the second cylindrical body and the third cylindrical body, a CO denatured catalyst layer at the upper part in the cylindrical body, a CO removing catalyst layer at the lower part, an air supply part between the CO denatured catalyst layer and the CO removing catalyst layer, and a cylindrical reforming gas treatment device arranged with raw material water preheating tubes to supply the water to the preheating layer of the steam reformer in the outer periphery where the CO removing catalyst layer is positioned out of the cylindrical bodies are included. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、水蒸気改質器と、当該水蒸気改質器とは別個に当該水蒸気改質器で生成する改質ガス中のCOを除去するための改質ガス処理器を備える燃料電池用円筒型水蒸気改質装置に関する。   The present invention relates to a steam reformer and a cylindrical type for a fuel cell including a reformed gas processor for removing CO in reformed gas generated by the steam reformer separately from the steam reformer. The present invention relates to a steam reformer.

固体高分子形燃料電池(PEFC)の燃料水素の製造法の一つとして原燃料の水蒸気改質法が知られており、水蒸気改質法では水蒸気改質器が用いられる。   As a method for producing fuel hydrogen in a polymer electrolyte fuel cell (PEFC), a steam reforming method for raw fuel is known. In the steam reforming method, a steam reformer is used.

本明細書中、改質用に水蒸気改質器に供給する燃料を“原燃料”と称している。原燃料としてはメタン、エタン、プロパン、ブタン、ペンタン、都市ガス、LPガス(液化石油ガス)、天然ガス、ガソリン、灯油、その他の炭化水素(2種以上の炭化水素の混合物を含む)が使用される。それらにアルコール類やエーテル類が混合されていてもよい。   In this specification, the fuel supplied to the steam reformer for reforming is referred to as “raw fuel”. As raw fuel, methane, ethane, propane, butane, pentane, city gas, LP gas (liquefied petroleum gas), natural gas, gasoline, kerosene, and other hydrocarbons (including mixtures of two or more hydrocarbons) are used. Is done. Alcohols and ethers may be mixed with them.

図5は、原燃料の処理からPEFCに至るまでのシステムを説明する図である。水蒸気改質器は、概略、バーナあるいは燃焼触媒を配置した燃焼部(加熱部)とNi系、Ru系等の改質触媒を配置した改質部により構成される。改質部では原燃料を水蒸気と反応させて水素リッチな改質ガスが生成される。改質部で起こる反応は大きな吸熱を伴うので、反応の進行のためには外部からの熱が必要であり、400〜680℃程度の温度が必要である。なお、定常運転は例えば660℃と言うように設定される。このため燃焼部での燃料ガスの空気による燃焼により発生した燃焼熱(ΔH)が改質部に供給される。   FIG. 5 is a diagram illustrating a system from raw fuel processing to PEFC. The steam reformer is generally composed of a combustion part (heating part) in which a burner or a combustion catalyst is arranged, and a reforming part in which a reforming catalyst such as Ni-based or Ru-based is arranged. In the reforming section, the raw fuel is reacted with steam to generate hydrogen-rich reformed gas. Since the reaction occurring in the reforming part involves a large endotherm, heat from the outside is necessary for the progress of the reaction, and a temperature of about 400 to 680 ° C. is necessary. The steady operation is set to 660 ° C., for example. For this reason, combustion heat (ΔH) generated by combustion of fuel gas with air in the combustion section is supplied to the reforming section.

都市ガスやLPガスには漏洩保安を目的とする付臭剤として硫黄化合物が添加され、また、ガソリンや灯油などには、原油からの精製プロセスで脱硫しきれなかった微量の硫黄化合物が含まれている。改質触媒は、それらの硫黄化合物により被毒して性能劣化を来すので、原燃料はそれらの硫黄化合物を除去するために脱硫器へ導入される。次いで、別途設けられた水蒸気発生器からの水蒸気を混合して水蒸気改質器へ導入され、水蒸気改質器中での原燃料の水蒸気による改質反応により水素リッチな改質ガスが生成される。   Sulfur compounds are added to city gas and LP gas as odorants for the purpose of leakage protection, and gasoline and kerosene contain trace amounts of sulfur compounds that could not be desulfurized by the refining process from crude oil. ing. Since the reforming catalyst is poisoned by these sulfur compounds and causes performance deterioration, the raw fuel is introduced into the desulfurizer in order to remove those sulfur compounds. Next, steam from a steam generator provided separately is mixed and introduced into the steam reformer, and a hydrogen-rich reformed gas is generated by the reforming reaction of the raw fuel with steam in the steam reformer. .

原燃料が例えばメタンである場合の改質反応は「CH4+2H2O→CO2+4H2」で示される。生成する改質ガス中には未反応のメタン、未反応の水蒸気、二酸化炭素(CO2)のほか、一酸化炭素(CO)が副生して8〜15%(容量%、以下%について同じ)程度含まれている。PEFCに供給する燃料水素中のCO含有量は100ppm(容量ppm、以下ppmについて同じ)程度が限度であり、これを超えると電池性能が著しく劣化するので、CO成分はPEFCへ導入する前にできる限り除去する必要がある。 The reforming reaction when the raw fuel is methane, for example, is represented by “CH 4 + 2H 2 O → CO 2 + 4H 2 ”. In the reformed gas to be generated, in addition to unreacted methane, unreacted water vapor, carbon dioxide (CO 2 ), carbon monoxide (CO) is by-produced, and 8 to 15% (capacity%, the same for% below) ) Degree included. The CO content in the fuel hydrogen supplied to the PEFC is limited to about 100 ppm (capacity ppm, the same applies to the following ppm), and if it exceeds this, the cell performance is significantly deteriorated, so the CO component can be formed before being introduced into the PEFC. As long as it is necessary to remove.

このため改質ガスは、副生COを二酸化炭素に変えて除去するためにCO変成器に導入される。CO変成器では銅−亜鉛系や白金触媒等の触媒が用いられるが、その触媒を機能させるには220〜300℃程度(適温200〜250℃程度の触媒などもある)の温度が必要である。CO変成器中での反応は「CO+H2O→CO2+H2」で示され、この反応で必要な水蒸気としては水蒸気改質器において未反応の残留水蒸気が利用される。
なお、CO変成触媒を機能させる温度はその有効作動温度のことであるが、本明細書では適宜「適温」との用語で説明している。
For this reason, the reformed gas is introduced into a CO converter in order to convert by-product CO into carbon dioxide and remove it. In the CO converter, a catalyst such as a copper-zinc system or a platinum catalyst is used, but a temperature of about 220 to 300 ° C. (some catalysts have an appropriate temperature of about 200 to 250 ° C.) is necessary to make the catalyst function. . The reaction in the CO converter is represented by “CO + H 2 O → CO 2 + H 2 ”, and unreacted residual steam is utilized in the steam reformer as the steam necessary for this reaction.
Note that the temperature at which the CO conversion catalyst functions is its effective operating temperature, but in this specification, the term “appropriate temperature” is used as appropriate.

CO変成器から出る改質ガスは、未反応のメタンと余剰水蒸気を除けば、主に水素と二酸化炭素とからなっている。このうち水素が目的とする成分であるが、CO変成器を経て得られる改質ガスについても、COは完全には除去されず、微量のCOが含まれている。このため、改質ガスはCO変成器によりCO濃度を1%程度以下まで低下させた後、CO酸化器に導入される。   The reformed gas exiting from the CO converter mainly consists of hydrogen and carbon dioxide except for unreacted methane and excess steam. Of these, hydrogen is an intended component, but the reformed gas obtained through the CO converter also does not completely remove CO, but contains a trace amount of CO. For this reason, the reformed gas is introduced into the CO oxidizer after the CO concentration is lowered to about 1% or less by the CO converter.

CO除去器ではCO変成器を経た改質ガスに空気等の酸化剤ガスが添加され、COの選択的酸化反応(CO+1/2O2=CO2)により、COを100ppm程度以下、好ましくは50ppm以下、さらに好ましくは10ppm以下というように低減させる。CO除去器の作動温度は130〜170℃程度(なお、CO除去触媒の適温100〜150℃程度の触媒もある)である。こうして精製された水素がPEFCの燃料極に供給される。 In the CO remover, an oxidant gas such as air is added to the reformed gas that has passed through the CO converter, and CO is reduced to about 100 ppm or less, preferably 50 ppm or less by a selective oxidation reaction of CO (CO + 1 / 2O 2 = CO 2 ). More preferably, it is reduced to 10 ppm or less. The operating temperature of the CO remover is about 130 to 170 ° C. (There are also catalysts having an appropriate temperature of 100 to 150 ° C. for the CO removal catalyst). The purified hydrogen is supplied to the fuel electrode of PEFC.

従来のシステムでは、そのように水蒸気改質器とCO変成器とCO除去器をそれぞれ別個に設置していたが、このようなシステムでは放熱ロスが大きいため、効率が低下するということが大きな課題であった。   In the conventional system, the steam reformer, the CO converter, and the CO remover are separately installed as described above. However, in such a system, the heat dissipation loss is large, so that the efficiency is lowered. Met.

そこで、多重管を用いて水蒸気改質器にCO変成器、CO除去器を一体化した多重円筒型水蒸気改質器が開発されている(特許文献1〜4、等)。   Therefore, a multi-cylinder steam reformer has been developed in which a CO reformer and a CO remover are integrated into a steam reformer using multiple tubes (Patent Documents 1 to 4, etc.).

WO 02/098790 A1WO 02/098790 A1 WO 03/078311 A1WO 03/078311 A1 特開2002−187705号公報JP 2002-187705 A 特開2006−232611号公報JP 2006-232611 A

図6は、そのように一体化した多重円筒型水蒸気改質器の例を説明する図である。図6のとおり、同心状に間隔を置いて配置された順次径(直径、以下同じ)の大きい第1円筒体101、第2円筒体102及び第3円筒体103からなる複数の円筒体と、第1円筒体101の周方向中心部に配置されたバーナ107と、第1円筒体101と第2円筒体102により周方向に区画された隙間に予熱層114と改質触媒層116を備えている。予熱層114には、その内部に棒材115が螺旋状に配置され、その内部に連続した螺旋状のガス通路が形成される。第2円筒体102と第3円筒体103により周方向に区画された隙間に、第2円筒体102の下端で反転させた改質ガスの流路120が形成される。   FIG. 6 is a diagram for explaining an example of such a multi-cylinder steam reformer integrated. As shown in FIG. 6, a plurality of cylindrical bodies composed of a first cylindrical body 101, a second cylindrical body 102, and a third cylindrical body 103, which are arranged concentrically at intervals and which have large diameters (diameters, hereinafter the same), A burner 107 disposed at the center in the circumferential direction of the first cylindrical body 101, and a preheating layer 114 and a reforming catalyst layer 116 are provided in a gap partitioned in the circumferential direction by the first cylindrical body 101 and the second cylindrical body 102. Yes. In the preheating layer 114, rods 115 are spirally arranged therein, and a continuous spiral gas passage is formed therein. A reformed gas flow path 120 that is inverted at the lower end of the second cylindrical body 102 is formed in a gap partitioned in the circumferential direction by the second cylindrical body 102 and the third cylindrical body 103.

このような形式の多重円筒型水蒸気改質器には、第1円筒体101の内側に間隔を置いて輻射筒を配置した構造のものもある。図6にはその態様を示している。輻射筒106は、その下端が第1円筒体101の底板109に対して間隔を持つように、上蓋兼バーナ取付台108に取付けられる。バーナ107での燃焼ガスは、燃焼室F中を下降し、輻射筒106の下端で折り返し、燃焼ガス流路110を経てその上部から燃焼排ガス排出管142から排出される。   Some types of multi-cylinder steam reformers of this type have a structure in which radiation tubes are arranged at intervals inside the first cylindrical body 101. FIG. 6 shows this aspect. The radiation tube 106 is attached to the upper lid / burner mounting base 108 so that the lower end thereof is spaced from the bottom plate 109 of the first cylindrical body 101. Combustion gas in the burner 107 descends in the combustion chamber F, turns back at the lower end of the radiant cylinder 106, passes through the combustion gas passage 110, and is discharged from the upper portion of the combustion exhaust gas exhaust pipe 142.

第3円筒体103に続く第4円筒体104と第2円筒体102との間に、改質ガスの流路120に続き、順次CO変成触媒層123及びCO除去触媒層131を配置して一体化される。すなわち、第3円筒体103に続く第4円筒体104と第2円筒体112との間に、改質触媒層116に続き順次、CO変成触媒層123及びCO除去触媒層131を配置することで構成される。   Between the fourth cylindrical body 104 and the second cylindrical body 102 following the third cylindrical body 103, the CO shift catalyst layer 123 and the CO removal catalyst layer 131 are sequentially arranged and integrated, following the reformed gas flow path 120. It becomes. That is, by sequentially placing the CO conversion catalyst layer 123 and the CO removal catalyst layer 131 after the reforming catalyst layer 116 between the fourth cylinder 104 and the second cylinder 112 following the third cylinder 103. Composed.

第3円筒体103の上部に当該第3円筒体103より径を大きくした第4円筒体104を配置し、第2円筒体102と第4円筒体104との間にCO変成触媒層123を設ける。第3円筒体103の上端部と第4円筒体104の下端部との間には板体121を配置する。板体121の上に間隔を置いてガス流通用の複数の孔を有する支持板122を配置し、支持板122の上にCO変成触媒層123を配置し、CO変成触媒層123の上にガス流通用の複数の孔を有する仕切板124を配置する。第2円筒体102の外周と第4円筒体104との間に仕切板124に対して間隔を置いて板体126を配置する。   A fourth cylinder 104 having a diameter larger than that of the third cylinder 103 is disposed on the third cylinder 103, and a CO shift catalyst layer 123 is provided between the second cylinder 102 and the fourth cylinder 104. . A plate body 121 is disposed between the upper end portion of the third cylindrical body 103 and the lower end portion of the fourth cylindrical body 104. A support plate 122 having a plurality of holes for gas circulation is disposed on the plate body 121 at intervals, a CO conversion catalyst layer 123 is disposed on the support plate 122, and a gas is formed on the CO conversion catalyst layer 123. A partition plate 124 having a plurality of holes for distribution is disposed. A plate body 126 is disposed between the outer periphery of the second cylindrical body 102 and the fourth cylindrical body 104 with a space from the partition plate 124.

板体121は、第3円筒体103の直径に相当する部分は第3円筒体103で占められるのでドーナツ状の板体であり、また支持板121と仕切板124と板体126とは、第3円筒体103の直径に相当する部分は第3円筒体103で占められるのでドーナツ状の板体である。支持板122、仕切板124は金属製等の網目体で構成してもよく、この場合には網目体の網目がガス流通孔となる。改質ガス流路20を流通した改質ガスは、支持板122に設けられた多数の孔を経てCO変成触媒層123に供給される。   The plate 121 is a donut-shaped plate because the portion corresponding to the diameter of the third cylinder 103 is occupied by the third cylinder 103, and the support plate 121, the partition plate 124, and the plate 126 A portion corresponding to the diameter of the three cylindrical body 103 is occupied by the third cylindrical body 103, and thus is a donut-shaped plate. The support plate 122 and the partition plate 124 may be formed of a mesh body made of metal or the like. In this case, the mesh body of the mesh body serves as a gas flow hole. The reformed gas that has flowed through the reformed gas flow path 20 is supplied to the CO shift catalyst layer 123 through a large number of holes provided in the support plate 122.

