JP4870499B2 - Hydrogen production apparatus and fuel cell power generation apparatus - Google Patents

Hydrogen production apparatus and fuel cell power generation apparatus Download PDF

Info

Publication number
JP4870499B2
JP4870499B2 JP2006241051A JP2006241051A JP4870499B2 JP 4870499 B2 JP4870499 B2 JP 4870499B2 JP 2006241051 A JP2006241051 A JP 2006241051A JP 2006241051 A JP2006241051 A JP 2006241051A JP 4870499 B2 JP4870499 B2 JP 4870499B2
Authority
JP
Japan
Prior art keywords
unit
gas
water
evaporator
carbon monoxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006241051A
Other languages
Japanese (ja)
Other versions
JP2008063171A (en
Inventor
室  直樹
裕二 向井
晃 前西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Electric Works Co Ltd
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd, Matsushita Electric Works Ltd filed Critical Panasonic Corp
Priority to JP2006241051A priority Critical patent/JP4870499B2/en
Publication of JP2008063171A publication Critical patent/JP2008063171A/en
Application granted granted Critical
Publication of JP4870499B2 publication Critical patent/JP4870499B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、都市ガスやLPG等の炭化水素系燃料を原料ガスとして、水素リッチで且つ一酸化炭素を除去した改質ガスを製造する水素製造装置、及び水素製造装置で製造された改質ガスを利用して発電する燃料電池を備えた燃料電池発電装置に関するものである。   The present invention relates to a hydrogen production apparatus for producing a reformed gas that is rich in hydrogen and from which carbon monoxide has been removed using a hydrocarbon-based fuel such as city gas or LPG, and a reformed gas produced by the hydrogen production apparatus. The present invention relates to a fuel cell power generation device including a fuel cell that generates power using the power.

燃料電池発電装置は、水素リッチな改質ガスを製造する水素製造装置と、水素製造装置で製造された改質ガスを利用して発電する燃料電池とを主たる要素として構成されている。   The fuel cell power generation apparatus is mainly composed of a hydrogen production apparatus that produces a hydrogen-rich reformed gas and a fuel cell that generates power using the reformed gas produced by the hydrogen production apparatus.

そして水素製造装置は、都市ガスやLPG等の炭化水素系燃料を原料ガスとし、原料ガスと水とを水蒸気改質反応させることによって、水素を主成分とする改質ガスを生成する改質部と、燃料電池の触媒に対して被毒作用のある一酸化炭素を改質ガス中から除去する一酸化炭素除去部とを備えて形成されている。ここで、燃料電池として固体高分子型燃料電池を用いる場合、改質ガス中に含まれる一酸化炭素濃度は10ppm程度にまで除去する必要があるため、一酸化炭素除去部は、CO変成触媒によるCO水生変成反応で一酸化炭素を0.5%程度まで除去する変成部と、CO選択酸化触媒による選択酸化反応でさらに一酸化炭素を除去してCO濃度を10ppm以下程度にまで低減する選択酸化部の、2段階構成で形成されるのが一般的である。   The hydrogen production apparatus uses a hydrocarbon-based fuel such as city gas or LPG as a raw material gas, and a reforming unit that generates a reformed gas mainly composed of hydrogen by performing a steam reforming reaction between the raw material gas and water. And a carbon monoxide removing unit that removes carbon monoxide having a poisoning action on the catalyst of the fuel cell from the reformed gas. Here, when a polymer electrolyte fuel cell is used as the fuel cell, the carbon monoxide concentration contained in the reformed gas needs to be removed to about 10 ppm. Therefore, the carbon monoxide removal unit is based on a CO conversion catalyst. Selective oxidation that reduces carbon monoxide to about 10 ppm or less by further removing carbon monoxide by selective oxidation reaction using a CO selective oxidation catalyst and removing carbon monoxide by about 0.5% by CO aquatic modification reaction In general, it is formed in a two-stage configuration.

このような水素製造装置としては特許文献1などが提案されており、その一例を図4に示す。図4の装置は、内筒1と外筒2を同心円状に配置した筒体3からなるものであり、内筒1内にバーナ等からなる燃焼部4を設け、燃焼ガスを生成させると共に燃焼ガスを内筒1の内周の燃焼ガス流路5に流すようにしてある。内筒1の外周に沿って予熱蒸発部6が形成してあり、この予熱蒸発部6の下側に改質部8が形成してある。また予備蒸発部6と接して外筒2の内周の上部に一酸化炭素除去部10が設けてあり、この一酸化炭素除去部10は変成部10aと選択酸化部10bとから形成してある。   Patent document 1 etc. are proposed as such a hydrogen production apparatus, An example is shown in FIG. The apparatus shown in FIG. 4 is composed of a cylindrical body 3 in which an inner cylinder 1 and an outer cylinder 2 are arranged concentrically. A combustion section 4 made of a burner or the like is provided in the inner cylinder 1 to generate combustion gas and combustion. Gas is allowed to flow through the combustion gas flow path 5 on the inner periphery of the inner cylinder 1. A preheating evaporation section 6 is formed along the outer periphery of the inner cylinder 1, and a reforming section 8 is formed below the preheating evaporation section 6. Further, a carbon monoxide removing unit 10 is provided in contact with the pre-evaporating unit 6 at the upper part of the inner periphery of the outer cylinder 2, and the carbon monoxide removing unit 10 is formed of a shift conversion unit 10a and a selective oxidation unit 10b. .

そして原料ガスは原料供給部25から、水は水供給部26から、それぞれ予熱蒸発部6に供給されるものであり、燃焼ガス流路5からの加熱と、一酸化炭素除去部10との熱交換による加熱によって、原料ガスと水を加熱すると共に水を蒸発させ、原料ガスと水蒸気との混合ガスが予熱蒸発部6で生成される。この混合ガスは改質部8に流入し、改質触媒の作用によって原料ガスと水蒸気が水蒸気改質反応し、水素リッチな改質ガスが生成される。水蒸気改質反応は吸熱反応であるので、改質部8は燃焼ガス流路5からの加熱を受けるようにしてある。次に、改質部8で生成された改質ガスは、熱交換流路27を通して一酸化炭素除去部10に送られる。改質ガスが熱交換流路27を通過する際に、改質部8との間で熱交換がなされる。そして、一酸化炭素除去部10の変成部10aでは、CO変成触媒の作用によるCO水生変成反応によって、改質ガス中の一酸化炭素が除去され、また選択酸化部10bでは、CO選択酸化触媒の作用で空気供給部28から供給される空気中の酸素とCO選択酸化反応して、改質ガス中の一酸化炭素がさらに除去される。このように一酸化炭素除去部10で一酸化炭素が除去された改質ガスは燃料電池14などに供給されるようになっている。   The raw material gas is supplied from the raw material supply unit 25 and the water is supplied from the water supply unit 26 to the preheating evaporation unit 6, and the heating from the combustion gas flow path 5 and the heat from the carbon monoxide removal unit 10 are performed. By the heating by exchange, the raw material gas and water are heated and the water is evaporated, and a mixed gas of the raw material gas and water vapor is generated in the preheating evaporation unit 6. This mixed gas flows into the reforming unit 8, and the raw material gas and steam undergo a steam reforming reaction by the action of the reforming catalyst, and a hydrogen-rich reformed gas is generated. Since the steam reforming reaction is an endothermic reaction, the reforming unit 8 receives heat from the combustion gas flow path 5. Next, the reformed gas generated in the reforming unit 8 is sent to the carbon monoxide removing unit 10 through the heat exchange flow path 27. When the reformed gas passes through the heat exchange flow path 27, heat exchange is performed with the reforming unit 8. In the shift unit 10a of the carbon monoxide removal unit 10, carbon monoxide in the reformed gas is removed by the CO aquatic shift reaction by the action of the CO shift catalyst, and in the selective oxidation unit 10b, the CO selective oxidation catalyst. The carbon in the reformed gas is further removed by the CO selective oxidation reaction with oxygen in the air supplied from the air supply unit 28 by the action. Thus, the reformed gas from which carbon monoxide has been removed by the carbon monoxide removing unit 10 is supplied to the fuel cell 14 and the like.

図4の装置は、改質部8や一酸化炭素除去部10から発生する放熱を熱変換効率高く有効利用するために、改質部8、一酸化炭素除去部10、予熱蒸発部5を同心円上に配置した一体構造になるようにしてあり、また改質部8や一酸化炭素除去部10の温度を反応に適した温度にするために、燃焼ガス流路5を内筒1の内側に、熱交換流路27を改質部8の外側に配置するようにしてある。
特開2001−180911号公報
In the apparatus of FIG. 4, the reforming unit 8, the carbon monoxide removal unit 10, and the preheating evaporation unit 5 are concentrically used in order to effectively use the heat generated from the reforming unit 8 and the carbon monoxide removal unit 10 with high heat conversion efficiency. The combustion gas flow path 5 is arranged inside the inner cylinder 1 so that the temperature of the reforming section 8 and the carbon monoxide removal section 10 is set to a temperature suitable for the reaction. The heat exchange flow path 27 is arranged outside the reforming unit 8.
JP 2001-180911 A

しかし、燃料電池の反応負荷に伴って、原料供給部25や水供給部26から予熱蒸発部6に供給される原料ガスの量や水の量が変動する場合、予熱蒸発部6内での原料ガスと水蒸気との混合状態や温度が変動し、この原料ガスと水蒸気が流入する改質部8の触媒温度が不安定になり、また予熱蒸発部6と一酸化炭素除去部10との間の伝熱過多あるいは伝熱不足によって、一酸化炭素除去部10の触媒温度が不安定になり、この結果、改質部8での改質反応のメタン転化率低下し、また一酸化炭素除去部10での改質ガス中の一酸化炭素除去能力が低下するおそれがある。   However, when the amount of raw material gas or the amount of water supplied from the raw material supply unit 25 or the water supply unit 26 to the preheating evaporation unit 6 varies with the reaction load of the fuel cell, the raw material in the preheating evaporation unit 6 The mixing state and temperature of the gas and water vapor vary, the catalyst temperature of the reforming unit 8 into which the raw material gas and water vapor flow becomes unstable, and between the preheating evaporation unit 6 and the carbon monoxide removal unit 10. Due to excessive heat transfer or insufficient heat transfer, the catalyst temperature of the carbon monoxide removal unit 10 becomes unstable. As a result, the methane conversion rate of the reforming reaction in the reforming unit 8 decreases, and the carbon monoxide removal unit 10 There is a possibility that the carbon monoxide removing ability in the reformed gas at the time may decrease.

特に、予熱蒸発部6に供給される原料ガスの量や水の量が最大量の場合には、予熱蒸発部6内で水が完全に水蒸気に蒸発せず、水のまま改質部8に流入することになる。従ってこの場合には、水によって改質部8が冷却されて触媒温度が低くなり、また改質部8から出る改質ガスの温度も低くなって、この改質ガスが流入する一酸化炭素除去部10の温度がCO変成反応に適した温度よりも低くなり、この結果、改質部8での改質反応の能力や、一酸化炭素除去部10での一酸化炭素の除去能力が低下することになるという問題があった。   In particular, when the amount of raw material gas or water supplied to the preheating evaporation unit 6 is the maximum amount, the water does not completely evaporate in the preheating evaporation unit 6 and remains in the reforming unit 8 as water. Will flow in. Therefore, in this case, the reforming section 8 is cooled by water, the catalyst temperature is lowered, and the temperature of the reformed gas exiting the reforming section 8 is also lowered, so that the carbon monoxide from which the reformed gas flows is removed. The temperature of the section 10 becomes lower than the temperature suitable for the CO shift reaction, and as a result, the capacity of the reforming reaction in the reforming section 8 and the capacity of removing carbon monoxide in the carbon monoxide removing section 10 are lowered. There was a problem of becoming.

また逆に、予熱蒸発部6に供給される原料ガスの量や水の量が最小量の場合には、水は予熱蒸発部6内で過熱されて高温の過熱蒸気となり、この高温の蒸気が流入する改質部8の触媒温度が高くなり過ぎ、また予熱蒸発部6と熱交換される一酸化炭素除去部10の入口温度が300℃を超えてCO変成反応に適さない触媒温度になり、この場合も改質部8での改質反応の能力や、一酸化炭素除去部10での一酸化炭素の除去能力が低下することになるという問題があった。   Conversely, when the amount of raw material gas or water supplied to the preheating evaporator 6 is a minimum amount, the water is superheated in the preheating evaporator 6 to become high temperature superheated steam, The catalyst temperature of the reforming section 8 that flows in becomes too high, and the inlet temperature of the carbon monoxide removal section 10 that exchanges heat with the preheating evaporation section 6 exceeds 300 ° C., resulting in a catalyst temperature that is not suitable for the CO shift reaction. In this case as well, there is a problem that the ability of the reforming reaction in the reforming unit 8 and the ability of removing carbon monoxide in the carbon monoxide removing unit 10 are reduced.

本発明は上記の点に鑑みてなされたものであり、予熱蒸発部に供給される原料ガスや水の量が変動しても、改質部に流入する前の原料ガスと水蒸気の状態を安定させることができると共に、改質部や一酸化炭素除去部の温度を適正に保つことができ、水素リッチで且つ一酸化炭素を除去した改質ガスを安定して製造することができる水素製造装置を提供することを目的とするものである。   The present invention has been made in view of the above points, and even if the amount of raw material gas and water supplied to the preheating evaporation unit varies, the state of the raw material gas and water vapor before flowing into the reforming unit is stabilized. Production apparatus capable of maintaining the temperature of the reforming section and the carbon monoxide removal section appropriately and stably producing the reformed gas rich in hydrogen and from which carbon monoxide is removed Is intended to provide.

本発明の請求項1に係る水素製造装置は、内筒1と外筒2を備えた筒体3と、内筒1の内周に沿って設けられ燃焼部4で発生した燃焼ガスが流れる燃焼ガス流路5と、内筒1と外筒2の間において内筒1に沿って配置され、原料ガスと水とが供給されると共に、燃焼ガス流路5からの加熱によって水を蒸発させ且つ原料ガスを加熱する予熱蒸発部6と、内筒1と外筒2の間に配置され、改質触媒7を備えて形成されると共に予熱蒸発部6から供給された原料ガスと水蒸気を水蒸気改質反応させて水素を含む改質ガスを生成する改質部8と、内筒1と外筒2の間に配置され、一酸化炭素除去触媒9を備えて形成されると共に改質部8から供給された改質ガス中の一酸化炭素を除去する一酸化炭素除去部10とを具備した水素製造装置であって、予熱蒸発部6を、一酸化炭素除去部10と熱交換可能な位置に配置される第1蒸発部6aと、第1蒸発部6aに連続してその下側に配置され、第1蒸発部6aで未蒸発の水を蒸発させる第2蒸発部6bとから形成し、第2蒸発部6bの側部と下部を囲む隔壁11を設けると共に隔壁11の上部に開口部12を形成し、隔壁11と第2蒸発部6bの外筒1側との間に第1蒸発部6aで蒸発した水蒸気と第2蒸発部6bで蒸発した水蒸気が合流する誘導路13を形成し、開口部12と改質部8の間に、予熱蒸発部6から誘導路13を通して供給され開口部12を通過した原料ガスと水蒸気を流通させて改質部8に供給する混合ガス流路14を形成して成ることを特徴とするものである。   The hydrogen production apparatus according to claim 1 of the present invention includes a cylinder 3 provided with an inner cylinder 1 and an outer cylinder 2, and combustion in which combustion gas provided along the inner periphery of the inner cylinder 1 flows in the combustion section 4. The gas flow path 5 is disposed along the inner cylinder 1 between the inner cylinder 1 and the outer cylinder 2, the raw material gas and water are supplied, and water is evaporated by heating from the combustion gas flow path 5. The preheating evaporator 6 for heating the raw material gas, and the inner gas 1 and the outer tube 2 are disposed between the inner cylinder 1 and the outer cylinder 2 and formed with the reforming catalyst 7. The reformer 8 is formed between the inner cylinder 1 and the outer cylinder 2 and is provided with a carbon monoxide removal catalyst 9, and is formed from the reformer 8. A hydrogen production apparatus comprising a carbon monoxide removal unit 10 for removing carbon monoxide in a supplied reformed gas, The first evaporation unit 6a is disposed below the first evaporation unit 6a, the first evaporation unit 6a is disposed at a position where heat exchange with the carbon monoxide removal unit 10 is possible, and the first evaporation unit 6a. And a partition wall 11 that surrounds the side and the bottom of the second evaporation unit 6b, and an opening 12 is formed above the partition wall 11. A guide path 13 is formed between the second evaporation section 6b and the outer cylinder 1 side where the water vapor evaporated by the first evaporation section 6a and the water vapor evaporated by the second evaporation section 6b merge, and the opening 12 and the reforming section. 8, a mixed gas flow path 14 is formed in which the raw material gas and the water vapor that are supplied from the preheating vaporization section 6 through the induction path 13 and pass through the opening 12 are circulated to be supplied to the reforming section 8. It is what.

この発明によれば、予熱蒸発部6に供給される原料ガスの量や水の量が多く、予熱蒸発部6の第1蒸発部6aで水が完全に蒸発しない場合、未蒸発の水は第2蒸発部6bで蒸発し、第1蒸発部6aで蒸発した水蒸気と第2蒸発部6bで蒸発した水蒸気を誘導路13で合流させて、開口部12から混合ガス流路14を通して水蒸気を改質部8に供給することができると共に、第1蒸発部6aから第2蒸発部6bに流入した未蒸発の水は隔壁11の下部内に滞留し、未蒸発の水が改質部8に流入することを防ぐことができる。また予熱蒸発部6に供給される原料ガスの量や水の量が少なく、予熱蒸発部6の第1蒸発部6aで蒸発した水蒸気が第2蒸発部6bでさらに加熱されて高温の過熱蒸気となった場合、第1蒸発部6aの低温の水蒸気と第2蒸発部6bの高温の過熱蒸気は誘導路13で合流して適温の水蒸気となり、高温の水蒸気が改質部8に流入することを防ぐことができる。さらに、予熱蒸発部6から誘導路13を通して流れる原料ガスと水蒸気が開口部12を通過する際に、流速が高まることによって原料ガスと水蒸気の混合が促進され、均一に混合された混合ガスとして混合ガス流路14から改質部8に供給することができる。   According to the present invention, when the amount of the raw material gas and the amount of water supplied to the preheating evaporator 6 are large and the water does not completely evaporate in the first evaporator 6a of the preheating evaporator 6, The water vapor evaporated in the second evaporator 6b, the water vapor evaporated in the first evaporator 6a and the water vapor evaporated in the second evaporator 6b are merged in the induction path 13, and the water vapor is reformed through the mixed gas channel 14 from the opening 12. In addition to being able to be supplied to the unit 8, the non-evaporated water that has flowed into the second evaporation unit 6 b from the first evaporation unit 6 a stays in the lower part of the partition wall 11, and the non-evaporated water flows into the reforming unit 8. Can be prevented. Further, the amount of the raw material gas and the amount of water supplied to the preheating evaporation unit 6 are small, and the water vapor evaporated in the first evaporation unit 6a of the preheating evaporation unit 6 is further heated in the second evaporation unit 6b to generate high-temperature superheated steam. In this case, the low-temperature steam in the first evaporator 6a and the high-temperature superheated steam in the second evaporator 6b are merged in the induction path 13 to become appropriate-temperature steam, and the high-temperature steam flows into the reforming section 8. Can be prevented. Furthermore, when the raw material gas and water vapor flowing from the preheating evaporator 6 through the induction path 13 pass through the opening 12, the flow velocity is increased to promote the mixing of the raw material gas and the water vapor, and the mixed gas is uniformly mixed. It can be supplied from the gas flow path 14 to the reforming unit 8.

また請求項2の発明は、請求項1において、予熱蒸発部6は、内筒1に沿って周回する螺旋状の流路として形成されていることを特徴とするものである。   The invention of claim 2 is characterized in that, in claim 1, the preheating evaporation section 6 is formed as a spiral flow path that circulates along the inner cylinder 1.

この発明によれば、予熱蒸発部6を螺旋状の長い流路として形成することができ、燃料ガスと水を蒸発させた水蒸気との混合効率を高めることができる。   According to this invention, the preheating evaporation part 6 can be formed as a spiral long flow path, and the mixing efficiency of fuel gas and the water vapor | steam which evaporated water can be improved.

また請求項3の発明は、請求項1又は2において、第2蒸発部6bに良熱伝導体15を充填したことを特徴とするものである。   The invention of claim 3 is characterized in that, in claim 1 or 2, the second evaporator 6b is filled with the good heat conductor 15.

この発明によれば、第1蒸発部6aから第2蒸発部6bに流入した未蒸発の水の加熱を、良熱伝導体15によって効率よく行なうことができ、第2蒸発部6bでの未蒸発の水の蒸発効率を高めることができる。   According to the present invention, the non-evaporated water that has flowed into the second evaporation unit 6b from the first evaporation unit 6a can be efficiently heated by the good heat conductor 15, and the non-evaporation in the second evaporation unit 6b. The evaporation efficiency of water can be increased.

また請求項4の発明は、請求項1乃至3のいずれかにおいて、改質部8で生成された改質ガスを流通させて一酸化炭素除去部10に供給する改質ガス流路16と、上記混合ガス流路14とを、熱交換可能な隣接位置に配置したことを特徴とするものである。   According to a fourth aspect of the present invention, in any one of the first to third aspects, the reformed gas flow path 16 that circulates the reformed gas generated in the reforming section 8 and supplies the reformed gas to the carbon monoxide removing section 10; The mixed gas flow path 14 is arranged at an adjacent position where heat exchange is possible.

この発明によれば、改質ガス流路16と混合ガス流路14との間の熱交換で、改質部8から一酸化炭素除去部10に供給される改質ガスを適正な温度に調整することができる。   According to the present invention, the reformed gas supplied from the reforming unit 8 to the carbon monoxide removing unit 10 is adjusted to an appropriate temperature by heat exchange between the reformed gas channel 16 and the mixed gas channel 14. can do.

また請求項5の発明は、請求項1乃至4のいずれかにおいて、上記開口部12に温度検出器17を設け、開口部12の温度を所定の一定温度に保持しながら燃焼部4の燃焼を制御して、上記第2蒸発部6bに滞留する未蒸発の水を蒸発させるようにしたことを特徴とするものである。   According to a fifth aspect of the present invention, in any one of the first to fourth aspects, the temperature detector 17 is provided in the opening 12, and combustion of the combustion section 4 is performed while maintaining the temperature of the opening 12 at a predetermined constant temperature. This is characterized in that the non-evaporated water staying in the second evaporator 6b is evaporated by being controlled.

この発明によれば、開口部12を通過する水蒸気の温度が所定温度を超えない範囲で燃焼部4の燃焼量を高めて、第2蒸発部6bに滞留する未蒸発の水の蒸発を促進することができるものである。   According to the present invention, the combustion amount of the combustion unit 4 is increased in a range where the temperature of the water vapor passing through the opening 12 does not exceed the predetermined temperature, and the evaporation of unevaporated water staying in the second evaporation unit 6b is promoted. It is something that can be done.

また請求項6の発明は、請求項1乃至5のいずれかにおいて、予熱蒸発部6で水を加熱して蒸発させるにあたって、第1蒸発部6aから第2蒸発部6bへ、水は水相と気相の二相の流れで送られるようにしたことを特徴とするものである。   Further, in the invention of claim 6, in any one of claims 1 to 5, when water is heated and evaporated in the preheating evaporator 6, the water is separated from the first evaporator 6 a to the second evaporator 6 b. It is characterized by being sent in a gas-phase two-phase flow.

この発明によれば、予熱蒸発部6に供給された水は、第1蒸発部6aで一部の水が蒸発し、第2蒸発部6bで残りの水が蒸発するものであり、第2蒸発部6bで高温の過熱蒸気となることを抑制することができ、第1蒸発部6aからの水蒸気と第2蒸発部6bからの水蒸気を誘導路13で合流させて適温の水蒸気として開口部12から改質部8に供給することができる。   According to the present invention, the water supplied to the preheating evaporator 6 is such that part of the water evaporates in the first evaporator 6a and the remaining water evaporates in the second evaporator 6b. It is possible to suppress the formation of high-temperature superheated steam at the part 6b, and the steam from the first evaporation part 6a and the steam from the second evaporation part 6b are merged in the induction path 13 to form steam at an appropriate temperature from the opening 12 It can be supplied to the reforming unit 8.

本発明に係る請求項7の燃料電池発電装置は、請求項1乃至6のいずれか1項に記載の水素製造装置と、この水素製造装置から供給される改質ガスと酸素を含む酸化ガスを用いて発電する燃料電池18とを備えて成ることを特徴とするものである。   According to a seventh aspect of the present invention, there is provided a fuel cell power generation apparatus comprising: the hydrogen production apparatus according to any one of the first to sixth aspects; the reformed gas supplied from the hydrogen production apparatus; and an oxidizing gas containing oxygen. And a fuel cell 18 that generates electric power by using the fuel cell.

水素製造装置で製造される改質ガスは、一酸化炭素が安定して除去されているものであり、一酸化炭素による被毒によって劣化されるおそれなく、燃料電池18で発電を行なうことができるものである。   The reformed gas produced by the hydrogen production apparatus is one in which carbon monoxide is stably removed, and power generation can be performed by the fuel cell 18 without fear of deterioration due to poisoning by carbon monoxide. Is.

本発明によれば、予熱蒸発部6に供給される原料ガスの量や水の量が多く、予熱蒸発部6の第1蒸発部6aで水が完全に蒸発しない場合、未蒸発の水は第2蒸発部6bで蒸発し、第1蒸発部6aで蒸発した水蒸気と第2蒸発部6bで蒸発した水蒸気を誘導路13で合流させて、開口部12から混合ガス流路14を通して水蒸気を改質部8に供給することができると共に、第1蒸発部6aから第2蒸発部6bに流入した未蒸発の水は隔壁11の下部(底部)11a内に滞留し、未蒸発の水が改質部8に流入することを防ぐことができるものであり、また予熱蒸発部6に供給される原料ガスの量や水の量が少なく、予熱蒸発部6の第1蒸発部6aで蒸発した水蒸気が第2蒸発部6bでさらに加熱されて高温の過熱蒸気となった場合、第1蒸発部6aの低温の水蒸気と第2蒸発部6bの高温の過熱蒸気は誘導路13で合流して適温の水蒸気となり、高温の水蒸気が改質部8に流入することを防ぐことができるものである。さらに、予熱蒸発部6から誘導路13を通して流れる原料ガスと水蒸気が開口部12を通過する際に、流速が高まることによって原料ガスと水蒸気の混合が促進され、均一に混合された混合ガスとして混合ガス流路14から改質部8に供給することができるものである。この結果、予熱蒸発部6に供給される原料ガスや水の量が変動しても、改質部8に流入する前の原料ガスと水蒸気の状態を安定させることができると共に、改質部8や一酸化炭素除去部10の温度を適正に保つことができ、水素リッチで且つ一酸化炭素を除去した改質ガスを安定して製造することができるものである。   According to the present invention, when the amount of raw material gas and the amount of water supplied to the preheating evaporator 6 are large and the water does not completely evaporate in the first evaporator 6a of the preheating evaporator 6, The water vapor evaporated in the second evaporator 6b, the water vapor evaporated in the first evaporator 6a and the water vapor evaporated in the second evaporator 6b are merged in the induction path 13, and the water vapor is reformed through the mixed gas channel 14 from the opening 12. The non-evaporated water flowing into the second evaporation unit 6b from the first evaporation unit 6a stays in the lower part (bottom part) 11a of the partition wall 11, and the unevaporated water is supplied to the reforming unit. 8, the amount of raw material gas and water supplied to the preheating evaporator 6 are small, and the water vapor evaporated in the first evaporator 6 a of the preheat evaporator 6 is the first. When the second evaporator 6b is further heated to become high-temperature superheated steam, the first evaporator 6 The low temperature steam and high-temperature superheated steam of the second evaporator section 6b becomes steam TEMPERATURE merges with taxiway 13, in which it is possible to prevent the high-temperature steam flows into the reformer 8. Furthermore, when the raw material gas and water vapor flowing from the preheating evaporator 6 through the induction path 13 pass through the opening 12, the flow velocity is increased to promote the mixing of the raw material gas and the water vapor, and the mixed gas is uniformly mixed. The gas can be supplied from the gas flow path 14 to the reforming unit 8. As a result, even if the amount of the raw material gas and water supplied to the preheating evaporation unit 6 fluctuates, the state of the raw material gas and water vapor before flowing into the reforming unit 8 can be stabilized, and the reforming unit 8 In addition, the temperature of the carbon monoxide removal unit 10 can be maintained appropriately, and the reformed gas that is rich in hydrogen and from which carbon monoxide has been removed can be stably produced.

以下、本発明を実施するための最良の形態を説明する。   Hereinafter, the best mode for carrying out the present invention will be described.

図1は本発明の実施の形態の一例を示すものであり、装置の筐体となる筒体3は円筒形の内筒1と外筒2とを軸方向を縦にした同心円状に配置して形成してある。この筒体3において内筒1と外筒2の間の筒状空間の上下端は閉塞してある。内筒1の内周の中央部にはバーナからなる燃焼部4が設けてあり、燃焼用ファン31から燃焼用空気を送風するようにしてある。燃焼部4と内筒1の間には、内筒1の内周に沿って燃焼ガス流路5が形成してあり、燃焼部4で燃焼した燃焼ガスが燃焼ガス流路5に沿って流れるようにしてある。   FIG. 1 shows an example of an embodiment of the present invention. A cylindrical body 3 serving as a casing of the apparatus has a cylindrical inner cylinder 1 and an outer cylinder 2 arranged concentrically with the axial direction vertical. Formed. In this cylindrical body 3, the upper and lower ends of the cylindrical space between the inner cylinder 1 and the outer cylinder 2 are closed. A combustion part 4 made of a burner is provided at the center of the inner circumference of the inner cylinder 1, and combustion air is blown from a combustion fan 31. A combustion gas flow path 5 is formed between the combustion section 4 and the inner cylinder 1 along the inner periphery of the inner cylinder 1, and the combustion gas burned in the combustion section 4 flows along the combustion gas flow path 5. It is like that.

内筒1と外筒2の間の筒状空間の上部には、内筒1側に予熱蒸発部6が、外筒2側に一酸化炭素除去部10がそれぞれ同心状に設けてある。予熱蒸発部6は内筒1の外面に沿って円筒状空間として形成されるものであり、一酸化炭素除去部10は予熱蒸発部6の外面に接した円筒状に形成されるものである。予熱蒸発部6の上端部には原料ガス供給部25と水供給部26が接続してある。また予熱蒸発部6の下端より下側には改質部8が設けてある。改質部8は内筒1の内面に接した円筒状に形成されるものである。   In the upper part of the cylindrical space between the inner cylinder 1 and the outer cylinder 2, a preheating evaporator 6 is provided on the inner cylinder 1 side, and a carbon monoxide removing part 10 is provided concentrically on the outer cylinder 2 side. The preheating evaporation unit 6 is formed as a cylindrical space along the outer surface of the inner cylinder 1, and the carbon monoxide removal unit 10 is formed in a cylindrical shape in contact with the outer surface of the preheating evaporation unit 6. A source gas supply unit 25 and a water supply unit 26 are connected to the upper end of the preheating evaporation unit 6. A reforming unit 8 is provided below the lower end of the preheating evaporation unit 6. The reforming part 8 is formed in a cylindrical shape in contact with the inner surface of the inner cylinder 1.

予熱蒸発部6は上部の第1蒸発部6aと下部の第2蒸発部6bから形成されるものである。上部の第1蒸発部6aは一酸化炭素除去部10と接していて、第1蒸発部6aと一酸化炭素除去部10とは相互に熱交換できるようにしてあり、下部の第2蒸発部6bは一酸化炭素除去部10の下端よりも下側に位置するようにしてある。この予熱蒸発部6の筒状空間内には、第1蒸発部6aの上端部から第2蒸発部6bの下端部に至る上下全長に、螺旋状のガイド体33が取り付けてある。ガイド体33は直径が予熱蒸発部6の空間厚みと等しく形成してあり、従って予熱蒸発部6の筒状空間は螺旋状のガイド体33で仕切られ、内筒1の外周に沿って周回するスパイラル状流路として形成されるものである。   The preheating evaporator 6 is formed by an upper first evaporator 6a and a lower second evaporator 6b. The upper first evaporator 6a is in contact with the carbon monoxide remover 10 so that the first evaporator 6a and the carbon monoxide remover 10 can exchange heat with each other, and the lower second evaporator 6b. Is positioned below the lower end of the carbon monoxide removal unit 10. In the cylindrical space of the preheating evaporator 6, a spiral guide body 33 is attached to the entire length from the upper end of the first evaporator 6a to the lower end of the second evaporator 6b. The guide body 33 is formed to have a diameter equal to the space thickness of the preheating evaporation section 6, and thus the cylindrical space of the preheating evaporation section 6 is partitioned by the spiral guide body 33 and circulates along the outer periphery of the inner cylinder 1. It is formed as a spiral channel.

第1蒸発部6aは内筒1と一酸化炭素除去部10の間に囲まれているが、第2蒸発部6bは内筒1と隔壁11とで囲むようにしてある。隔壁11は図2に示すように、第2蒸発部6bの外筒3側の側面から下面にかけて断面L字形に形成されるものであり、隔壁11の側部の上端は一酸化炭素除去部10の下端に、隔壁11の下部の内周端は内筒1の外周面にそれぞれ連接してある。隔壁11の側部の上端部には開口部12が開口して設けてある。この開口部12には温度センサーなどの温度検出器17が設けてある。また第1蒸発部6aの外面(一酸化炭素除去部10の内面でもある)と面一に延長するように、隔壁11の内側に仕切り板35を設け、隔壁11と内筒1との間の隔壁11内の空間を内側の第2蒸発部6bと外側の誘導路13とに仕切るようにしてある。誘導路13は第2蒸発部6bを囲む円筒状空間として形成されるものであり、仕切り板35には上下複数個所において連通口36が開口してある。   The first evaporator 6 a is surrounded by the inner cylinder 1 and the carbon monoxide removing unit 10, but the second evaporator 6 b is surrounded by the inner cylinder 1 and the partition wall 11. As shown in FIG. 2, the partition wall 11 is formed in an L-shaped cross section from the side surface on the outer cylinder 3 side of the second evaporator 6 b to the bottom surface, and the upper end of the side portion of the partition wall 11 is the carbon monoxide removal unit 10. The inner peripheral end of the lower part of the partition wall 11 is connected to the outer peripheral surface of the inner cylinder 1 at the lower end of the inner cylinder 1. An opening 12 is opened at the upper end of the side of the partition wall 11. The opening 12 is provided with a temperature detector 17 such as a temperature sensor. Further, a partition plate 35 is provided on the inner side of the partition wall 11 so as to extend flush with the outer surface of the first evaporation unit 6a (also the inner surface of the carbon monoxide removal unit 10), and between the partition wall 11 and the inner cylinder 1. A space in the partition wall 11 is divided into an inner second evaporator 6b and an outer guide path 13. The guide path 13 is formed as a cylindrical space surrounding the second evaporator 6b, and the partition plate 35 has communication ports 36 opened at a plurality of positions on the upper and lower sides.

改質部8の外周面の上端と一酸化炭素除去部10の下面の間には、隔壁11の外側において、内筒1及び外筒2と平行な円筒状の熱交換板38が取り付けてあり、熱交換板38と隔壁11との間に混合ガス流路14が、熱交換板38と外筒2との間に改質ガス流路16がそれぞれ形成されるようにしてある。混合ガス流路14は、隔壁11の開口部12と改質部8の上端の流入口39とを繋ぐ流路であり、改質ガス流路16は改質部8の外周下部に設けた流出口40と一酸化炭素除去部10の下端の流入口41とを繋ぐ流路である。   Between the upper end of the outer peripheral surface of the reforming unit 8 and the lower surface of the carbon monoxide removing unit 10, a cylindrical heat exchange plate 38 parallel to the inner cylinder 1 and the outer cylinder 2 is attached outside the partition wall 11. The mixed gas flow path 14 is formed between the heat exchange plate 38 and the partition wall 11, and the reformed gas flow path 16 is formed between the heat exchange plate 38 and the outer cylinder 2. The mixed gas channel 14 is a channel that connects the opening 12 of the partition wall 11 and the inlet 39 at the upper end of the reforming unit 8, and the reformed gas channel 16 is a flow provided at the lower periphery of the reforming unit 8. It is a flow path connecting the outlet 40 and the inlet 41 at the lower end of the carbon monoxide removing unit 10.

改質部8は改質触媒7を充填して形成されるものである。また一酸化炭素除去部10は、一酸化炭素除去触媒9としてCO変成触媒を充填した変成部10aと、一酸化炭素除去触媒9としてCO選択酸化触媒を充填した選択酸化部10bとの2段構成で形成してある。改質ガスの流れ方向で変成部10aが前段、選択酸化部10bが後段となるように、変成部10aを下側に、選択酸化部10bを上側に配置してあり、変成部10aと選択酸化部10bの間に空気供給部28から空気が供給されるようにしてある。一酸化炭素除去部10の上端部の出口は燃料電池18に接続してある。   The reforming section 8 is formed by filling the reforming catalyst 7. Further, the carbon monoxide removal unit 10 has a two-stage configuration of a conversion unit 10a filled with a CO conversion catalyst as the carbon monoxide removal catalyst 9 and a selective oxidation unit 10b filled with a CO selective oxidation catalyst as the carbon monoxide removal catalyst 9. It is formed with. The transformation unit 10a is disposed on the lower side and the selective oxidation unit 10b is disposed on the upper side so that the transformation unit 10a is the former stage and the selective oxidation unit 10b is the latter stage in the flow direction of the reformed gas. Air is supplied from the air supply section 28 between the sections 10b. The outlet of the upper end of the carbon monoxide removing unit 10 is connected to the fuel cell 18.

上記のように形成される水素製造装置にあって、予熱蒸発部6は燃焼ガス流路5を流れる燃焼ガスで加熱されており、また水素製造装置を運転開始後は、一酸化炭素除去部10におけるCO変成反応やCO選択酸化反応の反応熱が伝熱して加熱されている。そして原料ガス供給部25から都市ガスやLPG等の炭化水素系の原料ガスが、水供給部26から水がそれぞれ予熱蒸発部6に供給されると、原料ガスと水が予熱蒸発部6の第1蒸発部6aから第2蒸発部6bを通過する間に加熱され、水は蒸発して水蒸気となる。この加熱された原料ガスと水蒸気の混合ガスは仕切り板35の連通口36を通過して誘導路13に流入し、さらに隔壁11の開口部12を通過して混合ガス流路14に流入する。次に原料ガスと水蒸気の混合ガスは混合ガス流路14を流れて流入口39から改質部8に流入し、改質触媒7の触媒作用で原料ガスと水蒸気とが水蒸気改質反応して、水素リッチな改質ガスが生成される。水蒸気改質反応は吸熱反応であるので、燃焼ガス流路5を流れる燃焼ガスで改質部8を加熱するようにしてある。   In the hydrogen production apparatus formed as described above, the preheating evaporation section 6 is heated by the combustion gas flowing through the combustion gas flow path 5, and after the operation of the hydrogen production apparatus is started, the carbon monoxide removal section 10 The reaction heat of the CO shift reaction and CO selective oxidation reaction is transferred and heated. When a hydrocarbon-based source gas such as city gas or LPG is supplied from the source gas supply unit 25 and water is supplied from the water supply unit 26 to the preheating evaporation unit 6, the source gas and water are supplied to the preheating evaporation unit 6. Heat is passed while passing from the first evaporator 6a to the second evaporator 6b, and the water evaporates to become water vapor. The heated mixed gas of raw material gas and water vapor passes through the communication port 36 of the partition plate 35 and flows into the guide path 13, and further passes through the opening 12 of the partition wall 11 and flows into the mixed gas flow path 14. Next, the mixed gas of the raw material gas and the steam flows through the mixed gas flow path 14 and flows into the reforming section 8 from the inlet 39, and the raw material gas and the steam undergo a steam reforming reaction by the catalytic action of the reforming catalyst 7. A hydrogen-rich reformed gas is generated. Since the steam reforming reaction is an endothermic reaction, the reforming unit 8 is heated by the combustion gas flowing through the combustion gas flow path 5.

ここで、改質部8で水蒸気改質反応を適正に行なわせるには、改質部8の改質触媒の温度が適切であることの他に、改質部8に供給される原料ガスと水蒸気の混合が十分であることが必要である。そこで本発明では上記のように、予熱蒸発部6の筒状空間内に第1蒸発部6aの上端部から第2蒸発部6bの下端部に至る螺旋状のガイド体33を設けて、予熱蒸発部6をスパイラル状流路として形成してあり、原料ガスと水蒸気が通過する流路を長くして、原料ガスと水蒸気の混合が十分に行なわれるようにし、原料ガスと水蒸気が均一に混合された混合ガスとして改質部8に供給されるようにしてある。さらに、第1蒸発部6aや第2蒸発部6bから原料ガスや水蒸気を誘導路13に流入させた後、開口部12を通して混合ガス流路14に流出するようにすることによって、誘導路13から開口部12へと原料ガスや水蒸気が通過する際に、流路が絞られて流速が速くなることによる作用で、水蒸気と原料ガスの混合が十分に行なわれるようにし、均一な混合ガスとして混合ガス流路14から改質部8に供給することができるようにしてある。   Here, in order to properly perform the steam reforming reaction in the reforming unit 8, in addition to the temperature of the reforming catalyst in the reforming unit 8 being appropriate, the raw material gas supplied to the reforming unit 8 and It is necessary that the water vapor is sufficiently mixed. Therefore, in the present invention, as described above, the spiral guide body 33 extending from the upper end portion of the first evaporation portion 6a to the lower end portion of the second evaporation portion 6b is provided in the cylindrical space of the preheating evaporation portion 6 so as to preheat evaporation. The portion 6 is formed as a spiral channel, and the channel through which the source gas and water vapor pass is lengthened so that the source gas and water vapor are sufficiently mixed, and the source gas and water vapor are uniformly mixed. The mixed gas is supplied to the reforming unit 8. Further, after the raw material gas and water vapor are allowed to flow from the first evaporation section 6a and the second evaporation section 6b into the induction path 13, and then flow out to the mixed gas flow path 14 through the opening 12, the induction path 13 When the raw material gas or water vapor passes through the opening 12, the flow path is narrowed and the flow velocity is increased, so that the water vapor and the raw material gas are sufficiently mixed, and mixed as a uniform mixed gas. The gas can be supplied from the gas flow path 14 to the reforming unit 8.

改質部8で生成された改質ガスは、改質部8の下端部の流出口40から改質ガス流路16に流出し、改質ガス流路16内を上昇する際に、改質部8と熱交換され、また熱交換板38を通して混合ガス流路14を流れる混合ガスと熱交換され、改質ガスは一酸化炭素除去部10での反応に適した温度に下げられる。   The reformed gas generated in the reforming unit 8 flows out from the outlet 40 at the lower end of the reforming unit 8 to the reformed gas channel 16 and is reformed when rising in the reformed gas channel 16. Heat is exchanged with the part 8 and heat exchange with the mixed gas flowing through the mixed gas flow path 14 through the heat exchange plate 38, and the reformed gas is lowered to a temperature suitable for the reaction in the carbon monoxide removing part 10.

次に改質ガスは一酸化炭素除去部10の変成部10a内に下端部の流入口41から流入し、CO変成反応によって改質ガス中の一酸化炭素が除去される。ここで、変成部10aにおいてCO変成反応に適した温度は、流入口41付近の温度が、改質部8から流出した改質ガスの温度よりも低い200〜250℃であるので、上記のように改質ガスが改質ガス流路16内を流れる際に混合ガス流路14内の混合ガスと熱交換して、200〜250℃まで温度を低下させるようにしているものである。変成部10aで一酸化炭素が除去された改質ガスは、さらに選択酸化部10bに流入し、CO選択酸化触媒の作用で空気供給部28から供給される空気中の酸素とCO選択酸化反応して、改質ガス中の一酸化炭素がさらに除去される。   Next, the reformed gas flows into the shift portion 10a of the carbon monoxide removal portion 10 from the inlet 41 at the lower end, and the carbon monoxide in the reformed gas is removed by the CO shift reaction. Here, the temperature suitable for the CO shift reaction in the shift section 10a is 200 to 250 ° C., where the temperature near the inlet 41 is lower than the temperature of the reformed gas flowing out from the reformer section 8, so that it is as described above. When the reformed gas flows through the reformed gas channel 16, the temperature is lowered to 200 to 250 ° C. by exchanging heat with the mixed gas in the mixed gas channel 14. The reformed gas from which carbon monoxide has been removed in the shift unit 10a further flows into the selective oxidation unit 10b, and undergoes a CO selective oxidation reaction with oxygen in the air supplied from the air supply unit 28 by the action of the CO selective oxidation catalyst. Thus, carbon monoxide in the reformed gas is further removed.

このようにして一酸化炭素除去部10で一酸化炭素が除去された改質ガスは、一酸化炭素除去部10から流出し、燃料電池18に供給される。燃料電池18では、水素製造装置からこのようにして供給される改質ガス中の水素と、空気など酸素を含む酸化ガスとを用いて発電が行なわれるものである。   The reformed gas from which carbon monoxide has been removed by the carbon monoxide removing unit 10 in this way flows out of the carbon monoxide removing unit 10 and is supplied to the fuel cell 18. In the fuel cell 18, power generation is performed using hydrogen in the reformed gas thus supplied from the hydrogen production apparatus and an oxidizing gas containing oxygen such as air.

ここで、上記のように水素製造装置から供給される改質ガスを用いて燃料電池18で発電を行なうにあたって、燃料電池18の反応負荷の変動、つまり改質ガスの消費量の変動に応じて、原料ガス供給部25や水供給部26から予熱蒸発部6に供給される原料ガスの量や水の量が変動する。そして既述のように、予熱蒸発部6に供給される原料ガスの量や水の量が最大量になった場合に、予熱蒸発部6内で水が完全に蒸発せず、水のまま改質部8に流入すると、改質部8が水で冷却されて触媒温度が低くなり、改質部8から出る改質ガスの温度も低くなって、一酸化炭素除去部10の温度がCO変成反応に適した温度よりも低くなるおそれがあり、また逆に、予熱蒸発部6に供給される原料ガスの量や水の量が最小量となった場合には、水は予熱蒸発部6内で過熱されて高温の過熱蒸気となり、改質部8の触媒温度が高くなり過ぎ、また一酸化炭素除去部10も変成温度に適さない触媒温度になり、改質部8での改質反応の能力や、一酸化炭素除去部10での一酸化炭素の除去能力が低下することになる。   Here, when generating power in the fuel cell 18 using the reformed gas supplied from the hydrogen production apparatus as described above, depending on the change in the reaction load of the fuel cell 18, that is, the change in the consumption of the reformed gas. The amount of source gas and the amount of water supplied from the source gas supply unit 25 and the water supply unit 26 to the preheating evaporation unit 6 vary. As described above, when the amount of raw material gas or water supplied to the preheating evaporation unit 6 reaches the maximum amount, the water is not completely evaporated in the preheating evaporation unit 6 and the water is modified. When flowing into the mass part 8, the reforming part 8 is cooled with water, the catalyst temperature is lowered, the temperature of the reformed gas coming out of the reforming part 8 is also lowered, and the temperature of the carbon monoxide removal part 10 is CO-transformed. The temperature may be lower than the temperature suitable for the reaction, and conversely, when the amount of the raw material gas supplied to the preheating evaporation unit 6 or the amount of water becomes the minimum amount, the water is in the preheating evaporation unit 6. Is heated to high temperature superheated steam, the catalyst temperature of the reforming unit 8 becomes too high, and the carbon monoxide removing unit 10 also becomes a catalyst temperature unsuitable for the transformation temperature, and the reforming reaction in the reforming unit 8 The ability and the removal ability of carbon monoxide in the carbon monoxide removal unit 10 are reduced.

そこで本発明は水素製造装置の予熱蒸発部6を上記のような構成に形成したものである。すなわち、予熱蒸発部6に供給される原料ガスの量や水の量が多い場合、水は予熱蒸発部6の第1蒸発部6aで未蒸発であるが、第1蒸発部6aの流路をガイド体33でスパイラル流路に形成して、燃焼ガス流路5及び一酸化炭素除去部10からの伝熱面積を確保するようにしてあるので、水は未蒸発の水相と蒸発した水蒸気の気相との二相になり、この二相状態で第1蒸発部6aのスパイラル流路を流れる。このとき、未蒸発の水はガイド体33の上面に沿って流下し、水蒸気はガイド体33間のスパイラル流路の空間部に沿って流れるものであり、二相流の状態で第1蒸発部6aから第2蒸発部6bへと流入する。このように第1蒸発部6aから第2蒸発部6bへと二相流で流入するので、第1蒸発部6aから出る水蒸気の温度は100℃程度である。   Therefore, the present invention is such that the preheating evaporation section 6 of the hydrogen production apparatus is configured as described above. That is, when the amount of source gas supplied to the preheating evaporator 6 and the amount of water are large, the water is not evaporated in the first evaporator 6a of the preheat evaporator 6, but the flow of the first evaporator 6a is not increased. Since the guide body 33 is formed in a spiral flow path so as to secure a heat transfer area from the combustion gas flow path 5 and the carbon monoxide removal unit 10, water is an unvaporized water phase and evaporated water vapor. It becomes a two-phase with a gas phase, and flows in the spiral flow path of the first evaporator 6a in this two-phase state. At this time, unevaporated water flows down along the upper surface of the guide body 33, and water vapor flows along the space portion of the spiral flow path between the guide bodies 33, and the first evaporation section in a two-phase flow state. It flows into the 2nd evaporation part 6b from 6a. Thus, since the two-phase flow flows from the first evaporator 6a to the second evaporator 6b, the temperature of the water vapor coming out of the first evaporator 6a is about 100 ° C.

そして第1蒸発部6aから第2蒸発部6bへと流入した二相流のうち、未蒸発の水は第2蒸発部6bにおいて燃焼ガス流路5からの加熱によって蒸発し、水蒸気になる。このとき水の供給量が最大量の場合は、第2蒸発部6bでも完全に蒸発しないことがあるが、仮にこのように未蒸発の水があっても、水は隔壁11の下部(底部)11a内に滞留し、水が改質部8に流入することはない。また第1蒸発部6aから第2蒸発部6bへと流入した二相流のうち、水蒸気は第2蒸発部6bで過熱されて150℃以上の過熱蒸気になるが、第1蒸発部6aから直接、連通口36を通って誘導路13に流入する水蒸気と、第2蒸発部6bで蒸発して連通口36を通って誘導路13に流入する水蒸気と、第2蒸発部6bで過熱され連通口36を通って誘導路13に流入するこの過熱蒸気とが、誘導路13内で混合され、150℃程度の適正な温度の水蒸気となって開口部12を通過する。   Of the two-phase flow that flows from the first evaporator 6a to the second evaporator 6b, the water that has not evaporated evaporates by heating from the combustion gas flow path 5 in the second evaporator 6b and becomes water vapor. At this time, when the supply amount of water is the maximum amount, the second evaporation unit 6b may not evaporate completely, but even if there is unevaporated water in this way, the water is below the partition wall 11 (bottom). The water stays in 11a and water does not flow into the reforming section 8. Of the two-phase flow that flows from the first evaporator 6a to the second evaporator 6b, the water vapor is superheated by the second evaporator 6b to become superheated steam at 150 ° C. or more, but directly from the first evaporator 6a. The water vapor that flows into the induction path 13 through the communication port 36, the water vapor that evaporates at the second evaporation unit 6b and flows into the induction path 13 through the communication port 36, and is heated by the second evaporation unit 6b and is connected to the communication port This superheated steam that flows into the induction path 13 through 36 is mixed in the induction path 13 and passes through the opening 12 as water vapor having an appropriate temperature of about 150 ° C.

ここで、開口部12を通過する水蒸気と原料ガスの温度は、改質部8や一酸化炭素除去部10の温度を適正に保つために、例えば150℃程度の所定一定温度に維持されることが必要であるが、予熱蒸発部6に供給される水の量が最大量のように多いときには、第2蒸発部6bでも水が完全に蒸発せず、未蒸発の水が滞留して、開口部12の温度が150℃を下回ることがある。そこで開口部12の温度を温度検出部17で常時監視し、開口部12の温度が150℃を下回るときには、制御部(図示省略)で燃焼部4での燃焼熱量を制御して、燃焼ガス流路5による第2蒸発部6bの加熱温度を高めるように制御し、第2蒸発部6bでの水の蒸発を促進するようにしてある。   Here, the temperature of the water vapor and the raw material gas passing through the opening 12 is maintained at a predetermined constant temperature of, for example, about 150 ° C. in order to keep the temperature of the reforming unit 8 and the carbon monoxide removal unit 10 appropriately. However, when the amount of water supplied to the preheating evaporation unit 6 is as large as the maximum amount, the second evaporation unit 6b does not completely evaporate the water and the unevaporated water stays in the opening. The temperature of the part 12 may be lower than 150 ° C. Therefore, the temperature of the opening 12 is constantly monitored by the temperature detection unit 17, and when the temperature of the opening 12 is lower than 150 ° C., the control unit (not shown) controls the amount of combustion heat in the combustion unit 4, and the combustion gas flow Control is performed so as to increase the heating temperature of the second evaporator 6b through the path 5, and the evaporation of water in the second evaporator 6b is promoted.

第1蒸発部6aや第2蒸発部6bから誘導路13に流入した原料ガスや水蒸気は、開口部12を通過する際に混合され、混合ガスとして混合ガス流路14に送られるが、混合ガス流路14を流れる混合ガスは、改質ガス流路16を流れる改質ガスと熱交換されて加熱される。混合ガス流路14を流れる混合ガスは隔壁11を通して誘導路13内のガスとも熱交換されるが、水の供給量が多い場合は誘導路13内の温度は通常の場合よりも低いので、混合ガスの加熱温度も通常の場合よりやや低くなり、350℃程度の温度の混合ガスとして改質部8に供給される。   The raw material gas and water vapor flowing into the induction path 13 from the first evaporation section 6a and the second evaporation section 6b are mixed when passing through the opening 12, and are sent to the mixed gas flow path 14 as a mixed gas. The mixed gas flowing through the flow path 14 is heated by heat exchange with the reformed gas flowing through the reformed gas flow path 16. The mixed gas flowing in the mixed gas flow path 14 is also heat-exchanged with the gas in the induction path 13 through the partition wall 11, but when the amount of water supplied is large, the temperature in the induction path 13 is lower than in the normal case. The heating temperature of the gas is also slightly lower than usual, and is supplied to the reforming unit 8 as a mixed gas having a temperature of about 350 ° C.

改質部8に供給される混合ガスの温度がこのように350℃程度であると、改質部8で生成されて改質部8の流出口40から出る改質ガスの温度は400℃程度であり、この改質ガスは改質ガス流路16を流れる際に、混合ガス流路14の混合ガスと熱交換されて温度が下がり、200℃程度の温度になって一酸化炭素除去部10に供給される。   When the temperature of the mixed gas supplied to the reforming unit 8 is about 350 ° C., the temperature of the reformed gas generated in the reforming unit 8 and exiting from the outlet 40 of the reforming unit 8 is about 400 ° C. When the reformed gas flows through the reformed gas channel 16, the temperature is lowered by the heat exchange with the mixed gas in the mixed gas channel 14, and the temperature is reduced to about 200 ° C. The carbon monoxide removal unit 10 To be supplied.

一方、予熱蒸発部6に供給される原料ガスの量や水の量が少ない場合、水は第1蒸発部6aを通過する間に全て蒸発されるが、第1蒸発部6aでこの水蒸気が過熱されて過熱水蒸気とならないように、第1蒸発部6aのスパイラル流路の伝熱面積が設定してある。そして上記のように水の供給量が多いときに未蒸発の水を蒸発させるために、第1蒸発部6aに続いて第2蒸発部6bが設けてあるので、第1蒸発部6aで蒸発した水蒸気が第2蒸発部6bに流入すると、燃焼ガス流路5からの加熱で水蒸気は過熱されて過熱蒸気となり、この過熱蒸気は300℃程度の高温になる。このように、第2蒸発部6bで水蒸気は高温の過熱蒸気となって連通口36から誘導路13に流入するが、第1蒸発部6aから直接、連通口36を通って誘導路13に流入する100℃程度の水蒸気と、この過熱蒸気とが誘導路13内で混合され、150℃程度の適正な温度の水蒸気となって開口部12を通過する。ここで、温度検出部17で常時監視されている開口部12の温度が150℃を上回るときには、制御部(図示省略)で燃焼部4での燃焼熱量を制御して、燃焼ガス流路5による第2蒸発部6bの加熱温度を下げるように制御し、開口部12を通過して混合ガス流路14に流入する原料ガスと水蒸気の混合ガスの温度を150℃程度に維持するようにしてある。   On the other hand, when the amount of raw material gas or the amount of water supplied to the preheating evaporator 6 is small, all of the water is evaporated while passing through the first evaporator 6a, but this water vapor is superheated in the first evaporator 6a. The heat transfer area of the spiral flow path of the first evaporator 6a is set so that it does not become superheated steam. In order to evaporate non-evaporated water when the supply amount of water is large as described above, the second evaporation unit 6b is provided after the first evaporation unit 6a, and thus the first evaporation unit 6a has evaporated. When the water vapor flows into the second evaporator 6b, the water vapor is superheated by heating from the combustion gas flow path 5 to become superheated steam, and this superheated steam becomes a high temperature of about 300 ° C. In this way, the water vapor becomes high-temperature superheated steam in the second evaporator 6b and flows into the guide path 13 from the communication port 36, but directly flows into the guide path 13 through the communication port 36 from the first evaporator 6a. The steam having a temperature of about 100 ° C. and the superheated steam are mixed in the induction path 13 to be steam having an appropriate temperature of about 150 ° C. and pass through the opening 12. Here, when the temperature of the opening 12 constantly monitored by the temperature detection unit 17 exceeds 150 ° C., the control unit (not shown) controls the amount of combustion heat in the combustion unit 4, and the combustion gas flow path 5 Control is performed to lower the heating temperature of the second evaporation section 6b, and the temperature of the mixed gas of the raw material gas and water vapor that flows into the mixed gas flow path 14 through the opening 12 is maintained at about 150 ° C. .

第1蒸発部6aや第2蒸発部6bから誘導路13に流入した原料ガスや水蒸気は、開口部12を通過して混合ガスとして混合ガス流路14に送られる。そして混合ガス流路14を流れる混合ガスは、改質ガス流路16を流れる改質ガスと熱交換されて加熱されるが、隔壁11を通して誘導路13内のガスとも熱交換され、水の供給量が少ない場合は誘導路13内の温度は通常の場合よりも高いので、混合ガスの温度も通常の場合よりもやや高くなり、400℃程度の温度の混合ガスとして改質部8に供給される。改質部8に供給される混合ガスの温度がこのように400℃程度であると、改質部8で生成されて改質部8の流出口40から出る改質ガスの温度は450℃程度であり、この改質ガスは改質ガス流路16を流れる際に、混合ガス流路14の混合ガスと熱交換されて温度が下がり、220℃程度の温度になって一酸化炭素除去部10に供給される。   The raw material gas or water vapor that has flowed into the induction path 13 from the first evaporation section 6a or the second evaporation section 6b passes through the opening 12 and is sent to the mixed gas flow path 14 as a mixed gas. The mixed gas flowing in the mixed gas flow path 14 is heated by heat exchange with the reformed gas flowing in the reformed gas flow path 16, but is also heat exchanged with the gas in the induction path 13 through the partition wall 11 to supply water. When the amount is small, the temperature in the guiding path 13 is higher than usual, so the temperature of the mixed gas is slightly higher than usual, and is supplied to the reforming unit 8 as a mixed gas having a temperature of about 400 ° C. The When the temperature of the mixed gas supplied to the reforming unit 8 is about 400 ° C., the temperature of the reformed gas generated in the reforming unit 8 and exiting from the outlet 40 of the reforming unit 8 is about 450 ° C. When the reformed gas flows through the reformed gas channel 16, the temperature is lowered by the heat exchange with the mixed gas in the mixed gas channel 14 to reach a temperature of about 220 ° C., and the carbon monoxide removing unit 10 To be supplied.

上記のように、予熱蒸発部6に供給される原料ガスの量や水の量が変動しても、改質部8に供給される混合ガスの温度は、水の供給量が最大量のときで350℃程度、最小量のときで400℃程度と、水蒸気改質触媒に適した温度範囲内に維持することができるものであり、また一酸化炭素除去部10に供給される改質ガスの温度は、水の供給量が最大量のときで200℃程度、最小量のときで220℃程度と、CO変成触媒に適した温度範囲内に維持することができるものである。従って、予熱蒸発部6に供給される原料ガスの量や水の量が変動しても、改質部8や一酸化炭素除去部10の温度を適正に保って、水素リッチで且つ一酸化炭素を除去した改質ガスを安定して製造することができるものである。そしてこのように改質ガスから一酸化炭素を安定して除去することができるので、一酸化炭素による被毒によって燃料電池18が劣化することを防ぐことができるものである。   As described above, even if the amount of the raw material gas and the amount of water supplied to the preheating evaporation unit 6 fluctuate, the temperature of the mixed gas supplied to the reforming unit 8 is when the supply amount of water is the maximum amount. At about 350 ° C. and at a minimum amount of about 400 ° C., which can be maintained within a temperature range suitable for the steam reforming catalyst, and the reformed gas supplied to the carbon monoxide removal section 10 The temperature can be maintained within a temperature range suitable for the CO shift catalyst, such as about 200 ° C. when the supply amount of water is maximum and about 220 ° C. when the supply amount is minimum. Therefore, even if the amount of the raw material gas or the amount of water supplied to the preheating evaporation unit 6 fluctuates, the temperature of the reforming unit 8 and the carbon monoxide removal unit 10 is maintained appropriately, and is rich in hydrogen and carbon monoxide. The reformed gas from which the gas is removed can be stably produced. Since carbon monoxide can be stably removed from the reformed gas as described above, it is possible to prevent the fuel cell 18 from being deteriorated due to poisoning by carbon monoxide.

図3は本発明の他の実施の形態を示すものであり、第2蒸発部6bに良熱伝導体15が充填してある。予熱蒸発部6への水の供給量が最大量で、第2蒸発部6bに未蒸発の水が滞留する場合、燃焼ガス流路5からの伝熱で第2蒸発部6bに滞留する水を加熱して蒸発させることが必要であるが、このように第2蒸発部6bに良熱伝導体15を充填することによって、良熱伝導体15を介して第2蒸発部6bに滞留する水に効率よく伝熱して加熱することができ、第2蒸発部6bでの水の蒸発効率を高めることができるものである。この良熱伝導体15としては、水蒸気よりも熱伝導率の高いアルミナなどの粒子を用いることができ、図3の実施の形態では、第2蒸発部6bの下部内の他、誘導路13の下部内にも良熱伝導体15の粒子を充填してある。   FIG. 3 shows another embodiment of the present invention, in which a good heat conductor 15 is filled in the second evaporator 6b. In the case where the amount of water supplied to the preheating evaporator 6 is the maximum amount and unevaporated water stays in the second evaporator 6b, the water staying in the second evaporator 6b due to heat transfer from the combustion gas channel 5 is reduced. It is necessary to heat and evaporate, but by filling the second evaporator 6b with the good heat conductor 15 in this way, the water staying in the second evaporator 6b via the good heat conductor 15 can be obtained. Heat can be efficiently transferred and heated, and the evaporation efficiency of water in the second evaporation section 6b can be increased. As this good heat conductor 15, particles such as alumina having a higher thermal conductivity than water vapor can be used. In the embodiment of FIG. 3, in addition to the lower part of the second evaporator 6 b, The lower portion is also filled with particles of the good heat conductor 15.

本発明の実施の形態の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of embodiment of this invention. 同上の一部を拡大した概略断面図である。It is the schematic sectional drawing which expanded a part of the same as the above. 本発明の他の実施の形態の一例を示す一部拡大概略断面図である。It is a partially expanded schematic sectional drawing which shows an example of other embodiment of this invention. 従来例の概略断面図である。It is a schematic sectional drawing of a prior art example.

符号の説明Explanation of symbols

1 内筒
2 外筒
3 筒体
4 燃焼部
5 燃焼ガス流路
6 予熱蒸発部
6a 第1蒸発部
6b 第2蒸発部
7 改質触媒
8 改質部
9 一酸化炭素除去触媒
10 一酸化炭素除去部
11 隔壁
12 開口部
13 誘導路
14 混合ガス流路
15 良熱伝導体
16 改質ガス流路
17 温度検出器
18 燃料電池
DESCRIPTION OF SYMBOLS 1 Inner cylinder 2 Outer cylinder 3 Cylinder 4 Combustion part 5 Combustion gas flow path 6 Preheating evaporation part 6a 1st evaporation part 6b 2nd evaporation part 7 Reforming catalyst 8 Reforming part 9 Carbon monoxide removal catalyst 10 Carbon monoxide removal Part 11 Partition 12 Opening part 13 Guidance path 14 Mixed gas flow path 15 Good heat conductor 16 Reformed gas flow path 17 Temperature detector 18 Fuel cell

Claims (7)

内筒と外筒を備えた筒体と、内筒の内周に沿って設けられ燃焼部で発生した燃焼ガスが流れる燃焼ガス流路と、内筒と外筒の間において内筒に沿って配置され、原料ガスと水とが供給されると共に、燃焼ガス流路からの加熱によって水を蒸発させ且つ原料ガスを加熱する予熱蒸発部と、内筒と外筒の間に配置され、改質触媒を備えて形成されると共に予熱蒸発部から供給された原料ガスと水蒸気を水蒸気改質反応させて水素を含む改質ガスを生成する改質部と、内筒と外筒の間に配置され、一酸化炭素除去触媒を備えて形成されると共に改質部から供給された改質ガス中の一酸化炭素を除去する一酸化炭素除去部とを具備した水素製造装置であって、予熱蒸発部を、一酸化炭素除去部と熱交換可能な位置に配置される第1蒸発部と、第1蒸発部に連続してその下側に配置され、第1蒸発部で未蒸発の水を蒸発させる第2蒸発部とから形成し、第2蒸発部の側部と下部を囲む隔壁を設けると共に隔壁の上部に開口部を形成し、隔壁と第2蒸発部の外筒側との間に第1蒸発部で蒸発した水蒸気と第2蒸発部で蒸発した水蒸気が合流する誘導路を形成し、開口部と改質部の間に、予熱蒸発部から誘導路を通して供給され開口部を通過した原料ガスと水蒸気を流通させて改質部に供給する混合ガス流路を形成して成ることを特徴とする水素製造装置。   A cylinder having an inner cylinder and an outer cylinder, a combustion gas flow path through which combustion gas generated along the inner circumference of the inner cylinder flows, and an inner cylinder between the inner cylinder and the outer cylinder Is disposed between the inner cylinder and the outer cylinder, and is reformed by supplying a raw material gas and water, evaporating water by heating from the combustion gas flow path, and heating the raw material gas A reformer that is formed with a catalyst and that undergoes a steam reforming reaction between the raw material gas supplied from the preheating evaporation unit and water vapor to produce a reformed gas containing hydrogen, and is disposed between the inner cylinder and the outer cylinder A hydrogen production apparatus comprising a carbon monoxide removal unit that is formed with a carbon monoxide removal catalyst and removes carbon monoxide in the reformed gas supplied from the reforming unit, the preheating evaporation unit A first evaporator disposed at a position where heat exchange is possible with the carbon monoxide remover, and a first evaporator And a second evaporating unit that is disposed below the first evaporating unit and evaporates water that has not been evaporated in the first evaporating unit, and includes a partition wall that surrounds the side and the lower portion of the second evaporating unit, and an upper portion of the partition wall An opening is formed, and a guide path is formed between the partition wall and the outer cylinder side of the second evaporator, where the water vapor evaporated in the first evaporator and the water vapor evaporated in the second evaporator merge. A hydrogen gas characterized in that a mixed gas flow path is formed between the reforming sections and supplied to the reforming section by circulating the raw material gas and the steam supplied from the preheating evaporation section through the induction path and passing through the opening. Manufacturing equipment. 予熱蒸発部は、内筒に沿って周回する螺旋状の流路として形成されていることを特徴とする請求項1に記載の水素製造装置。   The hydrogen production apparatus according to claim 1, wherein the preheating evaporation unit is formed as a spiral flow path that circulates along the inner cylinder. 第2蒸発部に良熱伝導体を充填したことを特徴とする請求項1又は2に記載の水素製造装置。   The hydrogen production apparatus according to claim 1 or 2, wherein the second evaporation section is filled with a good heat conductor. 改質部で生成された改質ガスを流通させて一酸化炭素除去部に供給する改質ガス流路と、上記混合ガス流路とを、熱交換可能な隣接位置に配置したことを特徴とする請求項1乃至3のいずれかに記載の水素製造装置。   The reformed gas flow path for supplying the reformed gas generated in the reforming section and supplying it to the carbon monoxide removal section, and the mixed gas flow path are arranged at adjacent positions where heat exchange is possible. The hydrogen production apparatus according to any one of claims 1 to 3. 上記開口部に温度検出器を設け、開口部の温度を所定の一定温度に保持しながら燃焼部の燃焼を制御して、上記第2蒸発部に滞留する未蒸発の水を蒸発させるようにしたことを特徴とする請求項1乃至4のいずれかに記載の水素製造装置。   A temperature detector is provided in the opening, and the combustion of the combustion part is controlled while maintaining the temperature of the opening at a predetermined constant temperature, so that the non-evaporated water staying in the second evaporation part is evaporated. The hydrogen production apparatus according to any one of claims 1 to 4, wherein: 予熱蒸発部で水を加熱して蒸発させるにあたって、第1蒸発部から第2蒸発部へ、水は水相と気相の二相の流れで送られるようにしたことを特徴とする請求項1乃至5のいずれかに記載の水素製造装置。   2. When water is heated and evaporated in the preheating evaporation unit, the water is sent from the first evaporation unit to the second evaporation unit in a two-phase flow of an aqueous phase and a gas phase. The hydrogen production apparatus in any one of thru | or 5. 請求項1乃至6のいずれか1項に記載の水素製造装置と、この水素製造装置から供給される改質ガスと酸素を含む酸化ガスとを用いて発電する燃料電池を備えて成ることを特徴とする燃料電池発電装置。   A hydrogen production apparatus according to any one of claims 1 to 6, and a fuel cell that generates electricity using the reformed gas supplied from the hydrogen production apparatus and an oxidizing gas containing oxygen. A fuel cell power generator.
JP2006241051A 2006-09-06 2006-09-06 Hydrogen production apparatus and fuel cell power generation apparatus Active JP4870499B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006241051A JP4870499B2 (en) 2006-09-06 2006-09-06 Hydrogen production apparatus and fuel cell power generation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006241051A JP4870499B2 (en) 2006-09-06 2006-09-06 Hydrogen production apparatus and fuel cell power generation apparatus

Publications (2)

Publication Number Publication Date
JP2008063171A JP2008063171A (en) 2008-03-21
JP4870499B2 true JP4870499B2 (en) 2012-02-08

Family

ID=39286194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006241051A Active JP4870499B2 (en) 2006-09-06 2006-09-06 Hydrogen production apparatus and fuel cell power generation apparatus

Country Status (1)

Country Link
JP (1) JP4870499B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2615058B1 (en) * 2008-05-15 2015-11-04 Panasonic Intellectual Property Management Co., Ltd. Hydrogen generator and fuel cell power generator
US20110117461A1 (en) 2008-07-25 2011-05-19 Panasonic Corporation Hydrogen generation device and fuel cell system provided therewith
JP5263030B2 (en) * 2009-06-25 2013-08-14 パナソニック株式会社 Hydrogen generator
JP5371013B2 (en) * 2010-03-02 2013-12-18 東京瓦斯株式会社 Multi-cylinder steam reformer
RU2012142177A (en) * 2010-03-04 2014-04-10 Панасоник Корпорэйшн DEVICE FOR HYDROGEN PRODUCTION AND ENERGY PRODUCTION SYSTEM BASED ON FUEL ELEMENT
JP6437791B2 (en) * 2014-11-07 2018-12-12 フタバ産業株式会社 Fuel reformer
JP6361468B2 (en) * 2014-11-10 2018-07-25 株式会社デンソー Fuel cell device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3808743B2 (en) * 2000-10-10 2006-08-16 東京瓦斯株式会社 Single tube cylindrical reformer
JP2004149402A (en) * 2002-10-10 2004-05-27 Matsushita Electric Ind Co Ltd Hydrogen generator and fuel cell system having the same
JP4233903B2 (en) * 2003-03-24 2009-03-04 パナソニック株式会社 Hydrogen generator, fuel cell system using the same, and method for generating hydrogen
JP2005022908A (en) * 2003-06-30 2005-01-27 Toshiba International Fuel Cells Corp Fuel reforming apparatus
JP4762496B2 (en) * 2004-01-06 2011-08-31 東京瓦斯株式会社 Catalytic reactor
JP2005306658A (en) * 2004-04-21 2005-11-04 Matsushita Electric Ind Co Ltd Hydrogen producing apparatus
JP4009285B2 (en) * 2004-11-24 2007-11-14 アイシン精機株式会社 Reformer

Also Published As

Publication number Publication date
JP2008063171A (en) 2008-03-21

Similar Documents

Publication Publication Date Title
JP4870499B2 (en) Hydrogen production apparatus and fuel cell power generation apparatus
WO2008029755A1 (en) Hydrogen generating apparatus and fuel cell system
JP5154272B2 (en) Fuel cell reformer
JP2007015911A (en) Fuel reforming apparatus
JP5848197B2 (en) Fuel cell module
JP5020002B2 (en) Hydrogen generator and fuel cell system
KR20130004320A (en) Hydrogen generator and fuel cell power generation system
JP5057938B2 (en) Hydrogen generator and fuel cell system provided with the same
JP2005015292A (en) Fuel reformer
JP5600460B2 (en) Hydrogen production apparatus and fuel cell system
JP2010024075A (en) Combustion device and fuel reforming apparatus
JP5371013B2 (en) Multi-cylinder steam reformer
JP2003187849A (en) Solid polymer fuel cell power generator
JP5428531B2 (en) Hydrogen production equipment
JP2008230888A (en) Fuel reforming apparatus and its operating method
KR101250418B1 (en) fuel processor of fuel cell
JP5344935B2 (en) Hydrogen generator
JP2004175637A (en) Co remover and hydrogen production apparatus
JP5140361B2 (en) Fuel cell reformer
JP2005216615A (en) Fuel processing device and fuel cell power generation system
JP3789677B2 (en) Fuel cell reformer
JP5057910B2 (en) Hydrogen generator and its startup method
JP2005255458A (en) Hydrogen production apparatus and fuel cell system
JP2011207727A (en) Hydrogen producing apparatus and fuel cell system
JP5263030B2 (en) Hydrogen generator

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090430

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090507

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090507

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111025

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111117

R150 Certificate of patent or registration of utility model

Ref document number: 4870499

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250