JP4762496B2 - Catalytic reactor - Google Patents

Catalytic reactor Download PDF

Info

Publication number
JP4762496B2
JP4762496B2 JP2004001515A JP2004001515A JP4762496B2 JP 4762496 B2 JP4762496 B2 JP 4762496B2 JP 2004001515 A JP2004001515 A JP 2004001515A JP 2004001515 A JP2004001515 A JP 2004001515A JP 4762496 B2 JP4762496 B2 JP 4762496B2
Authority
JP
Japan
Prior art keywords
catalyst
catalyst layer
gas
partition wall
reaction apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004001515A
Other languages
Japanese (ja)
Other versions
JP2005193135A (en
Inventor
純 小宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2004001515A priority Critical patent/JP4762496B2/en
Publication of JP2005193135A publication Critical patent/JP2005193135A/en
Application granted granted Critical
Publication of JP4762496B2 publication Critical patent/JP4762496B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Fuel Cell (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Description

本発明は、複数の触媒反応を行う複数種類の触媒が充填された触媒反応装置に関し、より詳しくは複数の触媒反応を行う複数種類の触媒を一体の円筒状容器内に充填した触媒反応装置の構造に関する。特に、燃料電池に水素を供給する、都市ガスやLPGなどの炭化水素系燃料からの水素製造装置において、円筒状容器内に複数の異なる特性の触媒をそれぞれ別層に区画して配置するとともに、一体に構成された触媒反応装置に関する。   The present invention relates to a catalytic reaction apparatus filled with a plurality of types of catalysts for performing a plurality of catalytic reactions. More specifically, the present invention relates to a catalytic reaction apparatus in which a plurality of types of catalysts for performing a plurality of catalytic reactions are packed in an integral cylindrical container. Concerning structure. In particular, in a hydrogen production apparatus that supplies hydrogen to a fuel cell from a hydrocarbon-based fuel such as city gas or LPG, a plurality of catalysts having different characteristics are arranged in separate layers in a cylindrical container, The present invention relates to an integrally configured catalytic reaction apparatus.

触媒反応装置、例えば固体高分子形燃料電池(PEFC、以下適宜PEFCと略称する)等の燃料電池に水素を供給する燃料処理装置においては、改質触媒、シフト触媒、CO除去触媒などの複数の触媒が使用される。ここで、シフト触媒としては、単一のシフト触媒を用いる場合のほか、高温シフト触媒と低温シフト触媒を併用する場合もあり、またそれら触媒に加えて脱硫剤などを使用する場合もある。それらの触媒や脱硫剤をそれぞれ充填した反応器を別体として設置した場合、各反応器間を接続する配管や断熱材などが必要となり、機器構成が煩雑になる。そのため、それらの簡素化や小型化を目指し、それぞれの反応器を一体化した燃料処理装置すなわち一体型触媒反応装置が開発されている。図1はその一例を示す図で、縦断面図として示している(WO 02/098790A)。   In a fuel processing apparatus for supplying hydrogen to a catalytic reactor, for example, a fuel cell such as a polymer electrolyte fuel cell (PEFC, hereinafter abbreviated as PEFC), a plurality of reforming catalysts, shift catalysts, CO removal catalysts, etc. A catalyst is used. Here, as the shift catalyst, a single shift catalyst may be used, a high temperature shift catalyst and a low temperature shift catalyst may be used in combination, and a desulfurizing agent may be used in addition to these catalysts. When the reactors filled with these catalysts and desulfurization agents are installed separately, piping and heat insulating materials for connecting the reactors are required, and the equipment configuration becomes complicated. Therefore, with the aim of simplifying and downsizing them, a fuel processing apparatus in which the respective reactors are integrated, that is, an integrated catalytic reaction apparatus has been developed. FIG. 1 is a view showing an example thereof, which is shown as a longitudinal sectional view (WO 02 / 098790A).

WO 02/098790AWO 02 / 098790A

図1のとおり、触媒反応装置は、中心軸を同一にして設けられた径の異なる複数の円筒体を間隔を置いて多重に配置して構成される。図1中、一点鎖線はその中心軸を示し、矢印はその方向、すなわちその軸方向を示している。径(直径、以下同じ)を順次大きくした、第1円筒体1、第2円筒体2及び第3円筒体3が中心軸を同一にして間隔を置いて配置されている。第3円筒体3の上部には第3円筒体3より径を大きくした第4円筒体4が配置されている。第1円筒体1の内側には中心軸を同じくして、第1円筒体1より径の小さい円筒状の伝熱隔壁すなわち輻射筒5が配置され、輻射筒5内にはバーナー6が配置されている。すなわちバーナー6は、中心軸部に配置され、輻射筒5の内側に上蓋兼バーナー取付台7を介して取り付けられている。   As shown in FIG. 1, the catalytic reaction apparatus is configured by arranging a plurality of cylindrical bodies having different diameters provided with the same central axis at intervals. In FIG. 1, the alternate long and short dash line indicates the central axis, and the arrow indicates the direction, that is, the axial direction. The first cylindrical body 1, the second cylindrical body 2, and the third cylindrical body 3, which are sequentially increased in diameter (diameter, hereinafter the same), are arranged with the same central axis and spaced from each other. A fourth cylinder 4 having a diameter larger than that of the third cylinder 3 is disposed on the third cylinder 3. Inside the first cylindrical body 1, a cylindrical heat transfer partition wall, that is, a radiation cylinder 5 having the same central axis as the diameter of the first cylindrical body 1 is arranged, and a burner 6 is arranged in the radiation cylinder 5. ing. That is, the burner 6 is disposed at the central shaft portion and is attached to the inside of the radiation tube 5 via the upper lid / burner mounting base 7.

輻射筒5は、その下端と第1円筒体1の底板8との間に間隔を設けて配置してあり、この間隙と、これに連なる輻射筒5と第1円筒体1との間の空隙とがバーナー6からの燃焼排ガスの排気通路9を形成している。底板8は第1円筒体1の径に対応した径で円盤状に構成されている。排気通路9は、その上部で排気通路9の上蓋(上蓋兼バーナー取付台7の下面)と隔壁10(後述予熱層14の上蓋)との間の間隙を経て燃焼排ガスの排出口11に連なり、燃焼排ガスはここから排出される。   The radiation cylinder 5 is disposed with a gap between the lower end thereof and the bottom plate 8 of the first cylindrical body 1, and this gap and a gap between the radiation cylinder 5 and the first cylindrical body 1 connected to the clearance are provided. Form an exhaust passage 9 for combustion exhaust gas from the burner 6. The bottom plate 8 is formed in a disc shape with a diameter corresponding to the diameter of the first cylindrical body 1. The exhaust passage 9 is connected to the exhaust port 11 of the combustion exhaust gas through a gap between the upper cover of the exhaust passage 9 (the upper surface of the upper cover and burner mounting base 7) and the partition wall 10 (the upper cover of the preheating layer 14 described later) at the upper part. Combustion exhaust gas is discharged from here.

12は炭化水素系原料ガスの供給管であり、第1円筒体1と第2円筒体2との間の空間内には、その上部に予熱層14、これに続く下部に改質触媒層16が設けられている。なお、第2円筒体2は、改質触媒層16を囲む部分と予熱層14を囲む部分とが別個に構成され、改質触媒層16を囲む上端部と予熱層14を囲む下端部との間の接合部で接合されているが、接合部を設けることなく一体に構成してもよい。また、改質触媒層16の触媒は、その下部で多孔板等で支持されているが、その記載は省略している。予熱層14の内部に一本の丸棒15が螺旋状に配置され、これにより予熱層14の内部に一つの連続した螺旋状のガス通路が形成されている。原料ガスは、供給管12から供給され、水(水蒸気)が混合部13で混合された後、予熱層14を経て、改質触媒層16に導入される。改質触媒層16では、炭化水素系原料ガスが下降しながら水蒸気により改質される。炭化水素系原料ガスが例えばメタンガスの場合、下記反応式(I)の反応で改質される。改質触媒層16における改質反応は吸熱反応であり、バーナー6で発生する燃焼熱を吸収して反応が進行する。具体的には、バーナー6による燃焼排ガスが輻射筒5と第1円筒体1との間の排気通路9を流通して通過するときに、燃焼排ガスの熱が改質触媒層16に吸収され、改質反応が行われる。

Figure 0004762496
Reference numeral 12 denotes a hydrocarbon-based source gas supply pipe. In the space between the first cylindrical body 1 and the second cylindrical body 2, a preheating layer 14 is formed in the upper part, and a reforming catalyst layer 16 is formed in the lower part. Is provided. The second cylindrical body 2 is configured such that a portion surrounding the reforming catalyst layer 16 and a portion surrounding the preheating layer 14 are configured separately, and an upper end portion surrounding the reforming catalyst layer 16 and a lower end portion surrounding the preheating layer 14 are formed. Although it joins by the junction part in between, you may comprise integrally, without providing a junction part. Moreover, although the catalyst of the reforming catalyst layer 16 is supported by a porous plate or the like at the lower part, the description thereof is omitted. A single round bar 15 is spirally arranged inside the preheating layer 14, thereby forming one continuous spiral gas passage inside the preheating layer 14. The raw material gas is supplied from the supply pipe 12, and water (water vapor) is mixed in the mixing unit 13, and then introduced into the reforming catalyst layer 16 through the preheating layer 14. In the reforming catalyst layer 16, the hydrocarbon-based raw material gas is reformed by steam while descending. When the hydrocarbon-based raw material gas is, for example, methane gas, it is reformed by the reaction of the following reaction formula (I). The reforming reaction in the reforming catalyst layer 16 is an endothermic reaction, and the reaction proceeds by absorbing the combustion heat generated in the burner 6. Specifically, when the combustion exhaust gas from the burner 6 flows through the exhaust passage 9 between the radiation cylinder 5 and the first cylindrical body 1, the heat of the combustion exhaust gas is absorbed by the reforming catalyst layer 16, A reforming reaction is performed.
Figure 0004762496

改質触媒層16の改質触媒としては、粒状等の改質触媒のほか、モノリス型改質触媒が用いられるが、好ましくはモノリス型改質触媒(=ハニカム改質触媒)が用いられる。改質触媒は例えば700℃程度の高温で使用され、また、触媒反応装置(改質器)を例えば家庭用コージェネレーションシステム(熱電併給システム)で使用する場合には、起動、停止を頻繁に行う必要がある。そのため、粒状等の改質触媒を用いる場合、温度の上昇、下降などの繰り返しにより、改質触媒層に充填されている改質触媒が圧壊、粉化し、触媒活性が低下することが問題になる。そこで、改質触媒としてモノリス型改質触媒を用いることにより、粒状改質触媒を用いる場合におけるそれらの問題を解決することができる。モノリス型改質触媒は、触媒固定床を一体化した触媒で、多数の平行貫通孔すなわちセルをもったセラミック製またはメタル製の担体のセル内表面に金属触媒、すなわちNiやRuなどの金属触媒を担持させた触媒である。モノリス型触媒は、振動や高温の環境にも耐えることから、主に車の排ガス浄化触媒などに使用されることが多いが、改質触媒としてモノリス型改質触媒を用いることで触媒反応装置における上記問題を解決できる。   As the reforming catalyst of the reforming catalyst layer 16, a monolith type reforming catalyst is used in addition to a granular reforming catalyst, and a monolith type reforming catalyst (= honeycomb reforming catalyst) is preferably used. The reforming catalyst is used at a high temperature of about 700 ° C., for example, and when the catalytic reaction device (reformer) is used in a home cogeneration system (cogeneration system), for example, it is frequently started and stopped. There is a need. Therefore, when a reforming catalyst such as a granular material is used, there is a problem that the reforming catalyst filled in the reforming catalyst layer is crushed and pulverized due to repeated rise and fall of temperature, and the catalytic activity is lowered. . Therefore, by using a monolithic reforming catalyst as the reforming catalyst, those problems in the case of using a granular reforming catalyst can be solved. The monolithic reforming catalyst is a catalyst in which a fixed catalyst bed is integrated, and a metal catalyst, that is, a metal catalyst such as Ni or Ru, is formed on the inner surface of a ceramic or metal carrier having a number of parallel through holes, that is, cells. Is a catalyst on which is supported. Monolithic catalysts are often used mainly as exhaust gas purification catalysts for cars because they can withstand vibrations and high-temperature environments. However, by using a monolithic reforming catalyst as a reforming catalyst, The above problem can be solved.

第2円筒体2の下端は第3円筒体3の底板17との間に間隔を置いて配置してあり、第2円筒体2と第3円筒体3との間は、改質ガスの流路18を構成している。底板17は第3円筒体3の径に対応した径で円盤状に構成されている。改質ガスは、第2円筒体2の下端と第3円筒体3の底板17との間で折り返して第2円筒体2と第3円筒体3との間で形成された流路18を流通する。第3円筒体3の上部には第3円筒体3より径を大きくした第4円筒体4が配置され、第2円筒体2と第4円筒体4との間にCO変成触媒層21が設けられている。第3円筒体3の上端部と第4円筒体4の下端部には板体19(第3円筒体3の直径に相当する部分は第3円筒体3で占められるので、ドーナツ状の板体)が配置され、板体19の上に、間隔を置いてガス流通用の複数の孔を有する支持板20(第2円筒体2の直径に相当する部分は第2円筒体2で占められるので、ドーナツ状の支持板)が配置されている。CO変成触媒層21は、支持板20とガス流通用の複数の孔を有する支持板22(第2円筒体2の直径に相当する部分は第2円筒体2で占められるのでドーナツ状の支持板、CO変成触媒層21の上蓋)との間に設けられている。支持板20、22は金属製等の網目体で構成してもよく、この場合には網目体の網目がガス流通孔となる。流路18を流通した改質ガスは、支持板20の孔を経てCO変成触媒層21に供給される。   The lower end of the second cylindrical body 2 is spaced from the bottom plate 17 of the third cylindrical body 3, and the flow of the reformed gas is between the second cylindrical body 2 and the third cylindrical body 3. A path 18 is formed. The bottom plate 17 is configured in a disc shape with a diameter corresponding to the diameter of the third cylindrical body 3. The reformed gas is folded between the lower end of the second cylindrical body 2 and the bottom plate 17 of the third cylindrical body 3 and flows through the flow path 18 formed between the second cylindrical body 2 and the third cylindrical body 3. To do. A fourth cylindrical body 4 having a diameter larger than that of the third cylindrical body 3 is disposed on the third cylindrical body 3, and a CO shift catalyst layer 21 is provided between the second cylindrical body 2 and the fourth cylindrical body 4. It has been. A plate 19 (a portion corresponding to the diameter of the third cylinder 3 is occupied by the third cylinder 3 at the upper end of the third cylinder 3 and the lower end of the fourth cylinder 4. ) And a support plate 20 having a plurality of holes for gas circulation at intervals on the plate body 19 (the portion corresponding to the diameter of the second cylinder 2 is occupied by the second cylinder 2). , A donut-shaped support plate) is disposed. The CO shift catalyst layer 21 includes a support plate 20 and a support plate 22 having a plurality of holes for gas circulation (the portion corresponding to the diameter of the second cylindrical body 2 is occupied by the second cylindrical body 2, so a donut-shaped support plate And the upper cover of the CO shift catalyst layer 21). The support plates 20 and 22 may be formed of a mesh body made of metal or the like. In this case, the mesh body of the mesh body serves as a gas flow hole. The reformed gas that has flowed through the flow path 18 is supplied to the CO shift catalyst layer 21 through the holes of the support plate 20.

上記のとおり、CO変成触媒層21は、第2円筒体2と第4円筒体4との間に設けられているが、第4円筒体4の外周には間隔を置いて円筒体24が配置され、その間に断熱材23が配置されている。円筒体24の外周には水供給管25から連なる伝熱管26が直接螺旋状に巻き付けてある。伝熱管26はCO変成触媒層21を間接的に冷却する冷却機構として作用する。断熱材23は、伝熱管26の冷却作用により、CO変成触媒層12の温度を低下させ過ぎず、適度な温度に均一に保持できる厚さに巻き付けてある。断熱材23としては好ましくはセラミックファイバーなどの加工性のよいものを用いる。ここで、伝熱管26は、水供給管25から供給される水のボイラーとしての機能を備え、また水供給管25から続く連続した一つの通路となっているので、複数の通路では生じる部分的な滞留等が生じない。   As described above, the CO conversion catalyst layer 21 is provided between the second cylindrical body 2 and the fourth cylindrical body 4, and the cylindrical body 24 is arranged on the outer periphery of the fourth cylindrical body 4 with a space therebetween. The heat insulating material 23 is disposed between them. A heat transfer tube 26 connected to a water supply tube 25 is directly wound around the outer periphery of the cylindrical body 24 in a spiral shape. The heat transfer tube 26 acts as a cooling mechanism for indirectly cooling the CO shift catalyst layer 21. The heat insulating material 23 is wound to a thickness that can be uniformly maintained at an appropriate temperature without excessively reducing the temperature of the CO shift catalyst layer 12 by the cooling action of the heat transfer tube 26. As the heat insulating material 23, a material having good workability such as ceramic fiber is preferably used. Here, the heat transfer pipe 26 has a function as a boiler for the water supplied from the water supply pipe 25 and is a continuous single passage that continues from the water supply pipe 25, so that partial heat generation occurs in a plurality of passages. Stagnation does not occur.

CO変成触媒層21では、下記反応式(II)で示されるCO変成反応(water gas shift reaction)、すなわちシフト反応が行われ、改質ガス中のCOが二酸化炭素に変成され、併せて水素が生成する。

Figure 0004762496
In the CO conversion catalyst layer 21, a CO gas conversion reaction (water gas shift reaction) represented by the following reaction formula (II), that is, a shift reaction is performed, CO in the reformed gas is converted into carbon dioxide, and hydrogen is also added. Generate.
Figure 0004762496

CO変成触媒としては、従来の触媒(すなわちCu/Zn系低温CO変成触媒等)でもよいが、少なくとも350℃以上で連続して使用できる触媒(すなわち白金系やFe/Cr系の高温CO変成触媒等)を用いることにより、改質ガスの流路18やCO変成触媒層21の長さ(すなわち支持板20と支持板22と間の長さ)を短縮でき、それら各層を小型化できる。これにより触媒反応装置(改質器)全体を小型化、軽量化できる。白金系触媒すなわち白金を主成分とした触媒はアルミナ等の担体に白金を担持して構成される。白金を主成分とした触媒は、酸化などによる劣化にも強く、350℃以上の高温域、特に400℃以上の高温域でも連続して使用することが可能であり、より速い速度で反応を進行させることができる。   The CO conversion catalyst may be a conventional catalyst (that is, a Cu / Zn-based low temperature CO conversion catalyst, etc.), but a catalyst that can be used continuously at least at 350 ° C. or higher (that is, a platinum-based or Fe / Cr-based high-temperature CO conversion catalyst). Etc.), the lengths of the reformed gas flow path 18 and the CO shift catalyst layer 21 (that is, the length between the support plate 20 and the support plate 22) can be shortened, and the respective layers can be reduced in size. As a result, the entire catalytic reaction device (reformer) can be reduced in size and weight. A platinum-based catalyst, that is, a catalyst containing platinum as a main component is configured by supporting platinum on a carrier such as alumina. Platinum-based catalysts are resistant to deterioration due to oxidation, etc., and can be used continuously even in a high temperature range of 350 ° C or higher, particularly in a high temperature range of 400 ° C or higher, and the reaction proceeds at a faster rate. Can be made.

なお、単にそのような白金系触媒をCO変成反応に適用するだけでは、高温域において下記反応式(III)で示されるメタネーション反応と呼ばれる副反応が起こり、目的とするCO変成反応を阻害してしまうことがある。

Figure 0004762496
In addition, if such a platinum-based catalyst is simply applied to the CO shift reaction, a side reaction called a methanation reaction represented by the following reaction formula (III) occurs at a high temperature range, thereby inhibiting the target CO shift reaction. May end up.
Figure 0004762496

この場合には、CO変成触媒として、白金を主成分とし、CeO2等の金属酸化物を副成分として含む触媒を使用する。これにより、高温域で発生するメタネーション反応を充分抑制できる。また、CO変成触媒として、Fe/Cr系の高温CO変成触媒を使用してもよく、さらには、Al、Cu、Fe、Cr、Moなどの卑金属種をZrなどの担体に担持させた高温CO変成触媒なども使用することができる。なお、高温CO変成触媒は低温CO変成触媒と併用してもよい。 In this case, a catalyst containing platinum as a main component and a metal oxide such as CeO 2 as an auxiliary component is used as the CO conversion catalyst. Thereby, the methanation reaction which generate | occur | produces in a high temperature range can fully be suppressed. Further, as the CO conversion catalyst, an Fe / Cr high-temperature CO conversion catalyst may be used, and furthermore, a high-temperature CO in which a base metal species such as Al, Cu, Fe, Cr, and Mo is supported on a support such as Zr. A shift catalyst or the like can also be used. The high temperature CO conversion catalyst may be used in combination with the low temperature CO conversion catalyst.

支持板22の上方には所定の間隔を置いて一つの連通孔28を有する仕切板27が設けてあり、両板間の空間に空気の供給管29を通してCO除去用空気が供給される。仕切板27の上方には円環状の通路30が設けてある。連通孔28を、所定の孔径で、且つ、一つとすることにより、改質ガスとCO除去用空気が連通孔28を通過する際に所定の通過速度が得られ、通過時の乱流により改質ガスとCO除去用空気を良好に混合することができる。CO除去触媒層35は、第2円筒体2と、これより径を大きくした円筒体36と、第2円筒体2と円筒体36との間の下部及び上部にそれぞれ間隔を置いて配置された、複数個の孔34を有する支持板33(第2円筒体2の直径に相当する部分は第2円筒体2で占められるので、ドーナツ状の板体)と、ガス流通用の複数個の孔38を有する支持板37(第2円筒体2の直径に相当する部分は第2円筒体2で占められるので、ドーナツ状の支持板)と、の間の空間に設けられている。   A partition plate 27 having one communication hole 28 is provided above the support plate 22 at a predetermined interval, and CO removal air is supplied to the space between both plates through an air supply pipe 29. An annular passage 30 is provided above the partition plate 27. By using one communication hole 28 with a predetermined hole diameter, a predetermined passing speed is obtained when the reformed gas and the CO removal air pass through the communication hole 28, and the reforming gas is modified by turbulent flow during the passage. The quality gas and the air for removing CO can be mixed well. The CO removal catalyst layer 35 is disposed with a gap between the second cylinder 2, the cylinder 36 having a larger diameter, and the lower part and the upper part between the second cylinder 2 and the cylinder 36. A support plate 33 having a plurality of holes 34 (a portion corresponding to the diameter of the second cylindrical body 2 is occupied by the second cylindrical body 2), and a plurality of holes for gas circulation 38 and a support plate 37 (a portion corresponding to the diameter of the second cylindrical body 2 is occupied by the second cylindrical body 2), and is provided in a space between the support plate 37 and the support plate 37.

円筒体36の下部にはその円周方向に均等に設けられた複数個の孔32が設けられている。円環状の通路30は、円筒体24と仕切板27と仕切板31と円筒体36で形成された通路であり、それら複数個の孔32と、支持板33の複数個の孔34を介してCO除去触媒層35と連通しており、CO除去用空気が混合された改質ガスがそれら複数個の孔32、34を介してCO除去触媒層35に導入される。CO除去触媒層35は、その上蓋である複数個の孔38を有する仕切板37と隔壁10との間の間隙を介して改質ガスの取出管39に連通している。また、CO除去触媒層35は円筒体36で囲まれているが、円筒体36の外周には円筒体24の外周の伝熱管26から連なる伝熱管26が直接螺旋状に巻き付けてある。   A plurality of holes 32 that are equally provided in the circumferential direction are provided in the lower portion of the cylindrical body 36. The annular passage 30 is a passage formed by the cylindrical body 24, the partition plate 27, the partition plate 31, and the cylindrical body 36, and the plurality of holes 32 and the support plate 33 through the plurality of holes 34. The reformed gas, which is in communication with the CO removal catalyst layer 35 and mixed with CO removal air, is introduced into the CO removal catalyst layer 35 through the plurality of holes 32 and 34. The CO removal catalyst layer 35 communicates with a reformed gas take-out pipe 39 through a gap between a partition plate 37 having a plurality of holes 38 serving as an upper lid and the partition wall 10. Further, the CO removal catalyst layer 35 is surrounded by a cylindrical body 36, and a heat transfer tube 26 connected to the heat transfer tube 26 on the outer periphery of the cylindrical body 24 is directly spirally wound around the outer periphery of the cylindrical body 36.

CO除去触媒層35には、CO除去触媒(=PROX触媒)が充填してあり、PROX触媒によりCO除去反応が行われ、改質ガス中のCO含有量をppm単位にまで低減する。CO除去触媒としては、改質ガス中のCOを選択的に酸化し得る触媒であれば特に限定はなく、例えばRu系などの金属触媒が用いられる。金属触媒は、例えばアルミナ等の担体にRuなどの金属触媒を担持させて構成される。CO除去触媒層35においては、下記反応式(IV)で示されるCO除去反応が進行する。

Figure 0004762496
The CO removal catalyst layer 35 is filled with a CO removal catalyst (= PROX catalyst), and a CO removal reaction is performed by the PROX catalyst to reduce the CO content in the reformed gas to ppm units. The CO removal catalyst is not particularly limited as long as it can selectively oxidize CO in the reformed gas. For example, a Ru-based metal catalyst is used. The metal catalyst is configured, for example, by supporting a metal catalyst such as Ru on a support such as alumina. In the CO removal catalyst layer 35, the CO removal reaction represented by the following reaction formula (IV) proceeds.
Figure 0004762496

CO除去触媒層35においてCOを除去した改質ガスは、その上蓋である仕切板37に設けられた複数個の孔38から排出され、仕切板37と隔壁10との間の間隙を経て改質ガスの取出管39から取り出される。第3円筒体3、円筒体24及び円筒体36を含む外周部には断熱材40を配置し、外部への熱の放散を防止している。断熱材40としては、例えばマイクロサーム、ケイ酸カルシウム、アルミナファイバーなど、断熱効果の高い断熱材が使用される。   The reformed gas from which CO has been removed in the CO removal catalyst layer 35 is discharged from a plurality of holes 38 provided in the partition plate 37 which is the upper lid, and reformed through the gap between the partition plate 37 and the partition wall 10. The gas is extracted from the gas extraction pipe 39. A heat insulating material 40 is disposed on the outer peripheral portion including the third cylindrical body 3, the cylindrical body 24, and the cylindrical body 36 to prevent heat from being dissipated to the outside. As the heat insulating material 40, for example, a heat insulating material having a high heat insulating effect such as microtherm, calcium silicate, alumina fiber or the like is used.

図2は、図1中CO除去触媒層35の部分を中心に拡大して示した図である。図2のとおり、円筒体36の下部にその円周方向に均等に設けられた複数個の孔32から導入されたCO除去用空気が混合された改質ガスは、CO除去触媒層35中を上昇しながら、COを酸化除去し、その上部から導出される。すなわち、CO除去用空気が混合された改質ガスは、厚みをもつドーナツ状のCO除去触媒層35中を下方から上方へ向かって、すなわちCO除去触媒層35を区画する第2円筒体2及び円筒体36の軸方向に流れる。改質ガスの取出管39は、例えばPEFCへの燃料ガス供給管に接続される。この場合、所定の濃度の水素を含有する改質ガスがPEFCの燃料極側に供給され、これを燃料として発電される。なお、PEFCの燃料極からのオフガス(アノードオフガス)を、バーナー6での燃焼用燃料ガスとして使用してもよい。   FIG. 2 is an enlarged view centering on the portion of the CO removal catalyst layer 35 in FIG. As shown in FIG. 2, the reformed gas mixed with the CO removal air introduced from the plurality of holes 32 provided uniformly in the circumferential direction at the lower portion of the cylindrical body 36 passes through the CO removal catalyst layer 35. While rising, CO is oxidized and removed from the top. That is, the reformed gas mixed with the CO removal air passes through the doughnut-shaped CO removal catalyst layer 35 having a thickness from the lower side to the upper side, that is, the second cylindrical body 2 defining the CO removal catalyst layer 35 and It flows in the axial direction of the cylindrical body 36. The reformed gas take-out pipe 39 is connected to, for example, a fuel gas supply pipe to the PEFC. In this case, a reformed gas containing a predetermined concentration of hydrogen is supplied to the fuel electrode side of the PEFC, and electricity is generated using this as a fuel. Note that off-gas (anode off-gas) from the fuel electrode of PEFC may be used as fuel gas for combustion in the burner 6.

ところで、以上のように構成された触媒反応装置において用いられる各触媒は、それぞれ、ガス空間速度SV、ガス線速度LV、温度条件などの異なる特性、環境で使用されるため、装置設計上の制約がある。触媒反応装置のうち、例えばPEFC用の水素製造装置に用いられる各触媒の特性は以下のとおりである。
(1)改質触媒:反応速度が大きく、伝熱律速の反応形態であるため(伝熱面積が大きいため)、ガス流れ軸方向に長くなる。また、温度が高いため、断熱材が厚くなる。
(2)シフト触媒(CO変成触媒):反応速度が遅いため、触媒量が多くなる。そのため、ガス空間速度SVが小さく、ガスの流れ軸方向に大きい反応器となる。
(3)CO除去触媒:ガス線速度LVが大きいため、ガス流れ軸方向に長くなる。また、温度が低いため、断熱材は薄くてもよい。
By the way, since each catalyst used in the catalytic reaction apparatus configured as described above is used in different characteristics and environments such as gas space velocity SV, gas linear velocity LV, and temperature conditions, restrictions on the apparatus design. There is. Among the catalytic reaction apparatuses, for example, the characteristics of each catalyst used in a hydrogen production apparatus for PEFC are as follows.
(1) Reforming catalyst: Since the reaction rate is high and the heat transfer rate-controlled reaction mode (because the heat transfer area is large), the reforming catalyst becomes longer in the gas flow axis direction. Moreover, since temperature is high, a heat insulating material becomes thick.
(2) Shift catalyst (CO shift catalyst): Since the reaction rate is slow, the amount of catalyst increases. Therefore, the gas space velocity SV is small and the reactor is large in the gas flow axis direction.
(3) CO removal catalyst: Since the gas linear velocity LV is large, it becomes longer in the gas flow axis direction. Further, since the temperature is low, the heat insulating material may be thin.

前述のような従来の触媒反応装置においては、各触媒はともに、ガス流れ軸方向に沿って順次区画して設置されるため、すなわち円筒状容器の軸方向と同じ方向にガスが流通するように順次区画して設置されるため、前述図1〜2に示すような形状となる。このうち、特にCO除去触媒が充填された区画は、CO変成触媒が充填された区画に対して、径方向に小さくなるため、これらを一体に配置した触媒反応装置の外形が段階状の複雑な構造となる。そのため、部品点数が多く、断熱材や配管施工などに手間がかかるため、製作コストが高くなり、またガスの流れ軸方向に小型化できないなどの問題があった。   In the conventional catalytic reaction apparatus as described above, since each catalyst is sequentially partitioned and installed along the gas flow axis direction, that is, the gas flows in the same direction as the axial direction of the cylindrical container. Since it is divided and installed sequentially, it becomes a shape as shown in FIGS. Among these, especially the section filled with the CO removal catalyst is smaller in the radial direction than the section filled with the CO shift catalyst, and therefore, the outer shape of the catalyst reaction apparatus in which these are integrally arranged is a complicated stepwise shape. It becomes a structure. For this reason, the number of parts is large, and it takes time for heat insulating material and piping construction. Therefore, there are problems that the manufacturing cost is high and the gas flow cannot be downsized in the axial direction.

そこで、本発明においては、従来の触媒反応装置における上述諸問題を解決することを目的とし、各触媒の特性を損なうことなく、各触媒、特にCO除去触媒層を特殊、特定の配置にすることにより、部品点数を少なくし、断熱材や配管施工などの手間を少なくして、製作コストの低減を図り、触媒反応装置を小型化してなる触媒反応装置を提供することを目的とする。   Therefore, in the present invention, the purpose is to solve the above-mentioned problems in the conventional catalytic reaction apparatus, and each catalyst, particularly the CO removal catalyst layer is specially and specifically arranged without impairing the characteristics of each catalyst. Accordingly, it is an object of the present invention to provide a catalytic reaction apparatus in which the number of parts is reduced, the labor for heat insulation and piping work is reduced, the production cost is reduced, and the catalytic reaction apparatus is downsized.

本発明は、円筒状容器内に順次複数の気相触媒反応を行うための複数種類の触媒層をそれぞれ別層に区画して配置するとともに、それらを一体に構成した触媒反応装置において、円筒状容器の軸方向にガスが流通する触媒層Aと、円筒状容器の軸方向に対して垂直に且つ放射状にガスが流通するように円筒状容器の軸方向に対して前後の隔壁で区画した空間に触媒層Bを配置し、触媒層Aを経た反応ガスを触媒層Bに導入するようにしてなることを特徴とする触媒反応装置を提供するものである。   The present invention provides a catalyst reactor in which a plurality of types of catalyst layers for sequentially performing a plurality of gas phase catalytic reactions in a cylindrical container are divided into separate layers, and the cylindrical reactor is integrally formed. A space defined by a catalyst layer A through which gas flows in the axial direction of the container and partition walls before and after the axial direction of the cylindrical container so that gas flows in a direction perpendicular to the axial direction of the cylindrical container and radially. The catalyst layer B is disposed in the catalyst layer B, and the reaction gas having passed through the catalyst layer A is introduced into the catalyst layer B.

本触媒反応装置において、前記円筒状容器の軸方向に対して垂直に且つ放射状にガスが流通するように区画する前後の隔壁のうちの少なくとも一方の隔壁に、ガスが流通する方向に対して傾斜をもたせることにより、その傾斜に対応して外周側に向けて流路断面を狭くすることができる。また、本触媒反応装置は、円筒状容器内の触媒層Bの前後の隔壁のうち、特に後部隔壁に傾斜をもたせることで、触媒層Bでの触媒の沈降などによるガスリークが生じない構造とすることができる。また、その前後の隔壁間に、冷却媒体が流れる冷却機構を付設し、触媒層Bの反応熱を除去するようにすることができる。さらに、触媒層Bを区画する前後の隔壁間に触媒層Bの反応熱を除去するための冷却用の複数個のフィンを配置することができ、それら複数個のフィンは触媒層Bを区画する前後の隔壁のうちの少なくとも一方に固定して配置される。   In this catalytic reaction apparatus, at least one of the partition walls before and after partitioning so that the gas flows in a direction perpendicular to the axial direction of the cylindrical container and tilted with respect to the direction in which the gas flows. By providing the above, the cross section of the flow path can be narrowed toward the outer peripheral side corresponding to the inclination. Further, the present catalytic reactor has a structure in which a gas leak due to sedimentation of the catalyst in the catalyst layer B does not occur by inclining the rear partition among the partition walls before and after the catalyst layer B in the cylindrical container. be able to. In addition, a cooling mechanism through which a cooling medium flows can be provided between the front and rear partition walls so that the reaction heat of the catalyst layer B can be removed. Further, a plurality of cooling fins for removing reaction heat of the catalyst layer B can be disposed between the partition walls before and after partitioning the catalyst layer B, and the plurality of fins partition the catalyst layer B. It is fixed to at least one of the front and rear partition walls.

本発明の触媒反応装置は、前述のような従来の触媒反応装置において、ガス流れ軸方向に沿ってそれぞれ設置していた触媒を、以下(1)〜(4)のとおりに構成することにより、触媒反応装置の外形形状を簡素化し(すなわちストレート化し)、その小型化(すなわちガス流れ軸方向の長さを短くすることで小型化すること)を達成したものである。
(1)ガス流れ軸方向に対して垂直に(すなわち直角に)且つ放射状にガスを流通する部位にCO除去触媒を配置する。
(2)前記ガス流れ軸方向に対して垂直に且つ放射状にガス流れを形成し、且つ、前記触媒を区画する前後の隔壁のうちの少なくとも一方の隔壁はガス流れに対して(すなわちガスが流通する方向に対して)傾斜をもたせる。
(3)前記前後の隔壁のうちの少なくとも一方の隔壁に、冷却媒体が流れる冷却機構を付設し、前記触媒の反応熱を除去する。
(4)前記前後の隔壁間に前記触媒の反応熱を除去するための冷却用のフィンを両隔壁のうち少なくとも一方の隔壁に固定して配置する。
In the catalyst reaction apparatus of the present invention, in the conventional catalyst reaction apparatus as described above, the catalysts respectively installed along the gas flow axis direction are configured as follows (1) to (4), The external shape of the catalytic reactor is simplified (ie, straightened), and the miniaturization thereof (ie, downsizing by shortening the length in the gas flow axis direction) is achieved.
(1) A CO removal catalyst is disposed at a portion where gas is circulated perpendicularly (that is, perpendicularly) to the gas flow axis direction and radially.
(2) A gas flow is formed vertically and radially with respect to the gas flow axis direction, and at least one of the partition walls before and after partitioning the catalyst is against the gas flow (that is, the gas flows). Be inclined).
(3) A cooling mechanism through which a cooling medium flows is attached to at least one of the front and rear partition walls to remove reaction heat of the catalyst.
(4) A cooling fin for removing reaction heat of the catalyst is fixed between at least one of the partition walls between the front and rear partition walls.

〈1.ガス流通を放射状にする態様〉
図3はガス流通を放射状にする態様を説明する図である。本触媒反応装置は円筒状であり、図3(a)は縦断面図、図3(b)は、図3(a)中X−X線断面図である。図3中、41は円筒体、42はその上蓋である。45はCO除去触媒層であり、CO除去触媒層45は、円筒体41内に配置された、小径の多孔性円筒体44と大径の多孔性円筒体46と下部隔壁43と上部隔壁47とで区画された、厚みを有するドーナツ状の空間に配置される。円筒体41と大径多孔性円筒体46とは間隔を置いて配置され、その間の空隙48は処理済みガスの流路を形成する。ここで、下部隔壁43はガス流れ軸方向の前部隔壁に相当し、上部隔壁47はガス流れ軸方向の後部隔壁に相当している。CO除去触媒は粒状、顆粒状、ペレット状、円柱状等でもよく、ハニカム型触媒でもよい。以下、粒状、顆粒状、ペレット状、円柱状等の触媒を代表して粒状触媒あるいは粒状等の触媒と言う。
<1. Mode of making gas flow radial>
FIG. 3 is a diagram for explaining a mode in which the gas flow is made radial. This catalyst reaction apparatus is cylindrical, FIG. 3 (a) is a longitudinal cross-sectional view, FIG.3 (b) is XX sectional drawing in Fig.3 (a). In FIG. 3, 41 is a cylindrical body, and 42 is an upper lid. Reference numeral 45 denotes a CO removal catalyst layer. The CO removal catalyst layer 45 includes a small-diameter porous cylinder 44, a large-diameter porous cylinder 46, a lower partition wall 43, and an upper partition wall 47 disposed in the cylinder body 41. It is arranged in a donut-shaped space having a thickness divided by The cylindrical body 41 and the large-diameter porous cylindrical body 46 are arranged at an interval, and the gap 48 therebetween forms a flow path for the processed gas. Here, the lower partition wall 43 corresponds to a front partition wall in the gas flow axis direction, and the upper partition wall 47 corresponds to a rear partition wall in the gas flow axis direction. The CO removal catalyst may be granular, granular, pellet, cylindrical, etc., and may be a honeycomb type catalyst. Hereinafter, a granular catalyst, a granular catalyst, a pellet catalyst, a cylindrical catalyst, and the like are referred to as a granular catalyst or a granular catalyst.

以上のように構成された触媒反応装置の運転に際しては、装置下部から導入された被処理ガス、例えばCO除去用空気が混入された改質ガスが、小径多孔性円筒体44の下部から導入され、その孔を介してCO除去触媒層45に流入し、大径多孔性円筒体46の方向へ流通しながら、CO成分が酸化、燃焼して除去される。ここで、改質ガスは、図3(a)中矢印(←----→)で示すようにCO除去触媒層45中を横方向、つまり円筒状容器の軸方向に対して垂直に流れ、且つ、図3(b)中矢印(---→)で示すようにCO除去触媒層45中を放射状に流れる。処理済みガスは、大径多孔性円筒体46の孔を経て、円筒体41と大径多孔性円筒体46との間の空隙48から、上蓋42と隔壁47との間の空隙49を通り、導出管50から排出される。CO除去触媒層45でのCOの酸化反応の反応速度が速いため、線速度LVを大きくする必要があるが、本態様のようにCO除去触媒層45中を改質ガスが放射状に流通するようにすることにより、ガス流れ軸方向(縦方向)に反応器を大きくしなくても〔すなわち、図3(a)中、下部隔壁43と上部隔壁47との間隔を大きくしなくても〕、線速度LVを大きくすることができる。   During operation of the catalytic reaction apparatus configured as described above, a gas to be treated introduced from the lower part of the apparatus, for example, a reformed gas mixed with CO removal air, is introduced from the lower part of the small-diameter porous cylindrical body 44. The CO component flows into the CO removal catalyst layer 45 through the pores, and the CO component is oxidized and burned and removed while flowing in the direction of the large-diameter porous cylindrical body 46. Here, the reformed gas flows in the CO removal catalyst layer 45 in the lateral direction, that is, perpendicular to the axial direction of the cylindrical container, as shown by arrows (← ---- →) in FIG. And, it flows radially through the CO removal catalyst layer 45 as indicated by arrows (--- →) in FIG. The treated gas passes through the gap 49 between the upper lid 42 and the partition wall 47 from the gap 48 between the cylinder 41 and the large diameter porous cylinder 46 through the hole of the large diameter porous cylinder 46, The discharge pipe 50 is discharged. Since the reaction rate of the oxidation reaction of CO in the CO removal catalyst layer 45 is fast, it is necessary to increase the linear velocity LV, but the reformed gas circulates in the CO removal catalyst layer 45 in a radial manner as in this embodiment. Thus, even if the reactor is not enlarged in the gas flow axis direction (longitudinal direction) (that is, the interval between the lower partition wall 43 and the upper partition wall 47 is not increased in FIG. 3A), The linear velocity LV can be increased.

〈2.ガス流通を放射状にし且つ隔壁に傾斜をもたせる態様〉
円筒状の触媒反応装置において、触媒層を形成する上部隔壁または下部隔壁、あるいはその両方を外周に向けて傾斜をもたせて構成することが本発明における重要な特徴点の一つである。図4は、ガス流通を放射状にし且つ隔壁に傾斜をもたせる態様を説明する図で、縦断面図として示している。図4中、47′として示すように、図3中の上部隔壁47に相当する隔壁に傾斜をもたせ、上部隔壁を逆すり鉢状に構成する。ここで、下部隔壁43はガス流れ軸方向の前部隔壁に相当し、上部隔壁47′はガス流れ軸方向の後部隔壁に相当している。逆すり鉢状に構成した上部隔壁47′及びこれに関連する構成以外の構成は図3に示すものと同様である。装置下部から導入された被処理ガス、例えばCO除去用空気が混入された改質ガスが、小径多孔性円筒体44の下部から導入され、その孔を介してCO除去触媒層45に流入し、大径多孔性円筒体46の方向へ流通しながら、CO成分が酸化、燃焼して除去される。
<2. A mode in which gas flow is made radial and the partition wall is inclined>
In the cylindrical catalyst reaction apparatus, it is one of the important characteristic points in the present invention that the upper partition wall and / or the lower partition wall forming the catalyst layer are inclined toward the outer periphery. FIG. 4 is a view for explaining a mode in which the gas flow is made radial and the partition wall is inclined, and is shown as a longitudinal sectional view. As shown as 47 'in FIG. 4, the partition corresponding to the upper partition 47 in FIG. 3 is inclined, and the upper partition is formed in an inverted mortar shape. Here, the lower partition wall 43 corresponds to a front partition wall in the gas flow axis direction, and the upper partition wall 47 'corresponds to a rear partition wall in the gas flow axis direction. The configuration other than the upper partition wall 47 'configured in an inverted mortar shape and the configuration related thereto is the same as that shown in FIG. A gas to be treated introduced from the lower part of the apparatus, for example, reformed gas mixed with CO removal air, is introduced from the lower part of the small-diameter porous cylindrical body 44 and flows into the CO removal catalyst layer 45 through the holes. While flowing in the direction of the large-diameter porous cylinder 46, the CO component is oxidized and burned and removed.

ここで、改質ガスは、図4中矢印(←----→)で示すようにCO除去触媒層45中を横方向、つまり円筒状容器の軸方向に対して垂直に流れ、且つ、図3の場合と同様、CO除去触媒層45中を放射状に流れる〔図3(b)参照〕。そして、その際、上部隔壁47′が外周側に向けて傾斜しているので、その傾斜に対応して外周側に向けて流路断面を狭くすることができ、それに対応して改質ガスの流速は速くなる。このようにCO除去触媒層を区画する上部隔壁に傾斜をもたせ、且つ、その傾斜の程度を調整することにより、触媒へのガス入口部と出口部のそれぞれを(また、その中間部についても)最適なガス線速度LVやガス空間速度SVに設計した触媒反応装置とすることができる。例えば、入口のガス流速を遅くするという反応設計が可能となる。また、触媒層を形成する上部隔壁及び下部隔壁のうち、特に上部隔壁に傾斜をもたせることで、触媒が粒状等の触媒である場合、その沈降などによるガスリークが生じない構造にできる。   Here, the reformed gas flows in the CO removal catalyst layer 45 in the lateral direction, that is, perpendicular to the axial direction of the cylindrical vessel, as indicated by arrows (← --- →) in FIG. As in the case of FIG. 3, it flows radially through the CO removal catalyst layer 45 (see FIG. 3B). At this time, since the upper partition wall 47 'is inclined toward the outer peripheral side, the flow passage cross section can be narrowed toward the outer peripheral side corresponding to the inclination, and the reformed gas The flow rate is faster. In this way, the upper partition wall defining the CO removal catalyst layer is inclined, and the degree of the inclination is adjusted so that each of the gas inlet portion and the outlet portion to the catalyst (and the intermediate portion thereof) is also provided. A catalytic reaction apparatus designed for an optimum gas linear velocity LV and gas space velocity SV can be obtained. For example, it is possible to design a reaction by slowing the gas flow rate at the inlet. Further, among the upper and lower partition walls forming the catalyst layer, in particular, the upper partition wall is inclined so that when the catalyst is a granular catalyst, a gas leak due to sedimentation or the like can be prevented.

図5〜8は、ガス流通を放射状にし且つ隔壁に傾斜をもたせる基本構造を備えた、炭化水素系燃料(原料ガス)の改質反応、シフト反応及びCO除去反応のそれぞれの反応器を一体化した燃料処理装置、すなわち一体型触媒反応装置の態様を説明する図である。図5〜6において、CO除去触媒層54が関連する部分を除き、図1〜2と同じ部材については同じ符号を用いている。本触媒反応装置は、中心軸を同一にして設けられた径の異なる複数の円筒体を間隔を置いて多重に配置して構成される。図5〜6中、一点鎖線はその中心軸を示し、矢印はその方向、すなわちその軸方向を示している。この点、後述図9〜10についても同じである。図5〜6のとおり、CO除去触媒層54を逆すり鉢状に配置する。51は複数の孔52を有する下部隔壁である。図7はその下部隔壁51を取り出して示した平面図で、下部隔壁51はドーナツ状で、その中央縁の円環部面に複数の孔52を備えている。53は仕切板27と下部隔壁51との間に形成した空隙である。55はその裾部に複数の孔56を有する逆すり鉢状の上部隔壁であり、中央部から外方へ下向きに傾斜している。図8はその上部隔壁55を取り出して示した図で、図8(a)は平面図(上側から見た図)、図8(b)は図8(a)中Y−Y線断面図である。ここで図5〜6において、下部隔壁51はガス流れ軸方向の前部隔壁に相当し、上部隔壁55はガス流れ軸方向の後部隔壁に相当しており、この点、後述図9〜10についても同じである。   Figs. 5 to 8 integrate the reactors for hydrocarbon fuel (raw gas) reforming reaction, shift reaction, and CO removal reaction, with a basic structure that makes the gas flow radiate and the partition wall inclined. It is a figure explaining the aspect of the made fuel processing apparatus, ie, an integrated catalyst reaction apparatus. 5-6, the same code | symbol is used about the same member as FIGS. 1-2 except the part to which the CO removal catalyst layer 54 relates. The present catalytic reactor is configured by arranging a plurality of cylindrical bodies having different diameters provided with the same central axis at intervals. 5-6, the dashed-dotted line shows the central axis, and the arrow has shown the direction, ie, the axial direction. The same applies to FIGS. 9 to 10 described later. As shown in FIGS. 5 to 6, the CO removal catalyst layer 54 is arranged in an inverted mortar shape. Reference numeral 51 denotes a lower partition wall having a plurality of holes 52. FIG. 7 is a plan view showing the lower partition wall 51 taken out. The lower partition wall 51 has a donut shape and is provided with a plurality of holes 52 on the annular surface of the central edge thereof. 53 is a gap formed between the partition plate 27 and the lower partition wall 51. Reference numeral 55 denotes an inverted mortar-shaped upper partition wall having a plurality of holes 56 at its skirt, and is inclined downward from the central portion to the outside. 8 is a view showing the upper partition wall 55 taken out, FIG. 8A is a plan view (viewed from above), and FIG. 8B is a cross-sectional view taken along line YY in FIG. 8A. is there. 5 to 6, the lower partition wall 51 corresponds to a front partition wall in the gas flow axis direction, and the upper partition wall 55 corresponds to a rear partition wall in the gas flow axis direction. Is the same.

57は第2円筒体2に対して間隔を置いて配置された複数の連通孔を有する円筒体、58は円筒体24に対して間隔を置いて配置された複数の連通孔を有する円筒体である。CO除去触媒層54は、下部隔壁51と上部隔壁55と円筒体57と円筒体58とにより区画された空間にCO除去触媒を充填することで形成される。ここで上部隔壁55を外周に向けて下向きに傾斜をもたせて構成することが本態様での基本構造の一つである。このようにCO除去触媒層を区画する上部隔壁に傾斜をもたせ、且つ、その傾斜の程度を調整することにより、触媒へのガス入口部と出口部のそれぞれに(また、その中間部についても)最適なガス線速度LVやガス空間速度SVに設計した触媒反応装置を得ることができる。例えば、入口のガス流速を遅くするという反応設計が可能となる。また、触媒充填部の上面隔壁に傾斜をもたせることで、触媒の沈降などによるガスリークが生じない構造にできる。   57 is a cylindrical body having a plurality of communication holes spaced from the second cylindrical body 2, and 58 is a cylinder having a plurality of communication holes spaced from the cylindrical body 24. is there. The CO removal catalyst layer 54 is formed by filling a space defined by the lower partition 51, the upper partition 55, the cylindrical body 57, and the cylindrical body 58 with a CO removal catalyst. Here, it is one of the basic structures in this embodiment that the upper partition wall 55 is inclined downward toward the outer periphery. In this way, the upper partition wall that partitions the CO removal catalyst layer is inclined, and the degree of the inclination is adjusted, so that each of the gas inlet portion and the outlet portion to the catalyst (and the intermediate portion thereof) is also provided. It is possible to obtain a catalytic reaction apparatus designed for the optimum gas linear velocity LV and gas space velocity SV. For example, it is possible to design a reaction by slowing the gas flow rate at the inlet. Further, by providing the upper surface partition wall of the catalyst filling portion with an inclination, a structure in which gas leakage due to sedimentation of the catalyst does not occur can be achieved.

従来の円筒状容器内に順次複数の気相触媒反応を行うための複数種類の触媒層をそれぞれ別層に且つ上下の隔壁で区画して配置した触媒反応装置においては、前述図1〜2のとおり、CO除去触媒とCO変成触媒の特性から、CO除去触媒層の径はCO変成触媒層の径より小さくすることが必須であった。これに対して、本発明によれば、図5〜8のとおり、CO除去触媒層54の径をCO変成触媒層21の径と同じ径とすることができることから、CO除去触媒の特性に対応して、ガス流れ方向に長くでき、また断熱材を薄くできる。このように、触媒設置位置の自由度が上がり、また3次元にガスフローを構成できるため、無駄な空間がなくなり、装置を小型化することができる。   In the conventional catalytic reactor in which a plurality of types of catalyst layers for sequentially performing a plurality of gas phase catalytic reactions are arranged in separate layers and separated by upper and lower partition walls in a conventional cylindrical vessel, the above-described FIGS. As described above, from the characteristics of the CO removal catalyst and the CO conversion catalyst, it is essential that the diameter of the CO removal catalyst layer be smaller than the diameter of the CO conversion catalyst layer. In contrast, according to the present invention, as shown in FIGS. 5 to 8, the diameter of the CO removal catalyst layer 54 can be made the same as the diameter of the CO conversion catalyst layer 21, which corresponds to the characteristics of the CO removal catalyst. Thus, it can be elongated in the gas flow direction, and the heat insulating material can be thinned. As described above, the degree of freedom of the catalyst installation position is increased, and the gas flow can be configured three-dimensionally. Therefore, useless space is eliminated and the apparatus can be downsized.

ここで、上部隔壁55に傾斜をもたせるのに代えて、下部隔壁51に傾斜をもたせるようにしてもよく、また、上部隔壁55に傾斜をもたせるとともに、下部隔壁51にも傾斜をもたせるようにしてもよい。このうち、上部隔壁55に傾斜をもたせるのに代えて、下部隔壁51に傾斜をもたせる場合には、上部隔壁55がドーナツ状の隔壁、下部隔壁51がすり鉢状の隔壁となり、下部隔壁51が外周に向けて上向きに傾斜をもつ構成となる。また、上部隔壁55に傾斜をもたせるとともに、下部隔壁51にも傾斜をもたせる場合には、上部隔壁55が逆すり鉢状、下部隔壁51がすり鉢状の隔壁となり、下部隔壁51が外周に向けて下向きに傾斜をもち、下部隔壁51が外周に向けて上向きに傾斜をもつ構成となる。これらは、本発明において、円筒状容器の軸方向に対して垂直に且つ放射状にガスが流通するように触媒層Bを区画する前後の隔壁のうちの少なくとも一方の隔壁に、ガスが流通する方向に対して傾斜をもたせてなる構成に相当している。   Here, instead of inclining the upper partition wall 55, the lower partition wall 51 may be inclined, and the upper partition wall 55 may be inclined and the lower partition wall 51 may be inclined. Also good. Of these, when the lower partition 51 is inclined instead of the upper partition 55 being inclined, the upper partition 55 is a donut-shaped partition, the lower partition 51 is a mortar-shaped partition, and the lower partition 51 is the outer periphery. It becomes the structure which has an inclination upward toward the direction. Further, when the upper partition wall 55 is inclined and the lower partition wall 51 is also inclined, the upper partition wall 55 has a reverse mortar shape, the lower partition wall 51 has a mortar shape, and the lower partition wall 51 faces downward toward the outer periphery. And the lower partition wall 51 is inclined upward toward the outer periphery. In the present invention, these are directions in which gas flows in at least one of the partition walls before and after partitioning the catalyst layer B so that the gas flows in a direction perpendicular to the axial direction of the cylindrical container and radially. This corresponds to a configuration with an inclination.

本触媒反応装置の作動に際しては、CO変成触媒層21から支持板22の孔を経て、CO除去用空気が混合された改質ガスは、隔壁(仕切板)27の孔28から隔壁27と下部隔壁51との間の空隙53を流通し、下部隔壁51の複数の孔52から第2円筒体2と円筒体57との間の隙間に導入され、円筒体57の連通孔を経てCO除去触媒層54に導入される。そして改質ガスは、CO除去触媒層54では、円筒体58の方向に放射状に流通するが、CO除去触媒層の上部隔壁55が円筒体58の方へ下向きに傾斜しているので、その流速が制御される。   In the operation of the present catalytic reactor, the reformed gas mixed with the CO removal air from the CO conversion catalyst layer 21 through the holes of the support plate 22 passes through the holes 28 of the partition wall (partition plate) 27 and the partition walls 27 and the lower part. It circulates through the gap 53 between the partition walls 51, is introduced into the gap between the second cylindrical body 2 and the cylindrical body 57 from the plurality of holes 52 of the lower partition wall 51, and passes through the communication holes of the cylindrical body 57 to remove the CO removal catalyst. Introduced into layer 54. The reformed gas flows radially in the direction of the cylindrical body 58 in the CO removal catalyst layer 54, but the upper partition wall 55 of the CO removal catalyst layer is inclined downward toward the cylindrical body 58. Is controlled.

ここで、CO変成触媒層21のCO変成触媒としては、粒状CO変成触媒のほか、モノリス型CO変成触媒が用いられるが、好ましくはモノリス型CO変成触媒(=ハニカムCO変成触媒)が用いられる。モノリス型CO変成触媒は、触媒固定床を一体化した触媒で、多数の平行貫通孔すなわちセルをもったセラミック製またはメタル製の担体のセル内表面にCO変成触媒を担持させた触媒である。本触媒反応装置を例えば家庭用コージェネレーションシステム(熱電併給システム)で使用する場合には、起動、停止を頻繁に行う必要がある。そのため、粒状触媒を用いる場合、温度の上昇、下降などの繰り返しにより、触媒層に充填されている触媒が圧壊、粉化し、触媒活性が低下することが問題になる。そこで、CO変成触媒としてモノリス型CO変成触媒を用いることにより、粒状CO変成触媒を用いる場合におけるそれらの問題を解決することができる。   Here, as the CO conversion catalyst of the CO conversion catalyst layer 21, in addition to the granular CO conversion catalyst, a monolith type CO conversion catalyst is used, but a monolith type CO conversion catalyst (= honeycomb CO conversion catalyst) is preferably used. The monolith type CO shift catalyst is a catalyst in which a fixed catalyst bed is integrated, and is a catalyst in which a CO shift catalyst is supported on the inner surface of a ceramic or metal carrier having a large number of parallel through holes, that is, cells. When this catalytic reactor is used in, for example, a home cogeneration system (cogeneration system), it is necessary to start and stop frequently. Therefore, when a granular catalyst is used, there is a problem that the catalyst filled in the catalyst layer is crushed and pulverized due to repeated rise and fall of temperature and the catalytic activity is lowered. Thus, by using a monolithic CO conversion catalyst as the CO conversion catalyst, those problems in the case of using a granular CO conversion catalyst can be solved.

〈3.ガス流通を放射状にし且つ隔壁に傾斜をもたせ、さらに冷却機構を設ける態様〉
図9〜11はガス流通を放射状にし且つ隔壁に傾斜をもたせ、さらに冷却機構を設ける態様を説明する図である。図9〜11において、図1〜2、図5〜8と同じ部材、部位については同じ符号を用いている。まず、図9の態様では、CO除去触媒層54の上部隔壁55の上部に冷却機構59を設ける。冷却機構59は水供給管25に連なる管で、上部隔壁55の上面に螺旋状に配置される。作動に際しては、冷却機構59の管内に水を流通させることにより、上部隔壁55の壁面を介してCO除去触媒層54を冷却する。水は、水供給管25から、図9中、矢印aのように流れて冷却機構59の管内を流通した後、矢印bのように流れて水供給管25に至り(戻り)、これに連なる冷却管26を経て、混合部13で原料ガスに混合される。この冷却機構59によりCO除去触媒層54での反応熱を効率的に除去することができる。また、上部隔壁55に傾斜をもたせるのに代えて、下部隔壁51に傾斜をもたせるようにした場合にも、下部隔壁51に対して同様に冷却機構を配置することができる。この場合にも上記と同様の冷却効果が得られる。
<3. A mode in which gas flow is made radial and the partition wall is inclined, and a cooling mechanism is further provided>
9-11 is a figure explaining the aspect which makes a gas distribution radial, makes a partition incline, and also provides a cooling mechanism. 9-11, the same code | symbol is used about the same member and site | part as FIGS. 1-2, FIGS. First, in the embodiment of FIG. 9, a cooling mechanism 59 is provided above the upper partition wall 55 of the CO removal catalyst layer 54. The cooling mechanism 59 is a pipe that is continuous with the water supply pipe 25 and is spirally disposed on the upper surface of the upper partition wall 55. In operation, the CO removal catalyst layer 54 is cooled through the wall surface of the upper partition wall 55 by circulating water through the pipe of the cooling mechanism 59. The water flows from the water supply pipe 25 as shown by an arrow a in FIG. 9 and circulates in the pipe of the cooling mechanism 59, then flows as shown by an arrow b to the water supply pipe 25 (returns), and continues to this. After passing through the cooling pipe 26, the raw material gas is mixed in the mixing unit 13. The cooling mechanism 59 can efficiently remove the heat of reaction in the CO removal catalyst layer 54. Further, when the lower partition 51 is inclined instead of the upper partition 55 being inclined, the cooling mechanism can be similarly arranged with respect to the lower partition 51. In this case, the same cooling effect as described above can be obtained.

図10〜11は、冷却機構の他の態様を説明する図である。図10〜11のとおり、CO除去触媒層54の下部隔壁51の下面に冷却機構60を構成する。図11のとおり、冷却機構60は下部隔壁51の下面と構成部材61とで構成される。図11(a)は、図10における下部隔壁51と構成部材61を取り出し、その断面を示した図である。図11(b)は、その構成部材61の平面図である。図11のとおり、構成部材61は、下部隔壁51に対応した形状であり、ドーナツ状すなわちその中央部に円環状空間を有する円盤状である。図11(b)に示す構成部材61の上面が下部隔壁51の下面に密に当接されて冷却機構60が構成される。図11(b)のとおり、構成部材61には冷却媒体流通用の溝63が設けられ、その中央部にガス(例えばCO除去用空気が混合された改質ガス)を流通する孔65が設けられている。このように溝63が形成された構成部材61の上面に下部隔壁51の下面が密に当接されるので、溝63が冷却媒体の流路となる。また、冷却媒体として水を使用した場合、隔壁51と部材61の隙間には水が表面張力で満たされるため、冷却媒体である水蒸気や水の主な流路は溝63に沿った流路となる。図11(b)中、62は該流路への冷却媒体の導入管、64は該流路からの冷却媒体の導出管である。なお、図11(a)では、孔65を形成する部分を、下部隔壁51及び構成部材61とは別個に構成した場合を示しているが、下部隔壁51及び構成部材61を当該部分まで延長し、その延長部分に孔65を設けてもよい。   FIGS. 10-11 is a figure explaining the other aspect of a cooling mechanism. As shown in FIGS. 10 to 11, the cooling mechanism 60 is formed on the lower surface of the lower partition wall 51 of the CO removal catalyst layer 54. As shown in FIG. 11, the cooling mechanism 60 includes a lower surface of the lower partition wall 51 and a component member 61. FIG. 11A is a diagram showing a cross section of the lower partition wall 51 and the constituent member 61 in FIG. FIG. 11B is a plan view of the constituent member 61. As shown in FIG. 11, the component member 61 has a shape corresponding to the lower partition wall 51, and has a donut shape, that is, a disc shape having an annular space at the center thereof. The cooling mechanism 60 is configured with the upper surface of the component member 61 shown in FIG. 11B being in close contact with the lower surface of the lower partition wall 51. As shown in FIG. 11B, the component member 61 is provided with a groove 63 for circulating a cooling medium, and a hole 65 for circulating a gas (for example, a reformed gas mixed with CO removal air) is provided in the center thereof. It has been. Since the lower surface of the lower partition wall 51 is in close contact with the upper surface of the component member 61 in which the groove 63 is formed in this way, the groove 63 becomes a flow path for the cooling medium. When water is used as the cooling medium, the gap between the partition wall 51 and the member 61 is filled with water by surface tension. Therefore, the main flow path of water vapor or water as the cooling medium is the flow path along the groove 63. Become. In FIG. 11B, reference numeral 62 denotes a cooling medium introduction pipe to the flow path, and 64 denotes a cooling medium lead-out pipe from the flow path. FIG. 11A shows a case where the portion for forming the hole 65 is configured separately from the lower partition wall 51 and the component member 61. However, the lower partition wall 51 and the component member 61 are extended to the portion. A hole 65 may be provided in the extended portion.

冷却媒体としては、図10〜11の態様では、冷却管26を流れる水が用いられる。図10では水の導入、流れ方向を矢印cとして模式的に示しているが、これは図11(a)、(b)に示すcに相当し、導入管62から冷却機構60に導入される。CO除去触媒層54の冷却に寄与した水は、図10中矢印dとして示すように流れ、混合部13で原料ガスに混合されるが、これは図11(a)、(b)に示すdに相当し、導出管64から導出されて原料ガスに混合される。ここで、図10〜11の態様では、冷却機構60は下部隔壁51の下面に構成部材61を配置することで構成されるが、構成部材61を下部隔壁51の上面に配置して構成してもよい。この場合には、構成部材61がCO除去触媒層54の側に位置することになり、溝63が形成された構成部材61の当該溝63を有する面が下部隔壁51の上面に当接される。また、上部隔壁55に傾斜をもたせるのに代えて、下部隔壁51に傾斜をもたせるようにした場合にも、対応する傾斜をもたない上部隔壁に対して上記と同様に冷却機構を構成することができる。この場合にも上記と同様の冷却効果が得られる。   As a cooling medium, the water which flows through the cooling pipe 26 is used in the aspect of FIGS. In FIG. 10, the introduction and flow direction of water is schematically shown as an arrow c, which corresponds to c shown in FIGS. 11A and 11B, and is introduced into the cooling mechanism 60 from the introduction pipe 62. . The water that has contributed to the cooling of the CO removal catalyst layer 54 flows as shown by the arrow d in FIG. 10 and is mixed with the raw material gas in the mixing unit 13, which is shown in FIGS. 11 (a) and 11 (b). It is derived from the outlet pipe 64 and mixed with the raw material gas. 10 to 11, the cooling mechanism 60 is configured by disposing the constituent member 61 on the lower surface of the lower partition wall 51. However, the cooling mechanism 60 is configured by disposing the constituent member 61 on the upper surface of the lower partition wall 51. Also good. In this case, the component member 61 is positioned on the CO removal catalyst layer 54 side, and the surface of the component member 61 in which the groove 63 is formed is in contact with the upper surface of the lower partition wall 51. . Further, in the case where the lower partition wall 51 is inclined instead of the upper partition wall 55 being inclined, the cooling mechanism is configured in the same manner as described above for the corresponding upper partition wall having no inclination. Can do. In this case, the same cooling effect as described above can be obtained.

〈4.ガス流通を放射状にし且つ隔壁に傾斜をもたせるとともに、冷却機構を設け、さらにCO除去触媒層に冷却用のフィンを設ける態様〉
図12はCO除去触媒層54に冷却用のフィンを設ける態様を説明する図である。ここで、他の構成は図5〜11と同様である。図12(a)は断面図、図12(b)は冷却用のフィンの側面図、図12(c)は冷却用のフィンの断面図である。図12(b)〜(c)中フィンの寸法例を示しているが、これは一例としてのものである。図12のとおり、ガス流通を放射状にし且つ上部隔壁に傾斜をもたせた空間にCO除去触媒層54を配置し、そのCO除去触媒層54中に複数個の冷却用のフィン66を設ける。各冷却用のフィン66は中央部から外周に向けて放射状に配置し、各冷却用のフィン66は等間隔に配置する。各冷却用のフィン66は下部隔壁51(図5〜11参照)に固定してもよく、上部隔壁55(図5〜11参照)に固定してもよく、その両方に固定してもよいが、好ましくはその両方に固定する。固定は例えば溶接や金属ろう材により行うことができる。このように、CO除去触媒層に冷却用のフィンを設けることにより、CO除去触媒を均等に冷却し、CO除去反応を均等に行うことができる。CO除去触媒層に冷却用のフィンを設ける態様は、前述図3〜4に示す態様においても適用でき、この場合にも上記と同様な冷却効果を得ることができる。
<4. A mode in which gas flow is made radial and the partition wall is inclined, a cooling mechanism is provided, and a cooling fin is provided in the CO removal catalyst layer>
FIG. 12 is a diagram for explaining a mode in which cooling fins are provided on the CO removal catalyst layer 54. Here, the other structure is the same as that of FIGS. 12A is a cross-sectional view, FIG. 12B is a side view of the cooling fin, and FIG. 12C is a cross-sectional view of the cooling fin. Although the example of a dimension of the fin is shown in Drawing 12 (b)-(c), this is a thing as an example. As shown in FIG. 12, the CO removal catalyst layer 54 is disposed in a space in which the gas flow is made radial and the upper partition wall is inclined, and a plurality of cooling fins 66 are provided in the CO removal catalyst layer 54. The cooling fins 66 are arranged radially from the center toward the outer periphery, and the cooling fins 66 are arranged at equal intervals. Each cooling fin 66 may be fixed to the lower partition wall 51 (see FIGS. 5 to 11), may be fixed to the upper partition wall 55 (see FIGS. 5 to 11), or may be fixed to both of them. , Preferably fixed to both. Fixing can be performed, for example, by welding or a metal brazing material. Thus, by providing the fin for cooling in the CO removal catalyst layer, the CO removal catalyst can be cooled uniformly, and the CO removal reaction can be performed uniformly. The embodiment in which the cooling fin is provided in the CO removal catalyst layer can be applied to the embodiments shown in FIGS. 3 to 4 described above, and in this case, the same cooling effect as described above can be obtained.

本触媒反応装置は、各種触媒反応を行う装置として使用することができる。特に、炭化水素系燃料を水蒸気改質反応で改質して水素を製造する水素製造装置において、触媒層Aの触媒としてCO変成触媒を用い、触媒層Bの触媒としてCO除去触媒を用いる場合や、燃焼排気ガス中のNOx(=NO等の窒素酸化物)及びCH4等の未燃成分を除去する排ガス処理装置において、触媒層Aの触媒として脱硝触媒を用い、触媒層Bの触媒として燃焼触媒を用いる場合などに好適に適用される。このうち水蒸気改質反応による水素製造装置は、燃料電池に水素を供給する水素製造装置として有用である。 This catalytic reaction apparatus can be used as an apparatus for performing various catalytic reactions. In particular, in a hydrogen production apparatus that produces hydrogen by reforming a hydrocarbon-based fuel by a steam reforming reaction, a CO conversion catalyst is used as the catalyst of the catalyst layer A, and a CO removal catalyst is used as the catalyst of the catalyst layer B. In an exhaust gas treatment apparatus for removing unburned components such as NOx (= nitrogen oxides such as NO) and CH 4 in combustion exhaust gas, a denitration catalyst is used as a catalyst for catalyst layer A, and combustion is performed as a catalyst for catalyst layer B It is suitably applied when using a catalyst. Among these, a hydrogen production apparatus using a steam reforming reaction is useful as a hydrogen production apparatus that supplies hydrogen to a fuel cell.

本触媒反応装置を炭化水素系燃料からの水素製造装置として構成する場合、以下(1)〜(8)の構成とすることができる。(1)同心状に間隔を置いて配置した順次径の大きい第1円筒体、第2円筒体及び第3円筒体と、第3円筒体の上部に第3円筒体より径を大きくした第4円筒体を備える。(2)第1円筒体の内部に中心軸を同軸にして配置された輻射筒を備える。(3)輻射筒内の軸方向にバーナーを備え、第1円筒体と第2円筒体により区画された間隙に改質触媒を充填した改質触媒層を配置する。(4)第2円筒体と第4円筒体との間に軸方向に隔壁を介して間隔を置いて順次CO変成触媒層及びCO除去触媒層を配置する。(5)CO除去触媒層における改質ガスの流通を中心軸側から外周に向けて放射状に流通するように構成する。   When this catalytic reaction apparatus is configured as a hydrogen production apparatus from a hydrocarbon-based fuel, the following (1) to (8) can be employed. (1) A first cylindrical body, a second cylindrical body, and a third cylindrical body, which are arranged concentrically and spaced apart from each other in order, and a fourth cylinder whose diameter is larger than that of the third cylindrical body at the top of the third cylindrical body. A cylindrical body is provided. (2) A radiation cylinder is provided in the first cylindrical body with the central axis being coaxial. (3) A reforming catalyst layer that is provided with a burner in the axial direction in the radiation cylinder and is filled with the reforming catalyst is disposed in a gap defined by the first cylinder and the second cylinder. (4) A CO shift catalyst layer and a CO removal catalyst layer are sequentially arranged between the second cylinder and the fourth cylinder with an interval in the axial direction through a partition wall. (5) The flow of the reformed gas in the CO removal catalyst layer is configured to flow radially from the central axis side toward the outer periphery.

ここで、上記(5)の構成については、そのようにCO除去触媒層における改質ガスの流通を中心軸側から外周に向けて放射状に流通するようにするのに加え、(6)CO除去触媒層を区画する上部隔壁及び上部隔壁のうち一方または両方を中心軸側から外周に向けて傾斜させる構成とすることができる。この傾斜は、上部隔壁では中心軸側から外周に向けて下降する傾斜とし、下部隔壁では中心軸側から外周に向けて上昇する傾斜とする。(7)これら(1)〜(5)の構成または(1)〜(6)の構成に加え、CO除去触媒層に対して前述の冷却機構を設けてもよく、また冷却機構とともに、前述の冷却用のフィンを設けてもよい。   Here, with regard to the configuration of (5) above, in addition to making the flow of the reformed gas in the CO removal catalyst layer circulate radially from the central axis side toward the outer periphery, (6) CO removal One or both of the upper partition wall and the upper partition wall that partition the catalyst layer may be inclined from the central axis side toward the outer periphery. This slope is a slope that descends from the central axis side toward the outer periphery in the upper partition wall, and a slope that rises from the central axis side toward the outer periphery in the lower partition wall. (7) In addition to the configurations of (1) to (5) or (1) to (6), the above-described cooling mechanism may be provided for the CO removal catalyst layer. You may provide the fin for cooling.

以上、本触媒反応装置において、触媒を除く構成部材としては耐熱合金、好ましくはステンレス鋼が用いられる。また、本触媒反応装置での各触媒層の触媒としては、触媒反応の種類に応じて用いられる。例えば、改質触媒としては、NiやRuなどの金属触媒、その他の改質触媒から適宜選定して用いられ、CO変成触媒としては、Cu/Zn系触媒、Fe/Cr系触媒、白金属触媒、白金を主成分としCeO2等の金属酸化物を副成分として含む触媒、Al、Cu、Fe、Cr、Moなどの卑金属触媒、その他のCO変成触媒から適宜選定して用いられ、CO除去触媒としては、Ru系などの金属触媒その他のCO除去触媒から適宜選定して用いられる。また、燃焼触媒としては、Pd、Ptなどの白金属触媒、その他の燃焼触媒から適宜選定して用いられ、脱硝触媒としては、Pt、Rh、Pd等の貴金属触媒、TiO2、Cr23、Fe23等の酸化物触媒、その他の脱硝触媒から適宜選定して用いられる。それら触媒はアルミナその他の担体に担持して構成される。 As described above, in the present catalytic reactor, a heat-resistant alloy, preferably stainless steel, is used as a constituent member excluding the catalyst. Moreover, as a catalyst of each catalyst layer in this catalyst reaction apparatus, it is used according to the kind of catalytic reaction. For example, the reforming catalyst is appropriately selected from metal catalysts such as Ni and Ru, and other reforming catalysts, and the CO conversion catalyst is a Cu / Zn-based catalyst, Fe / Cr-based catalyst, white metal catalyst, or the like. , A catalyst that contains platinum as a main component and a metal oxide such as CeO 2 as an accessory component, a base metal catalyst such as Al, Cu, Fe, Cr, and Mo, and other CO conversion catalysts, and is used as appropriate. Are appropriately selected from Ru-based metal catalysts and other CO removal catalysts. The combustion catalyst is appropriately selected from white metal catalysts such as Pd and Pt, and other combustion catalysts, and the denitration catalyst is a noble metal catalyst such as Pt, Rh, and Pd, TiO 2 , Cr 2 O 3. , Fe 2 O 3 and other oxide catalysts, and other denitration catalysts are appropriately selected and used. These catalysts are configured to be supported on an alumina or other support.

以下、実施例を基に本発明をさらに詳しく説明するが、本発明がこれら実施例に限定されないことはもちろんである。実施例1で実験例を記載し、実施例2〜5は本発明の各種構成例である。   EXAMPLES Hereinafter, although this invention is demonstrated in more detail based on an Example, of course, this invention is not limited to these Examples. An experimental example is described in Example 1, and Examples 2 to 5 are various configuration examples of the present invention.

〈実施例1〉
図5〜7に示す触媒反応装置を水素製造装置として用いて試験した。本水素製造装置は、一時間当たり1Nm3の水素を製造できる装置である。これに出力1kWのPEFCを連結した。1Nm3の水素のうち0.75Nm3の水素を使って1kWの発電を行うことができる。改質触媒層16、CO変成触媒層21及びCO除去触媒層54のそれぞれに各触媒を充填した。改質触媒として、ルテニウム系触媒〔アルミナにRuを担持した触媒、粒状、平均粒径(直径)≒3mm〕を用いた。CO変成触媒として、Cu/Zn系触媒〔アルミナにCu及びZnを担持して押出成形した触媒、円柱状、3mm(直径)×3mm(長さ)〕を用いた。また、CO除去触媒として、ルテニウム/白金系触媒〔粒状アルミナにRuを担持した触媒、粒状、平均粒径(直径)≒3mm〕を用いた。
<Example 1>
The catalytic reaction apparatus shown in FIGS. 5 to 7 was tested as a hydrogen production apparatus. This hydrogen production apparatus is an apparatus capable of producing 1 Nm 3 of hydrogen per hour. This was connected to a PEFC with an output of 1 kW. Power can be generated for 1kW with hydrogen 0.75 nm 3 of hydrogen 1 nm 3. Each catalyst was filled in each of the reforming catalyst layer 16, the CO shift catalyst layer 21, and the CO removal catalyst layer 54. As the reforming catalyst, a ruthenium-based catalyst [a catalyst having Ru supported on alumina, granular, average particle diameter (diameter) ≈3 mm] was used. As the CO conversion catalyst, a Cu / Zn-based catalyst [a catalyst obtained by extruding Cu and Zn on alumina, a cylindrical shape, 3 mm (diameter) × 3 mm (length)] was used. As the CO removal catalyst, a ruthenium / platinum-based catalyst (a catalyst in which Ru is supported on granular alumina, granular, average particle diameter (diameter) ≈3 mm) was used.

原料ガスとして脱硫済みの都市ガス(13A)を使用し、流量4.1NL/minで供給し、水(純水)を流量:10.0g/minで供給した。スチーム比(S/C比)=2.5である。また、CO除去用空気を流量:1.5NL/minで供給した。バーナー用燃料としては、都市ガスを使用した。こうして、改質ガスが流量(ドライベース):23.1NL/minで得られた。表1は、定常運転時に計測された改質触媒層、CO変成触媒層及びCO除去触媒層におけるガスの空間速度と線速度である。表1のとおり、特にCO除去触媒層における線速度LVを、CO除去触媒層の入口と出口とで、ほぼ同等にすることができた。   Desulfurized city gas (13A) was used as the raw material gas, supplied at a flow rate of 4.1 NL / min, and water (pure water) was supplied at a flow rate of 10.0 g / min. Steam ratio (S / C ratio) = 2.5. Further, CO removal air was supplied at a flow rate of 1.5 NL / min. City gas was used as the fuel for the burner. Thus, the reformed gas was obtained at a flow rate (dry base): 23.1 NL / min. Table 1 shows the space velocity and linear velocity of the gas in the reforming catalyst layer, the CO shift catalyst layer, and the CO removal catalyst layer measured during steady operation. As shown in Table 1, the linear velocity LV particularly in the CO removal catalyst layer could be made substantially equal at the inlet and the outlet of the CO removal catalyst layer.

Figure 0004762496
Figure 0004762496

〈実施例2〉
図13は本実施例2を示す図である。本触媒反応装置は円筒状であり、図13では縦断面図として示している。図13中、77はCO変成触媒層、82はCO除去触媒層であり、ともに円筒体71内に配置されている。72は円筒体71の底板、73は底板72に設けられた改質ガス導入管である。74は円筒体71の上蓋、75は上蓋74に設けられた改質ガス導出管である。CO変成触媒層77は、底板72と間隔を置いて配置された多孔板76と上部多孔板78との間に充填されている。CO除去触媒層82は、該上部多孔板78と間隔を置いて配置された板体80と逆すり鉢状隔壁83との間に充填されている。板体80は円盤状で、その中央部に改質ガス導入管81を備えている。79はCO除去用空気導入管である。84は逆すり鉢状隔壁83の底部(隔壁83が逆すり鉢状であるので上方にある)、85は多数の孔を有する円筒体である。こうして構成した反応装置全体を断熱材86で断熱している。
<Example 2>
FIG. 13 shows the second embodiment. This catalytic reaction apparatus is cylindrical, and is shown as a longitudinal sectional view in FIG. In FIG. 13, reference numeral 77 denotes a CO shift catalyst layer, and reference numeral 82 denotes a CO removal catalyst layer. Reference numeral 72 denotes a bottom plate of the cylindrical body 71, and 73 denotes a reformed gas introduction pipe provided on the bottom plate 72. 74 is an upper cover of the cylindrical body 71, and 75 is a reformed gas outlet pipe provided on the upper cover 74. The CO shift catalyst layer 77 is filled between the perforated plate 76 and the upper perforated plate 78 spaced from the bottom plate 72. The CO removal catalyst layer 82 is filled between the upper perforated plate 78, the plate body 80 disposed at a distance from the upper porous plate 78, and the inverted mortar-shaped partition wall 83. The plate body 80 has a disk shape and includes a reformed gas introduction pipe 81 at the center thereof. Reference numeral 79 denotes a CO removal air introduction pipe. Reference numeral 84 denotes a bottom portion of the inverted mortar-shaped partition wall 83 (because the partition wall 83 has an inverted mortar shape), and 85 is a cylindrical body having a number of holes. The entire reactor thus configured is insulated with a heat insulating material 86.

以上のように構成された触媒反応装置の運転に際しては、導入管73から導入された改質ガスは底板72と多孔板76との間の間隙から多孔板76の孔を通してCO変成触媒層77に導入され、シフト反応により、改質ガス中のCOが二酸化炭素に変成され、併せて水素が生成する。CO変成後の改質ガスは、導管79からのCO除去用空気が混合され、上部多孔板78と板体80との間の間隙から導入管81を通り、その流れが逆すり鉢状隔壁83の底部すなわち上部隔壁84にぶつかることにより、改質ガスとCO除去用空気が十分に混合される。その後、円筒体85の孔を通って、CO除去触媒層82に導入される。ここでのCO除去反応により、改質ガス中のCOが二酸化炭素に変えられる。CO除去後の改質ガスは導出管75から導出され、取り出される。図13中、改質ガスの流れを点線で示している。こうして、CO濃度10vol%以上の改質ガス中のCO濃度を10ppm以下にまで低減させることができる。なお、上部多孔板78と板体80との間は、図1〜2、図5〜6に示すように、一つの連通孔28を有する隔壁(仕切板)27を間隔を置いて配置した構造にしてもよい。この一つの連通孔28は改質ガスとCO除去用空気を混合する機能をもっており、上記導入管81もこれと同様の機能をもつ構造である。   In the operation of the catalytic reaction apparatus configured as described above, the reformed gas introduced from the introduction pipe 73 passes from the gap between the bottom plate 72 and the porous plate 76 to the CO conversion catalyst layer 77 through the holes of the porous plate 76. When introduced, the shift reaction converts CO in the reformed gas into carbon dioxide, and hydrogen is also generated. The reformed gas after the CO transformation is mixed with the air for removing CO from the conduit 79, passes through the introduction pipe 81 from the gap between the upper porous plate 78 and the plate body 80, and the flow of the inverted mortar-shaped partition wall 83. By striking the bottom or upper partition 84, the reformed gas and the CO removal air are sufficiently mixed. Thereafter, the gas is introduced into the CO removal catalyst layer 82 through the hole of the cylindrical body 85. By the CO removal reaction here, CO in the reformed gas is changed to carbon dioxide. The reformed gas after CO removal is led out from the outlet pipe 75 and taken out. In FIG. 13, the flow of the reformed gas is indicated by a dotted line. In this way, the CO concentration in the reformed gas having a CO concentration of 10 vol% or more can be reduced to 10 ppm or less. In addition, between the upper porous plate 78 and the plate body 80, as shown in FIGS. 1-2 and FIGS. 5-6, the structure which has arrange | positioned the partition (partition plate) 27 which has one communicating hole 28 at intervals. It may be. The one communication hole 28 has a function of mixing the reformed gas and the CO removing air, and the introduction pipe 81 has a structure having the same function.

〈実施例3〉
本実施例3は、円筒状容器の中心部の軸方向に、改質反応の原料となる炭化水素系原料ガス(燃料)が流通して、該炭化水素系燃料中の硫黄分を除去する脱硫剤を配置し、その外周に前記触媒層Aの触媒としてCO変成触媒を配置し、前記触媒層Bの触媒としてCO除去触媒を配置し、該脱硫剤で硫黄分を除去した炭化水素系燃料を水蒸気改質した改質ガスを、順次、触媒層A、触媒層Bに流通するように構成してなる触媒反応装置の例である。図14は、本実施例3を示す図で、実施例2を示す図13の触媒反応装置において、その中心部の軸方向に脱硫剤を配し、そして炭化水素系燃料の改質装置を別個に配置した例に相当している。
<Example 3>
The third embodiment is a desulfurization in which a hydrocarbon-based raw material gas (fuel) serving as a raw material for the reforming reaction flows in the axial direction of the central portion of the cylindrical vessel to remove the sulfur content in the hydrocarbon-based fuel. A hydrocarbon-based fuel in which a CO conversion catalyst is disposed as the catalyst of the catalyst layer A, a CO removal catalyst is disposed as the catalyst of the catalyst layer B, and a sulfur content is removed by the desulfurization agent This is an example of a catalytic reaction device configured to sequentially flow the reformed gas subjected to steam reforming to the catalyst layer A and the catalyst layer B. FIG. 14 is a diagram showing the third embodiment. In the catalytic reaction apparatus of FIG. 13 showing the second embodiment, a desulfurizing agent is arranged in the axial direction of the central portion, and a hydrocarbon-based fuel reforming apparatus is separately provided. This corresponds to the example of the arrangement.

図14中、その上部が図13に示すような触媒反応装置の円筒状容器の中心部の軸方向に脱硫剤を配した反応装置である。図14中、図5、図13と共通する部分については、同じ符号を付している。図14のとおり、図13に示すような触媒反応装置の中心部の軸方向に、すなわちその中心部で且つ軸方向に脱硫剤を充填する円筒体88を配置する。その上蓋89には炭化水素系燃料である原料ガスの導入管90、その下蓋91には脱硫済み原料ガスの導出管92を備えている。円筒体88内には上下の多孔板93、94間に脱硫剤が充填されている。図14中、下半部が改質装置で、その構成は基本的には前述図5に示す触媒反応装置の下半部に相当している。   In FIG. 14, the upper part is a reactor in which a desulfurizing agent is arranged in the axial direction of the central part of the cylindrical container of the catalytic reactor as shown in FIG. In FIG. 14, parts that are the same as those in FIGS. 5 and 13 are given the same reference numerals. As shown in FIG. 14, a cylindrical body 88 filled with a desulfurizing agent is disposed in the axial direction of the central portion of the catalytic reaction apparatus as shown in FIG. 13, that is, in the central portion and in the axial direction. The upper cover 89 is provided with a raw material gas introduction pipe 90 which is a hydrocarbon-based fuel, and the lower cover 91 is provided with a desulfurized raw material gas outlet pipe 92. The cylindrical body 88 is filled with a desulfurizing agent between the upper and lower perforated plates 93 and 94. In FIG. 14, the lower half is a reformer, and its configuration basically corresponds to the lower half of the catalytic reaction apparatus shown in FIG.

以上のように構成された触媒反応装置の運転に際しては、導入管90から導入された原料ガスは脱硫剤層を流通しながら脱硫される。脱硫済み原料ガスは導出管92から導出され、途中水(水蒸気)を混合して改質装置の改質触媒層に導入される。改質触媒層はバーナー6で発生する燃焼ガスにより加熱されているので、改質反応が進行し、改質ガスは導入管73を介してCO変成触媒層77に導入され、シフト反応により、改質ガス中のCOが二酸化炭素に変成され、併せて水素が生成する。CO変成後の改質ガスは、CO除去触媒層82に導入され、CO除去反応により、改質ガス中のCOが二酸化炭素に変えられる。CO除去後の改質ガスは導出管75から導出され、取り出される。こうして、CO濃度10vol%以上の改質ガス中のCO濃度を10ppm以下にまで低減させることができる。本例では、触媒反応装置内に原料ガスの脱硫剤を配置して一体化しているので、脱硫装置を別個に設けるのに比べて、システム全体として小型化ができる。   During the operation of the catalytic reactor configured as described above, the raw material gas introduced from the introduction pipe 90 is desulfurized while flowing through the desulfurizing agent layer. The desulfurized source gas is led out from the lead-out pipe 92, mixed with water (steam) on the way, and introduced into the reforming catalyst layer of the reformer. Since the reforming catalyst layer is heated by the combustion gas generated in the burner 6, the reforming reaction proceeds, the reforming gas is introduced into the CO shift catalyst layer 77 through the introduction pipe 73, and reformed by the shift reaction. CO in the quality gas is converted to carbon dioxide, and hydrogen is generated. The reformed gas after CO conversion is introduced into the CO removal catalyst layer 82, and CO in the reformed gas is changed to carbon dioxide by the CO removal reaction. The reformed gas after CO removal is led out from the outlet pipe 75 and taken out. In this way, the CO concentration in the reformed gas having a CO concentration of 10 vol% or more can be reduced to 10 ppm or less. In this example, since the raw material gas desulfurization agent is arranged and integrated in the catalyst reaction apparatus, the entire system can be reduced in size as compared with the case where the desulfurization apparatus is provided separately.

〈実施例4〉
本実施例4は、本発明を燃焼排ガス(燃焼排気ガス)の浄化に適用した例である。図15は本実施例4を示す図である。本触媒反応装置は円筒状であり、縦断面図として示している。図15中、96はNOx処理触媒層、99はCOやメタン等の未燃成分の燃焼触媒層(燃焼処理触媒層)である。両層は、円筒体95内に、順次、燃焼排ガスの流れ方向に配置されている。NOx処理触媒層96は下部多孔板97と上部多孔板98との間に配置されている。燃焼処理触媒層99は、下部隔壁100と上部隔壁101と小径の多孔性円筒体102と大径の多孔性円筒体103との間に形成された空間に配置され、円筒体95と大径多孔性円筒体103とは間隔を置いて配置され、その空隙104は処理済みガスの流路を形成する。NOx処理触媒、燃焼触媒は粒状でもよく、ハニカム型触媒でもよいが、ハニカム型触媒の方が好ましい。
<Example 4>
The fourth embodiment is an example in which the present invention is applied to purification of combustion exhaust gas (combustion exhaust gas). FIG. 15 shows the fourth embodiment. This catalytic reaction apparatus is cylindrical and is shown as a longitudinal sectional view. In FIG. 15, 96 is a NOx treatment catalyst layer, and 99 is a combustion catalyst layer (combustion treatment catalyst layer) of unburned components such as CO and methane. Both layers are sequentially arranged in the flow direction of the combustion exhaust gas in the cylindrical body 95. The NOx treatment catalyst layer 96 is disposed between the lower porous plate 97 and the upper porous plate 98. The combustion treatment catalyst layer 99 is disposed in a space formed between the lower partition wall 100, the upper partition wall 101, the small-diameter porous cylinder body 102, and the large-diameter porous cylinder body 103, and the cylindrical body 95 and the large-diameter porous body. The air gap 104 forms a flow path for the treated gas. The NOx treatment catalyst and the combustion catalyst may be granular or may be a honeycomb type catalyst, but a honeycomb type catalyst is preferred.

以上のように構成された触媒反応装置の運転に際しては、装置下部から導入された燃焼排ガスは、NOx処理触媒層96を流通しながら、NOxが処理、除去された後、上部多孔板98を経て、小径多孔性円筒体102の下部から流入し、該円筒体102の孔を通して燃焼触媒層99に流入、流通する。ここで未燃成分は燃焼、除去され、円筒体95と大径多孔性円筒体103との間の空隙104を通って排出される。図15中、燃焼排ガスの流れを点線で示している。燃焼触媒による燃焼は、一般に反応速度が速いため、触媒の量は少なくてよい。また、燃焼触媒層では、触媒と被処理ガスとの接触時間を短くし且つ線速度LVを低くする必要があるため、本実施例のような形状の触媒配置が最適である。   During the operation of the catalyst reaction apparatus configured as described above, the combustion exhaust gas introduced from the lower part of the apparatus passes through the NOx treatment catalyst layer 96, and after NOx is treated and removed, it passes through the upper perforated plate 98. Then, it flows in from the lower part of the small-diameter porous cylinder 102 and flows into and through the combustion catalyst layer 99 through the holes of the cylinder 102. Here, the unburned components are burned and removed, and are discharged through the gap 104 between the cylindrical body 95 and the large-diameter porous cylindrical body 103. In FIG. 15, the flow of the combustion exhaust gas is indicated by a dotted line. Combustion with a combustion catalyst generally has a high reaction rate, and therefore the amount of catalyst may be small. Further, in the combustion catalyst layer, it is necessary to shorten the contact time between the catalyst and the gas to be treated and to reduce the linear velocity LV, so that the catalyst arrangement having the shape as in this embodiment is optimal.

〈実施例5〉
本実施例5は、実施例4と同じく、燃焼排ガスの浄化に適用した例であるが、実施例4の場合とは、燃焼触媒層での被処理ガスの流通方向が異なる。図16は、本実施例5を示す図である。本触媒反応装置は円筒状であり、縦断面図として示している。図16中、図15で示す部材と同じ部材について同じ符号を用いている。図16のとおり、装置下部から導入された燃焼排ガスは、NOx処理触媒層96を流通しながら、NOxが処理、除去された後、円筒体95と大径多孔性円筒体103との間の空隙104から大径多孔性円筒体103の孔を通って、燃焼触媒層99中を小径多孔性円筒体102の方向へ流通する。ここで未燃成分は燃焼して除去され、小径多孔性円筒体102の孔を経てその筒体内を上方に向かって通って排出される。他の点は実施例4と同様である。
<Example 5>
The fifth embodiment is an example applied to the purification of combustion exhaust gas as in the fourth embodiment. However, the flow direction of the gas to be treated in the combustion catalyst layer is different from that in the fourth embodiment. FIG. 16 is a diagram illustrating the fifth embodiment. This catalytic reaction apparatus is cylindrical and is shown as a longitudinal sectional view. In FIG. 16, the same members as those shown in FIG. As shown in FIG. 16, the combustion exhaust gas introduced from the lower part of the apparatus passes through the NOx treatment catalyst layer 96, and after NOx is treated and removed, the gap between the cylindrical body 95 and the large-diameter porous cylindrical body 103. From 104 through the hole of the large-diameter porous cylinder 103, the combustion catalyst layer 99 flows in the direction of the small-diameter porous cylinder 102. Here, the unburned components are burned and removed, and discharged through the holes of the small-diameter porous cylindrical body 102 upward. The other points are the same as in the fourth embodiment.

一体型燃料処理装置の一例を縦断面図として示す図The figure which shows an example of an integrated fuel processor as a longitudinal section 図1におけるCO除去触媒層34の部分を中心に拡大して示した図The figure which expanded and showed centering on the part of the CO removal catalyst layer 34 in FIG. ガス流通を放射状にする態様を説明する図The figure explaining the aspect which makes gas distribution radial ガス流通を放射状にし且つ隔壁に傾斜をもたせる態様を説明する図The figure explaining the aspect which makes gas distribution radial and makes a partition incline ガス流通を放射状にし且つ隔壁に傾斜をもたせる態様を説明する図The figure explaining the aspect which makes gas distribution radial and makes a partition incline ガス流通を放射状にし且つ隔壁に傾斜をもたせる態様を説明する図The figure explaining the aspect which makes gas distribution radial and makes a partition incline ガス流通を放射状にし且つ隔壁に傾斜をもたせる態様を説明する図The figure explaining the aspect which makes gas distribution radial and makes a partition incline ガス流通を放射状にし且つ隔壁に傾斜をもたせる態様を説明する図The figure explaining the aspect which makes gas distribution radial and makes a partition incline ガス流通を放射状にし且つ隔壁に傾斜をもたせ、さらに冷却機構を設ける態様を説明する図The figure explaining the aspect which makes a gas distribution radial, gives an inclination to a partition, and also provides a cooling mechanism ガス流通を放射状にし且つ隔壁に傾斜をもたせ、さらに冷却機構を設ける態様を説明する図The figure explaining the aspect which makes a gas distribution radial, gives an inclination to a partition, and also provides a cooling mechanism ガス流通を放射状にし且つ隔壁に傾斜をもたせ、さらに冷却機構を設ける態様を説明する図The figure explaining the aspect which makes a gas distribution radial, gives an inclination to a partition, and also provides a cooling mechanism ガス流通を放射状にし且つ隔壁に傾斜をもたせるとともに、冷却機構を設け、さらにCO除去触媒層に冷却用のフィンを設ける態様を説明する図The figure explaining the aspect which makes a gas distribution radial and makes a partition incline, provides a cooling mechanism, and also provides a fin for cooling in a CO removal catalyst layer 実施例2を示す図The figure which shows Example 2. 実施例3を示す図The figure which shows Example 3. 実施例4を示す図The figure which shows Example 4. 実施例5を示す図The figure which shows Example 5.

符号の説明Explanation of symbols

1〜4 第1円筒体〜第4円筒体
5 輻射筒
6 バーナー
7 上蓋兼バーナー取付台
8 底板
9 燃焼排ガスの排気通路
10 隔壁
21 CO変成触媒層
35、54 CO除去触媒層
47 上部隔壁
47′ 逆すり鉢状に構成した上部隔壁
51 複数の孔52を有する下部隔壁
53 仕切板27と下部隔壁51との間に形成した空隙
55 裾部に複数の孔56を有する逆すり鉢状の上部隔壁
57 第2円筒体2に対して間隔を置いて配置された複数の連通孔を有する円筒体
58 円筒体24に対して間隔を置いて配置された複数の連通孔を有する円筒体
59、60 冷却機構
61 冷却機構の構成部材
62 冷却媒体の導入管
63 溝
64 冷却媒体の導出管
a〜d 冷却媒体としての水の流れ方向
93、94 上下の多孔板
95 円筒体
96 NOx処理触媒層
97 下部多孔板
98 上部多孔板
99 燃焼触媒層
100 下部隔壁
101 上部隔壁
102 小径多孔性円筒体
103 大径多孔性円筒体
104 空隙
1 to 4 1st cylinder to 4th cylinder 5 Radiation tube 6 Burner 7 Upper lid / burner mounting base 8 Bottom plate 9 Exhaust passage for combustion exhaust gas 10 Partition 21 CO shift catalyst layer 35, 54 CO removal catalyst layer 47 Upper partition 47 ' Upper partition wall 51 configured in a reverse mortar shape 51 Lower partition wall having a plurality of holes 52 53 A gap formed between the partition plate 27 and the lower partition wall 51 55 A reverse mortar-shaped upper partition wall having a plurality of holes 56 at the bottom. 2 Cylindrical body having a plurality of communication holes spaced from the cylindrical body 2 58 Cylinder bodies having a plurality of communication holes spaced from the cylindrical body 24 59, 60 Cooling mechanism 61 Constituent member of cooling mechanism 62 Cooling medium introduction pipe 63 Groove 64 Cooling medium outlet pipe a to d Water flow direction as cooling medium 93, 94 Upper and lower perforated plates 95 Cylindrical body 96 NOx treatment catalyst Layer 97 Lower porous plate 98 Upper porous plate 99 Combustion catalyst layer 100 Lower partition wall 101 Upper partition wall 102 Small-diameter porous cylinder 103 Large-diameter porous cylinder 104 Void

Claims (10)

(イ)円筒状容器内に順次複数の気相触媒反応を行うための複数種類の触媒層をそれぞれ別層に区画して配置するとともに、それらを一体に構成した触媒反応装置において、円筒状容器の軸方向にガスが流通する触媒層Aと、円筒状容器の軸方向に対して垂直に且つ放射状にガスが流通するように円筒状容器の軸方向に対して前後の隔壁で区画した空間に触媒層Bを配置し、触媒層Aを経た反応ガスを触媒層Bに導入するようにしてなる触媒反応装置であって、
(ロ)前記円筒状容器について、その円筒状容器内のうち、前記触媒層Bを配置した部位を、その軸方向に対して垂直に且つ放射状にガスが流通するように区画するとともに、
(ハ)前記触媒層Bの入口線速度と出口線速度がほぼ同等になるように逆すり鉢状の上部隔壁を有する
ことを特徴とする触媒反応装置。
(A) In a catalytic reaction apparatus in which a plurality of types of catalyst layers for sequentially performing a plurality of gas phase catalytic reactions are divided into separate layers and arranged integrally in a cylindrical container, the cylindrical container In a space partitioned by a catalyst layer A through which gas flows in the axial direction and partition walls before and after the axial direction of the cylindrical container so that gas flows in a direction perpendicular to the axial direction of the cylindrical container and radially. A catalyst reaction apparatus in which a catalyst layer B is disposed and a reaction gas having passed through the catalyst layer A is introduced into the catalyst layer B,
For (ii) the cylindrical container, of the cylindrical container, a portion was placed the catalyst layer B, as well as partition so that the gas flows into and radially perpendicular to the axial direction of its,
(C) A catalytic reaction apparatus having an inverted mortar-shaped upper partition so that the inlet linear velocity and the outlet linear velocity of the catalyst layer B are substantially equal.
請求項に記載の触媒反応装置において、前記円筒状容器の軸方向に対して垂直に且つ放射状にガスが流通するように区画する前後の隔壁のうちの少なくとも一方の隔壁に、冷却媒体が流れる冷却機構が付設され、該冷却機構により触媒層Bの反応熱を除去するようにしてなることを特徴とする触媒反応装置。 2. The catalytic reaction apparatus according to claim 1 , wherein the cooling medium flows in at least one of the partition walls before and after partitioning so that the gas flows in a direction perpendicular to the axial direction of the cylindrical container and radially. A catalytic reaction apparatus, wherein a cooling mechanism is provided, and the heat of reaction of the catalyst layer B is removed by the cooling mechanism. 請求項に記載の触媒反応装置において、前記冷却機構が、ガスが流通する方向に対して傾斜をもたせてなる隔壁の面に冷却媒体が流れる冷却管を螺旋状に配置することで構成されてなることを特徴とする触媒反応装置。 3. The catalytic reaction apparatus according to claim 2 , wherein the cooling mechanism is configured by arranging a cooling pipe in which a cooling medium flows spirally on a surface of a partition wall inclined with respect to a direction in which the gas flows. A catalytic reactor characterized by comprising: 請求項に記載の触媒反応装置において、前記冷却機構が、触媒層Bを区画する隔壁と対応した形状で且つその一面に冷却媒体が流れる溝を有する構成部材を、触媒層Bを区画する隔壁の両面のうちのいずれか一方の面に対して、該溝を有する面を当接して配置することで構成されてなることを特徴とする触媒反応装置。 The catalytic reactor according to claim 2 , wherein the cooling mechanism has a shape corresponding to the partition partitioning the catalyst layer B, and a structural member having a groove through which a cooling medium flows on one surface thereof, the partition partitioning the catalyst layer B. A catalytic reaction device comprising a surface having the groove in contact with any one of the two surfaces. 請求項1〜4のいずれか1項に記載の触媒反応装置において、前記触媒層Bを区画する前後の隔壁間に、前記触媒層Bの反応熱を除去するための冷却用の複数個のフィンを該前後の隔壁のうちの少なくとも一方に固定して配置してなることを特徴とする触媒反応装置。 In the catalytic reactor according to any one of claims 1 to 4, between the front and rear of the partition wall partitioning the catalyst layer B, a plurality of cooling fins for removing the reaction heat of the catalyst layer B Is fixed to at least one of the front and rear partition walls. 請求項1〜5のいずれか1項に記載の触媒反応装置において、前記触媒層Aの触媒がCO変成触媒であり、前記触媒層Bの触媒がCO除去触媒であることを特徴とする触媒反応装置。 The catalytic reaction apparatus according to any one of claims 1 to 5 , wherein the catalyst of the catalyst layer A is a CO shift catalyst, and the catalyst of the catalyst layer B is a CO removal catalyst. apparatus. 請求項に記載の触媒反応装置において、円筒状容器の中心部の軸方向にバーナーを配置し、その外周に改質触媒層を配置してなることを特徴とする触媒反応装置。 7. The catalytic reaction apparatus according to claim 6 , wherein a burner is disposed in the axial direction of the central portion of the cylindrical container, and a reforming catalyst layer is disposed on the outer periphery thereof. 請求項に記載の触媒反応装置において、円筒状容器の中心部の軸方向に脱硫剤を配置し、その外周に前記触媒層Aの触媒としてCO変成触媒を配置し、前記触媒層Bの触媒としてCO除去触媒を配置し、該脱硫剤で硫黄分を除去した炭化水素系燃料を水蒸気改質した改質ガスが、順次、触媒層A、触媒層Bに流通するように構成されてなることを特徴とする触媒反応装置。 7. The catalyst reaction apparatus according to claim 6 , wherein a desulfurization agent is disposed in the axial direction of the central portion of the cylindrical container, a CO shift catalyst is disposed as a catalyst of the catalyst layer A on the outer periphery thereof, and the catalyst of the catalyst layer B A reformed gas obtained by arranging a CO removal catalyst and steam-reforming hydrocarbon-based fuel from which sulfur has been removed with the desulfurizing agent is circulated sequentially through the catalyst layer A and the catalyst layer B. A catalytic reactor characterized by the above. 請求項1〜8のいずれか1項に記載の触媒反応装置が、燃料電池に水素を供給するための、炭化水素系燃料から水素を製造するための触媒反応装置であることを特徴とする触媒反応装置。 The catalyst reactor according to any one of claims 1 to 8 , which is a catalyst reactor for producing hydrogen from a hydrocarbon-based fuel for supplying hydrogen to a fuel cell. Reactor. 請求項1〜のいずれか1項に記載の触媒反応装置が、燃焼排ガス中のNOxとCH4等の未燃成分とを除去する排ガス処理用触媒反応装置であり、前記触媒層Aの触媒を脱硝触媒とし、前記触媒層Bの触媒を燃焼触媒としたことを特徴とする触媒反応装置。
The catalyst reaction apparatus according to any one of claims 1 to 5 , wherein the catalyst reaction apparatus for exhaust gas treatment removes NOx and unburned components such as CH 4 in combustion exhaust gas, and the catalyst of the catalyst layer A Is a denitration catalyst, and the catalyst of the catalyst layer B is a combustion catalyst.
JP2004001515A 2004-01-06 2004-01-06 Catalytic reactor Expired - Lifetime JP4762496B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004001515A JP4762496B2 (en) 2004-01-06 2004-01-06 Catalytic reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004001515A JP4762496B2 (en) 2004-01-06 2004-01-06 Catalytic reactor

Publications (2)

Publication Number Publication Date
JP2005193135A JP2005193135A (en) 2005-07-21
JP4762496B2 true JP4762496B2 (en) 2011-08-31

Family

ID=34817009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004001515A Expired - Lifetime JP4762496B2 (en) 2004-01-06 2004-01-06 Catalytic reactor

Country Status (1)

Country Link
JP (1) JP4762496B2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4953231B2 (en) * 2006-06-15 2012-06-13 パナソニック株式会社 Hydrogen generator and fuel cell power generator using the same
JP5020002B2 (en) * 2006-09-05 2012-09-05 パナソニック株式会社 Hydrogen generator and fuel cell system
US8257668B2 (en) 2006-09-05 2012-09-04 Panasonic Corporation Hydrogen generator and fuel cell system
JP4870499B2 (en) * 2006-09-06 2012-02-08 パナソニック電工株式会社 Hydrogen production apparatus and fuel cell power generation apparatus
JP4979354B2 (en) * 2006-11-30 2012-07-18 パナソニック株式会社 Hydrogen generator and fuel cell system
JP2008189508A (en) * 2007-02-02 2008-08-21 Idemitsu Kosan Co Ltd Reforming unit and fuel cell system
JP2008189504A (en) * 2007-02-02 2008-08-21 Idemitsu Kosan Co Ltd Reforming unit and fuel cell system
JP5065117B2 (en) * 2007-09-21 2012-10-31 Jx日鉱日石エネルギー株式会社 Carbon monoxide removal device and hydrogen production device
JP2009125690A (en) * 2007-11-26 2009-06-11 Tokyo Gas Co Ltd Horizontal vessel packed with granular catalyst or granular adsorbent
CA2711433C (en) 2008-01-08 2014-02-25 Hisayuki Itsuki Cylindrical steam reformer
JP5198091B2 (en) * 2008-03-05 2013-05-15 アイシン精機株式会社 Fuel cell reformer
US20090252661A1 (en) * 2008-04-07 2009-10-08 Subir Roychoudhury Fuel reformer
JP5160389B2 (en) * 2008-12-11 2013-03-13 東京瓦斯株式会社 Multi-cylinder steam reformer for fuel cells
JP2011178613A (en) * 2010-03-02 2011-09-15 Tokyo Gas Co Ltd Multiple cylindrical steam reformer
JP5538025B2 (en) * 2010-03-30 2014-07-02 Jx日鉱日石エネルギー株式会社 Hydrogen production apparatus and fuel cell system
WO2014002470A1 (en) * 2012-06-25 2014-01-03 パナソニック株式会社 Fuel treatment device
JP5603510B2 (en) 2012-06-25 2014-10-08 パナソニック株式会社 Fuel processor

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5353573A (en) * 1976-10-26 1978-05-16 Matsushita Electric Ind Co Ltd Catalytic cleaning apparatus for exhaust gas
IT1123468B (en) * 1979-07-13 1986-04-30 Zardi Umberto AXIAL-RADIAL REACTOR FOR HETEROGENEOUS SYNTHESIS
EP0359952A3 (en) * 1988-08-05 1990-07-18 Ammonia Casale S.A. System for the improvement of reactors for the synthesis of methanol and reactors obtained therefrom
ZA911838B (en) * 1990-04-03 1991-12-24 Standard Oil Co Ohio Endothermic reaction apparatus
FR2679787B1 (en) * 1991-07-31 1994-04-15 Air Liquide ADSORBER WITH BEDS OF SUPERIMPOSED ANNULAR ADSORBENTS.
US6245303B1 (en) * 1998-01-14 2001-06-12 Arthur D. Little, Inc. Reactor for producing hydrogen from hydrocarbon fuels
JP2000093749A (en) * 1998-09-25 2000-04-04 Mitsubishi Heavy Ind Ltd Gas denitration process
JP4090234B2 (en) * 2001-11-22 2008-05-28 大阪瓦斯株式会社 Hydrogen-containing gas generator
JP4128804B2 (en) * 2002-02-05 2008-07-30 荏原バラード株式会社 Fuel reformer
JP4161612B2 (en) * 2002-05-15 2008-10-08 株式会社Ihi Starting method of fuel reformer

Also Published As

Publication number Publication date
JP2005193135A (en) 2005-07-21

Similar Documents

Publication Publication Date Title
JP4762496B2 (en) Catalytic reactor
JP4145785B2 (en) Cylindrical steam reformer
RU2424847C2 (en) Internal combustion heat exchange reactor for endothermic reaction in fixed bed
KR100929886B1 (en) Compact Fuel Processor for High Hydrogen Gas Production
JP5191840B2 (en) Cylindrical steam reformer with integrated hydrodesulfurizer
TWI392543B (en) Method and apparatus for rapid heating of fuel reforming reactants
JP4799995B2 (en) Steam reformer
US20020085970A1 (en) Shell and tube reactor
JP5443173B2 (en) Cylindrical steam reformer
JP5160389B2 (en) Multi-cylinder steam reformer for fuel cells
JP4550617B2 (en) Hydrocarbon fuel steam reformer
JP2003160306A (en) Hydrogen containing gas generator
JP2007112644A (en) Co(carbon monoxide)-removal device, fuel reforming apparatus, and fuel cell system
JP2000169102A (en) Fuel reformer
JP5165407B2 (en) Cylindrical steam reformer
JP5371013B2 (en) Multi-cylinder steam reformer
JP5329944B2 (en) Steam reformer for fuel cell
JP2022121769A (en) Hydrogen generating apparatus
JP2011178613A (en) Multiple cylindrical steam reformer
JP2008266055A (en) Fuel treating apparatus
JP5274986B2 (en) Multi-cylinder steam reformer for fuel cells
JP4322519B2 (en) Catalytic reactor
JP2005005010A (en) Fuel reformer for fuel cell
JP2014009129A (en) Hydrogen production apparatus and fuel cell system
JP2008290912A (en) Reforming device for fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110607

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110608

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4762496

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term