JP5428531B2 - Hydrogen production equipment - Google Patents

Hydrogen production equipment Download PDF

Info

Publication number
JP5428531B2
JP5428531B2 JP2009126083A JP2009126083A JP5428531B2 JP 5428531 B2 JP5428531 B2 JP 5428531B2 JP 2009126083 A JP2009126083 A JP 2009126083A JP 2009126083 A JP2009126083 A JP 2009126083A JP 5428531 B2 JP5428531 B2 JP 5428531B2
Authority
JP
Japan
Prior art keywords
cylinder
carbon monoxide
combustion
gas
inner cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009126083A
Other languages
Japanese (ja)
Other versions
JP2010275117A (en
Inventor
洋史 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2009126083A priority Critical patent/JP5428531B2/en
Publication of JP2010275117A publication Critical patent/JP2010275117A/en
Application granted granted Critical
Publication of JP5428531B2 publication Critical patent/JP5428531B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Description

本発明は、都市ガスやLPG等の炭化水素系燃料を水蒸気改質して水素リッチな改質ガスを製造する水素製造装置に関するものである。   The present invention relates to a hydrogen production apparatus for producing a hydrogen-rich reformed gas by steam reforming a hydrocarbon-based fuel such as city gas or LPG.

燃料電池発電システムは、水素リッチな改質ガスを製造する水素製造装置と、製造された水素リッチな改質ガスを利用して発電する燃料電池とで主に構成されている。   The fuel cell power generation system mainly includes a hydrogen production apparatus that produces hydrogen-rich reformed gas and a fuel cell that generates power using the produced hydrogen-rich reformed gas.

水素製造装置は、都市ガスやLPG等の炭化水素系燃料と水を用いた水蒸気改質反応によって、水素、メタン、一酸化炭素(10%程度含有)、二酸化炭素、水蒸気を成分とする改質ガスを生成する改質部と、この改質部を加熱するためのバーナなどの加熱手段を備え、必要に応じて、燃料電池に対して被毒作用のある一酸化炭素を除去する一酸化炭素除去部から構成されている。そして水素製造装置で製造された改質ガスは燃料電池のアノードに供給され、燃料電池はこの改質ガス中の水素と空気中の酸素を電気化学的に反応させて発電をするようになっている。   Hydrogen production equipment is reformed with hydrogen, methane, carbon monoxide (contains about 10%), carbon dioxide, and steam by steam reforming reaction using city gas, LPG and other hydrocarbon fuels and water. A carbon monoxide having a reforming section for generating a gas and a heating means such as a burner for heating the reforming section, and removing carbon monoxide having a poisoning action on the fuel cell, if necessary. It consists of a removal unit. The reformed gas produced by the hydrogen production apparatus is supplied to the anode of the fuel cell, and the fuel cell generates electricity by electrochemically reacting hydrogen in the reformed gas and oxygen in the air. Yes.

ここで、燃料電池に供給された改質ガスのうち、燃料電池で消費されなかった水素を含む改質ガスはオフガスとして排出されるが、このオフガスは水素製造装置に返送され、加熱手段の燃料ガスとして使用されるようになっている。   Here, of the reformed gas supplied to the fuel cell, the reformed gas containing hydrogen that has not been consumed by the fuel cell is discharged as off-gas, but this off-gas is returned to the hydrogen production apparatus and is used as fuel for the heating means. It is used as a gas.

このとき、改質ガスの一酸化炭素を除去する一酸化炭素除去部がその効果を発揮するには一酸化炭素除去部を一定範囲の温度に保つ必要がある。燃料電池発電システムが安定して運転している場合は改質ガスとともに運ばれる熱により必要な温度になっているが、システムが起動した直後は一酸化炭素除去部への熱の供給が不足し一酸化炭素除去部の温度が低くなり一酸化炭素を除去出来ない問題を起こす可能性がある。   At this time, in order for the carbon monoxide removal unit that removes carbon monoxide from the reformed gas to exert its effect, the carbon monoxide removal unit needs to be maintained at a temperature within a certain range. When the fuel cell power generation system is operating stably, the required temperature is reached due to the heat carried along with the reformed gas. However, immediately after the system is started, the supply of heat to the carbon monoxide removal section is insufficient. There is a possibility that the temperature of the carbon monoxide removing portion becomes low and the carbon monoxide cannot be removed.

そこで、システム起動時に一酸化炭素除去部を外部より加熱する手段が提案されている。例えば特許文献1では、水を蒸発させる蒸発部に螺旋形状を構成しその内側に構成された排気ガス通路より熱を奪い、水を蒸発させているが、逆に水により一酸化炭素除去部が冷却されるとの課題に関しては述べられていない。   Therefore, means for heating the carbon monoxide removal unit from the outside at the time of system startup has been proposed. For example, in Patent Document 1, the evaporation unit that evaporates water has a spiral shape and heat is taken away from an exhaust gas passage formed inside the evaporation unit, thereby evaporating the water. There is no mention of the issue of being cooled.

また特許文献2では、容器外部に設けられた電気ヒーター部により一酸化炭素除去部が所定の温度に昇温する構成が記載されているが、触媒部内部に設けられた蒸発部との関係は述べられていない。   Patent Document 2 describes a configuration in which the carbon monoxide removal unit is heated to a predetermined temperature by an electric heater unit provided outside the container, but the relationship with the evaporation unit provided inside the catalyst unit is as follows. Not mentioned.

特開2008−19159号公報JP 2008-19159 A 特開2005−15292号公報JP 2005-15292 A

一酸化炭素除去部の内側に設けられた蒸発部において水は上方より螺旋状に下方に流れその内側に位置する排気経路の排気ガスと熱交換を行うため、次第に温度が上昇する。   In the evaporating section provided inside the carbon monoxide removing section, water flows downward spirally from above and exchanges heat with the exhaust gas in the exhaust path located inside thereof, so that the temperature gradually increases.

一酸化炭素除去部はこの水により熱を奪われるため、上部の温度が低く、下部が高いとの温度分布に加え、水は螺旋状の経路の底部に沿って水が流れるため、螺旋状経路に沿っ
て冷やされるとの温度分布が発生する。
Since the carbon monoxide removal part is deprived of heat by this water, in addition to the temperature distribution that the upper temperature is low and the lower part is high, water flows along the bottom of the spiral path, so the spiral path A temperature distribution occurs when cooled along.

しかしながら、特許文献1のものでは、起動時に一酸化炭素除去部の温度が低い場合十分に性能を発揮できないまた、水の冷却作用による一酸化炭素除去部の上下方向の温度バラツキ発生を抑える事が出来ない。また特許文献2も外部にヒーターを設け触媒を加熱する構成を設けてはいるが、内部の水の冷却による温度バラツキをヒーターにより補正する機能を有していない。   However, with the thing of patent document 1, when the temperature of the carbon monoxide removal part is low at the time of starting, performance cannot fully be exhibited. Moreover, it is possible to suppress the temperature variation in the vertical direction of the carbon monoxide removal part due to the cooling action of water. I can't. Patent Document 2 also has a configuration in which a heater is provided outside to heat the catalyst, but it does not have a function of correcting temperature variations due to cooling of internal water by the heater.

本発明は上記の点に鑑みてなされたものであり、起動時の一酸化炭素除去部を最適な温度分布とすることにより改質ガス中の一酸化炭素を安定して除去することができる水素製造装置および燃料電池発電システムを提供することを目的とするものである。   The present invention has been made in view of the above points, and hydrogen capable of stably removing carbon monoxide in the reformed gas by setting the carbon monoxide removal section at the time of startup to an optimum temperature distribution. An object of the present invention is to provide a manufacturing apparatus and a fuel cell power generation system.

前記従来の課題を解決するために、本発明の水素製造装置は、軸方向が縦の同心円状に配置された内筒及び外筒と、前記内筒の内側に同心円状に配置された燃焼筒と、第1筒部及び第2筒部を有し、前記内筒と前記外筒の間の空間を内外に仕切るように前記内筒及び前記外筒と同心円状に配置された仕切り筒と、前記第2筒部と前記内筒の間に改質触媒を充填して形成され、炭化水素系燃料と水蒸気の混合ガスが供給されて、水蒸気改質反応に
よって水素リッチな改質ガスを生成する改質部と、前記第1筒部と前記外筒の間に一酸化炭素除去触媒を充填して形成され、前記改質ガス中の一酸化炭素を低減する一酸化炭素除去部と、前記燃焼筒の内側に形成され、燃料電池で消費されずに前記燃料電池から排出される前記改質ガスからなるオフガスを燃焼して前記改質部を加熱するバーナ部と、前記燃焼筒と前記内筒の間に形成され、前記バーナ部で発生する燃焼排気ガスが通る排気ガス通路と、前記内筒と前記第1筒部の間に形成された螺旋状の通路を有し、炭化水素系燃料とが供給されて、前記排気ガス通路からの熱により前記混合ガスを生成する蒸発部と、前記通路の底面に沿うように前記一酸化炭素除去部を介して前記外筒の外面に螺旋状に巻きつけられ、前記水により前記螺旋状の通路に沿って熱を奪われた前記一酸化炭素除去部の低温域を加熱するヒーターを有する
In order to solve the above-described conventional problems, the hydrogen production apparatus of the present invention includes an inner cylinder and an outer cylinder that are arranged concentrically in a vertical axial direction , and a combustion cylinder that is arranged concentrically inside the inner cylinder. A partition cylinder that has a first cylinder part and a second cylinder part, and is arranged concentrically with the inner cylinder and the outer cylinder so as to partition the space between the inner cylinder and the outer cylinder inward and outward; is formed by filling a reforming catalyst between the inner cylinder and the second cylinder portion, a mixed gas of hydrocarbon fuel and water vapor is supplied, it generates a hydrogen-rich reformed gas by steam reforming reaction a reforming unit configured to, with the between the outer cylinder and the first cylindrical portion is formed by filling a carbon monoxide removal catalyst, the carbon monoxide removing unit that reduces carbon monoxide in the reformed gas, wherein It is formed inside the combustion cylinder, off consisting of the reformed gas discharged from the fuel cell without being consumed by the fuel cell Wherein the burner unit for heating the reformer by burning scan, is formed between the inner tube and the combustion tube, an exhaust gas passage through which a combustion exhaust gas generated in the burner portion, and the inner tube An evaporating section having a spiral passage formed between the first cylindrical portions, to which hydrocarbon fuel and water are supplied and generating the mixed gas by heat from the exhaust gas passage; and The carbon monoxide removal unit wound around the outer surface of the outer cylinder spirally through the carbon monoxide removal unit along the bottom surface and deprived of heat along the spiral passage by the water . to Yes and a heater for heating the low-temperature range.

この構成によって、蒸発部の螺旋状の通路を流れる水により熱を奪われた一酸化炭素除去部の低温域を、一酸化炭素除去部を介して外筒の外面に螺旋状に巻きつけられたヒーターで加熱するので、一酸化炭素除去部の温度バラツキを低減でき、改質ガス中の一酸化炭素を安定して除去することができる。 With this configuration, the low temperature region of the carbon monoxide removal unit that has been deprived of heat by the water flowing through the spiral passage of the evaporation unit is spirally wound around the outer surface of the outer cylinder via the carbon monoxide removal unit. Since the heating is performed by the heater, the temperature variation in the carbon monoxide removing portion can be reduced, and the carbon monoxide in the reformed gas can be stably removed.

本発明によれば、蒸発部の螺旋状の通路を流れる水により熱を奪われた一酸化炭素除去部の低温域を、一酸化炭素除去部を介して外筒の外面に螺旋状に巻きつけられたヒーターで加熱するので、一酸化炭素除去部の温度バラツキを低減でき、改質ガス中の一酸化炭素を安定して除去することができるものである。 According to the present invention, the low temperature region of the carbon monoxide removal unit that has been deprived of heat by the water flowing through the spiral passage of the evaporation unit is spirally wound around the outer surface of the outer cylinder via the carbon monoxide removal unit. Since the heating is performed by the heater, the temperature variation in the carbon monoxide removing section can be reduced , and the carbon monoxide in the reformed gas can be stably removed.

本発明の実施の形態1における水素製造装置を示す概略断面図Schematic sectional view showing a hydrogen production apparatus according to Embodiment 1 of the present invention. 本発明の実施の形態1における水素製造装置を示しヒーターと一酸化炭素除去部と蒸発部間の熱の分布を示す部分断面図The fragmentary sectional view which shows the hydrogen production apparatus in Embodiment 1 of this invention, and shows the heat distribution between a heater, a carbon monoxide removal part, and an evaporation part

第1の発明は、軸方向が縦の同心円状に配置された内筒及び外筒と、前記内筒の内側に同心円状に配置された燃焼筒と、第1筒部及び第2筒部を有し、前記内筒と前記外筒の間の空間を内外に仕切るように前記内筒及び前記外筒と同心円状に配置された仕切り筒と、前記第2筒部と前記内筒の間に改質触媒を充填して形成され、炭化水素系燃料と水蒸気の混合ガスが供給されて、水蒸気改質反応によって水素リッチな改質ガスを生成する改質部と、前記第1筒部と前記外筒の間に一酸化炭素除去触媒を充填して形成され、前記改質ガス中の一酸化炭素を低減する一酸化炭素除去部と、前記燃焼筒の内側に形成され、燃料電池で消費されずに前記燃料電池から排出される前記改質ガスからなるオフガスを燃焼して前記改質部を加熱するバーナ部と、前記燃焼筒と前記内筒の間に形成され、前記バーナ部で発生する燃焼排気ガスが通る排気ガス通路と、前記内筒と前記第1筒部の間に形成された螺旋状の通路を有し、炭化水素系燃料とが供給されて、前記排気ガス通路からの熱により前記混合ガスを生成する蒸発部と、前記通路の底面に沿うように前記一酸化炭素除去部を介して前記外筒の外面に螺旋状に巻きつけられ、前記水により前記螺旋状の通路に沿って熱を奪われた前記一酸化炭素除去部の低温域を加熱するヒーターを有するものであ
り、この構成によって、蒸発部の螺旋状の通路を流れる水により熱を奪われた一酸化炭素除去部の低温域を、一酸化炭素除去部を介して外筒の外面に螺旋状に巻きつけられたヒーターで加熱するので、一酸化炭素除去部の温度バラツキを低減でき、改質ガス中の一酸化炭素を安定して除去することができる。
According to a first aspect of the present invention, there are provided an inner cylinder and an outer cylinder arranged concentrically in a vertical axial direction , a combustion cylinder arranged concentrically inside the inner cylinder, a first cylinder portion and a second cylinder portion. A partition cylinder arranged concentrically with the inner cylinder and the outer cylinder so as to partition the space between the inner cylinder and the outer cylinder inward and outward, and between the second cylinder portion and the inner cylinder is formed by filling a reforming catalyst, a mixed gas of hydrocarbon fuel and water vapor is supplied, and the reforming unit for generating hydrogen-rich reformed gas by steam reforming reaction, said first cylindrical portion A carbon monoxide removal catalyst is formed between the outer cylinders and is formed inside the combustion cylinder and consumed by the fuel cell. The carbon monoxide removal unit reduces the carbon monoxide in the reformed gas. by burning the off-gas consisting of the reformed gas discharged from the fuel cell to Sarezu burner unit for heating the reforming section Is formed between the inner cylinder and the combustion cylinder, and an exhaust gas passage through which a combustion exhaust gas generated in the burner portion, the helical path formed between the inner cylinder and the first cylindrical portion Having an evaporation section that is supplied with hydrocarbon fuel and water and generates the mixed gas by heat from the exhaust gas passage, and through the carbon monoxide removal section along the bottom surface of the passage. wound helically on the outer surface of the outer cylinder, is intended to have a a heater for heating the low-temperature range of the carbon monoxide removing unit which heat is removed along the helical path by the water, the A heater in which the low temperature region of the carbon monoxide removal unit, which has been deprived of heat by the water flowing through the spiral passage of the evaporation unit, is spirally wound around the outer surface of the outer cylinder via the carbon monoxide removal unit. The temperature variation in the carbon monoxide removal part is low because Can, carbon monoxide in the reformed gas can be stably removed.

以下、本発明の実施の形態について、図面を用いて説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の実施の形態1における水素製造装置を示す概略断面図である。
(Embodiment 1)
FIG. 1 is a schematic cross-sectional view showing a hydrogen production apparatus according to Embodiment 1 of the present invention.

図1において、本実施の形態1に係る水素製造装置は、炭化水素系燃料と水とから水蒸気改質反応によって水素リッチな改質ガスを生成する改質部1と、改質ガスより一酸化炭素を低減する一酸化炭素除去部2と改質ガスが供給される燃料電池7から返送されるオフガスを燃焼して改質部1を加熱するバーナ部3と、バーナ部3で発生する燃焼排気ガスが通る排気ガス通路6と水を排気ガス経路6からの熱により水蒸気に変える螺旋状の通路からなる蒸発部4と、一酸化炭素除去部を加熱する螺旋状のヒーター5を有し、バーナ部3を中心に排気ガス通路6、蒸発部4、一酸化炭素除去部2、ヒーター5の順番に周囲方向に向け円筒状に配置し蒸発部4の螺旋状通路の始点とヒーター5の螺旋の始点を一致させたことを特徴とするものである。この実施の形態によれば、水により冷却されやすい一酸化炭素除去部上部の温度を持ち上げることを可能とするものである。   In FIG. 1, a hydrogen production apparatus according to Embodiment 1 includes a reforming unit 1 that generates a hydrogen-rich reformed gas from a hydrocarbon-based fuel and water by a steam reforming reaction, and monoxide from the reformed gas. The carbon monoxide removing unit 2 for reducing carbon, the burner unit 3 for heating the reforming unit 1 by burning off-gas returned from the fuel cell 7 supplied with the reformed gas, and the combustion exhaust generated in the burner unit 3 An exhaust gas passage 6 through which gas passes, an evaporation portion 4 comprising a spiral passage for converting water into water vapor by heat from the exhaust gas passage 6, and a spiral heater 5 for heating the carbon monoxide removal portion, The exhaust gas passage 6, the evaporation portion 4, the carbon monoxide removal portion 2, and the heater 5 are arranged in a cylindrical shape in the order of the periphery around the portion 3, and the starting point of the spiral passage of the evaporation portion 4 and the spiral of the heater 5 Characterized by matching the starting pointAccording to this embodiment, it is possible to raise the temperature of the upper part of the carbon monoxide removal unit that is easily cooled by water.

また、蒸発部4の螺旋状通路ピッチ9とヒーターの螺旋ピッチ8をほぼ同一に配置したことを特徴とするものである。この実施の形態によれば、一酸化炭素除去部が螺旋状経路に沿って冷やされた箇所をほぼ同一ピッチに設けられたヒーターにより加熱することにより温度分布を低減することを可能とするものである。   In addition, the spiral passage pitch 9 of the evaporator 4 and the spiral pitch 8 of the heater are arranged substantially the same. According to this embodiment, it is possible to reduce the temperature distribution by heating the place where the carbon monoxide removal unit is cooled along the spiral path with the heater provided at substantially the same pitch. is there.

また、ヒーター5の螺旋ピッチ8を始点部は密に配置したことを特徴とするものである。この実施の形態によれば、一酸化炭素除去部の上下に発生した熱分布をヒーターのピッチ粗密にすることにより温度分布を低減することを可能とするものである。   The starting point of the helical pitch 8 of the heater 5 is densely arranged. According to this embodiment, it is possible to reduce the temperature distribution by making the heat distribution generated above and below the carbon monoxide removing section pitch dense of the heater.

以下、図1により本実施の形態を詳細に説明する。   Hereinafter, the present embodiment will be described in detail with reference to FIG.

図1において、水素製造装置10は軸方向が縦の内筒11と外筒12を同心円状に配置した二重筒で全体を形成し、さらに内筒11の内側に同心円状に燃焼筒13を配置して設けてある。   In FIG. 1, the hydrogen production apparatus 10 is formed as a whole by a double cylinder in which an axially vertical inner cylinder 11 and an outer cylinder 12 are arranged concentrically, and a combustion cylinder 13 is concentrically arranged inside the inner cylinder 11. Arranged and provided.

燃焼筒13の下部内には、燃焼筒13内を上下に仕切るように燃焼板14が設けてある。燃焼板14の中央は上方へ凸屈曲した燃焼部3として形成してあり、燃焼部3の中央部に上側から貫通して、先端にノズル口を有する燃焼ノズル15が取り付けてある。燃焼部3には上下に貫通して形成される複数の燃焼空気供給口16が形成してある。燃焼ノズル15には燃焼部3より上側において燃料ガス供給管17が接続してあり、また送風ファン18に接続した燃焼空気供給管19が燃焼部3の上側において燃焼筒13内に差し込んである。燃焼空気供給管19の下端は空気吐出口として開口させてある。上記の燃焼空気供給口16を有する燃焼部3と燃焼ノズル15によってバーナなどの加熱手段が形成されるものである。そして燃料ガス供給管17から供給された燃料ガスは、燃焼ノズル15の下端のノズル口から燃焼部3の下方へ噴出され、また送風ファン18から燃焼空気供給管19を通して供給された空気は空気吐出口から吐出された後に、燃焼空気供給口16を通過
して燃焼部3の下方へ供給されるものであり、この燃料ガスと空気とが混合されて、燃焼部3から下方へ炎が噴出する燃焼が行なわれるものである。この燃焼は凸屈曲した形状の燃焼部3の下面凹部内の全体で火炎が生じるように行なわれる。燃焼筒13と内筒11の間には排気ガス通路6が形成してあり、加熱手段の燃焼部3での燃焼によって発生した高温の排気ガスは、燃焼筒13の下端の開口からこの排気ガス通路6を通過した後に排出されるようになっている。
A combustion plate 14 is provided in the lower portion of the combustion cylinder 13 so as to partition the combustion cylinder 13 vertically. The center of the combustion plate 14 is formed as a combustion part 3 that is convexly bent upward, and a combustion nozzle 15 that penetrates from the upper side to the center part of the combustion part 3 and has a nozzle port at the tip is attached. The combustion unit 3 is formed with a plurality of combustion air supply ports 16 formed so as to penetrate vertically. A fuel gas supply pipe 17 is connected to the combustion nozzle 15 above the combustion section 3, and a combustion air supply pipe 19 connected to the blower fan 18 is inserted into the combustion cylinder 13 above the combustion section 3. The lower end of the combustion air supply pipe 19 is opened as an air discharge port. The combustion unit 3 having the combustion air supply port 16 and the combustion nozzle 15 form a heating means such as a burner. The fuel gas supplied from the fuel gas supply pipe 17 is ejected from the nozzle port at the lower end of the combustion nozzle 15 to the lower side of the combustion unit 3, and the air supplied from the blower fan 18 through the combustion air supply pipe 19 is discharged from the air. After being discharged from the outlet, it passes through the combustion air supply port 16 and is supplied to the lower part of the combustion part 3. This fuel gas and air are mixed and a flame is jetted downward from the combustion part 3. Combustion takes place. This combustion is performed so that a flame is generated in the entire lower surface recess of the convexly bent combustion section 3. An exhaust gas passage 6 is formed between the combustion cylinder 13 and the inner cylinder 11, and high-temperature exhaust gas generated by combustion in the combustion unit 3 of the heating means is exhausted from the opening at the lower end of the combustion cylinder 13. After passing through the passage 6, it is discharged.

一方、上記の内筒11と外筒12の間の上下は閉塞してあり、この内筒11と外筒12の間の閉塞された空間内はこれらと同心円の仕切り筒20で内外に仕切ってある。
仕切り筒20は上部が小径筒部20a、下部が大径筒部20bとして形成してあり、大径筒部20bと内筒11との間に改質触媒を充填して改質部1が形成してある。また小径筒部20aと外筒12の間には一酸化炭素除去触媒を充填して一酸化炭素除去部2が形成してある。また、内筒11と小径筒部20aの間の空間部は蒸発部4として形成されるものであり、大径筒部20bと外筒12の間の空間部は移行流路21として形成されるものである。
On the other hand, the upper and lower portions between the inner cylinder 11 and the outer cylinder 12 are closed, and the closed space between the inner cylinder 11 and the outer cylinder 12 is divided into the inside and outside by a partition cylinder 20 concentric with these. is there.
The partition cylinder 20 has an upper portion formed as a small-diameter cylindrical portion 20a and a lower portion formed as a large-diameter cylindrical portion 20b. The reforming catalyst 1 is filled between the large-diameter cylindrical portion 20b and the inner cylinder 11 to form the reforming portion 1. It is. Further, a carbon monoxide removal part 2 is formed between the small diameter cylinder part 20a and the outer cylinder 12 by filling a carbon monoxide removal catalyst. In addition, the space between the inner cylinder 11 and the small diameter cylinder portion 20a is formed as the evaporation section 4, and the space between the large diameter cylinder section 20b and the outer cylinder 12 is formed as the transition flow path 21. Is.

蒸発部4には原料供給部22と水供給部23が接続してあり、原料供給部22から都市ガスやLPG等の炭化水素系燃料が、水供給部23から水が、混合された状態で蒸発部3に供給されるようになっている。このように炭化水素系燃料と水が蒸発部3に供給されると、排気ガス通路6を流れる高温の排気ガスによる加熱によって、炭化水素系燃料と水蒸気との混合ガスが生成される。この混合ガスは改質部1に供給され、炭化水素系燃料と水が水蒸気改質反応して水素リッチな改質ガスが生成される。水蒸気改質反応は吸熱反応であるので、上記のように燃焼部3での燃焼で発生した高温の排気ガスを排気ガス通路6に通し、改質部1を加熱して600〜700℃程度の改質反応温度に維持するものである。   A raw material supply unit 22 and a water supply unit 23 are connected to the evaporation unit 4, and a hydrocarbon-based fuel such as city gas or LPG is mixed from the raw material supply unit 22 and water is mixed from the water supply unit 23. It is supplied to the evaporation unit 3. When the hydrocarbon fuel and water are supplied to the evaporation unit 3 in this way, a mixed gas of hydrocarbon fuel and water vapor is generated by heating with the high-temperature exhaust gas flowing through the exhaust gas passage 6. This mixed gas is supplied to the reforming unit 1, and a hydrocarbon-based fuel and water undergo a steam reforming reaction to generate a hydrogen-rich reformed gas. Since the steam reforming reaction is an endothermic reaction, the high-temperature exhaust gas generated by the combustion in the combustion unit 3 as described above is passed through the exhaust gas passage 6 and the reforming unit 1 is heated to about 600 to 700 ° C. The reforming reaction temperature is maintained.

改質部1で生成された改質ガスは、移行流路21を通して一酸化炭素除去部2に供給されるものであり、改質ガス中の一酸化炭素が除去される。このように一酸化炭素が除去された改質ガスは、燃料電池7に送り出される。燃料電池7はアノード24とカソード25を備えて形成されるものであり、上記のように水素製造装置8で製造された改質ガスはアノード24に供給される。このようにアノード24に改質ガスが供給されると、カソード25に供給される空気中の酸素と改質ガス中の水素とが電気化学的反応をして発電するものである。   The reformed gas generated in the reforming unit 1 is supplied to the carbon monoxide removing unit 2 through the transfer channel 21, and the carbon monoxide in the reformed gas is removed. The reformed gas from which carbon monoxide has been removed in this manner is sent to the fuel cell 7. The fuel cell 7 is formed with an anode 24 and a cathode 25, and the reformed gas produced by the hydrogen production device 8 as described above is supplied to the anode 24. Thus, when the reformed gas is supplied to the anode 24, oxygen in the air supplied to the cathode 25 and hydrogen in the reformed gas undergo an electrochemical reaction to generate electric power.

燃料電池7のアノード24からは発電に消費されなかった水素を含む改質ガスがオフガスとして排出されるが、アノード24には上記の燃料ガス供給管4が接続してあり、アノード24から排出されたオフガスは燃料ガス供給管26を通して水素製造装置10に返送されるようにしてある。そしてオフガスは燃料ガス供給管17を通して燃焼ノズル15に供給され、オフガスを燃焼ガスとして燃焼部3で燃焼されるものである。尚、燃料ガス供給管26には原料供給部22から炭化水素系燃料も供給されるようになっており、水素製造装置10の運転立ち上げ時や、オフガスの返送量が不足するときには、炭化水素系燃料を燃料ガスとして燃焼されるものである。   The reformed gas containing hydrogen that has not been consumed for power generation is discharged from the anode 24 of the fuel cell 7 as off-gas. The fuel gas supply pipe 4 is connected to the anode 24 and is discharged from the anode 24. The off-gas is returned to the hydrogen production apparatus 10 through the fuel gas supply pipe 26. The off gas is supplied to the combustion nozzle 15 through the fuel gas supply pipe 17 and burned in the combustion unit 3 using the off gas as the combustion gas. A hydrocarbon-based fuel is also supplied to the fuel gas supply pipe 26 from the raw material supply unit 22, and when the operation of the hydrogen production apparatus 10 is started up or when the amount of return of off-gas is insufficient, the hydrocarbon is supplied. The system fuel is burned with fuel gas.

本実施の形態において、蒸発部3はSUS線材28を螺旋状成型し、内筒11と第1筒部20aの間に挟みこみ螺旋状の通路27を形成している。更に一酸化炭素除去部2を挟み込む様にヒーター5は外筒12の外面に螺旋形状に密着して巻きつけられ更にSUS線材28とヒーター5の螺旋の上端は一致すると共にSUS線材28とヒーター5の螺旋もほぼ同一ピッチとしている。 In the present embodiment, the evaporation portion 3 by molding a SUS wire 28 spirally to form a the inner cylinder 11 a helical passage 27 nipping between the first cylindrical portion 20a. Further, the heater 5 is wound in close contact with the outer surface of the outer cylinder 12 in a spiral shape so as to sandwich the carbon monoxide removing portion 2, and the upper ends of the spirals of the SUS wire 28 and the heater 5 coincide with each other and the SUS wire 28 and the heater 5 are aligned. The spirals are also set at almost the same pitch.

図2はヒーターと一酸化炭素除去部と蒸発部間の熱の分布を示す部分断面図で、本構成のSUS線材28とヒーター5の螺旋の上端は一致させることにより、SUS線材28の
上面29の水による一酸化炭素除去部2の上端近傍で熱を奪われた低温域31をヒーター5による加熱域30により温度の分布の均一化を図ることが出来る。またまたSUS線材28とヒーター5の螺旋のピッチをほぼ同一とすることにより、SUS線材28に沿って発生する一酸化炭素除去部2の低温域にヒーター5より熱を供給し温度の分布を均一化することが出来る。またSUS線材28の上面の水は排気ガス通路6より加熱され蒸発するため下方では熱を奪われ難くなる。そのためヒーター5の螺旋ピッチ8も上部で密に巻ワット密度を上げている。
FIG. 2 is a partial cross-sectional view showing the heat distribution among the heater, the carbon monoxide removal unit, and the evaporation unit. The temperature distribution in the low temperature region 31 from which heat has been removed in the vicinity of the upper end of the carbon monoxide removal unit 2 by water can be made uniform by the heating region 30 by the heater 5. Further, by making the spiral pitch of the SUS wire 28 and the heater 5 substantially the same, heat is supplied from the heater 5 to the low temperature region of the carbon monoxide removal unit 2 generated along the SUS wire 28, and the temperature distribution is made uniform. I can do it. Further, since the water on the upper surface of the SUS wire 28 is heated and evaporated from the exhaust gas passage 6, heat is hardly taken away below. Therefore, the spiral pitch 8 of the heater 5 also increases the winding watt density at the top.

以上のように、本発明によれば、螺旋状のヒーターを適切な位置、ピッチで配置することにより、起動時の一酸化炭素除去部を最適な温度分布とし改質ガス中の一酸化炭素を安定して除去することができるものであり、水素製造装置を備えた燃料電池発電システム等の用途にも利用可能である。   As described above, according to the present invention, by arranging the helical heaters at appropriate positions and pitches, the carbon monoxide removal unit at the time of startup has an optimal temperature distribution, and the carbon monoxide in the reformed gas is reduced. It can be removed stably and can be used for applications such as a fuel cell power generation system equipped with a hydrogen production apparatus.

1 改質部
2 一酸化炭素除去部
3 バーナ部
4 蒸発部
5 ヒーター
6 排気ガス通路
7 燃料電池
DESCRIPTION OF SYMBOLS 1 Reforming part 2 Carbon monoxide removal part 3 Burner part 4 Evaporating part 5 Heater 6 Exhaust gas passage 7 Fuel cell

Claims (1)

軸方向が縦の同心円状に配置された内筒及び外筒と、
前記内筒の内側に同心円状に配置された燃焼筒と、
第1筒部及び第2筒部を有し、前記内筒と前記外筒の間の空間を内外に仕切るように前記内筒及び前記外筒と同心円状に配置された仕切り筒と、
前記第2筒部と前記内筒の間に改質触媒を充填して形成され、炭化水素系燃料と水蒸気の混合ガスが供給されて、水蒸気改質反応によって水素リッチな改質ガスを生成する改質部と、
前記第1筒部と前記外筒の間に一酸化炭素除去触媒を充填して形成され、前記改質ガス中の一酸化炭素を低減する一酸化炭素除去部と
前記燃焼筒の内側に形成され、燃料電池で消費されずに前記燃料電池から排出される前記改質ガスからなるオフガスを燃焼して前記改質部を加熱するバーナ部と、
前記燃焼筒と前記内筒の間に形成され、前記バーナ部で発生する燃焼排気ガスが通る排気ガス通路と
前記内筒と前記第1筒部の間に形成された螺旋状の通路を有し、炭化水素系燃料とが供給されて、前記排気ガス通路からの熱により前記混合ガスを生成する蒸発部と、
前記通路の底面に沿うように前記一酸化炭素除去部を介して前記外筒の外面に螺旋状に巻きつけられ、前記水により前記螺旋状の通路に沿って熱を奪われた前記一酸化炭素除去部の低温域を加熱するヒーターを有する水素製造装置。
An inner cylinder and an outer cylinder arranged in concentric circles with the axial direction being vertical;
A combustion cylinder disposed concentrically inside the inner cylinder;
A partition cylinder having a first cylinder part and a second cylinder part, and arranged concentrically with the inner cylinder and the outer cylinder so as to partition the space between the inner cylinder and the outer cylinder inward and outward;
Is formed by filling a reforming catalyst between the inner cylinder and the second cylinder portion, a mixed gas of hydrocarbon fuel and water vapor is supplied, it generates a hydrogen-rich reformed gas by steam reforming reaction A reforming section to perform,
A carbon monoxide removal portion that is formed by filling a carbon monoxide removal catalyst between the first tube portion and the outer tube, and that reduces carbon monoxide in the reformed gas ;
A burner portion that is formed inside the combustion cylinder and burns off- gas composed of the reformed gas discharged from the fuel cell without being consumed by the fuel cell to heat the reforming portion;
An exhaust gas passage formed between the combustion cylinder and the inner cylinder, through which combustion exhaust gas generated in the burner portion passes ,
An evaporation section having a spiral passage formed between the inner cylinder and the first cylinder section, to which hydrocarbon fuel and water are supplied and to generate the mixed gas by heat from the exhaust gas passage When,
The carbon monoxide wound spirally around the outer surface of the outer cylinder through the carbon monoxide removal portion along the bottom surface of the passage, and deprived of heat along the spiral passage by the water hydrogen production apparatus for chromatic and a heater for heating the low-temperature range of the removing unit.
JP2009126083A 2009-05-26 2009-05-26 Hydrogen production equipment Expired - Fee Related JP5428531B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009126083A JP5428531B2 (en) 2009-05-26 2009-05-26 Hydrogen production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009126083A JP5428531B2 (en) 2009-05-26 2009-05-26 Hydrogen production equipment

Publications (2)

Publication Number Publication Date
JP2010275117A JP2010275117A (en) 2010-12-09
JP5428531B2 true JP5428531B2 (en) 2014-02-26

Family

ID=43422443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009126083A Expired - Fee Related JP5428531B2 (en) 2009-05-26 2009-05-26 Hydrogen production equipment

Country Status (1)

Country Link
JP (1) JP5428531B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101830954B1 (en) * 2016-06-08 2018-04-04 한국에너지기술연구원 Hydrogen production system including unit for removal of carbon monoxide
KR101841188B1 (en) * 2016-07-19 2018-03-23 (주)신넥앤테크 Fuel Processor for PEMFC with excellent reaction efficiency
KR102005715B1 (en) * 2017-11-22 2019-08-01 한국에너지기술연구원 Hydrogen production reactor including feed preheating part

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4588224B2 (en) * 2001-01-12 2010-11-24 東京瓦斯株式会社 CO converter in reforming system for fuel cell
JP2003187849A (en) * 2001-12-13 2003-07-04 Fuji Electric Co Ltd Solid polymer fuel cell power generator
JP2004142985A (en) * 2002-10-23 2004-05-20 Kurita Water Ind Ltd Hydrogen discharging device
JP3861077B2 (en) * 2003-06-27 2006-12-20 三菱重工業株式会社 Fuel reformer
JP4932165B2 (en) * 2005-02-14 2012-05-16 東京瓦斯株式会社 Steam reforming system
JP5138986B2 (en) * 2006-06-12 2013-02-06 富士電機株式会社 Hydrogen generator and fuel cell system including the same
JP5063038B2 (en) * 2006-06-15 2012-10-31 Jx日鉱日石エネルギー株式会社 CO remover temperature rising operation method
JP2008189499A (en) * 2007-02-02 2008-08-21 Idemitsu Kosan Co Ltd Reformed gas producing apparatus and fuel cell system
JP2008215595A (en) * 2007-03-08 2008-09-18 Sekisui Chem Co Ltd Electrofusion joint

Also Published As

Publication number Publication date
JP2010275117A (en) 2010-12-09

Similar Documents

Publication Publication Date Title
JP4714023B2 (en) Reformer
JP4870491B2 (en) Fuel reformer
JP5485666B2 (en) Fuel cell system
JP5154272B2 (en) Fuel cell reformer
JP2008266125A (en) Fuel reforming apparatus, method of driving the apparatus and fuel cell system
JP2001155756A (en) Vapor-reforming reactor for fuel cell
JP4870499B2 (en) Hydrogen production apparatus and fuel cell power generation apparatus
JP5428531B2 (en) Hydrogen production equipment
JP6374273B2 (en) Fuel cell module
WO2005077820A1 (en) Fuel reformer
JP2003187849A (en) Solid polymer fuel cell power generator
KR100837679B1 (en) Fuel processor of fuel cell system
JP2007200709A (en) Solid oxide fuel cell stack and its operation method
JP4617966B2 (en) Hydrogen generator
JP5244488B2 (en) Fuel cell reformer
JP5329944B2 (en) Steam reformer for fuel cell
JP2008159373A (en) Hydrogen manufacturing device and fuel cell electric power generation system
JP4480486B2 (en) Fuel cell reformer
JP4319490B2 (en) Liquid hydrocarbon fuel reformer
JP2018104232A (en) Hydrogen production apparatus
KR101316042B1 (en) Integrated Reformer System for a Fuel Cell
KR101250418B1 (en) fuel processor of fuel cell
KR100846715B1 (en) Apparatus for reforming fuel
JP5140361B2 (en) Fuel cell reformer
JP5111040B2 (en) Fuel cell reformer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120313

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131118

R151 Written notification of patent or utility model registration

Ref document number: 5428531

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees