JP4932165B2 - Steam reforming system - Google Patents

Steam reforming system Download PDF

Info

Publication number
JP4932165B2
JP4932165B2 JP2005037000A JP2005037000A JP4932165B2 JP 4932165 B2 JP4932165 B2 JP 4932165B2 JP 2005037000 A JP2005037000 A JP 2005037000A JP 2005037000 A JP2005037000 A JP 2005037000A JP 4932165 B2 JP4932165 B2 JP 4932165B2
Authority
JP
Japan
Prior art keywords
catalyst
steam
reforming
gas
steam reforming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005037000A
Other languages
Japanese (ja)
Other versions
JP2006225166A (en
Inventor
純 小宮
広志 藤木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2005037000A priority Critical patent/JP4932165B2/en
Publication of JP2006225166A publication Critical patent/JP2006225166A/en
Application granted granted Critical
Publication of JP4932165B2 publication Critical patent/JP4932165B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、水蒸気改質システムに関し、より詳しくは運転停止直後の運転方法において水蒸気でシステム内の可燃性ガスをパージし、且つシステム内の触媒が十分に冷却された後に空気で置換する運転方法を適用する水蒸気改質システムに関する。   The present invention relates to a steam reforming system, and more specifically, an operation method in which combustible gas in the system is purged with steam in an operation method immediately after the operation is stopped, and air is replaced after the catalyst in the system is sufficiently cooled. The present invention relates to a steam reforming system to which is applied.

固体高分子形燃料電池(以下適宜“PEFC”と言う)などの燃料電池の燃料である水素は水蒸気改質法や部分燃焼改質法により製造される。このうち水蒸気改質法は、メタン、エタン、プロパン、ブタン等の低級炭化水素、それらの複数種を含む都市ガス、石油ガス、LPガス、あるいはメタノール、エタノール等のアルコール類を水蒸気により改質して水素リッチな改質ガスを生成させる方法である。水蒸気改質法では水蒸気改質器が用いられ、水蒸気改質触媒による触媒反応によりそれら炭化水素やアルコール類が水素リッチな改質ガスへ変えられる。   Hydrogen, which is the fuel of a fuel cell such as a polymer electrolyte fuel cell (hereinafter referred to as “PEFC” where appropriate), is produced by a steam reforming method or a partial combustion reforming method. Among them, the steam reforming method reforms lower hydrocarbons such as methane, ethane, propane, and butane, city gas containing a plurality of them, petroleum gas, LP gas, or alcohols such as methanol and ethanol with steam. This is a method for generating a hydrogen-rich reformed gas. In the steam reforming method, a steam reformer is used, and these hydrocarbons and alcohols are converted into a hydrogen-rich reformed gas by a catalytic reaction with a steam reforming catalyst.

水蒸気改質器は、概略、バーナあるいは燃焼触媒を配置した燃焼部(加熱部)と改質触媒を配置した改質部とで構成される。改質触媒としてはNi系、Ru系等の触媒が用いられる。改質部では炭化水素やアルコール類が水蒸気と反応して水素リッチな改質ガスが生成される。改質部で起こる触媒反応は大きな吸熱を伴うので、反応の進行のためには外部から熱の供給が必要であり、600℃程度以上の温度が必要である。   The steam reformer is generally composed of a combustion section (heating section) in which a burner or a combustion catalyst is arranged and a reforming section in which a reforming catalyst is arranged. As the reforming catalyst, a Ni-based or Ru-based catalyst is used. In the reforming section, hydrocarbons and alcohols react with water vapor to generate hydrogen-rich reformed gas. Since the catalytic reaction that occurs in the reforming section involves a large endotherm, heat must be supplied from the outside for the progress of the reaction, and a temperature of about 600 ° C. or higher is required.

このため燃焼部で燃料を空気により燃焼させ、発生した燃焼熱(ΔH)を改質部に供給する。改質部で改質ガスへ変えられる炭化水素と同じく、燃焼部に供給する燃料も、通常都市ガス等の炭化水素を用いる場合もあるので、本明細書および図面中、両者を区別するため、燃焼部に供給する炭化水素を燃料と称し、改質部へ供給する炭化水素(低級炭化水素、都市ガス、石油ガス、天然ガス等)を原料ガスと称している。   For this reason, fuel is burned with air in the combustion section, and the generated combustion heat (ΔH) is supplied to the reforming section. Like the hydrocarbons that are converted into reformed gas in the reforming section, the fuel supplied to the combustion section may also use hydrocarbons such as city gas, etc., in order to distinguish both in this specification and drawings, Hydrocarbons supplied to the combustion section are called fuel, and hydrocarbons (lower hydrocarbons, city gas, petroleum gas, natural gas, etc.) supplied to the reforming section are called raw material gases.

図1は、上記のような水蒸気改質器を用い、原料ガスからPEFCに至るまでの態様例を示す図である。都市ガスやLPガス(液化石油ガス)にはメルカプタン類、サルファイド類、あるいはチオフェン類などの付臭剤が添加されている。改質触媒は、これら硫黄化合物により被毒して性能劣化するので、それらの硫黄化合物を除去するために脱硫器へ導入される。次いで、別途設けられた水蒸気発生器からの水蒸気を添加、混合して改質器の改質部へ導入され、改質器改質部中での都市ガスやLPガスの水蒸気による改質反応により水素リッチな改質ガスが生成される。   FIG. 1 is a diagram showing an exemplary embodiment from the raw material gas to PEFC using the steam reformer as described above. Odorants such as mercaptans, sulfides, or thiophenes are added to city gas and LP gas (liquefied petroleum gas). Since the reforming catalyst is poisoned by these sulfur compounds and deteriorates in performance, the reforming catalyst is introduced into the desulfurizer in order to remove those sulfur compounds. Next, steam from a steam generator provided separately is added, mixed and introduced into the reforming section of the reformer, and reforming reaction with city gas or LP gas steam in the reformer reforming section Hydrogen-rich reformed gas is generated.

改質部で生成する改質ガス中には未反応のメタン、未反応の水蒸気、炭酸ガスのほか、一酸化炭素(CO)が副生して8〜15%(容量%、以下同じ)程度含まれている。このため改質ガスは、この副生COを炭酸ガスへ変えて除去するためにCO変成器にかけられる。CO変成器では銅ー亜鉛系や白金触媒等の触媒が用いられるが、その触媒を機能させるには200〜250℃程度の温度が必要である。CO変成器中での変成反応は“CO+H2O→CO2+H2”で示され、この反応で必要な水蒸気は改質器において未反応の残留水蒸気が利用される。 In the reformed gas produced in the reforming section, unreacted methane, unreacted water vapor, carbon dioxide, carbon monoxide (CO) is by-produced, and the rate is 8 to 15% (volume%, the same applies hereinafter). include. For this reason, the reformed gas is subjected to a CO converter to remove this by-product CO by converting it to carbon dioxide. In the CO converter, a catalyst such as a copper-zinc system or a platinum catalyst is used, but a temperature of about 200 to 250 ° C. is necessary to make the catalyst function. The shift reaction in the CO shifter is indicated by “CO + H 2 O → CO 2 + H 2 ”, and the unreacted residual steam is utilized in the reformer as the steam necessary for this reaction.

CO変成器から出る改質ガスは、未反応のメタンと余剰水蒸気を除けば、水素と炭酸ガスとからなっている。このうち水素が目的とする成分であるが、CO変成器を経て得られる改質ガスについても、COは完全には除去されず、微量のCOが含まれている。PEFCに供給する燃料水素中のCO含有量は100ppm(容量ppm、以下同じ)程度が限度であり、これを超えると電池性能が著しく劣化するので、CO成分はPEFCへ導入する前にできる限り除去しておく必要がある。   The reformed gas exiting from the CO converter is composed of hydrogen and carbon dioxide gas except for unreacted methane and excess water vapor. Of these, hydrogen is an intended component, but the reformed gas obtained through the CO converter also does not completely remove CO, but contains a trace amount of CO. The CO content in the fuel hydrogen supplied to the PEFC is limited to about 100 ppm (capacity ppm, the same shall apply hereinafter), and if this is exceeded, the battery performance will deteriorate significantly, so the CO component will be removed as much as possible before introduction into the PEFC. It is necessary to keep it.

このため、改質ガスはCO変成部でCO濃度を1%程度以下まで低下させた後、CO除去器に供給される。ここでは空気等の酸化剤ガスが添加され、COの酸化反応“CO+1/2O2=CO2”により、COを100ppm程度以下、好ましくは50ppm以下、さらに好ましくは10ppm以下というように低減させる。CO除去触媒としては例えばRu系などの金属触媒が用いられる。CO除去器の作動温度は100〜150℃程度である。こうして精製された水素がPEFCの燃料極に供給される。 For this reason, the reformed gas is supplied to the CO remover after the CO concentration is reduced to about 1% or less in the CO shift section. Here, an oxidant gas such as air is added, and CO is reduced to about 100 ppm or less, preferably 50 ppm or less, more preferably 10 ppm or less, by the CO oxidation reaction “CO + 1 / 2O 2 = CO 2 ”. For example, a Ru-based metal catalyst is used as the CO removal catalyst. The operating temperature of the CO remover is about 100 to 150 ° C. The purified hydrogen is supplied to the fuel electrode of PEFC.

ところで、PEFCは電力需要の要否に応じて起動させ、停止させることが必要である。水蒸気改質器は、それに対応して起動、停止を行い、これに連なるCO変成器およびCO除去器の起動、停止を行う必要がある。なお、本明細書および特許請求の範囲中、改質器、CO変成器およびCO除去器を含む水素製造装置を適宜“水蒸気改質システム”、“改質システム”あるいは単に“システム”と称し、また水蒸気改質器、CO変成器およびCO除去器の部分を適宜改質部、CO変成部およびCO除去部と称している。   By the way, PEFC needs to be started and stopped according to the necessity of power demand. The steam reformer needs to be started and stopped correspondingly, and the CO converter and the CO remover connected to the steam reformer need to be started and stopped. In the present specification and claims, a hydrogen production apparatus including a reformer, a CO converter and a CO remover is appropriately referred to as a “steam reforming system”, “reforming system” or simply “system”. Further, the steam reformer, the CO converter, and the CO remover are appropriately referred to as a reformer, a CO converter, and a CO remover.

従来、水蒸気改質システムを備えたPEFCでは、その停止時に、その改質システム内に可燃性ガスを残存させず、またPEFCの燃料極側、空気極側のガス圧バランスを維持して保護するために、改質システム内を窒素などの不活性ガス(図1参照)や水蒸気を用いてパージしている。一方、その起動時には、改質部、CO変成部およびCO除去部を作動温度に昇温する必要があるが、空気や燃焼排ガスによる昇温は、触媒が酸化され性能劣化を来たしてしまう。したがって、別途そのための電気ヒータを付設する場合を除いて、窒素などの不活性ガスや水蒸気を熱媒体として昇温している。   Conventionally, in a PEFC equipped with a steam reforming system, when it stops, no flammable gas remains in the reforming system, and the gas pressure balance on the fuel electrode side and air electrode side of the PEFC is maintained and protected. Therefore, the interior of the reforming system is purged with an inert gas such as nitrogen (see FIG. 1) or steam. On the other hand, at the time of start-up, it is necessary to raise the temperature of the reforming section, the CO conversion section, and the CO removal section to the operating temperature. However, the temperature rise due to air or combustion exhaust gas causes the catalyst to be oxidized and deteriorates performance. Therefore, the temperature is raised using an inert gas such as nitrogen or water vapor as a heat medium, unless an electric heater is additionally provided.

そして、停止時に、改質部に水蒸気を通すことにより原料ガスおよび改質ガスをパージする。しかしながら、この方法では、改質部に水蒸気が凝縮して残り、再起動時に、改質触媒表面あるいは改質触媒内部で凝縮した水分の気化、蒸発が起こり、改質触媒に割れ等のダメージが現れる。このような事実からすると、改質器の停止には窒素などの不活性ガスを用いるほかはないが、一般家庭向けなどに用いられるPEFCにおいては、不活性ガスを用いることができない。すなわち、不活性ガスを用いるには、別途そのための設備が必要となり、不活性ガスの残量管理なども必要となるからである。   At the time of stoppage, the raw material gas and the reformed gas are purged by passing water vapor through the reforming section. However, in this method, water vapor is condensed and remains in the reforming section, and at the time of restart, the moisture condensed on the surface of the reforming catalyst or inside the reforming catalyst is vaporized and evaporated, and the reforming catalyst is damaged such as cracking. appear. From this fact, there is no other way but to use an inert gas such as nitrogen for stopping the reformer, but an inert gas cannot be used in PEFC used for general households. That is, in order to use an inert gas, a separate facility is required, and the remaining amount of the inert gas must be managed.

これらの問題は、主として改質触媒の酸素に対する性質および水蒸気の相変化(凝縮と気化)に起因するものである。そこで本発明者らは、改質システムの停止時における、以上のような事実、事情を前提に、低温域から高温域に至る各種温度条件下で、改質触媒に対して、空気、燃焼排ガス、窒素、水蒸気などのガスがどのような影響を与えるのかについて実験、研究を続けた。その結果、それらガスの種類ごとに、温度条件如何により、改質触媒に対して影響を与える場合と与えない場合とがあることがわかった。   These problems are mainly caused by the property of the reforming catalyst with respect to oxygen and the phase change (condensation and vaporization) of water vapor. Therefore, the present inventors have assumed that the above-mentioned facts and circumstances when the reforming system is stopped are air, combustion exhaust gas with respect to the reforming catalyst under various temperature conditions from a low temperature range to a high temperature range. We continued experiments and research on the effects of gases such as nitrogen and water vapor. As a result, it has been found that, depending on the temperature conditions, there are cases where the reforming catalyst is affected and whether the gas is affected.

図2は、図1のような水蒸気改質システムの運転時から停止時に至る過程での各触媒の経時的温度変化を示したものである。システム運転時である600℃以上の温度ではシステム内は改質ガス雰囲気により還元状態になっており、この還元状態は運転中から運転停止時点まで続く。窒素は、400℃を超える温度では、高純度の窒素を用いても、これに含有される微量の酸素により改質触媒が酸化される。この事実は、水蒸気改質システムの起動、停止時に窒素を使用しさえすれば十分というのではなく、窒素についても所定の配慮が必要であることを示唆している。   FIG. 2 shows the temperature change of each catalyst over time in the process from the operation to the stop of the steam reforming system as shown in FIG. At a temperature of 600 ° C. or higher during system operation, the system is in a reduced state due to the reformed gas atmosphere, and this reduced state continues from the time of operation to the time of operation stop. At temperatures exceeding 400 ° C., even if high purity nitrogen is used, the reforming catalyst is oxidized by a small amount of oxygen contained therein. This fact suggests that it is not sufficient to use nitrogen at the time of starting and stopping of the steam reforming system, and that it is necessary to give certain consideration to nitrogen.

また、水蒸気との関係では、改質触媒は、400℃を超えると水蒸気によって酸化され、400〜300℃では短時間では水蒸気により酸化されず、300℃以下では水蒸気により酸化されない。いずれにしても、改質触媒が酸化されると性能劣化を来してしまい、その性能を回復させるには水素による還元が必要であり、また前述のとおり、水蒸気の凝縮に対する配慮を欠けば触媒劣化を来してしまう。   In relation to water vapor, the reforming catalyst is oxidized by water vapor when the temperature exceeds 400 ° C., is not oxidized by water vapor in a short time at 400 to 300 ° C., and is not oxidized by water vapor at 300 ° C. or lower. In any case, when the reforming catalyst is oxidized, the performance deteriorates, and in order to recover the performance, reduction with hydrogen is necessary. It will deteriorate.

ところで、従来技術では、その停止時にシステム内の原料ガスを水蒸気でパージするとともに400〜300℃まで冷却し、その後に空気で置換する運転方法が採られている(特開2002−93447号公報)。しかし、改質触媒の酸化による劣化を抑制するには、さらに低い温度である200℃以下まで水蒸気でパージ、冷却し、その後に空気置換をしなければならないことが水蒸気改質システムの実用化に向けた実験、研究開発から判明した。また同じく、CO変成触媒は120℃程度まで冷却してから空気置換をしなければならないことが判明した。その結果下記の課題が顕在化した。   By the way, in the prior art, an operation method is adopted in which the raw material gas in the system is purged with water vapor at the time of stoppage, cooled to 400 to 300 ° C., and then replaced with air (Japanese Patent Laid-Open No. 2002-93447). . However, in order to suppress deterioration due to oxidation of the reforming catalyst, it is necessary to purge and cool with steam to a lower temperature of 200 ° C. or lower, and then to replace air, which is a practical use of the steam reforming system. It became clear from the experiment and research and development. Similarly, it has been found that the CO shift catalyst must be cooled to about 120 ° C. and then replaced with air. As a result, the following issues became apparent.

特開2002−93447号公報JP 2002-93447 A

(1)特に、CO除去触媒の温度が下がり、結露雰囲気になることで当該触媒が劣化してしまうこと。
(2)連続的に改質システム内をパージ、冷却する水蒸気を改質システムに流通させるには、水蒸気を製造する気化器が別途必要になること。
(3)改質システム内の各触媒が酸化されない温度に水蒸気で冷却する過程において、一部の低温部で水蒸気の凝縮が起こって、改質システム内が急激に負圧になり、大気中の空気が混入して触媒が酸化されてしまうこと。
(1) In particular, the temperature of the CO removal catalyst decreases, and the catalyst deteriorates due to the condensation atmosphere.
(2) A vaporizer for producing steam is separately required in order to continuously supply steam to be purged and cooled in the reforming system to the reforming system.
(3) In the process of cooling with steam to a temperature at which each catalyst in the reforming system is not oxidized, steam condenses in some low temperature parts, the reforming system suddenly becomes negative pressure, The catalyst is oxidized by air mixing.

図3は、上記課題を実測値を基づき説明する図で、自然降温時の各部の温度を示している。図3中、横軸は水蒸気改質システムの運転停止時点以降の経過時間(降温時間)、縦軸は各部の温度である。
(1)システム運転時において、改質触媒は600℃以上の温度であり、改質ガス雰囲気によりシステム内は還元状態にあるので、システム内の触媒(改質触媒、CO変成触媒、CO除去触媒)は酸化されない。
FIG. 3 is a diagram for explaining the above problem based on actually measured values, and shows the temperature of each part during natural temperature drop. In FIG. 3, the horizontal axis represents the elapsed time (temperature drop time) after the stop of the operation of the steam reforming system, and the vertical axis represents the temperature of each part.
(1) During system operation, the reforming catalyst is at a temperature of 600 ° C. or higher, and the system is in a reduced state due to the reforming gas atmosphere, so the catalyst in the system (reforming catalyst, CO shift catalyst, CO removal catalyst) ) Is not oxidized.

(2)運転停止時点から改質触媒を400〜200℃まで水蒸気でパージ、冷却する。図3のとおり、運転停止時点からほぼ4時間経過時までの各部の温度は100℃以上であるので、システム内で水蒸気の凝縮は起こらない。この間、システム内圧力は大気圧以上であるので、大気中の空気がシステム内に混入することはない。   (2) Purge and cool the reforming catalyst with steam from 400 to 200 ° C. from the time of shutdown. As shown in FIG. 3, the temperature of each part from the time when the operation is stopped to the time when almost 4 hours elapse is 100 ° C. or higher, and therefore, condensation of water vapor does not occur in the system. During this time, since the system internal pressure is equal to or higher than the atmospheric pressure, air in the atmosphere does not enter the system.

(3)運転停止時点からほぼ4時間を経過した後には、システム内のうちCO除去触媒(=PROX触媒)出口側が100℃を切り始め(すなわち100℃を下回り始め)、7時間経過時には、CO除去触媒部は90℃以下、CO変成触媒部では80〜120℃となり、システム内で水蒸気の凝縮が起こる。するとシステム内の圧力は大気圧を下回って負圧となる。すなわち、システム内各部の温度が低下する前にシステム内圧力は負圧になってしまい、大気中の空気がシステム内に混入する。   (3) After approximately 4 hours have elapsed from the time of shutdown, the CO removal catalyst (= PROX catalyst) outlet side in the system begins to turn off 100 ° C. (ie, starts to drop below 100 ° C.), and when 7 hours have passed, The removal catalyst part has a temperature of 90 ° C. or less, and the CO conversion catalyst part has a temperature of 80 to 120 ° C., and condensation of water vapor occurs in the system. Then, the pressure in the system becomes a negative pressure below the atmospheric pressure. That is, before the temperature of each part in the system decreases, the pressure in the system becomes negative, and air in the atmosphere enters the system.

本発明は、システム内の各触媒、特に改質触媒に係る上記のような問題を解決し、水蒸気改質システム内に可燃性ガスを残さず、安全で且つ触媒を劣化させずに水蒸気改質システムの運転を停止することができる水蒸気改質システムを提供することを目的とするものである。   The present invention solves the above-mentioned problems associated with each catalyst in the system, particularly the reforming catalyst, and does not leave a flammable gas in the steam reforming system, is safe and does not deteriorate the catalyst. An object of the present invention is to provide a steam reforming system capable of stopping the operation of the system.

本発明は、水蒸気改質部、CO変成部およびCO除去部を含み、CO除去部にプロセス水の蒸発機構が配置され、且つその運転停止手段として水蒸気改質システム内の水蒸気パージの後に空気パージを行うようにしてなる原料ガスの水蒸気改質システムにおいて、該CO除去部の外周に前記水蒸気パージ中にCO除去部の温度を100℃以上に保持するための加熱手段を配置したことを特徴とする水蒸気改質システムである。ここで、CO除去部に配置されたプロセス水の蒸発機構で発生した水蒸気がシステム内の水蒸気改質部に接続されているのが好ましい。
The present invention includes a steam reforming section, a CO conversion section, and a CO removal section, and an evaporation mechanism for process water is disposed in the CO removal section, and air purge after steam purge in the steam reforming system as its operation stop means In the raw material gas steam reforming system, a heating means for maintaining the temperature of the CO removal section at 100 ° C. or higher during the steam purge is disposed on the outer periphery of the CO removal section. This is a steam reforming system. Here, it is preferable that the steam generated by the evaporation mechanism of the process water disposed in the CO removing unit is connected to the steam reforming unit in the system.

本発明によれば、水蒸気改質システム内に可燃性ガスを残すことなく、しかも触媒を劣化させずに、安全に水蒸気改質システムの運転を停止することができる。このため、本発明の水蒸気改質システムは起動、運転、停止を繰り返し行う、例えばPEFCに付設する実機水蒸気改質システムとして非常に有用である。   According to the present invention, the operation of the steam reforming system can be safely stopped without leaving flammable gas in the steam reforming system and without degrading the catalyst. Therefore, the steam reforming system of the present invention is very useful as an actual steam reforming system attached to, for example, a PEFC that repeatedly starts, operates, and stops.

本発明は、水蒸気改質部、CO変成部およびCO除去部を含み、CO除去部にプロセス水の蒸発機構が配置され、且つその運転停止手段として水蒸気改質システム内の水蒸気パージと空気パージを行うようにしてなる原料ガスの水蒸気改質システムを対象とする。そして、CO除去部の外周に加熱手段すなわち加熱機構を配置したことを特徴とする。   The present invention includes a steam reforming section, a CO conversion section, and a CO removal section. A process water evaporation mechanism is disposed in the CO removal section, and a steam purge and an air purge in the steam reforming system are performed as its operation stop means. The present invention is intended for a raw material gas steam reforming system. A heating means, that is, a heating mechanism is arranged on the outer periphery of the CO removing unit.

改質触媒は、酸化されると性能劣化を来たし、その性能を回復させるには還元処理が必要となる。この回復処理は還元用の水素を必要とするなど甚だやっかいで大変な作業が必要となるので、改質触媒は酸化そのものを極力回避する必要がある。図4は本発明で対象とする水蒸気改質システムを説明する図である。   When the reforming catalyst is oxidized, the performance deteriorates, and a reduction treatment is required to recover the performance. Since this recovery process is extremely troublesome and requires a lot of work such as requiring hydrogen for reduction, the reforming catalyst needs to avoid oxidation as much as possible. FIG. 4 is a diagram for explaining a steam reforming system targeted in the present invention.

図4のとおり、順次、改質部、CO変成部、CO除去部を備え、CO除去部の外周にプロセス水、すなわち原料ガス改質用の水の蒸発機構が配置され、運転停止手段として水蒸気パージと空気パージを行うようにしてある。例えばPEFCなどに水素を供給する水蒸気改質システムにおいては、改質触媒、CO変成触媒、CO除去触媒などの複数の触媒が使用される。CO変成触媒としては、単一のCO変成触媒を用いる場合のほか、高温CO変成触媒と低温CO変成触媒を併用する場合もある。   As shown in FIG. 4, a reforming unit, a CO conversion unit, and a CO removal unit are sequentially provided, and an evaporation mechanism of process water, that is, water for reforming the raw material gas, is arranged on the outer periphery of the CO removal unit, Purge and air purge are performed. For example, in a steam reforming system that supplies hydrogen to PEFC or the like, a plurality of catalysts such as a reforming catalyst, a CO shift catalyst, and a CO removal catalyst are used. As the CO conversion catalyst, a single CO conversion catalyst may be used, or a high temperature CO conversion catalyst and a low temperature CO conversion catalyst may be used in combination.

改質触媒としては、原料ガスを改質し得る触媒であれば特に限定はなく、Ni系、Ru系等の触媒が用いられ、その例としてはアルミナにNiを担持した触媒、アルミナにRuを担持した触媒などが挙げられる。CO変成触媒としては、改質ガスを変成し得る触媒であれば特に限定はなく、銅ー亜鉛系や白金触媒等の触媒が用いられる。CO除去触媒としては、改質ガス中のCOを選択的に酸化し得る触媒であれば特に限定はなく、例えばRu系などの金属触媒が用いられ、金属触媒は例えばアルミナ等の担体にRuなどの金属触媒を担持させて構成される。   The reforming catalyst is not particularly limited as long as it is a catalyst capable of reforming the raw material gas. Ni-based or Ru-based catalysts are used, and examples thereof include a catalyst having Ni supported on alumina, and Ru on alumina. Examples thereof include a supported catalyst. The CO conversion catalyst is not particularly limited as long as it can convert the reformed gas, and a catalyst such as a copper-zinc system or a platinum catalyst is used. The CO removal catalyst is not particularly limited as long as it is a catalyst that can selectively oxidize CO in the reformed gas. For example, a Ru-based metal catalyst is used, and the metal catalyst is, for example, Ru on a carrier such as alumina. The metal catalyst is supported.

本発明の水蒸気改質システムにおいては、水蒸気改質部、CO変成部およびCO除去部としてそれぞれ、それらの触媒を充填した容器を別体として配置してもよく、それぞれの容器を一体化して配置してもよい。図5にそれらを一体化して配置した態様例を縦断面図として示している(WO02/098790A1、特願2004−1515)。本発明で対象とする原料ガスの水蒸気改質システムは、水蒸気改質部、CO変成部およびCO除去部を含み、CO除去部にプロセス水の蒸発機構が配置されていればよく、図5に示すような水蒸気改質システムに限定されない。   In the steam reforming system of the present invention, as the steam reforming section, the CO conversion section, and the CO removal section, containers filled with these catalysts may be arranged separately, or the containers are arranged in an integrated manner. May be. FIG. 5 shows an example of a mode in which they are integrated and arranged as a longitudinal sectional view (WO02 / 098790A1, Japanese Patent Application No. 2004-1515). The raw material gas steam reforming system targeted in the present invention includes a steam reforming section, a CO conversion section, and a CO removal section, and the process water evaporation mechanism only needs to be arranged in the CO removal section. It is not limited to the steam reforming system as shown.

WO02/098790A1WO02 / 098790A1 特願2004−1515Japanese Patent Application No. 2004-1515

図5のとおり、中心軸を同一にして設けられた径の異なる複数の円筒体を間隔を置いて多重に配置して構成される。図5中、一点鎖線はその中心軸を示し、矢印はその方向、すなわちその軸方向を示している。径(直径、以下同じ)を順次大きくした、第1円筒体1、第2円筒体2および第3円筒体3が中心軸を同一にして間隔を置いて配置されている。第3円筒体3の上部には第3円筒体3より径を大きくした第4円筒体4が配置されている。第1円筒体1の内側には中心軸を同じくして、第1円筒体1より径の小さい円筒状の伝熱隔壁すなわち輻射筒5が配置され、輻射筒5内にはバーナ6が配置されている。すなわちバーナ6は、中心軸部に配置され、輻射筒5の内側に上蓋兼バーナ取付台7を介して取り付けられている。   As shown in FIG. 5, a plurality of cylindrical bodies having the same central axis and having different diameters are arranged in multiple positions at intervals. In FIG. 5, the alternate long and short dash line indicates the central axis, and the arrow indicates the direction, that is, the axial direction. The first cylindrical body 1, the second cylindrical body 2, and the third cylindrical body 3, which are sequentially increased in diameter (diameter, the same applies hereinafter), are arranged at the same center axis and spaced from each other. A fourth cylinder 4 having a diameter larger than that of the third cylinder 3 is disposed on the third cylinder 3. A cylindrical heat transfer partition wall, that is, a radiation cylinder 5 having a smaller diameter than that of the first cylinder 1 is arranged inside the first cylinder 1, and a burner 6 is arranged in the radiation cylinder 5. ing. That is, the burner 6 is disposed at the central shaft portion and is attached to the inside of the radiation tube 5 via the upper lid / burner mounting base 7.

輻射筒5は、その下端と第1円筒体1の底板8との間に間隔を設けて配置してあり、この間隙と、これに連なる輻射筒5と第1円筒体1との間の空隙とがバーナ6からの燃焼排ガスの排気通路9を形成している。底板8は第1円筒体1の径に対応した径で円盤状に構成されている。排気通路9は、その上部で排気通路9の上蓋(上蓋兼バーナ取付台7の下面)と隔壁10(後述予熱層14の上蓋)との間の間隙を経て燃焼排ガスの排出口11に連なり、燃焼排ガスはここから排出される。   The radiation cylinder 5 is disposed with a gap between the lower end thereof and the bottom plate 8 of the first cylindrical body 1, and this gap and a gap between the radiation cylinder 5 and the first cylindrical body 1 connected to the clearance are provided. Form an exhaust passage 9 for combustion exhaust gas from the burner 6. The bottom plate 8 is formed in a disc shape with a diameter corresponding to the diameter of the first cylindrical body 1. The exhaust passage 9 is connected to the exhaust port 11 of the combustion exhaust gas through a gap between the upper cover of the exhaust passage 9 (the upper cover and the lower surface of the burner mount 7) and the partition wall 10 (the upper cover of the preheating layer 14 described later) Combustion exhaust gas is discharged from here.

12は原料ガスの供給管であり、第1円筒体1と第2円筒体2との間の空間内には、その上部に予熱層14、これに続く下部に改質触媒層16が設けられている。なお、第2円筒体2は、改質触媒層16を囲む部分と予熱層14を囲む部分とが別個に構成され、改質触媒層16を囲む上端部と予熱層14を囲む下端部との間の接合部で接合されているが、接合部を設けることなく一体に構成してもよい。また、改質触媒層16の触媒は、その下部で多孔板等で支持されているが、その記載は省略している。予熱層14の内部に一本の丸棒15が螺旋状に配置され、これにより予熱層14の内部に一つの連続した螺旋状のガス通路が形成されている。   Reference numeral 12 denotes a raw material gas supply pipe. In the space between the first cylindrical body 1 and the second cylindrical body 2, a preheating layer 14 is provided in the upper part, and a reforming catalyst layer 16 is provided in the lower part. ing. The second cylindrical body 2 is configured such that a portion surrounding the reforming catalyst layer 16 and a portion surrounding the preheating layer 14 are configured separately, and an upper end portion surrounding the reforming catalyst layer 16 and a lower end portion surrounding the preheating layer 14 are formed. Although it joins by the junction part in between, you may comprise integrally, without providing a junction part. Moreover, although the catalyst of the reforming catalyst layer 16 is supported by a porous plate or the like at the lower part, the description thereof is omitted. A single round bar 15 is spirally arranged inside the preheating layer 14, thereby forming one continuous spiral gas passage inside the preheating layer 14.

原料ガスは、供給管12から供給され、水(水蒸気)が混合部13で混合された後、予熱層14を経て、改質触媒層16に導入される。改質触媒層16では、原料ガスが下降しながら水蒸気により改質される。改質触媒層16における改質反応は吸熱反応であり、バーナ6で発生する燃焼熱を吸収して反応が進行する。具体的には、バーナ6による燃焼排ガスが輻射筒5と第1円筒体1との間の排気通路9を流通して通過するときに、燃焼排ガスの熱が改質触媒層16に吸収され、改質反応が行われる。本態様例で言えば、改質触媒層16を含む部分が本発明における水蒸気改質部に相当している。   The raw material gas is supplied from the supply pipe 12, and water (water vapor) is mixed in the mixing unit 13, and then introduced into the reforming catalyst layer 16 through the preheating layer 14. In the reforming catalyst layer 16, the raw material gas is reformed by water vapor while descending. The reforming reaction in the reforming catalyst layer 16 is an endothermic reaction, and the reaction proceeds by absorbing the combustion heat generated in the burner 6. Specifically, when the combustion exhaust gas from the burner 6 flows through the exhaust passage 9 between the radiation cylinder 5 and the first cylindrical body 1, the heat of the combustion exhaust gas is absorbed by the reforming catalyst layer 16, A reforming reaction is performed. In this embodiment, the portion including the reforming catalyst layer 16 corresponds to the steam reforming portion in the present invention.

第2円筒体2の下端は第3円筒体3の底板17との間に間隔を置いて配置してあり、第2円筒体2と第3円筒体3との間は、改質ガスの流路18を構成している。底板17は第3円筒体3の径に対応した径で円盤状に構成されている。改質ガスは、第2円筒体2の下端と第3円筒体3の底板17との間で折り返して第2円筒体2と第3円筒体3との間で形成された流路18を流通する。第3円筒体3の上部には第3円筒体3より径を大きくした第4円筒体4が配置され、第2円筒体2と第4円筒体4との間にCO変成触媒層21が設けられている。第3円筒体3の上端部と第4円筒体4の下端部には板体19(第3円筒体3の直径に相当する部分は第3円筒体3で占められるので、ドーナツ状の板体)が配置され、板体19の上に、間隔を置いてガス流通用の複数の孔を有する支持板20(第2円筒体2の直径に相当する部分は第2円筒体2で占められるので、ドーナツ状の支持板)が配置されている。   The lower end of the second cylindrical body 2 is spaced from the bottom plate 17 of the third cylindrical body 3, and the flow of the reformed gas is between the second cylindrical body 2 and the third cylindrical body 3. A path 18 is formed. The bottom plate 17 is configured in a disc shape with a diameter corresponding to the diameter of the third cylindrical body 3. The reformed gas is folded between the lower end of the second cylindrical body 2 and the bottom plate 17 of the third cylindrical body 3 and flows through the flow path 18 formed between the second cylindrical body 2 and the third cylindrical body 3. To do. A fourth cylindrical body 4 having a diameter larger than that of the third cylindrical body 3 is disposed on the third cylindrical body 3, and a CO shift catalyst layer 21 is provided between the second cylindrical body 2 and the fourth cylindrical body 4. It has been. A plate 19 (a portion corresponding to the diameter of the third cylinder 3 is occupied by the third cylinder 3 at the upper end of the third cylinder 3 and the lower end of the fourth cylinder 4. ) And a support plate 20 having a plurality of holes for gas circulation at intervals on the plate body 19 (the portion corresponding to the diameter of the second cylinder 2 is occupied by the second cylinder 2). , A donut-shaped support plate) is disposed.

CO変成触媒層21は、支持板20とガス流通用の複数の孔を有する支持板22(第2円筒体2の直径に相当する部分は第2円筒体2で占められるのでドーナツ状の支持板、CO変成触媒層21の上蓋)との間に設けられている。支持板20、22は金属製等の網目体で構成してもよく、この場合には網目体の網目がガス流通孔となる。流路18を流通した改質ガスは、支持板20の孔を経てCO変成触媒層21に供給される。本態様例で言えば、CO変成触媒層21を含む部分が本発明における“CO変成部”に相当している。   The CO shift catalyst layer 21 includes a support plate 20 and a support plate 22 having a plurality of holes for gas circulation (the portion corresponding to the diameter of the second cylindrical body 2 is occupied by the second cylindrical body 2, so a donut-shaped support plate And the upper cover of the CO shift catalyst layer 21). The support plates 20 and 22 may be formed of a mesh body made of metal or the like. In this case, the mesh body of the mesh body serves as a gas flow hole. The reformed gas that has flowed through the flow path 18 is supplied to the CO shift catalyst layer 21 through the holes of the support plate 20. In this embodiment, the portion including the CO conversion catalyst layer 21 corresponds to the “CO conversion portion” in the present invention.

第4円筒体4の外周には間隔を置いて円筒体24が配置され、その間に断熱材23が配置されている。円筒体24の外周には水供給管25から連なる伝熱管26が直接螺旋状に巻き付けてある。伝熱管26はCO除去触媒層35およびCO変成触媒層21を間接的に冷却する冷却機構として作用する。断熱材23は、伝熱管26の冷却作用により、CO変成触媒層12の温度を低下させ過ぎず、適度な温度に均一に保持できる厚さに巻き付けてある。ここで、伝熱管26は、水供給管25から供給される水のボイラーとしての機能を備え、また水供給管25から続く連続した一つの通路となっているので、複数の通路では生じる部分的な滞留等が生じない。本態様例で言えば、CO除去触媒層35に直接螺旋状に巻き付けてある伝熱管26を含む部分が本発明における“CO除去部に配置されたプロセス水の蒸発機構”に相当している。   A cylindrical body 24 is disposed on the outer periphery of the fourth cylindrical body 4 with a space therebetween, and a heat insulating material 23 is disposed therebetween. A heat transfer tube 26 connected to a water supply tube 25 is directly wound around the outer periphery of the cylindrical body 24 in a spiral shape. The heat transfer tube 26 functions as a cooling mechanism for indirectly cooling the CO removal catalyst layer 35 and the CO shift catalyst layer 21. The heat insulating material 23 is wound to a thickness that can be uniformly maintained at an appropriate temperature without excessively reducing the temperature of the CO shift catalyst layer 12 by the cooling action of the heat transfer tube 26. Here, the heat transfer pipe 26 has a function as a boiler for the water supplied from the water supply pipe 25 and is a continuous single passage that continues from the water supply pipe 25, so that partial heat generation occurs in a plurality of passages. Stagnation does not occur. In this embodiment, the portion including the heat transfer tube 26 that is directly spirally wound around the CO removal catalyst layer 35 corresponds to the “evaporation mechanism of process water disposed in the CO removal portion” in the present invention.

支持板22の上方には所定の間隔を置いて一つの連通孔28を有する仕切板27が設けてあり、両板間の空間に空気の供給管29を通してCO除去用空気が供給される。仕切板27の上方には円環状の通路30が設けてある。連通孔28を、所定の孔径で、且つ、一つとすることにより、改質ガスとCO除去用空気が連通孔28を通過する際に所定の通過速度が得られ、通過時の乱流により改質ガスとCO除去用空気を良好に混合することができる。CO除去触媒層35は、第2円筒体2と、これより径を大きくした円筒体36と、第2円筒体2と円筒体36との間の下部および上部にそれぞれ間隔を置いて配置された、複数個の孔34を有する支持板33(第2円筒体2の直径に相当する部分は第2円筒体2で占められるので、ドーナツ状の板体)と、ガス流通用の複数個の孔38を有する支持板37(第2円筒体2の直径に相当する部分は第2円筒体2で占められるので、ドーナツ状の支持板)と、の間の空間に設けられている。   A partition plate 27 having one communication hole 28 is provided above the support plate 22 at a predetermined interval, and CO removal air is supplied to the space between both plates through an air supply pipe 29. An annular passage 30 is provided above the partition plate 27. By using one communication hole 28 with a predetermined hole diameter, a predetermined passing speed is obtained when the reformed gas and the CO removal air pass through the communication hole 28, and the reforming gas is modified by turbulent flow during the passage. The quality gas and the air for removing CO can be mixed well. The CO removal catalyst layer 35 is disposed at intervals between the second cylinder 2, the cylinder 36 having a larger diameter, and the lower and upper portions between the second cylinder 2 and the cylinder 36. A support plate 33 having a plurality of holes 34 (a portion corresponding to the diameter of the second cylindrical body 2 is occupied by the second cylindrical body 2), and a plurality of holes for gas circulation 38 and a support plate 37 (a portion corresponding to the diameter of the second cylindrical body 2 is occupied by the second cylindrical body 2), and is provided in a space between the support plate 37 and the support plate 37.

円筒体36の下部にはその円周方向に均等に設けられた複数個の孔32が設けられている。円環状の通路30は、円筒体24と仕切板27と仕切板31と円筒体36で形成された通路であり、それら複数個の孔32と、支持板33の複数個の孔34を介してCO除去触媒層35と連通しており、CO除去用空気が混合された改質ガスがそれら複数個の孔32、34を介してCO除去触媒層35に導入される。CO除去触媒層35は、その上蓋である複数個の孔38を有する仕切板37と隔壁10との間の間隙を介して改質ガスの取出管39に連通している。また、CO除去触媒層35は円筒体36で囲まれているが、円筒体36の外周には円筒体24の外周の伝熱管26から連なる伝熱管26が直接螺旋状に巻き付けてある。本態様例で言えば、CO除去触媒層35を含む部分が本発明における“CO除去部”に相当している。   A plurality of holes 32 that are equally provided in the circumferential direction are provided in the lower portion of the cylindrical body 36. The annular passage 30 is a passage formed by the cylindrical body 24, the partition plate 27, the partition plate 31, and the cylindrical body 36, and the plurality of holes 32 and the support plate 33 through the plurality of holes 34. The reformed gas, which is in communication with the CO removal catalyst layer 35 and mixed with CO removal air, is introduced into the CO removal catalyst layer 35 through the plurality of holes 32 and 34. The CO removal catalyst layer 35 communicates with a reformed gas take-out pipe 39 through a gap between a partition plate 37 having a plurality of holes 38 serving as an upper lid and the partition wall 10. Further, the CO removal catalyst layer 35 is surrounded by a cylindrical body 36, and a heat transfer tube 26 connected to the heat transfer tube 26 on the outer periphery of the cylindrical body 24 is directly spirally wound around the outer periphery of the cylindrical body 36. In this embodiment, the portion including the CO removal catalyst layer 35 corresponds to the “CO removal portion” in the present invention.

CO除去触媒層35には、PROX触媒(=CO除去触媒)が充填してあり、PROX触媒によりCOの酸化除去反応が行われ、改質ガス中のCO含有量をppm単位にまで低減する。CO除去触媒層35においてCOを除去した改質ガスは、その上蓋である仕切板37に設けられた複数個の孔38から排出され、仕切板37と隔壁10との間の間隙を経て改質ガスの取出管39から取り出される。第3円筒体3、円筒体24および円筒体36を含む外周部には断熱材40を配置し、外部への熱の放散を防止している。   The CO removal catalyst layer 35 is filled with a PROX catalyst (= CO removal catalyst), and an oxidation removal reaction of CO is performed by the PROX catalyst to reduce the CO content in the reformed gas to the ppm unit. The reformed gas from which CO has been removed in the CO removal catalyst layer 35 is discharged from a plurality of holes 38 provided in the partition plate 37 which is the upper lid, and reformed through the gap between the partition plate 37 and the partition wall 10. The gas is extracted from the gas extraction pipe 39. A heat insulating material 40 is disposed on the outer peripheral portion including the third cylindrical body 3, the cylindrical body 24, and the cylindrical body 36 to prevent heat from being dissipated to the outside.

〈本発明の特徴点の態様〉
本発明は、例えば以上のような水蒸気改質システムにおいて、CO除去部の外周に加熱手段を配置したことを特徴とするものである。図6〜7はその態様を説明する図である。図6のとおり、CO除去部の外周に加熱手段を配置する。この加熱手段は、本発明において重要な構成であり、これにより改質システムの停止運転時に、改質システム内のCO除去触媒への結露を防止し、改質システム内が酸化雰囲気となるのを防ぎ、触媒の劣化を防止することができる。
<Aspects of Features of the Present Invention>
The present invention is characterized in that, for example, in the steam reforming system as described above, a heating means is disposed on the outer periphery of the CO removal unit. 6-7 is a figure explaining the aspect. As shown in FIG. 6, the heating means is arranged on the outer periphery of the CO removing unit. This heating means is an important configuration in the present invention, thereby preventing dew condensation on the CO removal catalyst in the reforming system and stopping the reforming system in an oxidizing atmosphere when the reforming system is stopped. And the deterioration of the catalyst can be prevented.

図7は、図5中CO除去触媒層35を含む部分すなわちCO除去部を中心に拡大し、CO除去部の外周に加熱手段を配置した態様例を示す図である。図7のとおり、CO除去触媒層35を囲む円筒体36の外周に加熱手段すなわち加熱機構41を配置する。図7(b)は、図7(a)中の加熱手段41を取り出して示した図である。図7には加熱手段41がシースヒータ(電熱ヒータ)の例を示しているが、これとは限らず、その配置目的を達成し得る加熱手段を用いることができる。図7中、他の部分、部材については図5と同様である。   FIG. 7 is a view showing an example in which the portion including the CO removal catalyst layer 35 in FIG. 5, that is, the CO removal portion is enlarged, and the heating means is arranged on the outer periphery of the CO removal portion. As shown in FIG. 7, heating means, that is, a heating mechanism 41 is arranged on the outer periphery of the cylindrical body 36 surrounding the CO removal catalyst layer 35. FIG. 7B is a view showing the heating means 41 in FIG. 7A taken out. FIG. 7 shows an example in which the heating means 41 is a sheath heater (electric heater). However, the heating means 41 is not limited to this, and a heating means that can achieve the arrangement purpose can be used. Other parts and members in FIG. 7 are the same as those in FIG.

〈水蒸気改質システムの運転時〉
図6〜7のように構成した本発明の水蒸気改質システムの運転は以下のように行われる。図8は水蒸気改質システムの運転時から運転停止時に至る経過を説明する図である。その運転時(運転中)、各流体は図8(a)中矢印のように流れる。原料ガスに水蒸気を混入して改質部に供給する。プロセス水が蒸発機構で蒸発し、水蒸気として原料ガスに混入される。ここで、蒸発機構での加熱源はCO除去器の反応熱である。改質部では改質ガスが生成し、生成改質ガスはCO変成部に供給される。
<During operation of steam reforming system>
The operation of the steam reforming system of the present invention configured as shown in FIGS. 6 to 7 is performed as follows. FIG. 8 is a diagram for explaining the course from the operation of the steam reforming system to the stop of operation. During the operation (during operation), each fluid flows as indicated by arrows in FIG. Steam is mixed into the raw material gas and supplied to the reforming section. Process water is evaporated by the evaporation mechanism and mixed into the raw material gas as water vapor. Here, the heating source in the evaporation mechanism is the reaction heat of the CO remover. A reformed gas is generated in the reforming section, and the generated reformed gas is supplied to the CO shift section.

CO変成部ではCOの変成反応“CO+H2O→CO2+H2”により二酸化炭素と水素に変成される。COの変成反応で必要な水蒸気は改質器において未反応の残留水蒸気が利用される。CO変成部からの改質ガスはCO除去部に供給される。改質ガスはCO除去部でさらにCO分が酸化除去され、COを100ppm程度以下、好ましくは50ppm以下、さらに好ましくは10ppm以下というように低減される。CO除去器の作動温度は100〜150℃程度である。こうしてCOが酸化除去された改質ガス(高純度水素)が製造される。 In the CO conversion part, it is converted into carbon dioxide and hydrogen by the CO conversion reaction “CO + H 2 O → CO 2 + H 2 ”. As the steam necessary for the CO shift reaction, unreacted residual steam is used in the reformer. The reformed gas from the CO conversion unit is supplied to the CO removal unit. In the reformed gas, the CO component is further oxidized and removed, and the CO is reduced to about 100 ppm or less, preferably 50 ppm or less, more preferably 10 ppm or less. The operating temperature of the CO remover is about 100 to 150 ° C. In this way, reformed gas (high purity hydrogen) from which CO is removed by oxidation is produced.

〈水蒸気改質システムの運転時から停止への操作〉
本発明の水蒸気改質システムを運転した後、運転を停止する操作は以下のように行われる。システムの運転停止時点で原料ガスおよびCO除去用空気の供給を停止する。そして、プロセス水を図8(b)中矢印のように流す。プロセス水の流量は少量でよく、プロセス水が加熱手段で加熱されて水蒸気となりシステム内を流れる。水蒸気は改質部からCO変成部へ、CO変成部からCO除去部へと流れ、水蒸気改質部中の可燃性ガスをパージし、且つ水蒸気改質部を含むシステム内を冷却する。
<Operation from operation to stop of steam reforming system>
After operating the steam reforming system of the present invention, the operation for stopping the operation is performed as follows. When the system is shut down, the supply of the raw material gas and the CO removal air is stopped. Then, the process water is allowed to flow as indicated by an arrow in FIG. The flow rate of the process water may be small, and the process water is heated by the heating means to become water vapor and flows in the system. Steam flows from the reforming section to the CO conversion section, from the CO conversion section to the CO removal section, purges the combustible gas in the steam reforming section, and cools the system including the steam reforming section.

この時、加熱手段は、水蒸気の発生手段の役割に加え、水蒸気によるパージ、冷却時に水蒸気改質システムのCO除去部が結露雰囲気にならないように保温する役割をする。この保温も本発明で配置した加熱手段の重要な役割である。次いで、水蒸気改質システム内、すなわち改質部、CO変成部、CO除去部の触媒が十分に冷却された後に、図8(c)のようにシステム内を空気で置換する。空気は、原料ガスの供給管を介して供給され、図7の態様で言えば原料ガスの供給管12から供給される。   At this time, in addition to the role of the steam generation means, the heating means plays a role of keeping the CO removal part of the steam reforming system from becoming a dew condensation atmosphere during purging and cooling with steam. This heat retention is also an important role of the heating means arranged in the present invention. Next, after the catalyst in the steam reforming system, that is, the reforming unit, the CO conversion unit, and the CO removing unit is sufficiently cooled, the system is replaced with air as shown in FIG. Air is supplied through a source gas supply pipe, and is supplied from a source gas supply pipe 12 in the form of FIG.

こうして、本発明によれば、システム内に可燃性ガスを残さず、安全に且つ各触媒を劣化させずに水蒸気改質システムを停止でき、下記(1)〜(4)の効果が得られる。
(1)改質触媒とCO変成触媒を所望の温度まで冷却する間に、CO変成触媒が結露雰囲気となることを防ぐことができる。
(2)本発明により配置した加熱手段の熱で水蒸気を連続的に製造できるため、別途気化器の必要がなくなる。
(3)常に水蒸気を水蒸気改質システム内に流通させることができるので、空気がシステム内に漏れ入るのを防ぐことができる。
(4)こうして、本発明により、システム内を結露や酸化雰囲気から確実に防ぐことができるので、システム内の触媒劣化を防ぐことができる。
Thus, according to the present invention, the steam reforming system can be stopped safely without causing flammable gas to remain in the system and without degrading each catalyst, and the following effects (1) to (4) can be obtained.
(1) While the reforming catalyst and the CO shift catalyst are cooled to a desired temperature, it is possible to prevent the CO shift catalyst from becoming a dew condensation atmosphere.
(2) Since water vapor can be continuously produced by the heat of the heating means arranged according to the present invention, there is no need for a separate vaporizer.
(3) Since water vapor can always be circulated in the steam reforming system, air can be prevented from leaking into the system.
(4) Thus, according to the present invention, the interior of the system can be surely prevented from dew condensation or an oxidizing atmosphere, so that catalyst deterioration in the system can be prevented.

以下、実施例に基づき本発明をさらに詳しく説明するが、本発明がこれら実施例に限定されないことはもちろんである。本実施例では図7に示す水蒸気改質システムを使用した。加熱手段としてシースヒータ(電気ヒータ)を配置している。図7中省略している下部の構成は図5と同様の構成である。改質触媒としてアルミナにRuを担持した触媒を用い、CO変成触媒としてはCO変成触媒層の高温部にアルミナに白金を担持した触媒を、低温部にアルミナにCuおよびZnを担持した触媒を用い、CO除去触媒としてアルミナにRuを担持した触媒を用いた。   EXAMPLES Hereinafter, although this invention is demonstrated in more detail based on an Example, of course, this invention is not limited to these Examples. In this example, the steam reforming system shown in FIG. 7 was used. A sheath heater (electric heater) is disposed as a heating means. The configuration of the lower part omitted in FIG. 7 is the same as that of FIG. As the reforming catalyst, a catalyst in which Ru is supported on alumina is used. As the CO conversion catalyst, a catalyst in which platinum is supported on alumina is used in the high temperature portion of the CO conversion catalyst layer, and a catalyst in which Cu and Zn are supported on alumina is used in the low temperature portion. As the CO removal catalyst, a catalyst having Ru supported on alumina was used.

《実施例1》
〈水蒸気改質システムの起動〉
図7に示す水蒸気改質システムを起動した。各流体は図7、図5中矢印のように流れる。原料ガスとして都市ガス(脱硫済み)に水蒸気を混入して改質部に供給した。プロセス水が蒸発機構で蒸発し、原料ガスに混入される。ここで、蒸発機構での加熱源はCO除去器の反応熱である。改質部では改質ガスが生成し、生成改質ガスはCO変成部に供給される。CO変成部ではCOの変成反応により二酸化炭素と水素に変成される。この反応で必要な水蒸気は改質部において未反応の残留水蒸気が利用される。
Example 1
<Start-up of steam reforming system>
The steam reforming system shown in FIG. 7 was started. Each fluid flows as indicated by arrows in FIGS. Steam was mixed with city gas (desulfurized) as a raw material gas and supplied to the reforming section. Process water is evaporated by the evaporation mechanism and mixed into the raw material gas. Here, the heating source in the evaporation mechanism is the reaction heat of the CO remover. A reformed gas is generated in the reforming section, and the generated reformed gas is supplied to the CO shift section. In the CO conversion part, it is converted into carbon dioxide and hydrogen by the CO conversion reaction. As the steam necessary for this reaction, unreacted residual steam is used in the reforming section.

CO変成部からの改質ガスはCO除去部に流れ供給される。改質ガスはCO除去部でさらにCO分が酸化除去され、COを10ppm以下というように低減させる。CO除去部の作動温度は100〜150℃程度である。図8で言えば図8(a)の過程である。   The reformed gas from the CO shift section is supplied to the CO removal section. In the reformed gas, the CO component is further oxidized and removed by the CO removal unit, and CO is reduced to 10 ppm or less. The operating temperature of the CO removal section is about 100 to 150 ° C. In the case of FIG. 8, this is the process of FIG.

〈水蒸気改質システムの停止〉
上記〈水蒸気改質システムの起動〉のように水蒸気改質システムを起動、運転した後、運転を停止した。運転停止時に原料ガスの供給を停止した。そして、プロセス水を図8(b)中矢印のように流した。プロセス水の流量は少量でよく、プロセス水を加熱手段(電気ヒータ)で加熱し、生成水蒸気を連続的に改質部に供給した。水蒸気は、改質部からCO変成部へ、CO変成部からCO除去部へと流れ、水蒸気改質システム中の可燃性ガスをパージし、且つ水蒸気改質システム内を冷却した。
<Stop of steam reforming system>
After starting and operating the steam reforming system as in <Starting of the steam reforming system>, the operation was stopped. When the operation was stopped, the supply of raw material gas was stopped. Then, process water was flowed as shown by an arrow in FIG. The flow rate of the process water may be small, and the process water was heated by a heating means (electric heater), and the generated steam was continuously supplied to the reforming unit. Steam flowed from the reforming section to the CO conversion section, from the CO conversion section to the CO removal section, purged the combustible gas in the steam reforming system, and cooled the interior of the steam reforming system.

この時、加熱手段は、水蒸気の発生手段の役割に加え、水蒸気によるパージ、冷却時に水蒸気改質システムのCO除去部が結露雰囲気にならないように保温する役割をする。次いで、水蒸気改質システム内、すなわち改質部、CO変成部、CO除去部の触媒が十分に冷却された後に、図8(c)のように水蒸気改質システム内を空気で置換した。   At this time, in addition to the role of the steam generation means, the heating means plays a role of keeping the CO removal part of the steam reforming system from becoming a dew condensation atmosphere during purging and cooling with steam. Next, after the catalyst in the steam reforming system, that is, the reforming section, the CO conversion section, and the CO removing section was sufficiently cooled, the steam reforming system was replaced with air as shown in FIG.

図9は本実施例における〈水蒸気改質システムの停止〉における操作を経時的に示した図である。図9中、横軸は運転停止時以降の経過時間(降温時間)、縦軸は各部の温度である。
(1)運転時において、改質触媒は600℃以上の温度であり、改質ガス雰囲気によりシステム内は還元状態にあるのでシステム内の触媒(改質触媒、CO変成触媒、CO除去触媒)は酸化されない。
FIG. 9 is a diagram showing the operation in <stop of steam reforming system> in the present example over time. In FIG. 9, the horizontal axis represents the elapsed time (temperature drop time) after the stop of operation, and the vertical axis represents the temperature of each part.
(1) During operation, the reforming catalyst is at a temperature of 600 ° C. or higher, and the system is in a reduced state due to the reformed gas atmosphere, so the catalyst in the system (reforming catalyst, CO shift catalyst, CO removal catalyst) Not oxidized.

(2)運転停止時点から改質触媒を400〜200℃まで水蒸気でパージし、冷却する。図9のとおり、運転停止時点からほぼ4時間経過時までの各部の温度は100℃以上であるので、システム内で水蒸気の凝縮は起こらない。この間、システム内圧力は大気圧以上であるので、大気中の空気がシステム内に混入することはない。運転停止時点からほぼ4時間経過時に加熱手段をオン(ON)にすることにより、CO変成部およびCO除去部ともに、100℃以上に保持されている。このため、水蒸気の凝縮は起こらず、システム内圧力は大気圧以上であるので、大気中の空気がシステム内に混入することはない。   (2) The reforming catalyst is purged with steam from 400 to 200 ° C. from the time when the operation is stopped, and then cooled. As shown in FIG. 9, the temperature of each part from the time when the operation is stopped to the time when almost 4 hours have passed is 100 ° C. or higher, and therefore no condensation of water vapor occurs in the system. During this time, since the system internal pressure is equal to or higher than the atmospheric pressure, air in the atmosphere does not enter the system. By turning on the heating means when approximately 4 hours have elapsed from the time when the operation was stopped, both the CO conversion section and the CO removal section are maintained at 100 ° C. or higher. For this reason, condensation of water vapor does not occur and the pressure in the system is equal to or higher than atmospheric pressure, so that air in the atmosphere does not enter the system.

(3)次いで、運転停止時点からほぼ6時間40分経過後には、図8(c)のように、空気によるパージに切り替えた。この時点での改質部の温度は約200℃、CO変成部の温度は約120℃、CO除去部の温度は120℃以下である。こうして、本発明によれば、水蒸気改質システム内に可燃性ガスを残さず、安全に且つ触媒を劣化させずに水蒸気改質システムを停止できた。   (3) Next, after about 6 hours and 40 minutes had elapsed from the time when the operation was stopped, the operation was switched to purging with air as shown in FIG. At this time, the temperature of the reforming section is about 200 ° C., the temperature of the CO conversion section is about 120 ° C., and the temperature of the CO removal section is 120 ° C. or less. Thus, according to the present invention, it was possible to stop the steam reforming system without leaving flammable gas in the steam reforming system and safely and without degrading the catalyst.

《実施例2》
実施例1と同様の〈水蒸気改質システムの起動〉と〈水蒸気改質システムの停止〉を繰り返して行い、本発明の水蒸気改質システムの改質触媒の性能を試験した。図10はその結果を示す図である。図10中、横軸は起動停止の回数(“起動→運転→停止”を一単位とし、その回数)、縦軸は原料ガスの水素への転化率(%)である。図10のとおり、原料ガスの転化率は僅かずつ低下するのみで“起動−運転−停止”を150回繰り返しても78%前後の転化率を維持している。
Example 2
The performance of the reforming catalyst of the steam reforming system of the present invention was tested by repeating <starting steam reforming system> and <stopping steam reforming system> as in Example 1. FIG. 10 is a diagram showing the results. In FIG. 10, the horizontal axis represents the number of times of starting and stopping (“starting → running → stop” as a unit, the number of times), and the vertical axis represents the conversion rate (%) of the raw material gas to hydrogen. As shown in FIG. 10, the conversion rate of the raw material gas is decreased little by little, and the conversion rate of about 78% is maintained even if “start-run-stop” is repeated 150 times.

水蒸気改質システムを用い、原料ガスからPEFCに至るまでの態様例を示す図The figure which shows the example of a mode from raw material gas to PEFC using a steam reforming system 図1のような水蒸気改質システムでの運転時から運転停止時以降の温度変化を示す図The figure which shows the temperature change after the time of an operation stop at the time of the operation | movement with a steam reforming system like FIG. 本発明の課題を実測値を基づき説明する図The figure explaining the subject of this invention based on an actual measurement value 本発明で対象とする水蒸気改質システムを示す図The figure which shows the steam reforming system made into object by this invention 本発明で対象とする水蒸気改質システムの具体的構成例を示す図The figure which shows the specific structural example of the steam reforming system made into object by this invention 本発明によりCO除去部の外周に加熱手段を配置する態様を説明する図The figure explaining the aspect which arrange | positions a heating means to the outer periphery of CO removal part by this invention 図5のような水蒸気改質システムにおいてCO除去部の外周に加熱手段を配置する態様例を示す図The figure which shows the example of an aspect which arrange | positions a heating means in the outer periphery of a CO removal part in the steam reforming system like FIG. 本発明の水蒸気改質システムの停止時における操作態様を説明する図The figure explaining the operation aspect at the time of the stop of the steam reforming system of this invention 実施例1における〈水蒸気改質システムの停止〉における操作を経時的に示した図The figure which showed operation in <stop of a steam reforming system> in Example 1 over time. 実施例2の結果を示す図The figure which shows the result of Example 2

符号の説明Explanation of symbols

1〜4 第1円筒体〜第4円筒体
5 輻射筒
6 バーナ
7 上蓋兼バーナ取付台
8 底板
9 燃焼排ガスの排気通路
10 隔壁
11 燃焼排ガスの排出口
12 原料ガスの供給管
13 水(水蒸気)の混合部
14 予熱層
15 丸棒
16 改質触媒層
17 第3円筒体3の底板
18 第2円筒体2と第3円筒体3との間で形成された改質ガスの流路
19 ドーナツ状の板体
20 ガス流通用の複数の孔を有する支持板
21 CO変成触媒層
22 ガス流通用の複数の孔を有するドーナツ状の支持板
23 断熱材
24 円筒体
25 水供給管
26 円筒体24の外周に螺旋状に巻き付けてある伝熱管
27 一つの連通孔28を有する仕切板
28 一つの連通孔
29 空気の供給管
30 円環状の通路
31 仕切板
32 複数個の孔
33 支持板
34 支持板33の複数個の孔
35 CO除去触媒層
36 円筒体
37 複数個の孔38を有する仕切板
38 複数個の孔
39 改質ガスの取出管
40 断熱材
41 加熱手段
1 to 4 1st cylinder to 4th cylinder 5 Radiation cylinder 6 Burner 7 Upper lid / burner mounting base 8 Bottom plate 9 Exhaust passage for combustion exhaust gas 10 Partition 11 Exhaust port for combustion exhaust gas 12 Feed gas supply pipe 13 Water (steam) 14 Preheating layer 15 Round bar 16 Reforming catalyst layer 17 Bottom plate of third cylinder 3 18 Reformed gas flow path formed between second cylinder 3 and third cylinder 3 19 Donut shape 20 A support plate having a plurality of holes for gas flow 21 CO conversion catalyst layer 22 A donut-shaped support plate having a plurality of holes for gas flow 23 Insulating material 24 Cylinder 25 Water supply pipe 26 Cylinder 24 Heat transfer tube spirally wound around the outer periphery 27 Partition plate having one communication hole 28 One communication hole 29 Air supply tube 30 Circular passage 31 Partition plate 32 Plural holes 33 Support plate 34 Support plate 33 Multiple of Number of holes 35 CO removal catalyst layer 36 Cylinder 37 Partition plate having a plurality of holes 38 A plurality of holes 39 Reformed gas take-out pipe 40 Heat insulating material 41 Heating means

Claims (2)

水蒸気改質部、CO変成部およびCO除去部を含み、CO除去部にプロセス水の蒸発機構が配置され、且つその運転停止手段として水蒸気改質システム内の水蒸気パージの後に空気パージを行うようにしてなる原料ガスの水蒸気改質システムにおいて、該CO除去部の外周に前記水蒸気パージ中にCO除去部の温度を100℃以上に保持するための加熱手段を配置したことを特徴とする水蒸気改質システム。 It includes a steam reforming section, a CO conversion section, and a CO removal section. A process water evaporation mechanism is arranged in the CO removal section, and an air purge is performed after the steam purge in the steam reforming system as its operation stop means. In the steam reforming system for raw material gas, the steam reforming system is characterized in that heating means for maintaining the temperature of the CO removal section at 100 ° C. or more during the steam purge is disposed on the outer periphery of the CO removal section. system. 請求項1に記載の水蒸気改質システムにおいて、CO除去部に配置されたプロセス水の蒸発機構で発生した水蒸気がシステム内の水蒸気改質部に接続されていることを特徴とする水蒸気改質システム。

The steam reforming system according to claim 1, wherein steam generated by an evaporation mechanism of the process water disposed in the CO removing unit is connected to the steam reforming unit in the system. .

JP2005037000A 2005-02-14 2005-02-14 Steam reforming system Active JP4932165B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005037000A JP4932165B2 (en) 2005-02-14 2005-02-14 Steam reforming system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005037000A JP4932165B2 (en) 2005-02-14 2005-02-14 Steam reforming system

Publications (2)

Publication Number Publication Date
JP2006225166A JP2006225166A (en) 2006-08-31
JP4932165B2 true JP4932165B2 (en) 2012-05-16

Family

ID=36986860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005037000A Active JP4932165B2 (en) 2005-02-14 2005-02-14 Steam reforming system

Country Status (1)

Country Link
JP (1) JP4932165B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5428531B2 (en) * 2009-05-26 2014-02-26 パナソニック株式会社 Hydrogen production equipment
JP5659550B2 (en) * 2010-04-28 2015-01-28 パナソニックIpマネジメント株式会社 HYDROGEN GENERATOR, ITS MANUFACTURING METHOD, AND FUEL CELL SYSTEM HAVING THE HYDROGEN GENERATOR

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3789706B2 (en) * 1999-12-28 2006-06-28 三洋電機株式会社 CO conversion unit and polymer electrolyte fuel cell power generation system
JP3857022B2 (en) * 2000-06-21 2006-12-13 東京瓦斯株式会社 Method for starting and stopping a polymer electrolyte fuel cell
JP4342148B2 (en) * 2001-05-10 2009-10-14 大阪瓦斯株式会社 Carbon monoxide removal catalyst and carbon monoxide removal method
KR100596191B1 (en) * 2002-03-15 2006-07-06 마츠시다 덴코 가부시키가이샤 Reforming Apparatus and Operation Method Thereof
JP2003282114A (en) * 2002-03-26 2003-10-03 Fuji Electric Co Ltd Stopping method of fuel cell power generating device
JP2004207149A (en) * 2002-12-26 2004-07-22 Babcock Hitachi Kk Fuel cell system, its starting method and stopping method
JP3861077B2 (en) * 2003-06-27 2006-12-20 三菱重工業株式会社 Fuel reformer

Also Published As

Publication number Publication date
JP2006225166A (en) 2006-08-31

Similar Documents

Publication Publication Date Title
JP5191840B2 (en) Cylindrical steam reformer with integrated hydrodesulfurizer
JP4486353B2 (en) HYDROGEN GENERATOR, METHOD FOR STOPPING HYDROGEN GENERATOR AND FUEL CELL POWER GENERATOR
JP4130603B2 (en) Operation method of hydrogen production system
JP5340657B2 (en) Hydrogen generator, fuel cell system, and operation method of hydrogen generator
JP2009249203A (en) System for desulfurizing raw fuel for producing fuel hydrogen for fuel cell
JP4799995B2 (en) Steam reformer
JP3698971B2 (en) Method for starting and stopping a reformer for a polymer electrolyte fuel cell
JP4024470B2 (en) Method for stopping reformer for polymer electrolyte fuel cell
WO2013190851A1 (en) Hydrogen generation device and fuel cell system
JP2003002605A (en) Method for operating and stopping steam reformer
JP5160389B2 (en) Multi-cylinder steam reformer for fuel cells
JP4932165B2 (en) Steam reforming system
JP4617966B2 (en) Hydrogen generator
JP5329944B2 (en) Steam reformer for fuel cell
JP4936645B2 (en) Hydrogen production apparatus and fuel cell system
JP2009096706A (en) Reforming apparatus for fuel cell
JP2006076802A (en) Hydrogen production apparatus and fuel cell system equipped with the same, and method for producing hydrogen
JP4764651B2 (en) Hydrogen production apparatus and fuel cell system
JP2008130266A (en) Circulation method of condensed water in fuel cell system
JP5809049B2 (en) Method of using steam reforming catalyst for fuel cell and hydrogen production system
JP5938580B2 (en) Hydrogen generator
JP2005089255A (en) Hydrogen generator and its method
JP2004296102A (en) Fuel cell system and fuel cell system stopping method
JP4193257B2 (en) CO transformer and hydrogen generator
JP5948605B2 (en) Hydrogen generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120215

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4932165

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250