CO変成触媒層123に続き、第4円筒体104に続く第5円筒体105と第2円筒体102との間にCO除去触媒層131を配置する。なお、CO除去触媒層131は第2円筒体102と第4円筒体104との間に配置してもよい。この場合には第5円筒体105は不要であり、CO除去用空気供給管144は第4円筒体104の側部に配置される。   Following the CO shift catalyst layer 123, a CO removal catalyst layer 131 is disposed between the fifth cylinder 105 and the second cylinder 102 following the fourth cylinder 104. The CO removal catalyst layer 131 may be disposed between the second cylindrical body 102 and the fourth cylindrical body 104. In this case, the fifth cylinder 105 is not necessary, and the CO removal air supply pipe 144 is disposed on the side of the fourth cylinder 104.

予熱層14は、その内部に棒材15が螺旋状に配置され、これにより予熱層14の内部に連続した螺旋状のガス通路が形成されている。原燃料と水及び/又は水蒸気の混合流は予熱層114に供給され、その混合流を加熱する。水の場合には加熱されて気化し、さらに加熱される。予熱層114で加熱された原燃料と水蒸気の混合流は改質触媒層116に導入され、ここでの改質反応により改質ガスを生成する。改質ガスは、改質ガス流路20に流入し、CO変成触媒層123、CO除去触媒層131を経て導管145から取り出される。   In the preheating layer 14, the rod 15 is disposed in a spiral shape, whereby a continuous spiral gas passage is formed in the preheating layer 14. A mixed stream of raw fuel and water and / or steam is supplied to the preheating layer 114 to heat the mixed stream. In the case of water, it is heated and vaporized, and further heated. The mixed flow of raw fuel and steam heated in the preheating layer 114 is introduced into the reforming catalyst layer 116, and reformed gas is generated by the reforming reaction here. The reformed gas flows into the reformed gas channel 20 and is taken out from the conduit 145 through the CO shift catalyst layer 123 and the CO removal catalyst layer 131.

この形式の多重円筒型水蒸気改質器を組み立てる際には、第1円筒体101と底板109、第3円筒体103と底板119、第3円筒体103と板体121との間、板体121第4円筒体104との間、第2円筒体102と支持板122、仕切板124、板体126、板体128との間、第4円筒体104と支持板122、仕切板124、板体126、板体128との間、等数多くの箇所での溶接が必要である。   When assembling this type of multi-cylinder steam reformer, the first cylinder 101 and the bottom plate 109, the third cylinder 103 and the bottom plate 119, the third cylinder 103 and the plate body 121, the plate body 121, and the like. Between the fourth cylinder 104, between the second cylinder 102 and the support plate 122, the partition plate 124, the plate body 126, and the plate body 128, between the fourth cylinder 104 and the support plate 122, the partition plate 124, and the plate body It is necessary to weld at a number of locations such as 126 and the plate 128.

ところで、そのような一体型多重円筒型水蒸気改質器については、これを実用化するには、例えば前述図6のように、バーナを第1円筒体の中心部に配置し、被改質ガスである原燃料の流れ方向でみて改質触媒層→CO変成触媒層→CO除去触媒層を鉛直方向ないし垂直方向に並べる必要がある。   By the way, in order to put this integrated multi-cylinder steam reformer into practical use, for example, as shown in FIG. 6, the burner is disposed at the center of the first cylindrical body, and the gas to be reformed. In view of the flow direction of the raw fuel, it is necessary to arrange the reforming catalyst layer → the CO conversion catalyst layer → the CO removal catalyst layer in the vertical direction or the vertical direction.

それら改質触媒層、CO変成触媒層、CO除去触媒層の各触媒層の触媒について、改質器の設計寿命まで必要な性能を維持するためには、それに適切な量を充填しておくことが重要であるが、それら3種の触媒のうち、特にCO変成触媒の量が多くなる傾向がある。そのCO変成触媒量を多くするために、前述図6のように、その充填域を周方向、つまり上下軸方向に対して垂直方向に広げる場合には、特にCO変成触媒層の管径が大きくなってしまい、その結果としてCO変成触媒層を組み立てる際の溶接線の長さが長くなり、製造コストが高くなってしまっていた。   In order to maintain the performance required for the reformer design life of the reformer catalyst layer, the CO conversion catalyst layer, and the CO removal catalyst layer, the appropriate amount must be filled therein. However, among these three types of catalysts, the amount of the CO conversion catalyst tends to increase. In order to increase the amount of the CO shift catalyst, as shown in FIG. 6, the tube diameter of the CO shift catalyst layer is particularly large when the filling region is expanded in the circumferential direction, that is, in the direction perpendicular to the vertical axis direction. As a result, the length of the weld line when assembling the CO shift catalyst layer is increased, and the manufacturing cost is increased.

一方、独立した各円筒管にそれらの各触媒を充填し、各円筒管の間を配管で接続することでも水素を製造することは可能であるが、表面積が大きくなるために、放熱ロスが大きく、効率や起動性の面で問題を抱えていた。   On the other hand, it is possible to produce hydrogen by filling each independent cylindrical tube with each of these catalysts and connecting each cylindrical tube with a pipe, but since the surface area is large, the heat dissipation loss is large. Had problems in terms of efficiency and startability.

本発明は、従来の水蒸気改質器とCO変成器とCO除去器をそれぞれ別個に設置したシステム、従来のCO変成器とCO除去器を一体化した多重円筒型水蒸気改質器における以上の諸問題点を解決してなる、水蒸気改質器と、当該水蒸気改質器とは別個に当該水蒸気改質器で生成する改質ガス中のCOを除去するための改質ガス処理器を備える燃料電池用円筒型水蒸気改質装置を提供することを目的とするものである。   The present invention relates to a system in which a conventional steam reformer, a CO converter and a CO remover are separately installed, and a multi-cylinder steam reformer in which the conventional CO converter and the CO remover are integrated. A fuel comprising a steam reformer and a reformed gas processor for removing CO in the reformed gas produced by the steam reformer separately from the steam reformer, which solves the problem An object of the present invention is to provide a cylindrical steam reformer for a battery.

本発明(1)は、円筒型水蒸気改質器と円筒型改質ガス処理器を別個に備えてなる燃料電池用水蒸気改質装置であって、
前記円筒型水蒸気改質器が、
(a)同心状に間隔を置いて配置した順次径の大きい第1円筒体、第2円筒体及び第3円筒体からなる複数の円筒体と、前記第1円筒体の周方向中心部に上端から配置されたバーナを備え、
(b)前記第1円筒体と前記第2円筒体により周方向に区画された隙間のうち、上部の隙間を原燃料と原料水との混合流の予熱層とするとともに、下部の隙間に改質触媒層を備え、
(c)前記第2円筒体と前記第3円筒体により周方向に区画された隙間に当該第2円筒体の下端で反転させた改質ガス流路を構成してなり、
前記円筒型改質ガス処理器が、
(a)円筒体内の上部にCO変成触媒層を備え、下部にCO除去触媒層を備えるとともに、前記CO変成触媒層と前記CO除去触媒層の間に空気供給部を備え、
(b)前記円筒体のうち、CO除去触媒層が位置する外周に前記水蒸気改質器の予熱層へ供給する原料水の予熱管を配置してなり、
且つ、前記円筒型水蒸気改質器の改質ガス流路と前記CO変成触媒層との間に改質ガス導管を配置してなること、を特徴とする燃料電池用水蒸気改質装置である。
本発明(1)は、参考発明である。
The present invention (1) is a fuel cell steam reformer comprising a cylindrical steam reformer and a cylindrical reformed gas processor separately,
The cylindrical steam reformer is
(A) a plurality of first and second cylindrical bodies, each of which is arranged concentrically and spaced apart from each other, and has an upper end at a central portion in the circumferential direction of the first cylindrical body; With a burner arranged from
(B) Of the gaps defined in the circumferential direction by the first cylinder and the second cylinder, the upper gap is used as a preheating layer for the mixed flow of raw fuel and raw water, and the lower gap is modified. With a catalyst layer,
(C) comprising a reformed gas flow channel that is inverted at the lower end of the second cylindrical body in a gap partitioned in the circumferential direction by the second cylindrical body and the third cylindrical body;
The cylindrical reformed gas processor is
(A) a cylinder is provided with a CO shift catalyst layer at the top, a CO removal catalyst layer at the bottom, and an air supply unit between the CO shift catalyst layer and the CO removal catalyst layer;
(B) A raw water preheating pipe to be supplied to the preheating layer of the steam reformer is disposed on the outer periphery of the cylindrical body where the CO removal catalyst layer is located,
The fuel cell steam reformer is characterized in that a reformed gas conduit is disposed between the reformed gas flow path of the cylindrical steam reformer and the CO shift catalyst layer.
The present invention (1) is a reference invention.

本発明(2)は、円筒型水蒸気改質器と円筒型改質ガス処理器を別個に備えてなる燃料電池用水蒸気改質装置であって、
前記円筒型水蒸気改質器が、
(a)同心状に間隔を置いて配置した順次径の大きい第1円筒体、第2円筒体及び第3円筒体からなる複数の円筒体と、前記第1円筒体の周方向中心部に上端から配置されたバーナを備え、
(b)前記第1円筒体と前記第2円筒体により周方向に区画された隙間のうち、上部の隙間を原燃料と原料水との混合流の予熱層とするとともに、下部の隙間に改質触媒層を備え、
(c)前記第2円筒体と前記第3円筒体により周方向に区画された隙間に当該第2円筒体の下端で反転させた改質ガス流路を構成してなり、
前記円筒型改質ガス処理器が、
(a)第4円筒体と、第4円筒体の外周のうちの下部の外周に当該第4円筒体より径の大きい第5円筒体を同心状に間隔を置いて配置し、
(b)前記第4円筒体内にCO変成触媒層を配置するとともに、第4円筒体と第5円筒体との間にCO除去触媒層を備え、
(c)前記CO変成触媒層と前記CO除去触媒層の間に空気供給部を備えるとともに、前記CO除去触媒層の外周に原料水の予熱管を配置してなり、
且つ、前記円筒型水蒸気改質器の改質ガス流路と前記CO変成触媒層との間に改質ガス導管を配置してなること、を特徴とする燃料電池用水蒸気改質装置である。
本発明(2)は、参考発明である。
The present invention (2) is a fuel cell steam reformer comprising a cylindrical steam reformer and a cylindrical reformed gas processor separately,
The cylindrical steam reformer is
(A) a plurality of first and second cylindrical bodies, each of which is arranged concentrically and spaced apart from each other, and has an upper end at a central portion in the circumferential direction of the first cylindrical body; With a burner arranged from
(B) Of the gaps defined in the circumferential direction by the first cylinder and the second cylinder, the upper gap is used as a preheating layer for the mixed flow of raw fuel and raw water, and the lower gap is modified. With a catalyst layer,
(C) comprising a reformed gas flow channel that is inverted at the lower end of the second cylindrical body in a gap partitioned in the circumferential direction by the second cylindrical body and the third cylindrical body;
The cylindrical reformed gas processor is
(A) A fifth cylinder having a diameter larger than that of the fourth cylinder and the fourth cylinder and a lower outer circumference of the fourth cylinder are arranged concentrically at intervals.
(B) While disposing a CO shift catalyst layer in the fourth cylinder, a CO removal catalyst layer is provided between the fourth cylinder and the fifth cylinder,
(C) An air supply unit is provided between the CO conversion catalyst layer and the CO removal catalyst layer, and a raw water preheating pipe is disposed on the outer periphery of the CO removal catalyst layer,
The fuel cell steam reformer is characterized in that a reformed gas conduit is disposed between the reformed gas flow path of the cylindrical steam reformer and the CO shift catalyst layer.
The present invention (2) is a reference invention.

本発明(3)は、円筒型水蒸気改質器と円筒型改質ガス処理器を別個に備えてなる燃料電池用水蒸気改質装置であって、
前記円筒型水蒸気改質器が、
(a)同心状に間隔を置いて配置した順次径の大きい第1円筒体、第2円筒体及び第3円筒体からなる複数の円筒体と、前記第1円筒体の周方向中心部に上端から配置されたバーナを備え、
(b)前記第1円筒体と前記第2円筒体により周方向に区画された隙間のうち、上部の隙間を原燃料と原料水との混合流の予熱層とするとともに、下部の隙間に改質触媒層を備え、
(c)前記第2円筒体と前記第3円筒体により周方向に区画された隙間に当該第2円筒体の下端で反転させた改質ガス流路を構成してなり、
前記円筒型改質ガス処理器が、
(a)第4円筒体と、第4円筒体の外周のうちの下部の位置の外周に間隔を置いて当該第4円筒体の外周よりも径の大きい第5円筒体を配置するとともに、第5円筒体の外周に間隔を置いて当該第5円筒体の外周よりも径の大きい第6円筒体を配置し、
(b)前記第4円筒体内にCO変成触媒層を配置するとともに、第5円筒体と第6円筒体との間にCO除去触媒層を備え、
(c)前記CO変成触媒層の下部からCO除去触媒層に向けて、前記CO変成触媒層を経たCO変成済み改質ガスの流通部を備えるとともに、当該流通部に空気供給管を配置し、(d)前記第6円筒体の外周に原料水の予熱管を配置してなり、
且つ、前記円筒型水蒸気改質器の改質ガス流路と前記CO変成触媒層との間に改質ガス導管を配置してなること、を特徴とする燃料電池用水蒸気改質装置である。
本発明(3)は、請求項1に係る発明である。
The present invention (3) is a steam reformer for a fuel cell comprising a cylindrical steam reformer and a cylindrical reformed gas processor separately,
The cylindrical steam reformer is
(A) a plurality of first and second cylindrical bodies, each of which is arranged concentrically and spaced apart from each other, and has an upper end at a central portion in the circumferential direction of the first cylindrical body; With a burner arranged from
(B) Of the gaps defined in the circumferential direction by the first cylinder and the second cylinder, the upper gap is used as a preheating layer for the mixed flow of raw fuel and raw water, and the lower gap is modified. With a catalyst layer,
(C) comprising a reformed gas flow channel that is inverted at the lower end of the second cylindrical body in a gap partitioned in the circumferential direction by the second cylindrical body and the third cylindrical body;
The cylindrical reformed gas processor is
(A) A fifth cylinder having a diameter larger than the outer circumference of the fourth cylinder and a fourth cylinder having a diameter larger than the outer circumference of the fourth cylinder is spaced apart from the outer circumference of the lower position of the fourth cylinder. A sixth cylinder having a larger diameter than the outer periphery of the fifth cylinder is arranged at an interval on the outer periphery of the five cylinder,
(B) A CO shift catalyst layer is disposed in the fourth cylinder, and a CO removal catalyst layer is provided between the fifth cylinder and the sixth cylinder,
(C) From the lower part of the CO conversion catalyst layer toward the CO removal catalyst layer, a CO-modified reformed gas circulation part that has passed through the CO conversion catalyst layer is provided, and an air supply pipe is disposed in the circulation part, (D) A raw water preheating pipe is disposed on the outer periphery of the sixth cylindrical body,
The fuel cell steam reformer is characterized in that a reformed gas conduit is disposed between the reformed gas flow path of the cylindrical steam reformer and the CO shift catalyst layer.
The present invention (3) is the invention according to claim 1.

本発明(3)の燃料電池用水蒸気改質装置においては、前記第4円筒体と前記第5円筒体との間のうち、前記第4円筒体の外周に電気ヒーターを配置することができる。   In the fuel cell steam reformer of the present invention (3), an electric heater can be disposed on the outer periphery of the fourth cylindrical body between the fourth cylindrical body and the fifth cylindrical body.

本発明(1)〜(3)の燃料電池用円筒型水蒸気改質装置において、前記水蒸気改質器における第1円筒体の内部に輻射筒を備えることができる。   In the cylindrical steam reformer for a fuel cell of the present invention (1) to (3), a radiation cylinder may be provided inside the first cylindrical body in the steam reformer.

本発明の燃料電池用水蒸気改質装置によれば下記(a)〜(d)の効果が得られる。
(a)従来の水蒸気改質器とCO変成器とCO除去器をそれぞれ別個に設置したシステムに対して放熱ロスを大幅に低減することができる。
(b)従来のCO変成器とCO除去器を一体化した多重円筒型水蒸気改質器とほぼ同等の熱効率を達成できる。
(c)前述のように、改質触媒、CO変成触媒、CO除去触媒層のうち、特にCO変成触媒の量が多くなる傾向があるが、多重円筒型水蒸気改質器でCO変成触媒量を多くするためには、CO変成触媒層の管径が大きくなってしまう。その結果として、CO変成触媒層を組み立てる際の溶接線の長さが長くなり、製造コストが高くなっていたが、本発明においては、CO変成触媒層の管径をより小さくできるため、溶接部分を少なくし、また溶接線の長さを短くできるなど、この部分での欠陥リスクを低くでき、水蒸気改質装置の作製作業を簡略化できる。
(d)また、それら(a)〜(c)の結果として、コスト低減を図ることができる。
According to the fuel cell steam reformer of the present invention, the following effects (a) to (d) can be obtained.
(A) The heat dissipation loss can be greatly reduced with respect to a system in which a conventional steam reformer, CO converter, and CO remover are separately installed.
(B) A heat efficiency substantially equivalent to that of a multi-cylinder steam reformer in which a conventional CO converter and CO remover are integrated can be achieved.
(C) As described above, among the reforming catalyst, the CO shift catalyst, and the CO removal catalyst layer, the amount of the CO shift catalyst tends to increase. In order to increase it, the pipe diameter of the CO shift catalyst layer becomes large. As a result, the length of the weld line when assembling the CO shift catalyst layer is increased and the manufacturing cost is increased. However, in the present invention, since the pipe diameter of the CO shift catalyst layer can be further reduced, This can reduce the risk of defects in this portion, such as reducing the length of the weld line and reducing the length of the weld line, and can simplify the production process of the steam reformer.
(D) As a result of (a) to (c), cost reduction can be achieved.

本発明の燃料電池用円筒型水蒸気改質装置は、原燃料を改質して水素リッチな改質ガスを製造する円筒型水蒸気改質器と、その改質ガスから副生COを除去する円筒型改質ガス処理器とを別個に備えることを基本構造とし、且つ、円筒型水蒸気改質器で発生する熱と円筒型改質ガス処理器で発生する熱を相互に有効に利用するようにした装置である。   A cylindrical steam reformer for a fuel cell according to the present invention includes a cylindrical steam reformer that reforms raw fuel to produce a hydrogen-rich reformed gas, and a cylinder that removes by-product CO from the reformed gas. In order to make effective use of heat generated by the cylindrical steam reformer and heat generated by the cylindrical reformed gas processor, the basic structure is to separately provide the type reformed gas processor. Device.

以下、本発明(1)〜(3)の実施形態について順次説明するが、本発明(1)〜(3)に共通する事項については主として本発明(1)の箇所で説明している。   Hereinafter, although embodiment of this invention (1)-(3) is demonstrated sequentially, the matter common to this invention (1)-(3) is mainly demonstrated in the location of this invention (1).

〈本発明(1)の実施形態〉
本発明(1)は、円筒型水蒸気改質器と円筒型改質ガス処理器を別個に備えてなる燃料電池用水蒸気改質装置である。そして、
前記円筒型水蒸気改質器が、(a)同心状に間隔を置いて配置した順次径の大きい第1円筒体、第2円筒体及び第3円筒体からなる複数の円筒体と、前記第1円筒体の周方向中心部に上端から配置されたバーナを備え、(b)前記第1円筒体と前記第2円筒体により周方向に区画された隙間のうち、上部の隙間を原燃料と原料水との混合流の予熱層とするとともに、下部の隙間に改質触媒層を備え、(c)前記第2円筒体と前記第3円筒体により周方向に区画された隙間に当該第2円筒体の下端で反転させた改質ガス流路を構成してなり、
前記円筒型改質ガス処理器が、(a)円筒体内の上部にCO変成触媒層を備え、下部にCO除去触媒層を備えるとともに、前記CO変成触媒層と前記CO除去触媒層の間に空気供給部を備え、(b)前記円筒体のうち、CO除去触媒層が位置する外周に前記水蒸気改質器の予熱層へ供給する原料水の予熱管を配置してなり、
且つ、前記円筒型水蒸気改質器の改質ガス流路と前記CO変成触媒層との間に改質ガス導管を配置してなることを特徴とする。
<Embodiment of the present invention (1)>
The present invention (1) is a steam reformer for a fuel cell comprising a cylindrical steam reformer and a cylindrical reformed gas processor separately. And
The cylindrical steam reformer includes: (a) a plurality of first and second cylindrical bodies, each having a large diameter, arranged concentrically and spaced apart; A burner disposed from the upper end at the center in the circumferential direction of the cylindrical body, and (b) of the gaps partitioned in the circumferential direction by the first cylindrical body and the second cylindrical body, the upper gap is used as a raw fuel and a raw material. A preheating layer of a mixed flow with water, a reforming catalyst layer provided in a lower gap, and (c) the second cylinder in a gap partitioned in the circumferential direction by the second cylinder and the third cylinder Comprising a reformed gas flow channel inverted at the lower end of the body,
The cylindrical reformed gas processor comprises (a) a CO conversion catalyst layer in the upper part of the cylindrical body, a CO removal catalyst layer in the lower part, and air between the CO conversion catalyst layer and the CO removal catalyst layer. (B) a raw material water preheating pipe to be supplied to the preheating layer of the steam reformer is disposed on the outer periphery of the cylindrical body where the CO removal catalyst layer is located.
In addition, a reformed gas conduit is disposed between the reformed gas flow path of the cylindrical steam reformer and the CO shift catalyst layer.

図1は、本発明(1)を説明する図である。図1のとおり、本発明(1)の燃料電池用水蒸気改質装置は、円筒型水蒸気改質器Rと円筒型改質ガス処理器Aを別個に備える。   FIG. 1 is a diagram for explaining the present invention (1). As shown in FIG. 1, the fuel cell steam reformer of the present invention (1) includes a cylindrical steam reformer R and a cylindrical reformed gas processor A separately.

〈円筒型水蒸気改質器Rについて〉
円筒型水蒸気改質器Rは、第1円筒体1と第2円筒体2と第3円筒体3とを、順次径を大きくして配置する。それら複数の円筒体のうち、第1円筒体1の周方向中心部に上端からバーナ6を配置する。バーナ6は上蓋兼バーナ取付部材7に設置、固定する。第1円筒体1の下端に底板5を配置する。底板5は第1円筒体1の径に対応する径を持つ円盤である。上蓋兼バーナ取付部材7と第1円筒体1と底板5に囲まれた空間がバーナ6を含む燃焼室Fである。
<About the cylindrical steam reformer R>
The cylindrical steam reformer R arranges the first cylindrical body 1, the second cylindrical body 2, and the third cylindrical body 3 with sequentially increasing diameters. A burner 6 is arranged from the upper end at the center in the circumferential direction of the first cylinder 1 among the plurality of cylinders. The burner 6 is installed and fixed to the upper lid / burner mounting member 7. A bottom plate 5 is disposed at the lower end of the first cylindrical body 1. The bottom plate 5 is a disk having a diameter corresponding to the diameter of the first cylindrical body 1. A space surrounded by the upper lid / burner mounting member 7, the first cylindrical body 1, and the bottom plate 5 is a combustion chamber F including the burner 6.

第3円筒体3の下端に底板15を配置する。底板15は第3円筒体3の径に対応する径を持つ円盤である。第2円筒体2の下端は底板15に対して間隔を持つように配置される。また、底板15は底板5との間に隙間を持つようにする。底板5を底板55に対して隙間を持つようにすることにより、作動時における第1円筒体1と第3円筒体3及び底板15との熱膨張差に起因する第1円筒体1と第3円筒体3及び底板15との間の歪みや破壊を防止することができる。   A bottom plate 15 is disposed at the lower end of the third cylindrical body 3. The bottom plate 15 is a disk having a diameter corresponding to the diameter of the third cylindrical body 3. The lower end of the second cylindrical body 2 is disposed so as to be spaced from the bottom plate 15. Further, the bottom plate 15 has a gap between the bottom plate 5. By making the bottom plate 5 have a gap with respect to the bottom plate 55, the first cylindrical body 1 and the third cylindrical body 1 due to the difference in thermal expansion between the first cylindrical body 1, the third cylindrical body 3 and the bottom plate 15 at the time of operation. Distortion and destruction between the cylindrical body 3 and the bottom plate 15 can be prevented.

第1円筒体1と第2円筒体2により周方向に区画された隙間のうち、上部の隙間を原燃料と原料水との混合流の予熱層10とし、下部の隙間を改質触媒層13とする。予熱層10にはその上部に原燃料供給管40と水蒸気供給管39を配置する。予熱層10を構成する第1円筒体1と第2円筒体2との間に丸棒等の金属製棒材11を螺旋状に配置することで螺旋状流路を構成する。   Of the gaps defined by the first cylinder 1 and the second cylinder 2 in the circumferential direction, the upper gap is used as the preheating layer 10 of the mixed flow of raw fuel and raw water, and the lower gap is used as the reforming catalyst layer 13. And A raw fuel supply pipe 40 and a water vapor supply pipe 39 are disposed on the preheating layer 10. A spiral flow path is configured by arranging a metal bar 11 such as a round bar in a spiral between the first cylinder 1 and the second cylinder 2 constituting the preheating layer 10.

予熱層10に続く改質触媒層13は、その上部に多孔板12を配置し、その下部に多孔支持板14を配置し、その間に改質触媒を充填することで構成される。多孔板12と多孔支持板14は、その内周は第1円筒体1で占められ、その外周は第2円筒体2で占められているので円盤状の多孔板である。多孔板12と支持板14は金属メッシュ(=金属製網目体)等で構成してもよい。   The reforming catalyst layer 13 subsequent to the preheating layer 10 is configured by disposing a porous plate 12 in the upper portion thereof, disposing a porous support plate 14 in the lower portion thereof, and filling the reforming catalyst therebetween. The perforated plate 12 and the perforated support plate 14 are disk-like perforated plates because the inner circumference is occupied by the first cylindrical body 1 and the outer circumference is occupied by the second cylindrical body 2. The perforated plate 12 and the support plate 14 may be formed of a metal mesh (= metal mesh) or the like.

第2円筒体2と第3円筒体3により周方向に区画された隙間に改質ガス流路16を構成する。改質ガス流路16の上部に改質ガスの導出管17を備える。第2円筒体2の下端が底板15に対して間隔を置いて配置されているので、改質触媒層13で生成した改質ガスは第2円筒体2の下端で反転して改質ガス流路16に流入し、当該改質ガス流路16中を上方へ流通した後、改質ガス導出管17から導出される。改質ガス導出管17は、円筒型改質ガス処理器との関連で改質ガス導管とも言う。   A reformed gas flow path 16 is formed in a gap defined by the second cylindrical body 2 and the third cylindrical body 3 in the circumferential direction. A reformed gas outlet pipe 17 is provided above the reformed gas channel 16. Since the lower end of the second cylindrical body 2 is disposed at a distance from the bottom plate 15, the reformed gas generated in the reforming catalyst layer 13 is reversed at the lower end of the second cylindrical body 2 and the reformed gas flow After flowing into the channel 16 and flowing upward in the reformed gas channel 16, the gas is led out from the reformed gas outlet pipe 17. The reformed gas outlet pipe 17 is also referred to as a reformed gas conduit in connection with a cylindrical reformed gas processor.

本円筒型水蒸気改質器Rの作動時において、バーナ6で発生した燃料ガスは、燃焼室F中矢印で示すように、底板5の内側で折り返して、第1円筒体1の内側を上方へ向かって流れる。その間、燃料ガスは順次、第1円筒体を介して改質触媒層13の改質触媒、改質触媒層13を流れる原燃料と水蒸気の混合ガスを加熱し、予熱層10を流れる原燃料と水蒸気の混合ガスを加熱し、燃焼排ガス排出管8から排出される。   When the cylindrical steam reformer R is operated, the fuel gas generated in the burner 6 is folded inside the bottom plate 5 as indicated by an arrow in the combustion chamber F, and the inside of the first cylindrical body 1 is moved upward. It flows toward. Meanwhile, the fuel gas sequentially heats the reformed catalyst of the reforming catalyst layer 13, the raw fuel flowing through the reforming catalyst layer 13 and the steam mixed gas through the first cylindrical body, and the raw fuel flowing through the preheating layer 10. The mixed gas of water vapor is heated and discharged from the combustion exhaust gas discharge pipe 8.

原燃料と水蒸気はそれぞれ原燃料供給管40、水蒸気供給管39を介して予熱層10に導入され、ここで400℃程度乃至それ以上の温度に加熱された後、予熱層10に続く改質触媒層13に導入される。改質触媒層13では水蒸気による原燃料の改質反応により水素リッチの改質ガスを生成する。生成改質ガスは、第2円筒体2の下端で反転して改質ガス流路16に流入し、その流路16中を上方へ流れ、改質ガス導出管17から導出される。導出改質ガスは円筒型水蒸気改質器Rとは別個に構成、配置した円筒型改質ガス処理器Aへ送出される。   The raw fuel and water vapor are respectively introduced into the preheating layer 10 through the raw fuel supply pipe 40 and the water vapor supply pipe 39 and heated to a temperature of about 400 ° C. or higher, and then the reforming catalyst following the preheating layer 10. Introduced into layer 13. The reforming catalyst layer 13 generates hydrogen-rich reformed gas by the reforming reaction of the raw fuel with water vapor. The generated reformed gas is inverted at the lower end of the second cylindrical body 2 and flows into the reformed gas channel 16, flows upward in the channel 16, and is led out from the reformed gas outlet pipe 17. The derived reformed gas is sent to a cylindrical reformed gas processor A that is configured and arranged separately from the cylindrical steam reformer R.

円筒型水蒸気改質器Rにおいては、第1円筒体1の内部に当該第1円筒体1と間隔を置いて輻射筒を備えることができる。図2中、符号4として示すとおり、輻射筒4を配置する。輻射筒4は、上蓋兼バーナ取付部材7の下面から配置され、その下端は第1円筒体1の下端に配置された底板5との間に間隔を置いて配置する。   In the cylindrical steam reformer R, a radiation cylinder can be provided inside the first cylindrical body 1 with a space from the first cylindrical body 1. In FIG. 2, the radiation tube 4 is disposed as indicated by reference numeral 4. The radiation tube 4 is disposed from the lower surface of the upper lid / burner mounting member 7, and the lower end thereof is disposed with a space between the bottom plate 5 disposed at the lower end of the first cylindrical body 1.

輻射筒を備えた円筒型水蒸気改質器Rの作動時において、バーナ6で発生した燃料ガスは、輻射筒4の下端で折り返して輻射筒4と第1円筒体1との間を上方へ向かって流れる。その間、燃料ガスは順次、第1円筒体を介して改質触媒層13の改質触媒、改質触媒層13を流れる原燃料と水蒸気の混合ガスを加熱し、予熱層10を流れる原燃料と水蒸気の混合ガスを加熱し、燃焼排ガス排出管8から排出される。   When the cylindrical steam reformer R provided with the radiation cylinder is operated, the fuel gas generated in the burner 6 is folded back at the lower end of the radiation cylinder 4 and is directed upward between the radiation cylinder 4 and the first cylindrical body 1. Flowing. Meanwhile, the fuel gas sequentially heats the reformed catalyst of the reforming catalyst layer 13, the raw fuel flowing through the reforming catalyst layer 13 and the steam mixed gas through the first cylindrical body, and the raw fuel flowing through the preheating layer 10. The mixed gas of water vapor is heated and discharged from the combustion exhaust gas discharge pipe 8.

このように輻射筒4を設ける構造は、本発明(2)〜(3)の円筒型水蒸気改質器Rにおいても同様に適用することができる。   The structure in which the radiation cylinder 4 is provided in this manner can be similarly applied to the cylindrical steam reformer R of the present inventions (2) to (3).

〈円筒型改質ガス処理器Aについて〉
図1中、円筒型改質ガス処理器Aとして示すとおり、円筒型改質ガス処理器Aは、円筒型水蒸気改質器とは別個に構成し、円筒型水蒸気改質器と並置する。円筒型改質ガス処理器Aは、円筒体19を備え、当該円筒体19内のうち、上部にCO変成触媒層23を備え、下部にCO除去触媒層32を備える。そして、CO変成触媒層23とCO除去触媒層32の間に空気供給部50を備える。円筒体19の上端に上蓋18を備え、上蓋18には円筒型水蒸気改質器Rからの改質ガス導出管17が連結され、導出管17が開口している。
<About the cylindrical reformed gas processor A>
As shown in FIG. 1 as a cylindrical reformed gas processor A, the cylindrical reformed gas processor A is configured separately from the cylindrical steam reformer and is juxtaposed with the cylindrical steam reformer. The cylindrical reformed gas processor A includes a cylindrical body 19, and the inside of the cylindrical body 19 includes a CO conversion catalyst layer 23 at an upper portion and a CO removal catalyst layer 32 at a lower portion. An air supply unit 50 is provided between the CO shift catalyst layer 23 and the CO removal catalyst layer 32. An upper lid 18 is provided at the upper end of the cylindrical body 19, and the reformed gas outlet pipe 17 from the cylindrical steam reformer R is connected to the upper lid 18, and the outlet pipe 17 is opened.

上蓋18に対して間隔を置いて順次、分配板20、多孔板22、多孔板24、分配板25、27、29、多孔板31、多孔板33、分配板34、下蓋36を配置する。それら板体はいずれも円筒体19の内径に相当する直径を持つ円盤状の板体である。CO変成触媒層23は、多孔板22と多孔板24との間にCO変成触媒を充填することで構成される。多孔板24は、多数の孔を有し、CO変成触媒を支持するとともに、CO変成触媒層でのCO変成済み改質ガスを流出させる役割をする。多孔板22、24、31、33は、金属メッシュ等で構成してもよい。   The distribution plate 20, the porous plate 22, the porous plate 24, the distribution plates 25, 27, 29, the porous plate 31, the porous plate 33, the distribution plate 34, and the lower lid 36 are sequentially arranged at a distance from the upper lid 18. Each of these plate bodies is a disk-shaped plate body having a diameter corresponding to the inner diameter of the cylindrical body 19. The CO shift catalyst layer 23 is configured by filling a CO shift catalyst between the porous plate 22 and the porous plate 24. The perforated plate 24 has a large number of holes, supports the CO conversion catalyst, and plays a role of flowing out the CO converted reformed gas in the CO conversion catalyst layer. The perforated plates 22, 24, 31, and 33 may be made of a metal mesh or the like.

分配板20は、図1中符号21で示すように複数の連通孔を有する。図1にはその円盤状板体の中心から等間隔で且つ周方向に等間隔に複数個の連通孔21を設けた例を示している。連通孔21の複数個を均等に設けることにより、上蓋18と分配板20との間の間隙に導入された改質ガスをCO変成触媒層23に向けて均等に流入させる役割をする。触媒層温度分布を均一化するために、ガスが流れにくく、かつ、放熱により温度が低下しがちな外周側にガスが多く流れるように分配板20に複数の連通孔21を設け、ガスを分配すると、より好ましい。分配板20を経た改質ガスは多孔板22を経てCO変成触媒層23に流入し、CO変成触媒でのCO変成反応により、改質ガス中のCOをCO2へ変え、併せてH2を生成する。 The distribution plate 20 has a plurality of communication holes as indicated by reference numeral 21 in FIG. FIG. 1 shows an example in which a plurality of communication holes 21 are provided at equal intervals from the center of the disk-shaped plate body and at equal intervals in the circumferential direction. By providing a plurality of communication holes 21 equally, the reformed gas introduced into the gap between the upper lid 18 and the distribution plate 20 serves to evenly flow toward the CO shift catalyst layer 23. In order to make the catalyst layer temperature distribution uniform, the distribution plate 20 is provided with a plurality of communication holes 21 so that the gas hardly flows and the temperature tends to decrease due to heat dissipation so that a large amount of gas flows, thereby distributing the gas. Then, it is more preferable. The reformed gas that has passed through the distribution plate 20 flows into the CO shift catalyst layer 23 via the perforated plate 22 and changes CO in the reformed gas to CO 2 by the CO shift reaction in the CO shift catalyst, and H 2 is also added. Generate.

CO変成触媒層23でのCO変成済みの改質ガスは多孔板24、分配板25を経て分配板25と分配板27との間の空隙に流入する。分配板25は、図1中符号26で示すように複数の連通孔を有する。図1にはその円盤状板体の中心から等間隔で且つ周方向に等間隔に複数個の連通孔26を設けた例を示している。連通孔26の複数個を均等に設けることにより、多孔板24と分配板25との間の間隙に流出したCO変成済み改質ガスを分配板25と分配板27との間の空隙に向けて均等に流入させる役割をする。分配板27にはその中心部に孔28を設けている。   The reformed gas that has undergone CO conversion in the CO conversion catalyst layer 23 flows into the gap between the distribution plate 25 and the distribution plate 27 through the perforated plate 24 and the distribution plate 25. The distribution plate 25 has a plurality of communication holes as indicated by reference numeral 26 in FIG. FIG. 1 shows an example in which a plurality of communication holes 26 are provided at equal intervals from the center of the disk-shaped plate body and at equal intervals in the circumferential direction. By uniformly providing a plurality of communication holes 26, the CO-modified reformed gas that has flowed into the gap between the porous plate 24 and the distribution plate 25 is directed toward the gap between the distribution plate 25 and the distribution plate 27. It plays the role of evenly flowing. The distribution plate 27 is provided with a hole 28 at the center thereof.

円筒管19のうち、分配板25と分配板27とで形成した空隙が位置する部位に空気導入管41を配置し、分配板25と分配板27と空気導入管41とにより空気供給部50を構成する。その空隙に空気導入管41の先端が開口している。分配板25と分配板27とで形成した空隙にはCO変成済み改質ガスが流入するが、当該流入改質ガスに空気導入管41からの空気が混合される。   In the cylindrical tube 19, an air introduction pipe 41 is arranged at a portion where a gap formed by the distribution plate 25 and the distribution plate 27 is located. Configure. The tip of the air introduction pipe 41 is opened in the gap. The CO-modified reformed gas flows into the gap formed by the distribution plate 25 and the distribution plate 27, and the air from the air introduction pipe 41 is mixed with the inflowing reformed gas.

このように空気供給部50は、CO変成済み改質ガスに空気を供給し且つ両ガスを混合する役割をするが、空気の混合を促進するために、図1に示す例では、分配板25の円盤状板体の中心から等間隔で且つ周方向に等間隔に複数個の連通孔26を設け、分配板27の中心部に孔28を設けた例を示しているが、例えば分配板25の全面に多数の連通孔を均等の間隔で設けるなど各種態様で行うことができる。   As described above, the air supply unit 50 serves to supply air to the CO-modified reformed gas and to mix both gases. In the example shown in FIG. In this example, a plurality of communication holes 26 are provided at equal intervals from the center of the disc-shaped plate body and at equal intervals in the circumferential direction, and holes 28 are provided at the center of the distribution plate 27. It can be carried out in various modes such as providing a large number of communication holes at equal intervals on the entire surface.

分配板27の下部に間隔を置いて分配板29を配置し、分配板29の下部に間隔を置いて分配板29を配置する。分配板27は、図1中符号30で示すように複数の連通孔を有する。図1にはその円盤状板体の中心から等間隔で且つ周方向に等間隔に複数個の連通孔30を設けた例を示している。連通孔30の複数個を均等に設けることにより、分配板27と分配板29との間の間隙に導入されたCO変成済み改質ガスと空気の混合流をCO除去触媒層32に向けて均等に流入させる役割をする。触媒層温度分布を均一化するために、ガスが流れにくく、かつ、放熱により温度が低下しがちな外周側にガスが多く流れるように分配板29に複数の連通孔30を設け、ガスを分配すると、より好ましい。   A distribution plate 29 is disposed at a lower portion of the distribution plate 27, and a distribution plate 29 is disposed at a lower portion of the distribution plate 29. The distribution plate 27 has a plurality of communication holes as indicated by reference numeral 30 in FIG. FIG. 1 shows an example in which a plurality of communication holes 30 are provided at equal intervals from the center of the disk-shaped plate body and at equal intervals in the circumferential direction. By uniformly providing a plurality of communication holes 30, the mixed flow of the CO-modified reformed gas and air introduced into the gap between the distribution plate 27 and the distribution plate 29 is directed toward the CO removal catalyst layer 32. It plays a role to flow into. In order to make the catalyst layer temperature distribution uniform, a plurality of communication holes 30 are provided in the distribution plate 29 so that the gas hardly flows and the gas tends to decrease due to heat dissipation, and the gas is distributed. Then, it is more preferable.

CO除去触媒層32は、多孔板31と多孔板33との間にCO除去触媒を充填することで構成される。分配板29を経た混合流は多孔板31を経てCO除去触媒層32に流入し、CO除去触媒でのCOの選択的酸化反応により、CO変成済み改質ガス中のCOをCO2へ変えることでCO濃度をさらに低減させる。CO除去触媒層32によりCOをさらに低減させた改質ガスは、多孔板33、分配板34を経て改質ガス(CO除去済み)取出管42から導出され、PEFCの燃料極に供給される。 The CO removal catalyst layer 32 is configured by filling a CO removal catalyst between the porous plate 31 and the porous plate 33. The mixed flow that has passed through the distribution plate 29 flows into the CO removal catalyst layer 32 through the porous plate 31, and converts CO in the CO-modified reformed gas into CO 2 by selective oxidation of CO in the CO removal catalyst. To further reduce the CO concentration. The reformed gas in which CO is further reduced by the CO removal catalyst layer 32 is led out from the reformed gas (CO removed) take-out pipe 42 through the perforated plate 33 and the distribution plate 34, and is supplied to the fuel electrode of the PEFC.

〈原料水の予熱管について〉
円筒体19のうち、CO除去触媒層32が位置する外周に原料水の螺旋状予熱管38を配置する。図中には螺旋状の予熱管を示しているが、適宜水冷ジャケットのようなものも適用できる。本発明(1)の燃料電池用水蒸気改質装置の作動時に、水供給管37から供給する原料水は予熱管38中を流れながら加熱され、CO除去触媒層32での発生熱により加熱される。図中には、CO除去触媒の周囲のみ熱回収部を構成したものを示しているが、触媒層温度が適温となるように、変成触媒層の周囲にもCO除去触媒層周囲の熱回収部と連通する形で、熱回収部を形成しても良い。加熱により発生した水蒸気は導管39を介して円筒型水蒸気改質器Rにおける予熱層10へ供給される。
<Regarding the preheating pipe for raw water>
A spiral preheating tube 38 of raw material water is disposed on the outer periphery of the cylindrical body 19 where the CO removal catalyst layer 32 is located. Although a spiral preheating tube is shown in the figure, a water cooling jacket or the like can be applied as appropriate. During the operation of the steam reformer for a fuel cell of the present invention (1), the raw water supplied from the water supply pipe 37 is heated while flowing in the preheating pipe 38 and is heated by the heat generated in the CO removal catalyst layer 32. . In the figure, the heat recovery unit is configured only around the CO removal catalyst. However, the heat recovery unit around the CO removal catalyst layer is also provided around the shift catalyst layer so that the catalyst layer temperature is appropriate. The heat recovery part may be formed in communication with the heat recovery part. Steam generated by heating is supplied to the preheating layer 10 in the cylindrical steam reformer R through a conduit 39.

そのようにCO除去触媒層32が位置する外周に原料水の予熱管38を配置した構造を採ることにより、円筒型水蒸気改質器Rにおける予熱層10へ供給する原料水を円筒型改質ガス処理器Aで発生する余剰熱を利用して予め加熱し、円筒型水蒸気改質器Rと円筒型改質ガス処理器Aからなるシステムにおいて発生する熱を有効に利用することができる。   By adopting such a structure in which the raw water preheating pipe 38 is disposed on the outer periphery where the CO removal catalyst layer 32 is located, the raw water supplied to the preheating layer 10 in the cylindrical steam reformer R is supplied to the cylindrical reformed gas. The surplus heat generated in the processor A is preliminarily heated, and the heat generated in the system including the cylindrical steam reformer R and the cylindrical reformed gas processor A can be effectively used.

本発明(1)の水蒸気改質装置においては、円筒型水蒸気改質器及び円筒型改質ガス処理器の何れか一方または両方を上下逆置きにしても使用される。本発明(2)〜(3)の水蒸気改質装置についても同様である。なお、このように上下逆置きにした場合は、例えば、上蓋兼バーナ取付台7は下蓋兼バーナ取付台7となり、底板5は上板5となり、上蓋18は下蓋18となり、下蓋36は上蓋36となる。   In the steam reforming apparatus of the present invention (1), either or both of the cylindrical steam reformer and the cylindrical reformed gas processor are used upside down. The same applies to the steam reforming apparatuses of the present inventions (2) to (3). In this case, for example, the upper lid / burner mounting base 7 becomes the lower lid / burner mounting base 7, the bottom plate 5 becomes the upper plate 5, the upper lid 18 becomes the lower lid 18, and the lower lid 36. Becomes the upper lid 36.

〈本発明(2)の実施形態〉
本発明(2)は、円筒型水蒸気改質器と円筒型改質ガス処理器を別個に備えてなる燃料電池用水蒸気改質装置である。そして、
前記円筒型水蒸気改質器が、(a)同心状に間隔を置いて配置した順次径の大きい第1円筒体、第2円筒体及び第3円筒体からなる複数の円筒体と、前記第1円筒体の周方向中心部に上端から配置されたバーナを備え、(b)前記第1円筒体と前記第2円筒体により周方向に区画された隙間のうち、上部の隙間を原燃料と原料水との混合流の予熱層とするとともに、下部の隙間に改質触媒層を備え、(c)前記第2円筒体と前記第3円筒体により周方向に区画された隙間に当該第2円筒体の下端で反転させた改質ガス流路を構成してなり、
前記円筒型改質ガス処理器が、(a)第4円筒体と、当該第4円筒体の外周のうちの下部の外周に当該第4円筒体より径の大きい第5円筒体を同心状に間隔を置いて配置し、(b)前記第4円筒体内にCO酸化触媒層を配置するとともに、第4円筒体と第5円筒体との間にCO除去触媒層を備え、(c)前記CO変成触媒層と前記CO除去触媒層の間に空気供給部を備えるとともに、前記CO除去触媒層の外周に原料水の予熱管を配置してなり、
且つ、前記円筒型水蒸気改質器の改質ガス流路と前記CO変成触媒層との間に改質ガス導管を配置してなることを特徴とする。
<Embodiment of the present invention (2)>
The present invention (2) is a steam reformer for a fuel cell comprising a cylindrical steam reformer and a cylindrical reformed gas processor separately. And
The cylindrical steam reformer includes: (a) a plurality of first and second cylindrical bodies, each having a large diameter, arranged concentrically and spaced apart; A burner disposed from the upper end at the center in the circumferential direction of the cylindrical body, and (b) of the gaps partitioned in the circumferential direction by the first cylindrical body and the second cylindrical body, the upper gap is used as a raw fuel and a raw material. A preheating layer of a mixed flow with water, a reforming catalyst layer provided in a lower gap, and (c) the second cylinder in a gap partitioned in the circumferential direction by the second cylinder and the third cylinder Comprising a reformed gas flow channel inverted at the lower end of the body,
In the cylindrical reformed gas processor, (a) a fourth cylindrical body and a fifth cylindrical body having a diameter larger than that of the fourth cylindrical body are concentrically arranged on the lower outer periphery of the fourth cylindrical body. (B) a CO oxidation catalyst layer is disposed in the fourth cylinder, and a CO removal catalyst layer is provided between the fourth cylinder and the fifth cylinder, and (c) the CO An air supply unit is provided between the shift catalyst layer and the CO removal catalyst layer, and a raw water preheating pipe is disposed on the outer periphery of the CO removal catalyst layer.
In addition, a reformed gas conduit is disposed between the reformed gas flow path of the cylindrical steam reformer and the CO shift catalyst layer.

図3は、本発明(2)を説明する図である。図3には円筒型水蒸気改質器Rに輻射筒4を設けた構造を示しているが、輻射筒4を設けない構造についても前述本発明(1)の円筒型水蒸気改質器Rと同様である。   FIG. 3 is a diagram for explaining the present invention (2). FIG. 3 shows a structure in which the radiant cylinder 4 is provided in the cylindrical steam reformer R, but the structure in which the radiant cylinder 4 is not provided is the same as the cylindrical steam reformer R of the present invention (1). It is.

図3のとおり、本発明(2)の燃料電池用水蒸気改質装置は、円筒型水蒸気改質器Rと円筒型改質ガス処理器Bを別個に備える。そのうち円筒型水蒸気改質器Rは、本発明(1)の態様における円筒型水蒸気改質器Rと同様である。   As shown in FIG. 3, the fuel cell steam reformer of the present invention (2) includes a cylindrical steam reformer R and a cylindrical reformed gas processor B separately. Among them, the cylindrical steam reformer R is the same as the cylindrical steam reformer R in the embodiment of the present invention (1).

〈円筒型改質ガス処理器Bについて〉
図3中、円筒型改質ガス処理器:Bとして示すとおり、円筒型改質ガス処理器Bは、円筒型水蒸気改質器Rとは別個に構成し、円筒型水蒸気改質器と並置する。円筒型改質ガス処理器Bは、第4円筒体201と、当該第4円筒体201の外周のうち、下部の外周に当該第4円筒体201より径の大きい第5円筒体203を同心状に間隔を置いて配置する。
<About the cylindrical reformed gas processor B>
In FIG. 3, as shown as a cylindrical reformed gas processor: B, the cylindrical reformed gas processor B is configured separately from the cylindrical steam reformer R and juxtaposed with the cylindrical steam reformer. . The cylindrical reformed gas processor B has a fourth cylinder 201 and a fifth cylinder 203 having a diameter larger than that of the fourth cylinder 201 concentrically on the outer periphery of the lower part of the outer periphery of the fourth cylinder 201. Place them at intervals.

第4円筒体201の上端に上蓋200を備え、上蓋200には円筒型水蒸気改質器Rからの改質ガス導出管17が連結され、導出管17が開口している。第4円筒体201には、その上蓋200に対して間隔を置いて順次、分配板205、多孔板207、多孔板209、分配板210を配置する。それら板体はいずれも第4円筒体201の内径に相当する直径を持つ円盤状の板体である。   An upper lid 200 is provided at the upper end of the fourth cylindrical body 201, and the reformed gas outlet pipe 17 from the cylindrical steam reformer R is connected to the upper lid 200, and the outlet pipe 17 is opened. In the fourth cylindrical body 201, a distribution plate 205, a porous plate 207, a porous plate 209, and a distribution plate 210 are sequentially arranged with a distance from the upper lid 200. Each of these plate bodies is a disk-shaped plate body having a diameter corresponding to the inner diameter of the fourth cylindrical body 201.

そして、第4円筒体201にCO変成触媒層208を備え、第4円筒体201と第5円筒体203との間にCO除去触媒層216を備え、CO変成触媒層208及びCO除去触媒層216の下部に空気供給部を備える。空気供給部は、CO変成触媒層208及びCO除去触媒層216の下部と第4円筒体201と第5円筒体203に共通の下蓋204との間で構成する。   The fourth cylinder 201 is provided with a CO shift catalyst layer 208, and the CO removal catalyst layer 216 is provided between the fourth cylinder 201 and the fifth cylinder 203. The CO shift catalyst layer 208 and the CO removal catalyst layer 216 are provided. An air supply unit is provided in the lower part of the. The air supply unit is configured between the lower part of the CO shift catalyst layer 208 and the CO removal catalyst layer 216 and the lower lid 204 common to the fourth cylindrical body 201 and the fifth cylindrical body 203.

CO変成触媒層208は、より詳しくは多孔板207と多孔板209との間にCO変成触媒を充填することで構成される。多孔板209は、多数の孔を有し、CO変成触媒を支持するとともに、CO変成触媒層でのCO変成済み改質ガスを流出させる役割をする。多孔板207、209は、金属メッシュ等で構成してもよい。   More specifically, the CO shift catalyst layer 208 is configured by filling a CO shift catalyst between the porous plate 207 and the porous plate 209. The perforated plate 209 has a large number of holes, supports the CO conversion catalyst, and plays a role of flowing out the CO converted reformed gas in the CO conversion catalyst layer. The perforated plates 207 and 209 may be made of a metal mesh or the like.

分配板205は、図3中符号206で示すように複数の連通孔を有する。図3にはその円盤状板体の中心から等間隔で且つ周方向に等間隔に複数個の連通孔206を設けた例を示している。連通孔206の複数個を均等に設けることにより、上蓋200と分配板206との間の間隙に導入された改質ガスをCO変成触媒層208に向けて均等に流入させる役割をする。触媒層温度分布を均一化するために、ガスが流れにくく、かつ、放熱により温度が低下しがちな外周側にガスが多く流れるように分配板205に複数の連通孔206を設け、ガスを分配すると、より好ましい。分配板205を経た改質ガスは多孔板207を経てCO変成触媒層208に流入し、CO変成触媒でのCO変成反応により、改質ガス中のCOをCO2へ変え、併せてH2を生成する。 The distribution plate 205 has a plurality of communication holes as indicated by reference numeral 206 in FIG. FIG. 3 shows an example in which a plurality of communication holes 206 are provided at equal intervals from the center of the disk-shaped plate body and at equal intervals in the circumferential direction. By providing a plurality of communication holes 206 evenly, the reformed gas introduced into the gap between the upper lid 200 and the distribution plate 206 serves to evenly flow toward the CO conversion catalyst layer 208. In order to make the catalyst layer temperature distribution uniform, the distribution plate 205 is provided with a plurality of communication holes 206 so that the gas hardly flows and the gas tends to decrease due to heat dissipation, and a plurality of communication holes 206 are provided to distribute the gas. Then, it is more preferable. The reformed gas that has passed through the distribution plate 205 flows into the CO shift catalyst layer 208 through the perforated plate 207, and CO in the reformed gas is changed to CO 2 by the CO shift reaction in the CO shift catalyst, and H 2 is also added. Generate.

CO変成触媒層208でのCO変成済みの改質ガスは多孔板209、分配板210を経て当該分配板210と下蓋204(第4円筒体201と第5円筒体203に共通の下蓋)との間の空隙に流入する。分配板210は、図3中符号211で示すように複数の連通孔を有する。図3にはその円盤状板体の中心から等間隔で且つ周方向に等間隔に複数個の連通孔211を設けた例を示している。連通孔211の複数個を均等に設けることにより、多孔板209と分配板210との間の間隙に流出したCO変成済み改質ガスを分配板210と下蓋204との間の空隙に向けて均等に流入させる役割をする。   The reformed gas after the CO conversion in the CO conversion catalyst layer 208 passes through the perforated plate 209 and the distribution plate 210 and the distribution plate 210 and the lower cover 204 (the lower cover common to the fourth cylindrical body 201 and the fifth cylindrical body 203). Flows into the gap between. The distribution plate 210 has a plurality of communication holes as indicated by reference numeral 211 in FIG. FIG. 3 shows an example in which a plurality of communication holes 211 are provided at equal intervals from the center of the disk-shaped plate body and at equal intervals in the circumferential direction. By providing a plurality of communication holes 211 equally, the CO-modified reformed gas that has flowed into the gap between the porous plate 209 and the distribution plate 210 is directed toward the gap between the distribution plate 210 and the lower lid 204. It plays the role of evenly flowing.

第4円筒体201と第5円筒体203との間には、その下蓋204に対して間隔を置いて順次、分配板213、多孔板215、多孔板217、分配板219、上蓋220を配置する。それら板体はいずれも第4円筒体201の径(外径)に相当する部分は第4円筒体201で占められるのでドーナツ状の板体である。そのうち、分配板213は、図3中符号214で示すように複数の連通孔を有する。   A distribution plate 213, a porous plate 215, a porous plate 217, a distribution plate 219, and an upper lid 220 are sequentially arranged between the fourth cylindrical body 201 and the fifth cylindrical body 203 with a distance from the lower lid 204. To do. All of these plate bodies are donut-shaped plate bodies because the portion corresponding to the diameter (outer diameter) of the fourth cylindrical body 201 is occupied by the fourth cylindrical body 201. Among them, the distribution plate 213 has a plurality of communication holes as indicated by reference numeral 214 in FIG.

CO除去触媒層216は、より詳しくは分配板213の上に配置された多孔板215と多孔板217との間にCO除去触媒を充填することで構成される。多孔板215は、多数の孔を有し、CO除去触媒を支持するとともに、CO変成触媒層での空気を混合したCO変成済み改質ガスを流入させる役割をする。多孔板207、209は、金属メッシュ等で構成してもよい。   More specifically, the CO removal catalyst layer 216 is configured by filling a CO removal catalyst between the porous plate 215 and the porous plate 217 arranged on the distribution plate 213. The perforated plate 215 has a large number of holes, supports the CO removal catalyst, and plays a role of injecting the CO-modified reformed gas mixed with air in the CO-converting catalyst layer. The perforated plates 207 and 209 may be made of a metal mesh or the like.

分配板213は、図3中符号214で示すように複数の連通孔を有する。図3にはその円盤状板体の中心から等間隔で且つ周方向に等間隔に複数個の連通孔214を設けた例を示している。連通孔214の複数個を均等に設けることにより、下蓋204と分配板213との間の間隙に導入された改質ガスをCO除去触媒層216に向けて均等に流入させる役割をする。触媒層温度分布を均一化するために、ガスが流れにくく、かつ、放熱により温度が低下しがちな外周側にガスが多く流れるように分配板213に複数の連通孔214を設け、ガスを分配すると、より好ましい。分配板213を経た改質ガスは多孔板215を経てCO除去触媒層216に流入し、CO除去触媒でのCOの選択的酸化反応により、CO変成済み改質ガス中のCOをCO2へ変えることでCO濃度をさらに低減させる。 The distribution plate 213 has a plurality of communication holes as indicated by reference numeral 214 in FIG. FIG. 3 shows an example in which a plurality of communication holes 214 are provided at equal intervals from the center of the disk-shaped plate body and at equal intervals in the circumferential direction. By providing a plurality of communication holes 214 evenly, the reformed gas introduced into the gap between the lower lid 204 and the distribution plate 213 serves to evenly flow toward the CO removal catalyst layer 216. In order to make the catalyst layer temperature distribution uniform, the distribution plate 213 is provided with a plurality of communication holes 214 so that the gas hardly flows and the temperature tends to decrease due to heat dissipation, so that a large amount of gas flows. Then, it is more preferable. The reformed gas that has passed through the distribution plate 213 flows into the CO removal catalyst layer 216 through the perforated plate 215, and CO in the reformed gas that has undergone CO conversion is converted to CO 2 by the selective oxidation reaction of CO in the CO removal catalyst. This further reduces the CO concentration.

CO除去触媒層216でのCO除去済みの改質ガスは多孔板217、分配板218を経て当該分配板218と上蓋220との間の空隙に流入する。分配板219は、図3中符号219で示すように複数の連通孔を有する。図3にはその円盤状板体の中心から等間隔で且つ周方向に等間隔に複数個の連通孔219を設けた例を示している。連通孔219の複数個を等間隔に設けることにより、多孔板217と分配板218との間の間隙に流出したCO除去済み改質ガスを分配板218と上蓋220との間の空隙に向けて均等に流出させる。   The reformed gas after CO removal in the CO removal catalyst layer 216 flows into the gap between the distribution plate 218 and the upper lid 220 through the perforated plate 217 and the distribution plate 218. The distribution plate 219 has a plurality of communication holes as indicated by reference numeral 219 in FIG. FIG. 3 shows an example in which a plurality of communication holes 219 are provided at equal intervals from the center of the disk-shaped plate body and at equal intervals in the circumferential direction. By providing a plurality of communication holes 219 at equal intervals, the CO-removed reformed gas flowing into the gap between the porous plate 217 and the distribution plate 218 is directed toward the gap between the distribution plate 218 and the upper lid 220. Discharge evenly.

CO除去触媒層216により、COをさらに低減させた改質ガスは、多孔板217、分配板218を経て改質ガス(CO除去済み)取出管42から導出され、PEFCの燃料極に供給される。   The reformed gas in which CO is further reduced by the CO removal catalyst layer 216 is led out from the reformed gas (CO removed) take-out pipe 42 through the perforated plate 217 and the distribution plate 218, and supplied to the fuel electrode of the PEFC. .

〈原料水の予熱管について〉
第5円筒体203の外周に原料水の予熱管38を配置する。図中には螺旋状の予熱管を示しているが、適宜水冷ジャケットのようなものも適用できる。本発明(2)の燃料電池用水蒸気改質装置の作動時に、水供給管37から供給する原料水は予熱管38中を流れながら加熱され、CO除去触媒層216での発生熱により加熱される。加熱により発生した水蒸気は導管39を介して円筒型水蒸気改質器Rにおける予熱層10へ供給される。図中には、CO除去触媒の周囲のみ熱回収部を構成したものを示しているが、触媒層温度が適温となるように、変成触媒層の周囲にもCO除去触媒層周囲の熱回収部と連通する形で、熱回収部を形成しても良い。
<Regarding the preheating pipe for raw water>
A raw water preheating pipe 38 is disposed on the outer periphery of the fifth cylindrical body 203. Although a spiral preheating tube is shown in the figure, a water cooling jacket or the like can be applied as appropriate. When the fuel cell steam reformer of the present invention (2) is operated, the raw water supplied from the water supply pipe 37 is heated while flowing in the preheating pipe 38 and is heated by the heat generated in the CO removal catalyst layer 216. . Steam generated by heating is supplied to the preheating layer 10 in the cylindrical steam reformer R through a conduit 39. In the figure, the heat recovery unit is configured only around the CO removal catalyst. However, the heat recovery unit around the CO removal catalyst layer is also provided around the shift catalyst layer so that the catalyst layer temperature is appropriate. The heat recovery part may be formed in communication with the heat recovery part.

そのように、CO除去触媒層216が位置する外周に原料水の螺旋状予熱管38を配置した構造を採ることにより、円筒型水蒸気改質器Rにおける予熱層10へ供給する原料水を円筒型改質ガス処理器Bで発生する余剰熱を利用して予め加熱し、円筒型水蒸気改質器Rと円筒型改質ガス処理器Bからなるシステムにおいて発生する熱を有効に利用することができる。   As described above, the raw water supplied to the preheating layer 10 in the cylindrical steam reformer R is cylindrical by adopting a structure in which the raw water spiral preheating pipe 38 is arranged on the outer periphery where the CO removal catalyst layer 216 is located. The excess heat generated in the reformed gas processor B is preliminarily heated, and the heat generated in the system composed of the cylindrical steam reformer R and the cylindrical reformed gas processor B can be used effectively. .

〈本発明(3)の実施形態〉
本発明(3)は、円筒型水蒸気改質器と円筒型改質ガス処理器を別個に備えてなる燃料電池用水蒸気改質装置である。そして、
前記円筒型水蒸気改質器が、(a)同心状に間隔を置いて配置した順次径の大きい第1円筒体、第2円筒体及び第3円筒体からなる複数の円筒体と、前記第1円筒体の周方向中心部に上端から配置されたバーナを備え、(b)前記第1円筒体と前記第2円筒体により周方向に区画された隙間のうち、上部の隙間を原燃料と原料水との混合流の予熱層とするとともに、下部の隙間に改質触媒層を備え、(c)前記第2円筒体と前記第3円筒体により周方向に区画された隙間に当該第2円筒体の下端で反転させた改質ガス流路を構成してなり、
前記円筒型改質ガス処理器が、(a)第4円筒体と、第4円筒体の外周のうちの下部の位置の外周に間隔を置いて当該第4円筒体の外周よりも径の大きい第5円筒体を配置するとともに、第5円筒体の外周に間隔を置いて当該第5円筒体の外周よりも径の大きい第6円筒体を配置し、(b)前記第4円筒体内にCO変成触媒層を配置するとともに、第5円筒体と第6円筒体との間にCO除去触媒層を備え、(c)前記CO変成触媒層の下部からCO除去触媒層に向けて、前記CO変成触媒層を経たCO変成済み改質ガスの流通部を備えるとともに、当該流通部に空気供給管を配置し、(d)第6円筒体の外周に原料水の予熱管を配置してなり、
且つ、前記円筒型水蒸気改質器の改質ガス流路と前記CO変成触媒層との間に改質ガス導管を配置してなることを特徴とする。
<Embodiment of the present invention (3)>
The present invention (3) is a fuel cell steam reformer comprising a cylindrical steam reformer and a cylindrical reformed gas processor separately. And
The cylindrical steam reformer includes: (a) a plurality of first and second cylindrical bodies, each having a large diameter, arranged concentrically and spaced apart; A burner disposed from the upper end at the center in the circumferential direction of the cylindrical body, and (b) of the gaps partitioned in the circumferential direction by the first cylindrical body and the second cylindrical body, the upper gap is used as a raw fuel and a raw material. A preheating layer of a mixed flow with water, a reforming catalyst layer provided in a lower gap, and (c) the second cylinder in a gap partitioned in the circumferential direction by the second cylinder and the third cylinder Comprising a reformed gas flow channel inverted at the lower end of the body,
The cylindrical reformed gas processor is (a) larger in diameter than the outer periphery of the fourth cylinder with an interval between the outer periphery of the lower position of the fourth cylinder and the outer periphery of the fourth cylinder. A fifth cylinder is disposed, a sixth cylinder having a larger diameter than the outer periphery of the fifth cylinder is disposed at an interval on the outer periphery of the fifth cylinder, and (b) CO is disposed in the fourth cylinder. A CO conversion catalyst layer is disposed between the fifth cylinder and the sixth cylinder, and (c) the CO conversion catalyst is directed from the lower part of the CO conversion catalyst layer toward the CO removal catalyst layer. A CO-modified reformed gas flow part that has passed through the catalyst layer, an air supply pipe disposed in the flow part, and (d) a raw water preheating pipe disposed on the outer periphery of the sixth cylindrical body,
In addition, a reformed gas conduit is disposed between the reformed gas flow path of the cylindrical steam reformer and the CO shift catalyst layer.

図4は、本発明(3)を説明する図である。図4には円筒型水蒸気改質器に輻射筒4を設けた構造を示しているが、輻射筒4を設けない構造についても前述本発明(1)の円筒型水蒸気改質器Rと同様である。   FIG. 4 is a diagram for explaining the present invention (3). FIG. 4 shows a structure in which the radiation cylinder 4 is provided in the cylindrical steam reformer, but the structure in which the radiation cylinder 4 is not provided is the same as that of the cylindrical steam reformer R of the present invention (1). is there.

図4のとおり、本発明(3)の燃料電池用水蒸気改質装置は、円筒型水蒸気改質器Rと円筒型改質ガス処理器Cを別個に備える。そのうち円筒型水蒸気改質器Rは、本発明(1)の態様における円筒型水蒸気改質器Rと同様である。   As shown in FIG. 4, the fuel cell steam reformer of the present invention (3) includes a cylindrical steam reformer R and a cylindrical reformed gas processor C separately. Among them, the cylindrical steam reformer R is the same as the cylindrical steam reformer R in the embodiment of the present invention (1).

〈円筒型改質ガス処理器:Cについて〉
図4中、円筒型改質ガス処理器:Cとして示すとおり、円筒型改質ガス処理器Cは、円筒型水蒸気改質器Rとは別個に構成し、円筒型水蒸気改質器と並置する。円筒型改質ガス処理器Cは、第4円筒体201と、当該第4円筒体201の外周のうちの下部の位置の外周に間隔を置いて当該第4円筒体201の外周よりも径の大きい第5円筒体202を同心状に配置するとともに、第5円筒体202の外周に間隔を置いて当該第5円筒体202の外周よりも径の大きい第6円筒体203を同心状に配置する。
<Cylindrical reformed gas processor: C>
In FIG. 4, as shown as a cylindrical reformed gas processor: C, the cylindrical reformed gas processor C is configured separately from the cylindrical steam reformer R and juxtaposed with the cylindrical steam reformer. . The cylindrical reformed gas processor C has a diameter larger than the outer circumference of the fourth cylindrical body 201 with an interval between the fourth cylindrical body 201 and the outer circumference of the lower position of the outer circumference of the fourth cylindrical body 201. The large fifth cylindrical body 202 is arranged concentrically, and the sixth cylindrical body 203 having a diameter larger than the outer circumference of the fifth cylindrical body 202 is arranged concentrically at an interval around the outer circumference of the fifth cylindrical body 202. .

第4円筒体201の上端に上蓋200を備え、上蓋200には円筒型水蒸気改質器Rからの改質ガス導出管17が連結され、開口している。第4円筒体201内には、その上蓋200に対して間隔を置いて順次、分配板205、多孔板207、多孔板209、分配板210を配置する。それら板体はいずれも第4円筒体201の内径に相当する直径を持つ円盤状の板体である。   An upper lid 200 is provided at the upper end of the fourth cylindrical body 201, and the reformed gas outlet pipe 17 from the cylindrical steam reformer R is connected to the upper lid 200 and opened. In the fourth cylindrical body 201, a distribution plate 205, a porous plate 207, a porous plate 209, and a distribution plate 210 are sequentially arranged with a space from the upper lid 200. Each of these plate bodies is a disk-shaped plate body having a diameter corresponding to the inner diameter of the fourth cylindrical body 201.

そして、第4円筒体201内にCO変成触媒層208を備え、第5円筒体202と第6円筒体203との間にCO除去触媒層216を備え、CO変成触媒層208及びCO除去触媒層216の下部に空気供給部を備える。空気供給部は、CO変成触媒層208及びCO除去触媒層216の下部と第4円筒体201と第5円筒体203とに共通の下蓋204との間で構成する。   The fourth cylinder 201 is provided with a CO shift catalyst layer 208, and a CO removal catalyst layer 216 is provided between the fifth cylinder 202 and the sixth cylinder 203, and the CO shift catalyst layer 208 and the CO removal catalyst layer are provided. An air supply unit is provided at the lower part of 216. The air supply unit is configured between a lower portion of the CO shift catalyst layer 208 and the CO removal catalyst layer 216 and a lower lid 204 common to the fourth cylinder body 201 and the fifth cylinder body 203.

そのように、円筒型改質ガス処理器Cでは、第4円筒体201(その内側にCO変成触媒層208を有する)とCO除去触媒層216の内周を構成する第5円筒体202とは同心状に間隔を置いて配置されているので、220〜300℃程度で作動するCO変成触媒層208の熱によるCO除去触媒層216(作動温度130〜170℃程度)への影響を防止することができる。   As described above, in the cylindrical reformed gas processor C, the fourth cylinder 201 (having the CO shift catalyst layer 208 inside) and the fifth cylinder 202 constituting the inner periphery of the CO removal catalyst layer 216 are: Since they are arranged concentrically at intervals, the influence of the heat of the CO shift catalyst layer 208 operating at about 220 to 300 ° C. on the CO removal catalyst layer 216 (operating temperature of about 130 to 170 ° C.) should be prevented. Can do.

CO変成触媒層208は、より詳しくは第4円筒体201内の多孔板207と多孔板209との間にCO変成触媒を充填することで構成される。多孔板209は、多数の孔を有し、CO変成触媒を支持するとともに、CO変成触媒層でのCO変成済み改質ガスを流出させる役割をする。多孔板207、209は、金属メッシュ等で構成してもよい。   More specifically, the CO shift catalyst layer 208 is configured by filling a CO shift catalyst between the porous plate 207 and the porous plate 209 in the fourth cylindrical body 201. The perforated plate 209 has a large number of holes, supports the CO conversion catalyst, and plays a role of flowing out the CO converted reformed gas in the CO conversion catalyst layer. The perforated plates 207 and 209 may be made of a metal mesh or the like.

分配板205は、図4中符号206で示すように複数の連通孔を有する。図4にはその円盤状板体の中心から等間隔で且つ周方向に等間隔に複数個の連通孔206を設けた例を示している。連通孔206の複数個をそのように設けることにより、上蓋200と分配板205との間の間隙に導入された改質ガスをCO変成触媒層208に向けて均等に流入させる役割をする。触媒層温度分布を均一化するために、ガスが流れにくく、かつ、放熱により温度が低下しがちな外周側にガスが多く流れるように分配板205に複数の連通孔206を設け、ガスを分配すると、より好ましい。分配板205を経た改質ガスは多孔板207を経てCO変成触媒層208に流入し、CO変成触媒でのCO変成反応により、改質ガス中のCOをCO2へ変え、併せてH2を生成する。 The distribution plate 205 has a plurality of communication holes as indicated by reference numeral 206 in FIG. FIG. 4 shows an example in which a plurality of communication holes 206 are provided at equal intervals from the center of the disk-shaped plate body and at equal intervals in the circumferential direction. By providing a plurality of communication holes 206 in this manner, the reformed gas introduced into the gap between the upper lid 200 and the distribution plate 205 serves to evenly flow toward the CO shift catalyst layer 208. In order to make the catalyst layer temperature distribution uniform, the distribution plate 205 is provided with a plurality of communication holes 206 so that the gas hardly flows and the gas tends to decrease due to heat dissipation, and a plurality of communication holes 206 are provided to distribute the gas. Then, it is more preferable. The reformed gas that has passed through the distribution plate 205 flows into the CO shift catalyst layer 208 through the perforated plate 207, and CO in the reformed gas is changed to CO 2 by the CO shift reaction in the CO shift catalyst, and H 2 is also added. Generate.

CO変成触媒層208でのCO変成済みの改質ガスは多孔板209、分配板210を経て当該分配板210と下蓋204(第4円筒体201と第5円筒体202と第6円筒体203に共通の下蓋)との間の空隙に流入する。分配板210は、図4中符号211で示すように複数の連通孔を有する。図4にはその円盤状板体の中心から等間隔で且つ周方向に等間隔に複数個の連通孔211を設けた例を示している。連通孔211の複数個をそのように設けることにより、多孔板209と分配板210との間の間隙に流出したCO変成済み改質ガスを分配板210と下蓋204との間の空隙に向けて均等に流入させる役割をする。   The reformed gas that has undergone CO conversion in the CO conversion catalyst layer 208 passes through the perforated plate 209 and the distribution plate 210, the distribution plate 210 and the lower lid 204 (the fourth cylindrical body 201, the fifth cylindrical body 202, and the sixth cylindrical body 203. Flows into the gap between the lower lid and the common lid. The distribution plate 210 has a plurality of communication holes as indicated by reference numeral 211 in FIG. FIG. 4 shows an example in which a plurality of communication holes 211 are provided at equal intervals from the center of the disk-shaped plate body and at equal intervals in the circumferential direction. By providing a plurality of communication holes 211 in this way, the CO-modified reformed gas that has flowed into the gap between the perforated plate 209 and the distribution plate 210 is directed toward the gap between the distribution plate 210 and the lower lid 204. To evenly flow in.

第5円筒体202と第6円筒体203との間に、その下蓋204に対して間隔を置いて順次、分配板213、多孔板215、多孔板217、分配板218、上蓋220を配置する。それら板体は、いずれも第5円筒体202と第6円筒体203との間に水平に設け、第5円筒体202の径(内径)に相当する部分は第4円筒体202で占められるのでドーナツ状の板体である。   A distribution plate 213, a porous plate 215, a porous plate 217, a distribution plate 218, and an upper lid 220 are sequentially arranged between the fifth cylindrical body 202 and the sixth cylindrical body 203 at a distance from the lower lid 204. . Since these plate bodies are horizontally provided between the fifth cylindrical body 202 and the sixth cylindrical body 203, a portion corresponding to the diameter (inner diameter) of the fifth cylindrical body 202 is occupied by the fourth cylindrical body 202. It is a donut-shaped plate.

CO除去触媒層216は、分配板213の上に配置された多孔板215と多孔板217との間にCO除去触媒を充填することで構成される。多孔板215は、多数の孔を有し、CO除去触媒を支持するとともに、CO変成触媒層からのCO変成済み改質ガスに空気を混合した混合流を流入させる役割をする。多孔板207、209は、金属メッシュ等で構成してもよい。   The CO removal catalyst layer 216 is configured by filling a CO removal catalyst between the porous plate 215 and the porous plate 217 arranged on the distribution plate 213. The perforated plate 215 has a large number of holes, supports the CO removal catalyst, and plays a role of flowing a mixed flow in which air is mixed into the CO-modified reformed gas from the CO-modified catalyst layer. The perforated plates 207 and 209 may be made of a metal mesh or the like.

分配板213は、図4中符号214で示すように複数の連通孔を有する。図4にはその円盤状板体の中心から等間隔で且つ周方向に等間隔に複数個の連通孔214を設けた例を示している。連通孔214の複数個をそのように設けることにより、下蓋204と分配板213との間の間隙に導入されたCO変成済み改質ガスをCO除去触媒層216に向けて均等に流入させる役割をする。触媒層温度分布を均一化するために、ガスが流れにくく、かつ、放熱により温度が低下しがちな外周側にガスが多く流れるように分配板213に複数の連通孔214を設け、ガスを分配すると、より好ましい。分配板213を経た改質ガスは多孔板215を経てCO除去触媒層216に流入し、CO除去触媒でのCOの選択的酸化反応により、CO変成済み改質ガス中のCOをCO2へ変えることでCO濃度をさらに低減させる。 The distribution plate 213 has a plurality of communication holes as indicated by reference numeral 214 in FIG. FIG. 4 shows an example in which a plurality of communication holes 214 are provided at equal intervals from the center of the disk-shaped plate body and at equal intervals in the circumferential direction. By providing a plurality of communication holes 214 in such a manner, the role of uniformly flowing CO reformed reformed gas introduced into the gap between lower lid 204 and distribution plate 213 toward CO removal catalyst layer 216. do. In order to make the catalyst layer temperature distribution uniform, the distribution plate 213 is provided with a plurality of communication holes 214 so that the gas hardly flows and the temperature tends to decrease due to heat dissipation, so that a large amount of gas flows. Then, it is more preferable. The reformed gas that has passed through the distribution plate 213 flows into the CO removal catalyst layer 216 through the perforated plate 215, and CO in the reformed gas that has undergone CO conversion is converted to CO 2 by the selective oxidation reaction of CO in the CO removal catalyst. This further reduces the CO concentration.

CO除去触媒層216でのCO除去済みの改質ガスは多孔板217、分配板218を経て当該分配板218と上蓋220との間の空隙に流入する。分配板218は、図4中符号219で示すように複数の連通孔を有する。図4にはその円盤状板体の中心から等間隔で且つ周方向に等間隔に複数個の連通孔219を設けた例を示している。連通孔219の複数個をそのように設けることにより、多孔板217と分配板218との間の間隙に流出したCO除去済み改質ガスを分配板218と上蓋220との間の空隙に向けて均等に流出させる。   The reformed gas after CO removal in the CO removal catalyst layer 216 flows into the gap between the distribution plate 218 and the upper lid 220 through the perforated plate 217 and the distribution plate 218. The distribution plate 218 has a plurality of communication holes as indicated by reference numeral 219 in FIG. FIG. 4 shows an example in which a plurality of communication holes 219 are provided at equal intervals from the center of the disk-shaped plate body and at equal intervals in the circumferential direction. By providing a plurality of communication holes 219 in this manner, the CO-removed reformed gas that has flowed into the gap between the porous plate 217 and the distribution plate 218 is directed toward the gap between the distribution plate 218 and the upper lid 220. Discharge evenly.

そのように、CO除去触媒層216により、CO変成済み改質ガス中のCOをさらに低減させ、多孔板217、分配板218を経て改質ガス(CO除去済み)取出管42から導出され、PEFCの燃料極に供給される。   As such, the CO removal catalyst layer 216 further reduces the CO in the CO-modified reformed gas, and is led out from the reformed gas (CO-removed) take-out pipe 42 through the perforated plate 217 and the distribution plate 218, and the PEFC Supplied to the fuel electrode.

〈原料水の予熱管について〉
第6円筒体203の外周に原料水の予熱管38を配置する。図中には螺旋状の予熱管を示しているが、適宜水冷ジャケットのようなものも適用できる。本発明(4)の燃料電池用水蒸気改質装置の作動時に、水供給管37から供給する原料水は予熱管38中を流れながら加熱され、CO除去触媒層216での発生熱により加熱される。加熱により生成した水蒸気は導管39を介して円筒型水蒸気改質器Rにおける予熱層10へ供給される。図中には、CO除去触媒の周囲のみ熱回収部を構成したものを示しているが、触媒層温度が適温となるように、変成触媒層の周囲にもCO除去触媒層周囲の熱回収部と連通する形で、熱回収部を形成しても良い。
<Regarding the preheating pipe for raw water>
A raw water preheating pipe 38 is disposed on the outer periphery of the sixth cylindrical body 203. Although a spiral preheating tube is shown in the figure, a water cooling jacket or the like can be applied as appropriate. When the fuel cell steam reformer of the present invention (4) is operated, the raw water supplied from the water supply pipe 37 is heated while flowing in the preheating pipe 38 and is heated by the heat generated in the CO removal catalyst layer 216. . Steam generated by heating is supplied to the preheating layer 10 in the cylindrical steam reformer R through a conduit 39. In the figure, the heat recovery unit is configured only around the CO removal catalyst. However, the heat recovery unit around the CO removal catalyst layer is also provided around the shift catalyst layer so that the catalyst layer temperature is appropriate. The heat recovery part may be formed in communication with the heat recovery part.

そのように、CO除去触媒層216が位置する第6円筒体203の外周に原料水の予熱管38を配置した構造を採ることにより、円筒型水蒸気改質器Rにおける予熱層10へ供給する原料水を円筒型改質ガス処理器Cで発生する余剰熱を利用して予め加熱し、円筒型水蒸気改質器Rと円筒型改質ガス処理器Cからなるシステムにおいて発生する熱を有効に利用することができる。   Thus, the raw material supplied to the preheating layer 10 in the cylindrical steam reformer R by adopting a structure in which the raw water preheating pipe 38 is arranged on the outer periphery of the sixth cylindrical body 203 where the CO removal catalyst layer 216 is located. Water is preheated using excess heat generated in the cylindrical reformed gas processor C, and the heat generated in the system composed of the cylindrical steam reformer R and the cylindrical reformed gas processor C is effectively used. can do.

〈電気ヒーターについて〉
前記円筒型改質ガス処理器Aや、前記円筒型改質ガス処理器Bにおいても、外周に電気ヒーターを配置し、水蒸気改質装置の起動時に、それをオンにしてCO変成触媒層と共に、CO除去触媒層も加熱することができるが、電気ヒーターを断熱材で覆ったとしても、発熱の一部は放熱となってしまい、有効に利用できていなかった。それに対して、円筒型改質ガス処理器Cにおいては、第4円筒体201と第5円筒体202とは間隔を置いて配置するが、第4円筒体201と第5円筒体202との間に電気ヒーター221を配置してもよい。このようにすることで、電気ヒーター221の発熱を、放熱ロスを極力少なくし、有効に利用することができる。
<About the electric heater>
Also in the cylindrical reformed gas processor A and the cylindrical reformed gas processor B, an electric heater is arranged on the outer periphery, and when the steam reformer is started, it is turned on together with the CO conversion catalyst layer. The CO removal catalyst layer can also be heated, but even if the electric heater is covered with a heat insulating material, a part of the heat generation is dissipated and cannot be used effectively. On the other hand, in the cylindrical reformed gas processor C, the fourth cylindrical body 201 and the fifth cylindrical body 202 are arranged at an interval, but between the fourth cylindrical body 201 and the fifth cylindrical body 202. An electric heater 221 may be disposed on the front panel. By doing in this way, heat_generation | fever of the electric heater 221 can be utilized effectively, reducing heat dissipation loss as much as possible.

〈CO変成触媒層に高温CO変成触媒及び低温CO変成触媒を配置する態様〉
本発明の水蒸気改質装置においては、CO変成触媒層を高温CO変成触媒層と低温CO変成触媒層の積層、もしくはそれぞれ単独で構成することができる。積層構造を図1〔本発明(1)〕で言えば、CO変成触媒層23の上下幅のうち上部を高温CO変成触媒層とし、下部を低温CO変成触媒を配置する。高温CO変成触媒は少なくとも350℃以上で連続して使用でき、その例としてはPt系やFe/Cr系、Fe/Al系などが使用できる。
<Mode in which a high temperature CO conversion catalyst and a low temperature CO conversion catalyst are arranged in the CO conversion catalyst layer>
In the steam reforming apparatus of the present invention, the CO conversion catalyst layer can be formed by laminating a high temperature CO conversion catalyst layer and a low temperature CO conversion catalyst layer, or each independently. Speaking of the stacked structure in FIG. 1 [present invention (1)], the upper part of the CO conversion catalyst layer 23 is a high temperature CO conversion catalyst layer, and the lower part is a low temperature CO conversion catalyst. The high-temperature CO conversion catalyst can be used continuously at least at 350 ° C. or higher, and examples thereof include Pt-based, Fe / Cr-based, and Fe / Al-based catalysts.

低温CO変成触媒には通常のCO変成触媒であるCu/Zn系などを使用する。高温CO変成触媒の使用量は、例えばCO変成触媒全体のうち1/3程度にするなど、円筒型水蒸気改質器から改質ガス導出管17を経て導入される改質ガスの温度、改質改質ガス処理器自体での熱バランスなどを考慮して適宜設定することができる。本発明(2)〜(3)の水蒸気改質装置についても同様である。   For the low temperature CO conversion catalyst, a normal CO conversion catalyst such as a Cu / Zn system is used. The amount of the high-temperature CO conversion catalyst used is, for example, about 1/3 of the total CO conversion catalyst. For example, the temperature of the reformed gas introduced from the cylindrical steam reformer through the reformed gas outlet pipe 17 and the reforming It can be set as appropriate in consideration of the heat balance in the reformed gas processor itself. The same applies to the steam reforming apparatuses of the present inventions (2) to (3).

以下、実験例を基に本発明をさらに説明するが、本発明が実験例に限定されないことはもちろんである。   Hereinafter, the present invention will be further described based on experimental examples, but the present invention is not limited to the experimental examples.

〈実験例1〉
実験例1は、図3に示す本発明(2)の円筒型水蒸気改質器と円筒型改質ガス処理器を別個に備えてなる燃料電池用水蒸気改質装置について、各部位における温度分布に係る実験を行った。図3の構造の水蒸気改質器を作製し、作動して、各水蒸気改質器における各部位における温度を計測し、各部位における温度分布の状態を観察した。
<Experimental example 1>
Experimental Example 1 is a fuel cell steam reformer comprising a cylindrical steam reformer and a cylindrical reformed gas processor according to the present invention (2) shown in FIG. Such an experiment was conducted. The steam reformer having the structure shown in FIG. 3 was manufactured and operated, the temperature at each part in each steam reformer was measured, and the state of the temperature distribution at each part was observed.

改質触媒層の改質触媒として作動温度400〜680℃程度のRu系触媒を使用し、CO変成触媒層のCO変成触媒として作動温度220〜330℃程度の銅−亜鉛系触媒を使用し、CO除去触媒層のCO除去触媒として作動温度130〜170℃程度のRu系触媒を使用した。   A Ru-based catalyst having an operating temperature of about 400 to 680 ° C. is used as the reforming catalyst of the reforming catalyst layer, and a copper-zinc based catalyst having an operating temperature of about 220 to 330 ° C. is used as the CO conversion catalyst of the CO conversion catalyst layer. A Ru catalyst having an operating temperature of about 130 to 170 ° C. was used as the CO removal catalyst of the CO removal catalyst layer.

温度計測は熱電対で行い、図3中、温度計測箇所である熱電対設置位置を示している。また、CO変成触媒層については、改質ガスの流れ方向でみて、CO変成触媒層入口部、CO変成触媒層中間部及びCO変成触媒層出口部の三つの位置について、それぞれ中央部、外側の合計6箇所で計測した。   Temperature measurement is performed with a thermocouple, and the thermocouple installation position, which is a temperature measurement location, is shown in FIG. Regarding the CO shift catalyst layer, the three positions of the CO shift catalyst layer inlet portion, the CO shift catalyst layer intermediate portion, and the CO shift catalyst layer outlet portion, respectively, in the flow direction of the reformed gas, Measurements were made at a total of 6 locations.

他の実験条件、実験結果は表1のとおりである。なお、表1において改質触媒層出口の中央部は半径方向でみた中央部の位置であり、CO変成触媒層は円柱状であるので中央部と外側のみであるので、内側はない。   Other experimental conditions and experimental results are shown in Table 1. In Table 1, the central part of the outlet of the reforming catalyst layer is the position of the central part as viewed in the radial direction, and the CO shift catalyst layer is cylindrical, so only the central part and the outer side, so there is no inner side.

Figure 0005329944
Figure 0005329944

表1のとおり、CO変成触媒層入口の温度については、中央部で282.4℃、外側で279.4℃であり、CO変成触媒層中間の温度については、中央部で303.5℃、外側で292.9℃であり、またCO変成触媒層出口の温度については、中央部で258.9℃、外側で247.2℃である。このように、いずれの部位においても、CO変成触媒の適温220〜330℃の範囲内であり、また、各部位の温度について、その温度差の幅は小さく、ほぼ均等と言える。   As shown in Table 1, the CO conversion catalyst layer inlet temperature is 282.4 ° C. at the center and 279.4 ° C. outside, and the intermediate temperature of the CO conversion catalyst layer is 303.5 ° C. at the center. The temperature at the outside is 292.9 ° C., and the temperature at the CO conversion catalyst layer outlet is 258.9 ° C. at the center and 247.2 ° C. at the outside. Thus, in any part, it is in the range of 220-330 degreeC suitable temperature of a CO conversion catalyst, and the width | variety of the temperature difference is small about the temperature of each part, and it can be said that it is substantially equal.

また、CO除去触媒層温度については、CO除去触媒層入口で187.2℃、CO除去触媒層出口で160.3℃である。CO除去触媒層入口温度について、CO除去触媒の適温130〜170℃に対してやや高いが、CO除去触媒層入口部において、原料水予熱管と接触する面積を増加させることにより、容易に解決できる。CO除去触媒層出口温度はCO除去触媒の適温の範囲内である。   The CO removal catalyst layer temperature is 187.2 ° C. at the CO removal catalyst layer inlet and 160.3 ° C. at the CO removal catalyst layer outlet. Although the CO removal catalyst layer inlet temperature is slightly higher than the appropriate temperature of 130 to 170 ° C. for the CO removal catalyst, it can be easily solved by increasing the area in contact with the raw water preheating pipe at the CO removal catalyst layer inlet. . The CO removal catalyst layer outlet temperature is within the appropriate temperature range of the CO removal catalyst.

〈実験例2〉
実験例2は、図4に示す本発明(3)の円筒型水蒸気改質器と円筒型改質ガス処理器を別個に備えてなる燃料電池用水蒸気改質装置について、各部位における温度分布に係る実験を行った。図4の構造の水蒸気改質器を作製し、作動して、各水蒸気改質器における各部位における温度を計測し、各部位における温度分布の状態を観察した。改質触媒、CO変成触媒、CO除去触媒は実験例1と同じである。
なお、実験例2では、電気ヒーターは起動時の触媒層内における結露防止の目的で作動させるのみで、定常時においては作動させていない。
<Experimental example 2>
Experimental Example 2 shows a fuel cell steam reformer comprising a cylindrical steam reformer and a cylindrical reformed gas processor according to the present invention (3) shown in FIG. Such an experiment was conducted. The steam reformer having the structure shown in FIG. 4 was manufactured and operated, and the temperature at each part in each steam reformer was measured, and the state of the temperature distribution at each part was observed. The reforming catalyst, the CO shift catalyst, and the CO removal catalyst are the same as in Experimental Example 1.
In Experimental Example 2, the electric heater is operated only for the purpose of preventing dew condensation in the catalyst layer at the start-up, and is not operated in a steady state.

温度計測は熱電対で行い、図4中、温度計測箇所である熱電対設置位置を示している。また、CO変成触媒層については、改質ガスの流れ方向でみて、CO変成触媒層入口部、CO変成触媒層中間部及びCO変成触媒層出口部の三つの位置について、それぞれ中央部、外側の合計6箇所で計測した。   Temperature measurement is performed with a thermocouple, and in FIG. 4, the thermocouple installation position, which is a temperature measurement location, is shown. Regarding the CO shift catalyst layer, the three positions of the CO shift catalyst layer inlet portion, the CO shift catalyst layer intermediate portion, and the CO shift catalyst layer outlet portion, respectively, in the flow direction of the reformed gas, Measurements were made at a total of 6 locations.

他の実験条件、実験結果は表2のとおりである。なお、表2において改質触媒層出口の中央部は半径方向でみた中央部の位置であり、CO変成触媒層は円柱状であるので中央部と外側のみであるので、内側はない。また、図4の構造におれるCO除去触媒層は円筒状であり、その内側はCO変成触媒層寄りの位置であり、その外側は原料水予熱管38寄りの位置である。   Other experimental conditions and experimental results are shown in Table 2. In Table 2, the central part of the outlet of the reforming catalyst layer is the position of the central part as viewed in the radial direction, and the CO conversion catalyst layer is cylindrical, so only the central part and the outer side, so there is no inner side. Further, the CO removal catalyst layer in the structure of FIG. 4 has a cylindrical shape, the inside is a position near the CO conversion catalyst layer, and the outside is a position near the raw water preheating pipe 38.

Figure 0005329944
Figure 0005329944

表2のとおり、CO変成触媒層入口の温度については、中央部で286.9℃、外側で293.8℃であり、CO変成触媒層中間の温度については、中央部で280.6℃、外側で269.2℃であり、CO変成触媒層出口の温度については、中央部で253.6℃、外側で241.8℃である。このように、いずれの部位においても、CO変成触媒の適温220〜330℃の範囲内であり、また、各部位の温度について、その温度差の幅は小さく、ほぼ均等と言える。   As shown in Table 2, the CO conversion catalyst layer inlet temperature was 286.9 ° C. at the center and 293.8 ° C. outside, and the intermediate temperature of the CO conversion catalyst layer was 280.6 ° C. at the center. The temperature at the outside is 269.2 ° C., and the temperature at the CO conversion catalyst layer outlet is 253.6 ° C. at the center and 241.8 ° C. at the outside. Thus, in any part, it is in the range of 220-330 degreeC suitable temperature of a CO conversion catalyst, and the width | variety of the temperature difference is small about the temperature of each part, and it can be said that it is substantially equal.

また、CO除去触媒層温度については、CO除去触媒層入口の内側で152.8℃、外側で126.4℃であり、CO除去触媒層出口の内側で119.4℃、外側で108.3℃である。CO除去触媒層入口の内側の温度を除き、CO除去触媒の適温130〜170℃に対してやや低いが、CO除去触媒層入口部において、原料管予熱管と接触する面積を減少させ、CO除去触媒層入口温度を上昇させることで容易に解決できる。また、電気ヒーターを作動させることで補うことも可能である。   The CO removal catalyst layer temperature is 152.8 ° C. inside the CO removal catalyst layer inlet and 126.4 ° C. outside, 119.4 ° C. inside the CO removal catalyst layer outlet, and 108.3 outside. ° C. Except for the temperature inside the CO removal catalyst layer inlet, it is slightly lower than the appropriate temperature of 130 to 170 ° C for the CO removal catalyst, but at the CO removal catalyst layer inlet, the area in contact with the raw material pipe preheating pipe is reduced to remove CO. This can be solved easily by increasing the catalyst layer inlet temperature. It is also possible to compensate by operating an electric heater.

本発明(1)の態様を説明する図The figure explaining the aspect of this invention (1) 本発明(1)の態様を説明する図The figure explaining the aspect of this invention (1) 本発明(2)の態様を説明する図The figure explaining the aspect of this invention (2) 本発明(3)の態様を説明する図The figure explaining the aspect of this invention (3) 原燃料の処理からPEFCに至るまでのシステムを説明する図Diagram explaining the system from raw fuel processing to PEFC CO変成触媒層及びCO除去触媒層の一体化型多重円筒型水蒸気改質器(先行技術)を示す図The figure which shows the integrated multi-cylinder steam reformer (prior art) of a CO shift catalyst layer and a CO removal catalyst layer

符号の説明Explanation of symbols

1〜3、101〜103 第1円筒体〜第3円筒体
4、104 輻射筒
5 第1円筒体1の底板
6 バーナ
7 上蓋兼バーナ取付台
8、141 燃焼排ガス排出管
10 原燃料及び水蒸気の予熱層
11、115 螺旋状棒材
13、116 改質触媒層
15 第3円筒体3の底板
16、120 改質ガス流路
37、142 原料水導入管
38 原料水の螺旋状予熱管
39 水蒸気供給管
40、143 原燃料導入管
41、144 空気供給管
45、145 改質ガス導出管
201〜203 第4円筒体〜第6円筒体
23、208 CO変成触媒層
32、216 CO除去触媒層
221 電気ヒーター
1-3, 101-103 1st cylinder body-3rd cylinder body 4, 104 Radiation cylinder 5 Bottom plate of 1st cylinder body 6 Burner 7 Upper lid and burner mounting base 8, 141 Combustion exhaust gas discharge pipe 10 Raw fuel and water vapor Preheating layer 11, 115 Spiral rod 13, 116 Reforming catalyst layer 15 Bottom plate 16 of third cylindrical body 16, 120 Reformed gas flow path 37, 142 Raw water introduction pipe 38 Raw water spiral preheating pipe 39 Steam supply Pipes 40 and 143 Raw fuel introduction pipes 41 and 144 Air supply pipes 45 and 145 Reformed gas outlet pipes 201 to 203 Fourth cylinder to sixth cylinders 23 and 208 CO conversion catalyst layer 32 and 216 CO removal catalyst layer 221 Electricity heater

Claims (3)

円筒型水蒸気改質器と円筒型改質ガス処理器を別個に備えてなる燃料電池用水蒸気改質装置であって、
前記円筒型水蒸気改質器が、
(a)同心状に間隔を置いて配置した順次径の大きい第1円筒体、第2円筒体及び第3円筒体からなる複数の円筒体と、前記第1円筒体の周方向中心部に上端から配置されたバーナを備え、
(b)前記第1円筒体と前記第2円筒体により周方向に区画された隙間のうち、上部の隙間を原燃料と原料水との混合流の予熱層とするとともに、下部の隙間に改質触媒層を備え、
(c)前記第2円筒体と前記第3円筒体により周方向に区画された隙間に当該第2円筒体の下端で反転させた改質ガス流路を構成してなり、
前記円筒型改質ガス処理器が、
(a)第4円筒体と、第4円筒体の外周のうちの下部の位置の外周に間隔を置いて当該第4円筒体の外周よりも径の大きい第5円筒体を配置するとともに、第5円筒体の外周に間隔を置いて当該第5円筒体の外周よりも径の大きい第6円筒体を配置し、
(b)前記第4円筒体内にCO変成触媒層を配置するとともに、第5円筒体と第6円筒体との間にCO除去触媒層を備え、
(c)前記CO変成触媒層の下部からCO除去触媒層に向けて、前記CO変成触媒層を経たCO変成済み改質ガスの流通部を備えるとともに、当該流通部に空気供給管を配置し、(d)前記第6円筒体の外周に原料水の予熱管を配置してなり、
且つ、前記円筒型水蒸気改質器の改質ガス流路と前記CO変成触媒層との間に改質ガス導管を配置してなること、を特徴とする燃料電池用水蒸気改質装置。
A steam reformer for a fuel cell comprising a cylindrical steam reformer and a cylindrical reformed gas processor separately,
The cylindrical steam reformer is
(A) a plurality of first and second cylindrical bodies, each of which is arranged concentrically and spaced apart from each other, and has an upper end at a central portion in the circumferential direction of the first cylindrical body; With a burner arranged from
(B) Of the gaps defined in the circumferential direction by the first cylinder and the second cylinder, the upper gap is used as a preheating layer for the mixed flow of raw fuel and raw water, and the lower gap is modified. With a catalyst layer,
(C) comprising a reformed gas flow channel that is inverted at the lower end of the second cylindrical body in a gap partitioned in the circumferential direction by the second cylindrical body and the third cylindrical body;
The cylindrical reformed gas processor is
(A) A fifth cylinder having a diameter larger than the outer circumference of the fourth cylinder and a fourth cylinder having a diameter larger than the outer circumference of the fourth cylinder is spaced apart from the outer circumference of the lower position of the fourth cylinder. A sixth cylinder having a larger diameter than the outer periphery of the fifth cylinder is arranged at an interval on the outer periphery of the five cylinder,
(B) A CO shift catalyst layer is disposed in the fourth cylinder, and a CO removal catalyst layer is provided between the fifth cylinder and the sixth cylinder,
(C) From the lower part of the CO conversion catalyst layer toward the CO removal catalyst layer, a CO-modified reformed gas circulation part that has passed through the CO conversion catalyst layer is provided, and an air supply pipe is disposed in the circulation part, (D) A raw water preheating pipe is disposed on the outer periphery of the sixth cylindrical body,
A steam reformer for a fuel cell, comprising a reformed gas conduit disposed between a reformed gas flow path of the cylindrical steam reformer and the CO shift catalyst layer.
請求項の燃料電池用水蒸気改質装置において、前記第4円筒体と前記第5円筒体との間のうち、前記第4円筒体の外周に電気ヒーターを配置してなることを特徴とする燃料電池用水蒸気改質装置。 2. The steam reformer for a fuel cell according to claim 1 , wherein an electric heater is disposed on an outer periphery of the fourth cylindrical body between the fourth cylindrical body and the fifth cylindrical body. Steam reformer for fuel cells. 請求項1または2に記載の燃料電池用円筒型水蒸気改質装置において、前記水蒸気改質器における第1円筒体の内部に輻射筒を備えることを特徴とする燃料電池用円筒型水蒸気改質装置。 The cylindrical steam reformer for a fuel cell according to claim 1 or 2 , further comprising a radiation cylinder inside the first cylinder in the steam reformer. .
JP2008334376A 2008-12-26 2008-12-26 Steam reformer for fuel cell Expired - Fee Related JP5329944B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008334376A JP5329944B2 (en) 2008-12-26 2008-12-26 Steam reformer for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008334376A JP5329944B2 (en) 2008-12-26 2008-12-26 Steam reformer for fuel cell

Publications (2)

Publication Number Publication Date
JP2010157402A JP2010157402A (en) 2010-07-15
JP5329944B2 true JP5329944B2 (en) 2013-10-30

Family

ID=42575153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008334376A Expired - Fee Related JP5329944B2 (en) 2008-12-26 2008-12-26 Steam reformer for fuel cell

Country Status (1)

Country Link
JP (1) JP5329944B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011136865A (en) * 2009-12-28 2011-07-14 Idemitsu Kosan Co Ltd Reformer, reforming unit, and fuel cell system
JP2012224484A (en) * 2011-04-15 2012-11-15 Babcock Hitachi Kk Shift reaction apparatus and gas turbine plant
KR20210000642A (en) * 2019-06-25 2021-01-05 비비에이치 주식회사 Fuel processing apparatus and VPP using the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11278806A (en) * 1998-03-31 1999-10-12 Toshiba Corp Fuel cell plant
US20110123880A1 (en) * 2006-10-16 2011-05-26 Sumitomo Electric Industries, Ltd Hydrogen generator and fuel cell system including the same
JP5087445B2 (en) * 2007-05-10 2012-12-05 Jx日鉱日石エネルギー株式会社 Hydrogen production apparatus and method for stopping the same

Also Published As

Publication number Publication date
JP2010157402A (en) 2010-07-15

Similar Documents

Publication Publication Date Title
JP5191840B2 (en) Cylindrical steam reformer with integrated hydrodesulfurizer
CA2633814C (en) Oxidative autothermal reformer and oxidative autothermal reforming method using the same
WO2003067698A1 (en) Solid oxide type fuel cell system
JP2015517175A (en) Catalytically heated fuel processor including a replaceable structured support for supporting a catalyst for a fuel cell
US20080219901A1 (en) Cylindrical Steam Reformer Having Integrated Heat Exchanger
JP5301419B2 (en) Multi-cylinder steam reformer for fuel cells
KR20210130156A (en) Syngas production by steam methane reforming
JP2001155756A (en) Vapor-reforming reactor for fuel cell
JP6944349B2 (en) Hydrogen generator
JP5160389B2 (en) Multi-cylinder steam reformer for fuel cells
JP5329944B2 (en) Steam reformer for fuel cell
JP4464230B2 (en) Reforming apparatus and method, and fuel cell system
JP2003321206A (en) Single tubular cylinder type reforming apparatus
JP4617966B2 (en) Hydrogen generator
JP2009096706A (en) Reforming apparatus for fuel cell
JP5307043B2 (en) CO reformer separate steam reformer
JP5531168B2 (en) Hydrogen generator
JP5274986B2 (en) Multi-cylinder steam reformer for fuel cells
WO2005077822A1 (en) Fuel reforming apparatus and method for starting said fuel reforming apparatus
JP4932165B2 (en) Steam reforming system
JP5938580B2 (en) Hydrogen generator
JP5658897B2 (en) Reforming apparatus and fuel cell system
JP2007186389A (en) Method for starting oxidation autothermal reforming apparatus
JP4920311B2 (en) Oxidation autothermal reformer
JP2006248863A (en) Hydrogen production apparatus and fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130725

R150 Certificate of patent or registration of utility model

Ref document number: 5329944

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees