JP5191840B2 - Cylindrical steam reformer with integrated hydrodesulfurizer - Google Patents

Cylindrical steam reformer with integrated hydrodesulfurizer Download PDF

Info

Publication number
JP5191840B2
JP5191840B2 JP2008224187A JP2008224187A JP5191840B2 JP 5191840 B2 JP5191840 B2 JP 5191840B2 JP 2008224187 A JP2008224187 A JP 2008224187A JP 2008224187 A JP2008224187 A JP 2008224187A JP 5191840 B2 JP5191840 B2 JP 5191840B2
Authority
JP
Japan
Prior art keywords
catalyst layer
steam reformer
layer
cylindrical
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008224187A
Other languages
Japanese (ja)
Other versions
JP2010058995A (en
Inventor
久幸 斎宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2008224187A priority Critical patent/JP5191840B2/en
Publication of JP2010058995A publication Critical patent/JP2010058995A/en
Application granted granted Critical
Publication of JP5191840B2 publication Critical patent/JP5191840B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

本発明は、水添脱硫器一体型円筒式水蒸気改質器に関し、より具体的には(1)原燃料の水蒸気改質器、CO変成器及びCO除去器を含む円筒式水蒸気改質器、または(2)原燃料の円筒式水蒸気改質器に対して、原燃料中の硫黄化合物を除去するための水添脱硫器を一体化してなる水添脱硫器一体型円筒式水蒸気改質器に関する。   The present invention relates to a hydrodesulfurizer integrated cylindrical steam reformer, more specifically, (1) a cylindrical steam reformer including a steam reformer for raw fuel, a CO converter and a CO remover, Or (2) a hydrodesulfurizer-integrated cylindrical steam reformer in which a hydrodesulfurizer for removing sulfur compounds in the raw fuel is integrated with a cylindrical steam reformer of the raw fuel .

燃料電池、例えば固体高分子形燃料電池(PEFC)の燃料である水素は、炭化水素やアルコール類やエーテル類、あるいはそれらの混合物などの原燃料を水蒸気改質法や部分酸化法により改質することで製造される。このうち水蒸気改質法は、原燃料を水蒸気により改質して水素リッチな改質ガスを生成させる方法である。水蒸気改質法では水蒸気改質器における触媒反応によりそれら原燃料が水素リッチな改質ガスへ変えられる。   Hydrogen, which is a fuel of a fuel cell, for example, a polymer electrolyte fuel cell (PEFC), reforms raw fuel such as hydrocarbons, alcohols, ethers, or mixtures thereof by a steam reforming method or a partial oxidation method. It is manufactured by. Among these, the steam reforming method is a method for generating a hydrogen-rich reformed gas by reforming raw fuel with steam. In the steam reforming method, the raw fuel is converted into a hydrogen-rich reformed gas by a catalytic reaction in a steam reformer.

本明細書中、改質用に水蒸気改質器に供給する燃料を“原燃料”と称している。原燃料としては、メタン、エタン、プロパン、ブタン、ペンタン、都市ガス、LPガス(液化石油ガス)、天然ガス、ガソリン、灯油、その他の炭化水素(2種以上の炭化水素の混合物を含む)が使用されるが、それらにメタノール等のアルコール類やエーテル類が混合されていてもよい。   In this specification, the fuel supplied to the steam reformer for reforming is referred to as “raw fuel”. Raw fuels include methane, ethane, propane, butane, pentane, city gas, LP gas (liquefied petroleum gas), natural gas, gasoline, kerosene, and other hydrocarbons (including mixtures of two or more hydrocarbons). Although used, alcohols such as methanol and ethers may be mixed therein.

水蒸気改質器は、概略、バーナあるいは白金等の燃焼触媒を配置した燃焼部(加熱部)と改質触媒を配置した改質部により構成される。改質部では原燃料を水蒸気と反応させて水素リッチな改質ガスが生成される。改質部で起こる反応は大きな吸熱を伴うので、反応の進行のためには外部からの熱が必要であり、少なくとも400℃程度以上の温度が必要である。なお、定常運転時には例えば680℃と言うように設定される。このため燃焼部での燃料ガスの空気による燃焼により発生した燃焼熱(ΔH)が改質部に供給される。改質触媒としてはNi系、Ru系等の触媒が用いられる。   The steam reformer is generally composed of a combustion part (heating part) in which a combustion catalyst such as burner or platinum is arranged and a reforming part in which a reforming catalyst is arranged. In the reforming section, the raw fuel is reacted with steam to generate hydrogen-rich reformed gas. Since the reaction occurring in the reforming part involves a large endotherm, heat from the outside is necessary for the progress of the reaction, and a temperature of at least about 400 ° C. is necessary. Note that, for example, 680 ° C. is set during steady operation. For this reason, combustion heat (ΔH) generated by combustion of fuel gas with air in the combustion section is supplied to the reforming section. As the reforming catalyst, a Ni-based or Ru-based catalyst is used.

図13は、原燃料の処理からPEFCあるいはSOFCに至るまでの態様例を説明する図である。都市ガスやLPガス(液化石油ガス)には漏洩保安を目的とする付臭剤としてメルカプタン類、スルフィド類、チオフェン類などの硫黄化合物が添加されている。また、ガソリン、灯油などでは、原油からの精製プロセスで脱硫しきれなかった微量の硫黄化合物が含まれている。改質触媒は、それらの硫黄化合物により被毒して性能劣化を来すので、それらの硫黄化合物を除去するために脱硫器へ導入される。次いで、別途設けられた水蒸気発生器からの水蒸気を添加、混合して水蒸気改質器へ導入し、水蒸気改質器中での原燃料の水蒸気による改質反応により水素リッチな改質ガスが生成される。   FIG. 13 is a diagram for explaining an exemplary embodiment from raw fuel processing to PEFC or SOFC. Sulfur compounds such as mercaptans, sulfides, and thiophenes are added to city gas and LP gas (liquefied petroleum gas) as odorants for the purpose of leakage protection. In addition, gasoline, kerosene, and the like contain trace amounts of sulfur compounds that could not be desulfurized by a refining process from crude oil. Since the reforming catalyst is poisoned by these sulfur compounds and causes performance deterioration, it is introduced into a desulfurizer in order to remove those sulfur compounds. Next, steam from a steam generator provided separately is added, mixed and introduced into the steam reformer, and a hydrogen-rich reformed gas is produced by the reforming reaction of the raw fuel with steam in the steam reformer Is done.

原燃料がメタンである場合の改質反応は「CH4+2H2O→CO2+4H2」で示される。生成する改質ガス中には未反応のメタン、未反応の水蒸気、炭酸ガスのほか、一酸化炭素(CO)が副生して8〜15%(容量%、以下%について同じ)程度含まれている。このため改質ガスは、副生COを炭酸ガスに変えて除去するためにCO変成器にかけられる。CO変成器では銅ー亜鉛系や白金触媒等の触媒が用いられるが、その触媒を機能させるには200〜250℃程度の温度が必要である。CO変成器中での反応は「CO+H2O→CO2+H2」で示され、この反応で必要な水蒸気としては水蒸気改質器において未反応の残留水蒸気が利用される。 The reforming reaction when the raw fuel is methane is represented by “CH 4 + 2H 2 O → CO 2 + 4H 2 ”. The reformed gas produced contains about 8-15% (capacity%, the same applies to the following%) of carbon monoxide (CO) as a by-product in addition to unreacted methane, unreacted water vapor, carbon dioxide. ing. For this reason, the reformed gas is subjected to a CO converter to remove by-product CO by converting it to carbon dioxide. In the CO converter, a catalyst such as a copper-zinc system or a platinum catalyst is used, but a temperature of about 200 to 250 ° C. is necessary to make the catalyst function. The reaction in the CO converter is represented by “CO + H 2 O → CO 2 + H 2 ”, and unreacted residual steam is utilized in the steam reformer as the steam necessary for this reaction.

CO変成器から出る改質ガスは、未反応のメタンと余剰水蒸気を除けば、水素と炭酸ガスとからなっている。このうち水素が目的とする成分であるが、CO変成器を経て得られる改質ガスについても、COは完全には除去されず、微量のCOが含まれている。PEFCに供給する燃料水素中のCO含有量は100ppm(容量ppm、以下ppmについて同じ)程度が限度であり、これを越えると電池性能が著しく劣化するので、CO成分はPEFCへ導入する前にできる限り除去する必要がある。   The reformed gas exiting from the CO converter is composed of hydrogen and carbon dioxide gas except for unreacted methane and excess water vapor. Of these, hydrogen is an intended component, but the reformed gas obtained through the CO converter also does not completely remove CO, but contains a trace amount of CO. The CO content in the fuel hydrogen supplied to the PEFC is limited to about 100 ppm (capacity ppm, the same applies to the following ppm), and beyond this, the cell performance is significantly deteriorated, so the CO component can be formed before being introduced into the PEFC. As long as it is necessary to remove.

このため、改質ガスはCO変成器によりCO濃度を1%程度以下まで低下させた後、CO酸化器にかけられる。ここで空気等の酸化剤ガスが添加され、COの酸化反応(CO+1/2O2=CO2)により、COを100ppm程度以下、好ましくは50ppm以下、さらに好ましくは10ppm以下というように低減させる。CO酸化器の作動温度は100〜150℃程度である。こうして精製された水素がPEFCの燃料極に供給される。 For this reason, the reformed gas is applied to the CO oxidizer after the CO concentration is lowered to about 1% or less by the CO converter. Here, an oxidant gas such as air is added, and CO is reduced to about 100 ppm or less, preferably 50 ppm or less, more preferably 10 ppm or less by an oxidation reaction of CO (CO + 1 / 2O 2 = CO 2 ). The operating temperature of the CO oxidizer is about 100 to 150 ° C. The purified hydrogen is supplied to the fuel electrode of PEFC.

以上は、燃料電池がPEFCである場合の態様例であるが、燃料電池がSOFCである場合には、COも燃料となるので、CO変成器及びCO除去器は不要であり、水蒸気改質器で生成した水素及びCOを含む改質ガス、あるいは水素、CO及びメタン(メタンはSOFCの燃料極、支持基板のに含まれるNi等の金属により水素、COへ改質される)を含む改質ガスがSOFCの燃料極に供給される。   The above is an example in the case where the fuel cell is a PEFC. However, when the fuel cell is a SOFC, CO is also a fuel, so a CO converter and a CO remover are unnecessary, and a steam reformer Reformed gas containing hydrogen and CO produced in step 1, or reformed containing hydrogen, CO and methane (methane is reformed to hydrogen and CO by a metal such as Ni contained in the SOFC fuel electrode and support substrate) Gas is supplied to the SOFC anode.

原燃料中の硫黄化合物の除去技術の一つとして水添脱硫方式がある。水添脱硫方式では、硫黄分の吸着容量が〔20wt%−S(=水添触媒→吸着剤による硫黄分としての吸着量)〕と大きいことから長期間運転でも吸着剤を交換する必要がなく、化学反応によって安定して脱硫することが可能である。   One of the technologies for removing sulfur compounds from raw fuel is a hydrodesulfurization method. In the hydrodesulfurization method, the adsorption capacity of sulfur is as large as [20 wt% -S (= hydrogenation catalyst → adsorption amount as sulfur content by the adsorbent)], so there is no need to replace the adsorbent even during long-term operation. It is possible to stably desulfurize by a chemical reaction.

しかし、その一方で、水添脱硫方式での脱硫反応には水素が必要である。また、水添触媒の作動温度の観点から加熱が必要であり、水添触媒の種類にもよるが、200〜400℃程度の高温状態にする必要がある。図14は水添脱硫方式を実施する水添脱硫器の概略を説明する図である。図14(a)〜(b)中、水添触媒層、各吸着剤層を収容する容器兼昇温ヒータについてはその断面を示している。   However, on the other hand, hydrogen is required for the desulfurization reaction in the hydrodesulfurization system. In addition, heating is necessary from the viewpoint of the operating temperature of the hydrogenation catalyst, and depending on the type of hydrogenation catalyst, a high temperature state of about 200 to 400 ° C. is necessary. FIG. 14 is a diagram for explaining the outline of a hydrodesulfurizer for carrying out the hydrodesulfurization method. 14 (a) to 14 (b), the hydrogenated catalyst layer and the container / heater heater that accommodates each adsorbent layer are shown in cross section.

〈水添脱硫器の通常の構成態様〉
図14(a)のとおり、水添脱硫器は通常、容器中に、硫黄化合物を水素により硫化水素に変える水添触媒層と生成した硫化水素を吸着する吸着剤層を配置し、これらの2種の層の組み合わせで構成される。しかし、PEFCなどの燃料水素製造用の原燃料の脱硫システムのように特に微量の硫黄分をも除去する必要があるシステムにおいては、図14(b)のように、第1吸着剤層からリークする僅かな硫化水素をさらに低濃度まで下げる第2吸着剤層を加えた3種の層から構成される。
<Normal configuration of hydrodesulfurizer>
As shown in FIG. 14 (a), a hydrodesulfurizer usually has a hydrogenation catalyst layer that converts a sulfur compound into hydrogen sulfide by hydrogen and an adsorbent layer that adsorbs the generated hydrogen sulfide in a container. Composed of a combination of seed layers. However, in a system that needs to remove a very small amount of sulfur, such as a raw fuel desulfurization system for producing fuel hydrogen such as PEFC, a leak occurs from the first adsorbent layer as shown in FIG. It is composed of three layers including a second adsorbent layer that lowers the slight amount of hydrogen sulfide to be further reduced to a low concentration.

そのうち、水添触媒は、原燃料中の有機硫黄化合物を水素と反応させて、有機硫黄化合物中の硫黄分を硫化水素に変えるもので、Ni−Mo系、Co−Mo系などの触媒が使用される。水添触媒により、おおよそ200℃以上、200〜400℃程度の温度で、有機硫黄化合物中のS分が水素と置換して離脱し、離脱したS分は硫化水素となる。吸着剤は、生成硫化水素を吸着除去するZnOからなる吸着剤である。ZnOは反応:ZnO+H2S→ZnS+H2Oにより、硫化水素のS分をZnSとして吸着する。 Among them, hydrogenation catalysts are those that react organic hydrogen compounds in raw fuel with hydrogen to change the sulfur content in organic sulfur compounds to hydrogen sulfide. Ni-Mo and Co-Mo catalysts are used. Is done. Due to the hydrogenation catalyst, at a temperature of about 200 ° C. or more and about 200 to 400 ° C., the S content in the organic sulfur compound is replaced with hydrogen and separated, and the separated S content becomes hydrogen sulfide. The adsorbent is an adsorbent composed of ZnO that adsorbs and removes generated hydrogen sulfide. ZnO adsorbs the S content of hydrogen sulfide as ZnS by the reaction: ZnO + H 2 S → ZnS + H 2 O.

ここで、吸着剤層を第1吸着剤層と第2吸着剤層の2段にする場合、第2吸着剤層は第1吸着剤層からリークする残余の硫化水素を吸着する吸着剤であればよく、ZnOとは限らず、金属酸化物(例えば酸化鉄、酸化マンガン、等)、その他、硫化水素吸着能を有する吸着剤であれば使用することができる。   Here, when the adsorbent layer has two stages of the first adsorbent layer and the second adsorbent layer, the second adsorbent layer should be an adsorbent that adsorbs residual hydrogen sulfide leaking from the first adsorbent layer. It is not limited to ZnO, and any metal oxide (for example, iron oxide, manganese oxide, etc.) or any other adsorbent having hydrogen sulfide adsorption ability can be used.

本発明は、そのような水添脱硫器を(1)原燃料の水蒸気改質器、CO変成器及びCO除去器を含む円筒式水蒸気改質器、または(2)原燃料の円筒式水蒸気改質器に対して一体化することにより、コンパクトにユニット内に収め、且つ別途電熱ヒータ等の加熱手段を必要とせずに、水添脱硫器をその目標温度に保持するために、改質器の設置箇所を最適化してなる新規構造の水添脱硫器一体型円筒式水蒸気改質器を提供することを目的とするものである。   The present invention provides such a hydrodesulfurizer as (1) a cylindrical steam reformer including a steam reformer for a raw fuel, a CO converter and a CO remover, or (2) a cylindrical steam reformer for a raw fuel. In order to keep the hydrodesulfurizer at its target temperature, it is compactly housed in the unit and requires no additional heating means such as an electric heater. An object of the present invention is to provide a hydrodesulfurization unit-integrated cylindrical steam reformer with a new structure that optimizes the installation location.

なお、水蒸気改質装置に脱硫部を一体化したものとして特開2000−34103号公報、特開2006−8459号公報、特開2006−111766号公等が提案されているが、これらは本発明とは内容的に異なるものである。   JP-A No. 2000-34103, JP-A No. 2006-8459, JP-A No. 2006-111766, etc. have been proposed as those in which a desulfurization unit is integrated with a steam reformer. Is different in content.

特開2000−34103号公報JP 2000-34103 A 特開2006−8459号公報JP 2006-8459 A 特開2006−111766号公報JP 2006-111766 A

本発明(1)は、水添脱硫器一体型円筒式水蒸気改質器である。
そして、円筒式水蒸気改質器が、
(a)同心状に間隔を置いて配置した順次径の大きい第1筒体、第2筒体及び第3筒体からなる複数の円筒体と、第1筒体の径方向中心部分に配置されたバーナと、前記第1筒体と前記第2筒体により半径方向に区画された間隙に改質触媒を充填した改質触媒層を備えるとともに、
(b)前記改質触媒層の上方位置の第2筒体及び第3筒体間の間隙に順次CO変成触媒層及びCO除去触媒層を備え、且つ、
(c)前記CO変成触媒層を、前記改質触媒層と軸方向の一端で流路方向を反転させた間隙内に形成してなる円筒式水蒸気改質器であり、
(d)当該円筒式水蒸気改質器における、前記第3筒体の外周のうち前記改質触媒層が位置する外周に断熱材層を配置し、当該断熱材層の外周に水添触媒層、第1吸着剤層及び第2吸着剤層からなる水添脱硫器を配置してなることを特徴とする。
The present invention (1) is a cylindrical steam reformer integrated with a hydrodesulfurizer.
And the cylindrical steam reformer
(A) A plurality of cylindrical bodies composed of a first cylindrical body, a second cylindrical body, and a third cylindrical body, which are arranged concentrically and spaced apart from each other in sequence, and a radial central portion of the first cylindrical body. And a reforming catalyst layer in which a reforming catalyst is filled in a gap defined in the radial direction by the first cylinder and the second cylinder,
(B) a CO conversion catalyst layer and a CO removal catalyst layer are sequentially provided in the gap between the second cylinder and the third cylinder above the reforming catalyst layer; and
(C) a cylindrical steam reformer formed by forming the CO shift catalyst layer in a gap in which the flow direction is reversed at one end in the axial direction with the reforming catalyst layer;
(D) In the cylindrical steam reformer, a heat insulating material layer is disposed on an outer periphery of the third cylindrical body where the reforming catalyst layer is located, and a hydrogenation catalyst layer is disposed on the outer periphery of the heat insulating material layer. A hydrodesulfurizer comprising a first adsorbent layer and a second adsorbent layer is arranged.

本発明(2)は、水添脱硫器一体型円筒式水蒸気改質器である。
そして、円筒式水蒸気改質器が、
(a)同心状に間隔を置いて配置した順次径の大きい第1筒体、第2筒体及び第3筒体からなる複数の円筒体と、第1筒体の内部にこれと同軸にして配置された輻射筒と、前記輻射筒の径方向中心部分に配置されたバーナと、前記第1筒体と前記第2筒体により半径方向に区画された間隙に改質触媒を充填した改質触媒層を備えるとともに、
(b)前記改質触媒層の上方位置の第2筒体及び第3筒体間の間隙に順次CO変成触媒層及びCO除去触媒層を備え、且つ、
(c)前記CO変成触媒層を、前記改質触媒層と軸方向の一端で流路方向を反転させた間隙内に形成してなる円筒式水蒸気改質器であり、
(d)当該円筒式水蒸気改質器における、前記第3筒体の外周のうち前記改質触媒層が位置する外周に断熱材層を配置し、当該断熱材層の外周に水添触媒層、第1吸着剤層及び第2吸着剤層からなる水添脱硫器を配置してなることを特徴とする。
The present invention (2) is a hydrodesulfurizer integrated cylindrical steam reformer.
And the cylindrical steam reformer
(A) A plurality of cylindrical bodies composed of a first cylindrical body, a second cylindrical body, and a third cylindrical body, which are arranged concentrically and spaced apart from each other, and are coaxially arranged inside the first cylindrical body. A reformer in which a reforming catalyst is filled in a radial partition defined by the disposed radiation tube, a burner disposed in a radial center portion of the radiation tube, and the first and second cylinders With a catalyst layer,
(B) a CO conversion catalyst layer and a CO removal catalyst layer are sequentially provided in the gap between the second cylinder and the third cylinder above the reforming catalyst layer; and
(C) a cylindrical steam reformer formed by forming the CO shift catalyst layer in a gap in which the flow direction is reversed at one end in the axial direction with the reforming catalyst layer;
(D) In the cylindrical steam reformer, a heat insulating material layer is disposed on an outer periphery of the third cylindrical body where the reforming catalyst layer is located, and a hydrogenation catalyst layer is disposed on the outer periphery of the heat insulating material layer. A hydrodesulfurizer comprising a first adsorbent layer and a second adsorbent layer is arranged.

本発明(3)は、水添脱硫器一体型円筒式水蒸気改質器である。
そして、円筒式水蒸気改質器が、
(a)同心状に間隔を置いて配置した順次径の大きい第1筒体、第2筒体及び第3筒体からなる複数の円筒体と、第1筒体の径方向中心部分に配置されたバーナと、前記第1筒体と前記第2筒体により半径方向に区画された間隙に改質触媒を充填した改質触媒層を備えるとともに、
(b)前記改質触媒層の上方位置の第2筒体及び第3筒体間の間隙に順次CO変成触媒層及びCO除去触媒層を備え、且つ、
(c)前記CO変成触媒層を、前記改質触媒層と軸方向の一端で流路方向を反転させた間隙内に形成してなる円筒式水蒸気改質器であり、
(d)当該円筒式水蒸気改質器における、前記第3筒体の外周のうち前記改質触媒層が位置する外周に断熱材層を配置し、当該断熱材層の外周に水添脱硫器のうち水添触媒層、第1吸着剤層を配置し、且つ、円筒式水蒸気改質器の外部に第2吸着剤層を配置してなることを特徴とする。
The present invention (3) is a hydrodesulfurizer integrated cylindrical steam reformer.
And the cylindrical steam reformer
(A) A plurality of cylindrical bodies composed of a first cylindrical body, a second cylindrical body, and a third cylindrical body, which are arranged concentrically and spaced apart from each other in sequence, and a radial central portion of the first cylindrical body. And a reforming catalyst layer in which a reforming catalyst is filled in a gap defined in the radial direction by the first cylinder and the second cylinder,
(B) a CO conversion catalyst layer and a CO removal catalyst layer are sequentially provided in the gap between the second cylinder and the third cylinder above the reforming catalyst layer; and
(C) a cylindrical steam reformer formed by forming the CO shift catalyst layer in a gap in which the flow direction is reversed at one end in the axial direction with the reforming catalyst layer;
(D) In the cylindrical steam reformer, a heat insulating material layer is disposed on an outer periphery of the third cylindrical body where the reforming catalyst layer is located, and a hydrodesulfurizer is disposed on the outer periphery of the heat insulating material layer. Of these, the hydrogenation catalyst layer and the first adsorbent layer are disposed, and the second adsorbent layer is disposed outside the cylindrical steam reformer.

本発明(4)は、水添脱硫器一体型円筒式水蒸気改質器である。
そして、円筒式水蒸気改質器が、
(a)同心状に間隔を置いて配置した順次径の大きい第1筒体、第2筒体及び第3筒体からなる複数の円筒体と、第1筒体の内部にこれと同軸にして配置された輻射筒と、前記輻射筒の径方向中心部分に配置されたバーナと、前記第1筒体と前記第2筒体により半径方向に区画された間隙に改質触媒を充填した改質触媒層を備えるとともに、
(b)前記改質触媒層の上方位置の第2筒体及び第3筒体間の間隙に順次CO変成触媒層及びCO除去触媒層を備え、且つ、
(c)前記CO変成触媒層を、前記改質触媒層と軸方向の一端で流路方向を反転させた間隙内に形成してなる円筒式水蒸気改質器であり、
(d)当該円筒式水蒸気改質器における、前記第3筒体の外周のうち前記改質触媒層が位置する外周に断熱材層を配置し、当該断熱材層の外周に水添脱硫器のうち水添触媒層、第1吸着剤層を配置し、且つ、円筒式水蒸気改質器の外部に第2吸着剤層を配置してなることを特徴とする。
The present invention (4) is a hydrodesulfurizer integrated cylindrical steam reformer.
And the cylindrical steam reformer
(A) A plurality of cylindrical bodies composed of a first cylindrical body, a second cylindrical body, and a third cylindrical body, which are arranged concentrically and spaced apart from each other, and are coaxially arranged inside the first cylindrical body. A reformer in which a reforming catalyst is filled in a radial partition defined by the disposed radiation tube, a burner disposed in a radial center portion of the radiation tube, and the first and second cylinders With a catalyst layer,
(B) a CO conversion catalyst layer and a CO removal catalyst layer are sequentially provided in the gap between the second cylinder and the third cylinder above the reforming catalyst layer; and
(C) a cylindrical steam reformer formed by forming the CO shift catalyst layer in a gap in which the flow direction is reversed at one end in the axial direction with the reforming catalyst layer;
(D) In the cylindrical steam reformer, a heat insulating material layer is disposed on an outer periphery of the third cylindrical body where the reforming catalyst layer is located, and a hydrodesulfurizer is disposed on the outer periphery of the heat insulating material layer. Of these, the hydrogenation catalyst layer and the first adsorbent layer are disposed, and the second adsorbent layer is disposed outside the cylindrical steam reformer.

本発明(1)〜(4)の水添脱硫器一体型円筒式水蒸気改質器は、特に、PEFCに燃料水素を供給するための水添脱硫器一体型円筒式水蒸気改質器として適用することができる。   The hydrodesulfurizer-integrated cylindrical steam reformer of the present invention (1) to (4) is particularly applied as a hydrodesulfurizer-integrated cylindrical steam reformer for supplying fuel hydrogen to PEFC. be able to.

本発明(5)は、水添脱硫器一体型円筒式水蒸気改質器である。
そして、円筒式水蒸気改質器が、
(a)同心状に間隔を置いて配置した順次径の大きい第1筒体、第2筒体及び第3筒体からなる複数の円筒体と、第1筒体の径方向中心部分に配置されたバーナと、前記第1筒体と前記第2筒体により半径方向に区画された間隙に改質触媒を充填した改質触媒層を備え、
(b)改質触媒層で生成した改質ガスを前記第2筒体と第3筒体により半径方向に区画された間隙に反転させて流通させるようにしてなる円筒式水蒸気改質器であり、
(c)当該円筒式水蒸気改質器における、前記第3筒体の外周のうち前記改質触媒層が位置する外周に断熱材層を配置し、当該断熱材層の外周に水添触媒層、第1吸着剤層及び第2吸着剤層からなる水添脱硫器を配置してなることを特徴とする。
The present invention (5) is a hydrodesulfurizer integrated cylindrical steam reformer.
And the cylindrical steam reformer
(A) A plurality of cylindrical bodies composed of a first cylindrical body, a second cylindrical body, and a third cylindrical body, which are arranged concentrically and spaced apart from each other in sequence, and a radial central portion of the first cylindrical body. A reforming catalyst layer in which a reforming catalyst is filled in a gap partitioned in a radial direction by the first cylinder and the second cylinder,
(B) A cylindrical steam reformer configured such that the reformed gas generated in the reforming catalyst layer is circulated in a gap defined in the radial direction by the second cylinder and the third cylinder. ,
(C) In the cylindrical steam reformer, a heat insulating material layer is disposed on the outer periphery of the third cylindrical body where the reforming catalyst layer is located, and a hydrogenation catalyst layer is disposed on the outer periphery of the heat insulating material layer. A hydrodesulfurizer comprising a first adsorbent layer and a second adsorbent layer is arranged.

本発明(6)は、水添脱硫器一体型円筒式水蒸気改質器である。
そして、円筒式水蒸気改質器が、
(a)同心状に間隔を置いて配置した順次径の大きい第1筒体、第2筒体及び第3筒体からなる複数の円筒体と、第1筒体の内部にこれと同軸にして配置された輻射筒と、前記輻射筒の径方向中心部分に配置されたバーナと、前記第1筒体と前記第2筒体により半径方向に区画された間隙に改質触媒を充填した改質触媒層を備え、
(b)改質触媒層で生成した改質ガスを前記第2筒体と第3筒体により半径方向に区画された間隙に反転させて流通させるようにしてなる円筒式水蒸気改質器であり、
(c)当該円筒式水蒸気改質器における、前記第3筒体の外周のうち前記改質触媒層が位置する外周に断熱材層を配置し、当該断熱材層の外周に水添触媒層、第1吸着剤層及び第2吸着剤層からなる水添脱硫器を配置してなることを特徴とする。
The present invention (6) is a hydrodesulfurizer integrated cylindrical steam reformer.
And the cylindrical steam reformer
(A) A plurality of cylindrical bodies composed of a first cylindrical body, a second cylindrical body, and a third cylindrical body, which are arranged concentrically and spaced apart from each other, and are coaxially arranged inside the first cylindrical body. A reformer in which a reforming catalyst is filled in a radial partition defined by the disposed radiation tube, a burner disposed in a radial center portion of the radiation tube, and the first and second cylinders With a catalyst layer,
(B) A cylindrical steam reformer configured such that the reformed gas generated in the reforming catalyst layer is circulated in a gap defined in the radial direction by the second cylinder and the third cylinder. ,
(C) In the cylindrical steam reformer, a heat insulating material layer is disposed on the outer periphery of the third cylindrical body where the reforming catalyst layer is located, and a hydrogenation catalyst layer is disposed on the outer periphery of the heat insulating material layer. A hydrodesulfurizer comprising a first adsorbent layer and a second adsorbent layer is arranged.

本発明(7)は、水添脱硫器一体型円筒式水蒸気改質器である。
そして、円筒式水蒸気改質器が、
(a)同心状に間隔を置いて配置した順次径の大きい第1筒体、第2筒体及び第3筒体からなる複数の円筒体と、第1筒体の径方向中心部分に配置されたバーナと、前記第1筒体と前記第2筒体により半径方向に区画された間隙に改質触媒を充填した改質触媒層を備え、
(b)改質触媒層で生成した改質ガスを前記第2筒体と第3筒体により半径方向に区画された間隙に反転させて流通させるようにしてなる円筒式水蒸気改質器であり、
(c)当該円筒式水蒸気改質器における、前記第3筒体の外周のうち前記改質触媒層が位置する外周に断熱材層を配置し、当該断熱材層の外周に水添脱硫器のうち水添触媒層、第1吸着剤層を配置し、且つ、円筒式水蒸気改質器の外部に第2吸着剤層を配置してなることを特徴とする。
The present invention (7) is a hydrodesulfurizer integrated cylindrical steam reformer.
And the cylindrical steam reformer
(A) A plurality of cylindrical bodies composed of a first cylindrical body, a second cylindrical body, and a third cylindrical body, which are arranged concentrically and spaced apart from each other in sequence, and a radial central portion of the first cylindrical body. A reforming catalyst layer in which a reforming catalyst is filled in a gap partitioned in a radial direction by the first cylinder and the second cylinder,
(B) A cylindrical steam reformer configured such that the reformed gas generated in the reforming catalyst layer is circulated in a gap defined in the radial direction by the second cylinder and the third cylinder. ,
(C) In the cylindrical steam reformer, a heat insulating material layer is disposed on the outer periphery of the third cylindrical body where the reforming catalyst layer is located, and a hydrodesulfurizer is disposed on the outer periphery of the heat insulating material layer. Of these, the hydrogenation catalyst layer and the first adsorbent layer are disposed, and the second adsorbent layer is disposed outside the cylindrical steam reformer.

本発明(8)は、水添脱硫器一体型円筒式水蒸気改質器である。
そして、円筒式水蒸気改質器が、
(a)同心状に間隔を置いて配置した順次径の大きい第1筒体、第2筒体及び第3筒体からなる複数の円筒体と、第1筒体の内部にこれと同軸にして配置された輻射筒と、前記輻射筒の径方向中心部分に配置されたバーナと、前記第1筒体と前記第2筒体により半径方向に区画された間隙に改質触媒を充填した改質触媒層を備え、
(b)改質触媒層で生成した改質ガスを前記第2筒体と第3筒体により半径方向に区画された間隙に反転させて流通させるようにしてなる円筒式水蒸気改質器であり、
(c)当該円筒式水蒸気改質器における、前記第3筒体の外周のうち前記改質触媒層が位置する外周に断熱材層を配置し、当該断熱材層の外周に水添脱硫器のうち水添触媒層、第1吸着剤層を配置し、且つ、円筒式水蒸気改質器の外部に第2吸着剤層を配置してなることを特徴とする。
The present invention (8) is a hydrodesulfurizer integrated cylindrical steam reformer.
And the cylindrical steam reformer
(A) A plurality of cylindrical bodies composed of a first cylindrical body, a second cylindrical body, and a third cylindrical body, which are arranged concentrically and spaced apart from each other, and are coaxially arranged inside the first cylindrical body. A reformer in which a reforming catalyst is filled in a radial partition defined by the disposed radiation tube, a burner disposed in a radial center portion of the radiation tube, and the first and second cylinders With a catalyst layer,
(B) A cylindrical steam reformer configured such that the reformed gas generated in the reforming catalyst layer is circulated in a gap defined in the radial direction by the second cylinder and the third cylinder. ,
(C) In the cylindrical steam reformer, a heat insulating material layer is disposed on the outer periphery of the third cylindrical body where the reforming catalyst layer is located, and a hydrodesulfurizer is disposed on the outer periphery of the heat insulating material layer. Of these, the hydrogenation catalyst layer and the first adsorbent layer are disposed, and the second adsorbent layer is disposed outside the cylindrical steam reformer.

本発明(5)〜(8)の水添脱硫器一体型円筒式水蒸気改質器は、特に、PEFCに燃料水素を供給するための水添脱硫器一体型円筒式水蒸気改質器および、SOFCに燃料水素、COを供給するための水添脱硫器一体型円筒式水蒸気改質器として適用することができる。   The hydrodesulfurizer-integrated cylindrical steam reformer according to the present invention (5) to (8) particularly includes a hydrodesulfurizer-integrated cylindrical steam reformer for supplying fuel hydrogen to the PEFC, and an SOFC. It can be applied as a hydrodesulfurizer-integrated cylindrical steam reformer for supplying fuel hydrogen and CO.

本発明によれば下記(1)〜(8)の効果が得られる。
(1)大容量化する水添脱硫器をCO変成器及びCO除去器を含む円筒式水蒸気改質器に一体化することによりコンパクト化し、水添脱硫器に対するヒータ等の加熱手段を必要とせずに水添脱硫器で必要な目標温度に保持することができる。
(2)大容量化する水添脱硫器を円筒式水蒸気改質器に一体化することによりコンパクト化し、水添脱硫器に対するヒータ等の加熱手段を必要とせずに水添脱硫器で必要な目標温度に保持することができる。
(3)上記(1)〜(2)により、水添脱硫器を含む水蒸気改質システムの設置箇所を最適化することができる。
(4)従来、円筒式水蒸気改質器の中でも最も高温となる改質触媒層は外側に厚い断熱材層を配置して放熱を抑制しているが、その断熱材層の部位に水添脱硫器を配置した本発明の構造によると、本発明の構造を採らないで、円筒式水蒸気改質器に水添脱硫器を適用する場合に生じる当該両機器を合わせた装置規模の巨大化を防ぐことができる。
(5)本発明の構造によると、水添脱硫器の配置箇所が円筒式水蒸気改質器のうち最も高温となる改質触媒層の中でも起動時に最も早く昇温される部位に近いため、起動開始時の比較的初期の段階から水添脱硫器の目標温度に保持することができる。また、このことから、水添脱硫器を配置することによる改質効率の低下を阻止することができる。
(6)改質触媒層の周りに断熱材層を配置し、その周りに水添脱硫器を配置することにより、水添脱硫器の加熱温度を調節することができる。
(7)上記(6)において、改質触媒層の周りに配置する断熱材層の厚さを選ぶことにより、水添脱硫器の加熱温度を適切に制御することができる。
(8)本発明に係る水添脱硫器を配置する円筒式水蒸気改質器についても、水添脱硫器の配置による影響を受けることなく、水添脱硫器を配置しない円筒式水蒸気改質器と同等の性能を発揮することができる。
According to the present invention, the following effects (1) to (8) can be obtained.
(1) A hydrodesulfurizer with a large capacity is made compact by integrating it with a cylindrical steam reformer including a CO converter and a CO remover, and heating means such as a heater for the hydrodesulfurizer are not required. In addition, the hydrodesulfurizer can maintain the required target temperature.
(2) The hydrodesulfurizer with a larger capacity is made compact by integrating it with the cylindrical steam reformer, and the target required for the hydrodesulfurizer without the need for heating means such as a heater for the hydrodesulfurizer. Can be held at temperature.
(3) According to the above (1) to (2), the installation location of the steam reforming system including the hydrodesulfurizer can be optimized.
(4) Conventionally, the reforming catalyst layer having the highest temperature among the cylindrical steam reformers has a thick heat insulating material layer arranged on the outside to suppress heat dissipation, but hydrodesulfurization is performed on the portion of the heat insulating material layer. According to the structure of the present invention in which the apparatus is disposed, the enlargement of the scale of the combined apparatus is prevented when the hydrodesulfurizer is applied to the cylindrical steam reformer without adopting the structure of the present invention. be able to.
(5) According to the structure of the present invention, the hydrodesulfurization unit is located at the highest temperature among the reforming catalyst layers having the highest temperature in the cylindrical steam reformer. The target temperature of the hydrodesulfurizer can be maintained from a relatively early stage at the start. Moreover, from this, the fall of the reforming efficiency by arrange | positioning a hydrodesulfurizer can be prevented.
(6) The heating temperature of the hydrodesulfurizer can be adjusted by arranging a heat insulating material layer around the reforming catalyst layer and arranging a hydrodesulfurizer around it.
(7) In (6) above, the heating temperature of the hydrodesulfurizer can be appropriately controlled by selecting the thickness of the heat insulating material layer disposed around the reforming catalyst layer.
(8) Regarding the cylindrical steam reformer in which the hydrodesulfurizer according to the present invention is disposed, the cylindrical steam reformer in which the hydrodesulfurizer is not disposed without being affected by the layout of the hydrodesulfurizer; Equivalent performance can be demonstrated.

本発明(1)〜(4)はCO変成器及びCO除去器を含む円筒式水蒸気改質器を対象とし、本発明(5)〜(8)はCO変成器及びCO除去器を含まない円筒式水蒸気改質器を対象とする。以下において、まず本発明(1)〜(4)の態様を説明し、次いで本発明(5)〜(8)の態様を説明する。本発明(1)〜(8)に共通する事項については、適宜、本発明(1)〜(4)の態様の箇所で説明している。   The present inventions (1) to (4) are directed to a cylindrical steam reformer including a CO converter and a CO remover, and the present inventions (5) to (8) are cylinders not including a CO converter and a CO remover. The target is a steam reformer. Below, the aspect of this invention (1)-(4) is demonstrated first, and then the aspect of this invention (5)-(8) is demonstrated. Matters common to the present inventions (1) to (8) are appropriately described in the sections of the aspects of the present invention (1) to (4).

〈本発明(1)〜(4)の態様〉
本発明(1)、(3)は、輻射筒の無い円筒式水蒸気改質器に適用するもので、下記(A)の構造をもつ円筒式水蒸気改質器を対象とする。本発明(1)、(3)の水添脱硫器一体型円筒式水蒸気改質器は、当該(A)の構造をもつ円筒式水蒸気改質器であればいずれも対象とし、適用することができる。
(A)同心状に間隔を置いて配置した順次径の大きい第1筒体、第2筒体及び第3筒体からなる複数の円筒体と、第1筒体の径方向中心部分に配置されたバーナと、前記第1筒体と前記第2筒体により半径方向に区画された間隙に改質触媒を充填した改質触媒層を備え、前記改質触媒層の上方位置の第2筒体及び第3筒体間の間隙に順次CO変成触媒層及びCO除去触媒層を備え、前記CO変成触媒層を、前記改質触媒層と軸方向の一端で流路方向を反転させた間隙内に形成してなる円筒式水蒸気改質器。
<Aspects of the present invention (1) to (4)>
The present invention (1) and (3) are applied to a cylindrical steam reformer having no radiation cylinder, and are intended for a cylindrical steam reformer having the following structure (A). The hydrodesulfurizer-integrated cylindrical steam reformer of the present invention (1), (3) is applicable to any cylindrical steam reformer having the structure (A). it can.
(A) It arrange | positions in the radial direction center part of the several cylindrical body which consists of a 1st cylinder with a large diameter sequentially arrange | positioned at intervals, a 2nd cylinder, and a 3rd cylinder, and a 1st cylinder. And a reforming catalyst layer in which a reforming catalyst is filled in a gap defined in the radial direction by the first cylinder and the second cylinder, and a second cylinder at a position above the reforming catalyst layer. And a CO conversion catalyst layer and a CO removal catalyst layer sequentially in the gap between the third cylinders, and the CO conversion catalyst layer is placed in a gap in which the flow path direction is reversed at one end in the axial direction with respect to the reforming catalyst layer. A cylindrical steam reformer formed.

そして、本発明(1)は、当該(A)の構造をもつ円筒式水蒸気改質器における、前記第3筒体の外周のうち前記改質触媒層が位置する外周に断熱材層を配置し、当該断熱材層の外周に水添脱硫器のうち水添触媒層、第1吸着剤層及び第2吸着剤層を配置してなることを特徴とする。
また、本発明(3)は、当該(A)の構造をもつ円筒式水蒸気改質器における、前記第3筒体の外周のうち前記改質触媒層が位置する外周に断熱材層を配置し、当該断熱材層の外周に水添脱硫器のうち水添触媒層及び第1吸着剤層を配置し、且つ、円筒式水蒸気改質器の外部に第2吸着剤層を配置してなることを特徴とする。
And this invention (1) arrange | positions a heat insulating material layer in the outer periphery in which the said reforming catalyst layer is located among the outer periphery of the said 3rd cylinder in the cylindrical steam reformer which has the structure of the said (A). The hydrogenation catalyst layer, the first adsorbent layer, and the second adsorbent layer of the hydrodesulfurizer are arranged on the outer periphery of the heat insulating material layer.
Further, in the present invention (3), in the cylindrical steam reformer having the structure of (A), a heat insulating material layer is disposed on the outer periphery of the third cylindrical body on which the reforming catalyst layer is located. The hydrogenation catalyst layer and the first adsorbent layer of the hydrodesulfurizer are arranged on the outer periphery of the heat insulating material layer, and the second adsorbent layer is arranged outside the cylindrical steam reformer. It is characterized by.

本発明(2)、(4)は、輻射筒を有する円筒式水蒸気改質器に適用するもので、下記(B)の構造をもつ円筒式水蒸気改質器を対象とする。本発明(2)、(4)の水添脱硫器一体型円筒式水蒸気改質器は、当該(B)の構造をもつ円筒式水蒸気改質器であればいずれも対象とし、適用することができる。
(B)同心状に間隔を置いて配置した順次径の大きい第1筒体、第2筒体及び第3筒体からなる複数の円筒体と、第1筒体の内部にこれと同軸にして配置された輻射筒と、前記輻射筒の径方向中心部分に配置されたバーナと、前記第1筒体と前記第2筒体により半径方向に区画された間隙に改質触媒を充填した改質触媒層を備え、前記改質触媒層の上方位置の第2筒体及び第3筒体間の間隙に順次CO変成触媒層及びCO除去触媒層を備え、前記CO変成触媒層を、前記改質触媒層と軸方向の一端で流路方向を反転させた間隙内に形成してなる円筒式水蒸気改質器。
The present inventions (2) and (4) are applied to a cylindrical steam reformer having a radiation cylinder, and target a cylindrical steam reformer having the following structure (B). The hydrodesulfurizer integrated cylindrical steam reformer of the present invention (2), (4) can be applied to any cylindrical steam reformer having the structure (B). it can.
(B) A plurality of cylindrical bodies composed of a first cylindrical body, a second cylindrical body, and a third cylindrical body, which are arranged concentrically and spaced apart from each other, and are coaxially arranged inside the first cylindrical body. A reformer in which a reforming catalyst is filled in a radial partition defined by the disposed radiation tube, a burner disposed in a radial center portion of the radiation tube, and the first and second cylinders A catalyst layer, and a CO conversion catalyst layer and a CO removal catalyst layer are sequentially provided in the gap between the second cylinder and the third cylinder above the reforming catalyst layer. A cylindrical steam reformer formed in a gap formed by reversing the flow path direction at one end in the axial direction with the catalyst layer.

そして、本発明(2)は、当該(B)の構造をもつ円筒式水蒸気改質器における、前記第3筒体の外周のうち前記改質触媒層が位置する外周に断熱材層を配置し、当該断熱材層の外周に水添触媒層、第1吸着剤層及び第2吸着剤層からなる水添脱硫器を配置してなることを特徴とする。
また、本発明(4)は、当該(B)の構造をもつ円筒式水蒸気改質器における、前記第3筒体の外周のうち前記改質触媒層が位置する外周に断熱材層を配置し、当該断熱材層の外周に水添脱硫器のうち水添触媒層及び第1吸着剤層を配置し、且つ、円筒式水蒸気改質器の外部に第2吸着剤層を配置してなることを特徴とする。
And this invention (2) arrange | positions a heat insulating material layer in the outer periphery where the said reforming catalyst layer is located among the outer periphery of the said 3rd cylinder in the cylindrical steam reformer which has the structure of the said (B). A hydrodesulfurizer comprising a hydrogenation catalyst layer, a first adsorbent layer and a second adsorbent layer is disposed on the outer periphery of the heat insulating material layer.
Further, in the present invention (4), in the cylindrical steam reformer having the structure (B), a heat insulating material layer is disposed on the outer periphery of the third cylindrical body on which the reforming catalyst layer is located. The hydrogenation catalyst layer and the first adsorbent layer of the hydrodesulfurizer are arranged on the outer periphery of the heat insulating material layer, and the second adsorbent layer is arranged outside the cylindrical steam reformer. It is characterized by.

以下、本発明を適用する円筒式水蒸気改質器の構造、その構造に関連する事項を含めて本発明を順次説明する。   Hereinafter, the present invention will be described in order, including the structure of a cylindrical steam reformer to which the present invention is applied, and matters related to the structure.

〈(A)の構造をもつ円筒式水蒸気改質器の態様〉
前記(A)の構造は輻射筒を備えない円筒式水蒸気改質器であり、本発明(1)、(3)は当該(A)の構造を備えるものであればいずれにも適用される。図1はその一例を説明する図で、縦断面を示している。なお、図1は、図3〜4とともに、後述本発明(1)の特徴点を説明する図としても使用している。
<Aspect of Cylindrical Steam Reformer Having Structure (A)>
The structure (A) is a cylindrical steam reformer that does not include a radiation cylinder, and the present invention (1) and (3) can be applied to any structure that has the structure (A). FIG. 1 is a diagram for explaining an example thereof and shows a longitudinal section. 1 is used together with FIGS. 3 to 4 as a diagram for explaining a feature point of the present invention (1) described later.

図1のとおり、直径を順次大きくした、第1円筒体1、第2円筒体2及び第3円筒体3が中心軸を同一にして間隔を置いて配置される。第3円筒体3の上部には第3円筒体3より直径を大きくした第4円筒体4が配置されている。図1中、一点鎖線はその中心軸を示し、矢印(↑)はその中心軸の方向、すなわち軸方向を示している。   As shown in FIG. 1, the first cylindrical body 1, the second cylindrical body 2, and the third cylindrical body 3, whose diameters are sequentially increased, are arranged at the same center axis and spaced from each other. A fourth cylinder 4 having a diameter larger than that of the third cylinder 3 is disposed on the third cylinder 3. In FIG. 1, an alternate long and short dash line indicates the central axis, and an arrow (↑) indicates the direction of the central axis, that is, the axial direction.

第1円筒体1の内側にバーナ6が配置されている。バーナ6は、中心軸部位に配置され、上蓋兼バーナ取付台7を介して取り付けられている。第1円筒体1には底板8が配置され、底板8は第1円筒体1の直径に対応した直径で円盤状に構成されている。バーナ6での燃焼ガスは、第1円筒体1の内側に矢印で示すように流れ、上蓋兼バーナ取付台7の下面と隔壁61(後述CO除去触媒層36の上部の隔壁10に対して間隔を置いて配置された、第1円筒体1の上端部から第4円筒体4に至る隔壁)の間の間隙を経て燃焼排ガス排出管11に連なり、燃焼排ガスはここから排出される。   A burner 6 is disposed inside the first cylindrical body 1. The burner 6 is disposed at the central axis portion and attached via an upper lid / burner mounting base 7. A bottom plate 8 is disposed on the first cylindrical body 1, and the bottom plate 8 is configured in a disc shape with a diameter corresponding to the diameter of the first cylindrical body 1. The combustion gas in the burner 6 flows inside the first cylindrical body 1 as indicated by an arrow, and is spaced from the lower surface of the upper lid / burner mounting base 7 and the partition wall 61 (the partition wall 10 above the CO removal catalyst layer 36 described later). Is disposed between the upper end portion of the first cylindrical body 1 and a partition wall extending from the first cylindrical body 1 to the fourth cylindrical body 4), and is connected to the combustion exhaust gas discharge pipe 11. The combustion exhaust gas is discharged from here.

符号12は原燃料の供給管であり、脱硫済みの原燃料が供給される。前述図13で言えば脱硫器を経た原燃料である。第1円筒体1と第2円筒体2の間の空間内には、その上部に予熱層14、予熱層14に続く下部に改質触媒層16が設けられている。予熱層14の内部に丸棒、角棒等の棒材15が螺旋状に配置され、これにより予熱層14の内部に連続した螺旋状のガス通路が形成されている。棒材15は一本でも複数本でもよい。改質触媒層16の改質触媒は、その下端部で多孔板、網目体等の支持体17で支持されている。   Reference numeral 12 denotes a raw fuel supply pipe, to which desulfurized raw fuel is supplied. In the case of FIG. 13, it is the raw fuel that has passed through the desulfurizer. In the space between the first cylindrical body 1 and the second cylindrical body 2, a preheating layer 14 is provided in the upper part, and a reforming catalyst layer 16 is provided in the lower part following the preheating layer 14. A rod 15 such as a round bar or a square bar is spirally arranged inside the preheating layer 14, and a continuous spiral gas passage is formed inside the preheating layer 14. One or more bars 15 may be used. The reforming catalyst of the reforming catalyst layer 16 is supported at its lower end by a support 17 such as a perforated plate or a mesh body.

供給管12から供給された原燃料は、水供給管26から供給される水(水蒸気)が混合された後、予熱層14を経て、改質触媒層16に導入され、混合ガス中の原燃料が下降しながら水蒸気により改質される。改質触媒層16における改質反応は吸熱反応であり、バーナ6で発生する燃焼熱を吸収して改質反応が進行する。すなわち、バーナ6での燃焼ガスが第1円筒体1の内側を流通して通過するときに、燃焼ガスの熱が第1円筒体1を介して改質触媒層16に吸収され、改質反応が進行する。   The raw fuel supplied from the supply pipe 12 is mixed with water (steam) supplied from the water supply pipe 26, and then introduced into the reforming catalyst layer 16 through the preheating layer 14, and the raw fuel in the mixed gas. As it descends, it is reformed by steam. The reforming reaction in the reforming catalyst layer 16 is an endothermic reaction, and the reforming reaction proceeds by absorbing the combustion heat generated in the burner 6. That is, when the combustion gas in the burner 6 flows through and passes through the inside of the first cylinder 1, the heat of the combustion gas is absorbed by the reforming catalyst layer 16 through the first cylinder 1 and the reforming reaction is performed. Progresses.

第2円筒体2の下端は第3円筒体3の底板18との間に間隔を置いて配置してあり、第2円筒体2と第3円筒体3の間は、改質ガスの流通路19を構成している。底板18は第3円筒体3の直径に対応した直径で円盤状に構成されている。改質ガスは、第2円筒体2の下端と第3円筒体3の底板18の間で折り返して第2円筒体2と第3円筒体3の間で形成された流通路19を流通する。第3円筒体3の上部には第3円筒体3より直径を大きくした第4円筒体4が配置され、第2円筒体2と第4円筒体4の間にCO変成触媒層22が設けられている。流通路19を流通した改質ガスは、支持板21に設けられた多数の孔を経てCO変成触媒層22に供給される。   The lower end of the second cylindrical body 2 is spaced from the bottom plate 18 of the third cylindrical body 3, and the reformed gas flow path is between the second cylindrical body 2 and the third cylindrical body 3. 19 is constituted. The bottom plate 18 is formed in a disc shape with a diameter corresponding to the diameter of the third cylindrical body 3. The reformed gas is folded between the lower end of the second cylindrical body 2 and the bottom plate 18 of the third cylindrical body 3 and flows through the flow passage 19 formed between the second cylindrical body 2 and the third cylindrical body 3. A fourth cylindrical body 4 having a diameter larger than that of the third cylindrical body 3 is disposed above the third cylindrical body 3, and a CO shift catalyst layer 22 is provided between the second cylindrical body 2 and the fourth cylindrical body 4. ing. The reformed gas that has flowed through the flow passage 19 is supplied to the CO shift catalyst layer 22 through a large number of holes provided in the support plate 21.

第3円筒体3の上端部と第4円筒体4の下端部との間には板体20が配置され、板体20の上に、間隔を置いてガス流通用の複数の孔を有する支持板21が配置されている。板体20は、第3円筒体3の直径に相当する部分は第3円筒体3で占められるので、ドーナツ状の板体である。また、支持板21は、第2円筒体2の直径に相当する部分は第2円筒体2で占められるので、ドーナツ状の支持板である。   A plate body 20 is disposed between the upper end portion of the third cylindrical body 3 and the lower end portion of the fourth cylindrical body 4, and a support having a plurality of holes for gas distribution is provided on the plate body 20 at intervals. A plate 21 is arranged. The plate body 20 is a donut-shaped plate body because the portion corresponding to the diameter of the third cylinder 3 is occupied by the third cylinder 3. The support plate 21 is a donut-shaped support plate because a portion corresponding to the diameter of the second cylinder 2 is occupied by the second cylinder 2.

CO変成触媒層22は、支持板21とガス流通用の複数の孔を有する仕切板23(CO変成触媒層22の上部)との間に配置されている。仕切板23は、第2円筒体2の直径に相当する部分は第2円筒体2で占められるのでドーナツ状の仕切板である。支持板21、仕切板23は金属製等の網目体で構成してもよく、この場合には網目体の網目がガス流通孔となる。そのように、CO変成触媒層22は、第2円筒体2と第4円筒体4の間に設けられているが、CO変成触媒層22ではCO変成反応「CO+H2O→CO2+H2」により改質ガス中のCOが二酸化炭素に変成され、併せて水素が生成する。 The CO shift catalyst layer 22 is disposed between the support plate 21 and a partition plate 23 (an upper portion of the CO shift catalyst layer 22) having a plurality of holes for gas flow. The partition plate 23 is a donut-shaped partition plate because a portion corresponding to the diameter of the second cylinder 2 is occupied by the second cylinder 2. The support plate 21 and the partition plate 23 may be formed of a mesh body made of metal or the like. In this case, the mesh body of the mesh body serves as a gas flow hole. As described above, the CO shift catalyst layer 22 is provided between the second cylinder 4 and the fourth cylinder 4. In the CO shift catalyst layer 22, the CO shift reaction “CO + H 2 O → CO 2 + H 2 ”. As a result, CO in the reformed gas is transformed into carbon dioxide, and hydrogen is also generated.

ここで、CO変成触媒層22から出る改質ガスは、未反応の原燃料(メタン等)と余剰水蒸気を除けば、水素と二酸化炭素からなっている。このうち水素が燃料電池の燃料となるが、CO変成触媒層22を経て得られる改質ガスについても、COは完全には除去されず、1%程度以下ではあるが、尚COが含まれている。   Here, the reformed gas exiting from the CO shift catalyst layer 22 is composed of hydrogen and carbon dioxide except for unreacted raw fuel (such as methane) and excess steam. Of these, hydrogen is used as fuel for the fuel cell, but the reformed gas obtained through the CO conversion catalyst layer 22 is not completely removed, but is less than about 1%, but still contains CO. Yes.

PEFCに供給する水素中のCOの許容濃度は10ppm(ppm=容量ppm、以下同じ)程度であり、これを超えると電池性能が著しく劣化する。このため、改質ガスはCO変成触媒層22によりCO濃度を1%程度以下まで低下させた後、CO除去触媒層36に供給される。CO除去触媒層36では酸化剤ガスが添加され、COの選択的酸化反応によりCOをCO2に変えてCOを除去し、CO濃度を10ppm以下、あるいは5ppm以下というように低減させる。なお、酸化剤ガスとしては空気、酸素富化空気、酸素などが使用されるが、通常は空気であるので、以下空気と記載する。 The allowable concentration of CO in the hydrogen supplied to the PEFC is about 10 ppm (ppm = capacity ppm, the same applies hereinafter). Therefore, the reformed gas is supplied to the CO removal catalyst layer 36 after the CO concentration is lowered to about 1% or less by the CO shift catalyst layer 22. In the CO removal catalyst layer 36, an oxidant gas is added, and CO is changed to CO 2 by a selective oxidation reaction of CO to remove CO, and the CO concentration is reduced to 10 ppm or less, or 5 ppm or less. As the oxidant gas, air, oxygen-enriched air, oxygen, or the like is used. However, since it is usually air, it is hereinafter referred to as air.

仕切板23の上方には間隔を置いて一つの連通孔52を有する仕切板51が設けてあり、仕切板23と仕切板51との間の空間に空気供給管30を通してCO除去用空気が供給される。連通孔52を所定の孔径で且つ一つとすることにより、改質ガスとCO除去用空気が連通孔52を通過する際に所定の通過速度が得られ、通過時の乱流により改質ガスとCO除去用空気を良好に混合することができる。すなわち、CO変成器から出る改質ガスとCO除去用空気を連通孔52の箇所で集合させた後、CO除去触媒層に供給、分散させるように構成されている。   Above the partition plate 23, a partition plate 51 having one communication hole 52 is provided at an interval, and CO removal air is supplied to the space between the partition plate 23 and the partition plate 51 through the air supply pipe 30. Is done. By setting the number of communication holes 52 to one with a predetermined hole diameter, a predetermined passing speed is obtained when the reformed gas and the CO removal air pass through the communication holes 52, and the reformed gas and CO removal air can be mixed well. In other words, the reformed gas and the CO removal air coming out of the CO converter are assembled at the location of the communication hole 52, and then supplied and dispersed in the CO removal catalyst layer.

CO除去触媒層36は、第2円筒体2と、これより直径を大きくした円筒体37と、第2円筒体2と円筒体37の間の下部及び上部にそれぞれ間隔を置いて配置された、複数個の孔35を有する支持板34と、ガス流通用の複数個の孔39を有する仕切板38と、の間の空間に配置されている。支持板34及び仕切板38は、第2円筒体2の直径に相当する部分は第2円筒体2で占められるので、ドーナツ状の板体である。   The CO removal catalyst layer 36 is disposed at intervals between the second cylinder 2, the cylinder 37 having a larger diameter, and the lower part and the upper part between the second cylinder 2 and the cylinder 37, respectively. It is arranged in a space between a support plate 34 having a plurality of holes 35 and a partition plate 38 having a plurality of holes 39 for gas flow. The support plate 34 and the partition plate 38 are donut-shaped plates because the portion corresponding to the diameter of the second cylinder 2 is occupied by the second cylinder 2.

また、改質ガス流通孔52を有する仕切板51の上部に、所定の間隔を置いて一個の改質ガス流通孔55を有する仕切板54を配置し、その上部に、当該仕切板54との間に間隔を置いてCO除去触媒層36が位置するように配置されている。   Further, a partition plate 54 having a single reformed gas flow hole 55 is arranged at a predetermined interval above the partition plate 51 having the reformed gas flow hole 52, and the partition plate 54 is connected to the upper portion of the partition plate 54. The CO removal catalyst layer 36 is disposed so as to be spaced from each other.

そして、仕切板51の改質ガス流通孔52と仕切板54の改質ガス流通孔55とが周方向に相対する位置、すなわち周方向に反対側に位置するように配置する。図1には、改質ガス流通孔52と改質ガス流通孔55とを周方向に180°反対側の位置に配置した場合を示している。この周方向に相対する位置は、周方向に180°の反対側の位置であるのが最もよいが、±10°を限度にずれた位置でもよい。   The reformed gas circulation holes 52 of the partition plate 51 and the reformed gas circulation holes 55 of the partition plate 54 are arranged so as to be opposed to each other in the circumferential direction, that is, on the opposite side in the circumferential direction. FIG. 1 shows a case where the reformed gas circulation holes 52 and the reformed gas circulation holes 55 are arranged at positions 180 ° opposite to each other in the circumferential direction. The position opposite to the circumferential direction is most preferably a position on the opposite side of 180 ° in the circumferential direction, but may be a position shifted within ± 10 °.

空気供給管30により供給された空気は、CO変成触媒層22の上部に配置された、ガス流出用の複数の孔60を有する仕切板23から流出するCO変成済み改質ガスと混合しながら、仕切板51の改質ガス流通孔52を介して、仕切板51と仕切板54との間の隙間に流入する。空気とCO変成済み改質ガスは、仕切板51と仕切板54との間の隙間でさらに混合しながら、仕切板54の改質ガス流通孔55に至り、当該改質ガス流通孔55を介して、仕切板54とCO除去触媒層22との間の隙間に流入する。   While the air supplied through the air supply pipe 30 is mixed with the CO-modified reformed gas flowing out from the partition plate 23 having a plurality of gas outlet holes 60 arranged at the upper part of the CO-converting catalyst layer 22, It flows into the gap between the partition plate 51 and the partition plate 54 through the reformed gas flow hole 52 of the partition plate 51. The air and the CO-modified reformed gas reach the reformed gas circulation hole 55 of the partition plate 54 while being further mixed in the gap between the partition plate 51 and the partition plate 54, and pass through the reformed gas circulation hole 55. Then, it flows into the gap between the partition plate 54 and the CO removal catalyst layer 22.

すなわち、改質ガス流通孔55は、改質ガス流通孔52に対して、周方向に反対側に配置されているので、空気とCO変成済み改質ガスは、仕切板51と仕切板54との間の隙間で混合しながら、改質ガス流通孔52から改質ガス流通孔55へ向けて流れる。仕切板54とCO除去触媒層36との間の隙間に流入した空気とCO変成済み改質ガスの混合ガスは、支持板34の複数個の孔35からCO除去触媒層36へ流入する。   That is, since the reformed gas circulation hole 55 is disposed on the opposite side in the circumferential direction with respect to the reformed gas circulation hole 52, the reformed gas having undergone air and CO conversion is separated from the partition plate 51 and the partition plate 54. The gas flows from the reformed gas circulation hole 52 toward the reformed gas circulation hole 55 while mixing in the gap between the two. The mixed gas of the air and the CO-modified reformed gas that has flowed into the gap between the partition plate 54 and the CO removal catalyst layer 36 flows into the CO removal catalyst layer 36 from the plurality of holes 35 of the support plate 34.

なお、仕切板51は、これがあった方が空気と改質ガスとの混合がより促進されるが、必須ではないので、無くてもよい。また、仕切板51を配置する場合、仕切板51と仕切板54との間に空気供給管30の空気放出開口を臨ませてもよい。   In addition, although the direction which has this has the partition plate 51, the mixing with air and reformed gas is promoted more, but since it is not essential, it may not be necessary. Further, when the partition plate 51 is disposed, an air discharge opening of the air supply pipe 30 may be provided between the partition plate 51 and the partition plate 54.

CO除去触媒層36には、CO除去触媒(PROX触媒とも呼ばれる)が充填してあり、PROX触媒によりCO除去反応、すなわちCOの選択的酸化反応によりCOをCO2に変えることでCOを除去し、CO濃度を数ppmレベルにまで低減させる。COを除去した改質ガスは、仕切板38に設けられた複数個の孔39から排出され、仕切板38と隔壁10との間の間隙を経て改質ガス取出管40から取り出される。 The CO removal catalyst layer 36 is filled with a CO removal catalyst (also referred to as a PROX catalyst). The CO removal reaction is performed by the PROX catalyst, that is, CO is removed by changing CO to CO 2 by a selective oxidation reaction of CO. Reduce the CO concentration to a few ppm level. The reformed gas from which CO has been removed is discharged from a plurality of holes 39 provided in the partition plate 38, and taken out from the reformed gas take-out pipe 40 through the gap between the partition plate 38 and the partition wall 10.

符号61は、CO除去触媒層36の上部の隔壁10に対して間隔を置いて配置された、第1円筒体1の上端部から第4円筒体4に至る隔壁である。当該隔壁61は、第1円筒体1の直径に相当する部分内にはバーナ6による燃焼室が形成されているので、ドーナツ状の板体である。なお、隔壁10と隔壁61との間の間隙が予熱層14へ連なる構造となっている。改質ガス取出管40は、隔壁10、隔壁61、上蓋兼バーナ取付台7を貫通して設けられているので、改質ガスは上部から取り出される。   Reference numeral 61 denotes a partition wall that is disposed at a distance from the partition wall 10 above the CO removal catalyst layer 36 and extends from the upper end of the first cylinder 1 to the fourth cylinder 4. The partition wall 61 is a donut-shaped plate body because a combustion chamber formed by the burner 6 is formed in a portion corresponding to the diameter of the first cylindrical body 1. Note that the gap between the partition wall 10 and the partition wall 61 is connected to the preheating layer 14. Since the reformed gas take-out pipe 40 is provided through the partition wall 10, the partition wall 61, and the upper lid / burner mounting base 7, the reformed gas is taken out from above.

〈(B)の構造をもつ円筒式水蒸気改質器の態様〉
前記(B)の構造は輻射筒を備える円筒式水蒸気改質器であり、本発明(2)、(4)は(B)の構造を備えるものであればいずれにも適用される。前述(A)の構造に対しては、輻射筒を備え、これに関連する構造を有する点だけで異なるので、ここでは輻射筒とこれに関連する構造について説明する。図2はその一例を説明する図で、縦断面を示している。なお、図2は、図3〜4とともに、後述本発明(2)の特徴点を説明する図としても使用している。
<Mode of Cylindrical Steam Reformer with Structure (B)>
The structure (B) is a cylindrical steam reformer provided with a radiation cylinder, and the present inventions (2) and (4) are applicable to any structure provided with the structure (B). The structure (A) differs from the structure (A) only in that a radiation cylinder is provided and a structure related thereto is provided. Therefore, here, the radiation cylinder and the structure related thereto will be described. FIG. 2 is a diagram for explaining an example thereof and shows a longitudinal section. 2 is used together with FIGS. 3 to 4 as a diagram for explaining a feature point of the present invention (2) described later.

図2のとおり、第1円筒体1の内側には中心軸を同じくして、第1円筒体1より直径の小さい円筒状の伝熱用隔壁すなわち輻射筒5が配置され、輻射筒5の内側にバーナ6が配置されている。バーナ6は、中心軸部位に配置され、上蓋兼バーナ取付台7を介して取り付けられている。輻射筒5は、その下端と第1円筒体1の底板8との間に間隔を置いて配置してあり、この間隔で形成された間隙と、これに連なる輻射筒5と第1円筒体1との間の空隙とがバーナ6からの燃焼ガスの排気通路9を形成している。   As shown in FIG. 2, a cylindrical heat transfer partition wall, that is, a radiation cylinder 5 having a diameter smaller than that of the first cylinder 1 is arranged on the inner side of the first cylinder 1. A burner 6 is arranged on the side. The burner 6 is disposed at the central axis portion and attached via an upper lid / burner mounting base 7. The radiation cylinder 5 is disposed with a gap between the lower end thereof and the bottom plate 8 of the first cylinder 1, the gap formed with this gap, and the radiation cylinder 5 and the first cylinder 1 connected to the gap. And an air gap between them forms an exhaust passage 9 for the combustion gas from the burner 6.

底板8は第1円筒体1の直径に対応した直径で円盤状に構成されている。排気通路9は、その上部で排気通路9の上蓋(上蓋兼バーナ取付台7の下面)と隔壁61(後述CO除去触媒層36の上部の隔壁10に対して間隔を置いて配置された、第1円筒体1の上端部から第4円筒体4に至る隔壁)の間の間隙を経て燃焼排ガス排出管11に連なり、燃焼排ガスはここから排出される。すなわち、バーナ6での燃焼ガスが輻射筒5と第1円筒体1の間の排気通路9を流通して通過するときに、燃焼ガスの熱が第1円筒体1を介して改質触媒層16に吸収され、改質反応が進行する。   The bottom plate 8 is formed in a disc shape with a diameter corresponding to the diameter of the first cylindrical body 1. The exhaust passage 9 is disposed at an upper portion of the exhaust passage 9 at a distance from the upper lid of the exhaust passage 9 (the lower surface of the upper lid / burner mounting base 7) and the partition wall 61 (the partition wall 10 above the CO removal catalyst layer 36 described later). The exhaust gas exhaust pipe 11 is connected to the combustion exhaust gas exhaust pipe 11 through a gap between the upper end of one cylindrical body 1 and a partition wall extending from the upper end of the first cylindrical body 4 to the fourth cylindrical body 4. That is, when the combustion gas in the burner 6 passes through the exhaust passage 9 between the radiation cylinder 5 and the first cylindrical body 1, the heat of the combustion gas is passed through the first cylindrical body 1 through the reforming catalyst layer. 16 is absorbed and the reforming reaction proceeds.

隔壁61は、第1円筒体1の直径に相当する部分内にはバーナ6による燃焼室、輻射筒5、燃焼排ガスの排気通路9が配置されているので、ドーナツ状の板体である。隔壁10と隔壁61との間の間隙が予熱層14へ連なる構造となっている。   The partition wall 61 is a donut-shaped plate body because the combustion chamber, the radiant cylinder 5, and the exhaust gas passage 9 for the combustion exhaust gas are disposed in a portion corresponding to the diameter of the first cylindrical body 1. A gap between the partition wall 10 and the partition wall 61 is connected to the preheating layer 14.

このように輻射筒5を備え、これに関連する構造を有する点以外の構造は、前述(A)の構造と同様である。   The structure other than that having the radiation cylinder 5 and having a structure related thereto is the same as the structure of the above-mentioned (A).

〈本発明(1)〜(2)の態様〉
本発明(1)においては、前述(A)の構造をもつ円筒式水蒸気改質器に、図1中符号100として示すように、水添脱硫器を組み込んで構成する。すなわち、水添脱硫器100を、円筒式水蒸気改質器における第3筒体3の外周のうち、改質触媒層16が位置する外周に断熱材層101を配置し、当該断熱材層101の外周に配置して構成する。
<Aspects of the present invention (1) to (2)>
In the present invention (1), a hydrodesulfurizer is incorporated into the cylindrical steam reformer having the above-described structure (A) as indicated by reference numeral 100 in FIG. That is, in the hydrodesulfurizer 100, the heat insulating material layer 101 is disposed on the outer periphery of the third cylinder 3 in the cylindrical steam reformer on the outer periphery where the reforming catalyst layer 16 is located. It is arranged on the outer periphery.

本発明(2)においては、前述(B)の構造をもつ円筒式水蒸気改質器に、図2中符号100として示すように、水添脱硫器を組み込んで構成する。すなわち、水添脱硫器100を、円筒式水蒸気改質器における第3筒体3の外周のうち、改質触媒層16が位置する外周に断熱材層101を配置し、当該断熱材層101の外周に配置して構成する。   In the present invention (2), a hydrodesulfurizer is incorporated into the cylindrical steam reformer having the above-described structure (B) as indicated by reference numeral 100 in FIG. That is, in the hydrodesulfurizer 100, the heat insulating material layer 101 is disposed on the outer periphery of the third cylinder 3 in the cylindrical steam reformer on the outer periphery where the reforming catalyst layer 16 is located. It is arranged on the outer periphery.

図3〜4は図1〜2中、断熱材層101、水添脱硫器100の部分を取り出して示した図である。図3は断面図、図4はその斜視図である。図3〜4のとおり、円筒式水蒸気改質器に組み込んだ水添脱硫器は円筒状であり、下部から上部へ順次、水素を混合した原燃料の供給部S1、水添触媒層X、第1吸着剤層Y、第2吸着剤層Z、脱硫済み原燃料の排出部S2により構成する。   3-4 is the figure which extracted and showed the part of the heat insulating material layer 101 and the hydrodesulfurizer 100 in FIGS. 1-2. 3 is a sectional view, and FIG. 4 is a perspective view thereof. As shown in FIGS. 3 to 4, the hydrodesulfurizer incorporated in the cylindrical steam reformer is cylindrical, and the raw fuel supply unit S1, the hydrogenation catalyst layer X, The first adsorbent layer Y, the second adsorbent layer Z, and the desulfurized raw fuel discharge part S2 are configured.

S1は水素を混合した原燃料を水添触媒層Xへ均等に供給するための空間であり、S2は脱硫済み原燃料を集めて導出管114へ導出するための空間であるが、それぞれ、供給部または原燃料の供給部、排出部または脱硫済み原燃料の排出部と称している。   S1 is a space for uniformly supplying the raw fuel mixed with hydrogen to the hydrogenation catalyst layer X, and S2 is a space for collecting the desulfurized raw fuel and leading it to the outlet pipe 114. It is referred to as a part or a raw fuel supply part, a discharge part or a desulfurized raw fuel discharge part.

断熱材層101は、第3筒体3のうち改質触媒層が位置する部位の外周と水添触媒層X、第1吸着剤層Y及び第2吸着剤層Zの内周との間に配置する。なお、断熱材層101は、第3筒体3の外周と供給部S1との間、第3筒体3の外周と排出部S2の内周との間にも配置してよい。102は断熱材層101に接する水添脱硫器の内筒、105は水添触媒層Xを囲む外筒、106は第1吸着剤層Y、第2吸着剤層Z及び脱硫済み原燃料の排出部S2を囲む外筒である。   The heat insulating material layer 101 is between the outer periphery of the portion where the reforming catalyst layer is located in the third cylinder 3 and the inner periphery of the hydrogenation catalyst layer X, the first adsorbent layer Y, and the second adsorbent layer Z. Deploy. In addition, you may arrange | position the heat insulating material layer 101 also between the outer periphery of the 3rd cylinder 3, and supply part S1, and between the outer periphery of the 3rd cylinder 3, and the inner periphery of discharge part S2. 102 is an inner cylinder of the hydrodesulfurizer in contact with the heat insulating material layer 101, 105 is an outer cylinder surrounding the hydrogenation catalyst layer X, 106 is a discharge of the first adsorbent layer Y, the second adsorbent layer Z, and desulfurized raw fuel It is an outer cylinder surrounding part S2.

原燃料の供給部S1は、第3筒体3の外周と下端部の板体103と円筒状隔壁104と多孔板108とにより構成する。それらのうち、板体103に水素を混合した原燃料の導入管112を配置する。水素は水素供給管113を介して導入管112中を流れる原燃料に混合される。脱硫済み原燃料の排出部S2は、第3筒体3の外周と上蓋107と円筒状隔壁106と多孔板111とにより構成する。水添触媒層Xを囲む外筒105は傾斜しているが、外筒106と同じく傾斜なしの構造でもよい。   The raw fuel supply unit S <b> 1 includes the outer periphery and the lower end plate 103, the cylindrical partition wall 104, and the porous plate 108 of the third cylinder 3. Among them, a raw fuel introduction pipe 112 mixed with hydrogen is arranged in the plate body 103. Hydrogen is mixed with the raw fuel flowing through the introduction pipe 112 through the hydrogen supply pipe 113. The desulfurized raw fuel discharge part S <b> 2 includes the outer periphery of the third cylinder 3, the upper lid 107, the cylindrical partition wall 106, and the porous plate 111. Although the outer cylinder 105 surrounding the hydrogenation catalyst layer X is inclined, a structure without an inclination may be used like the outer cylinder 106.

原燃料の供給部S1と水添触媒層Xとの間に多孔板108を配置し、水添触媒層Xと第1吸着剤層Yとの間に多孔板109を配置し、第1吸着剤層Yと第2吸着剤層Zとの間に多孔板110を配置し、第2吸着剤層Zの上端部に多孔板111を配置し、多孔板111の上部に間隔を置いて上蓋107を配置する。多孔板108、109、110は各層間を区画するとともに、原燃料を分配し流通させる役割をする。   A porous plate 108 is disposed between the raw fuel supply unit S1 and the hydrogenation catalyst layer X, a porous plate 109 is disposed between the hydrogenation catalyst layer X and the first adsorbent layer Y, and the first adsorbent. The porous plate 110 is disposed between the layer Y and the second adsorbent layer Z, the porous plate 111 is disposed at the upper end portion of the second adsorbent layer Z, and the upper lid 107 is placed at an interval above the porous plate 111. Deploy. The perforated plates 108, 109, and 110 serve to partition each layer and distribute and distribute the raw fuel.

それらのうち、上蓋107に脱硫済み原燃料の導出管114を配置する。前記のとおり、原燃料の導入管112には水素供給管113を配置し、水添触媒層Xで原燃料中の硫黄化合物を硫化水素に変えるための水素を供給する。供給水素としては、円筒式水蒸気改質器での水素製造が開始した後は、当該円筒式水蒸気改質器で製造した水素を利用することができる。   Among them, a desulfurized raw fuel outlet pipe 114 is disposed on the upper lid 107. As described above, the hydrogen supply pipe 113 is arranged in the raw fuel introduction pipe 112, and hydrogen for supplying the sulfur compound in the raw fuel to hydrogen sulfide is supplied by the hydrogenation catalyst layer X. As the supply hydrogen, after the hydrogen production in the cylindrical steam reformer is started, the hydrogen produced in the cylindrical steam reformer can be used.

水添触媒層Xで生成した硫化水素を含む原燃料は、多孔板109を介して第1吸着剤に流入する。第1吸着剤では原燃料中の硫化水素が吸着、除去される。第1吸着剤を経た原燃料は、多孔板110を介して第2吸着剤に流入する。第2吸着剤では第1吸着剤でリークした僅かな硫化水素を吸着、除去し、硫化水素をさらに低濃度まで低下させる。   The raw fuel containing hydrogen sulfide generated in the hydrogenation catalyst layer X flows into the first adsorbent through the porous plate 109. In the first adsorbent, hydrogen sulfide in the raw fuel is adsorbed and removed. The raw fuel that has passed through the first adsorbent flows into the second adsorbent through the perforated plate 110. The second adsorbent adsorbs and removes a slight amount of hydrogen sulfide leaking from the first adsorbent, thereby reducing the hydrogen sulfide to a lower concentration.

〈断熱材層101を配置する理由について〉
ここで、本発明の水添脱硫器一体型円筒式水蒸気改質器においては、第3筒体3の外周に断熱材層101を介して水添脱硫器100を配置すること、すなわち第3筒体3の外周と水添脱硫器100との間に断熱材層101を配置することが必須である。そのように、断熱材層101を配置することは本発明において重要な構成である。以下、その理由を実測例を基に説明する。
<Reason for disposing the heat insulating material layer 101>
Here, in the hydrodesulfurizer integrated cylindrical steam reformer of the present invention, the hydrodesulfurizer 100 is disposed on the outer periphery of the third cylinder 3 via the heat insulating material layer 101, that is, the third cylinder. It is essential to arrange the heat insulating material layer 101 between the outer periphery of the body 3 and the hydrodesulfurizer 100. As such, the arrangement of the heat insulating material layer 101 is an important configuration in the present invention. Hereinafter, the reason will be described based on actual measurement examples.

図5は、第3筒体3の外周のうち、改質触媒層16が位置する外周に“断熱材層101を介在させて”水添脱硫器を配置した場合について、定常運転時における各箇所の温度の実測値を示した図である。本実測例では、図5中、断熱材層101としてガラスウール〔熱伝導率:0.03W/mK(400℃)〕を5mmの厚さで配置した。   FIG. 5 shows each part in the steady operation in the case where the hydrodesulfurizer is arranged “with the heat insulating material layer 101 interposed” on the outer periphery of the third cylinder 3 on the outer periphery where the reforming catalyst layer 16 is located. It is the figure which showed the measured value of the temperature of. In this actual measurement example, in FIG. 5, glass wool [thermal conductivity: 0.03 W / mK (400 ° C.)] is arranged as a heat insulating material layer 101 with a thickness of 5 mm.

図5のとおり、断熱材層101を配置した場合には、水添触媒層の入口部で214.6℃、第1吸着剤層の入口部のうち内側で352.0℃、外側で309.5℃、第2吸着剤層の入口部のうち内側で398.6℃、外側で342.3℃を示している。図5には水添脱硫器が位置する改質触媒層16中の上下二箇所の実測温度も示している。   As shown in FIG. 5, when the heat insulating material layer 101 is arranged, 214.6 ° C. at the inlet portion of the hydrogenation catalyst layer, 352.0 ° C. inside the inlet portion of the first adsorbent layer, and 309. Of the inlet portion of the second adsorbent layer, 58.6 ° C. shows 398.6 ° C. on the inside and 342.3 ° C. on the outside. FIG. 5 also shows measured temperatures at two locations, upper and lower, in the reforming catalyst layer 16 where the hydrodesulfurizer is located.

このように、水添脱硫器を、円筒式水蒸気改質器における第3筒体3の外周のうち、改質触媒層16が位置する外周に“断熱材層101を介在させて”配置した場合には、水添脱硫器の水添触媒層、第1吸着剤層、第2吸着剤層の何れの層でも作動温度以内の温度(200〜400℃程度)となり、その脱硫性能を十分に発揮させることができる。   As described above, when the hydrodesulfurizer is arranged “with the heat insulating material layer 101 interposed” on the outer periphery of the third cylinder 3 in the cylindrical steam reformer on the outer periphery where the reforming catalyst layer 16 is located. In the hydrodesulfurizer, any of the hydrogenation catalyst layer, the first adsorbent layer, and the second adsorbent layer has a temperature within the operating temperature (about 200 to 400 ° C.), and fully exhibits its desulfurization performance. Can be made.

本発明において、断熱材の種類には特に限定はなく、グラスウール(ガラス綿)、スラグウール、炭酸マグネシウム粉、酸化マグネシウム粉その他各種耐火物など、適宜の材料を使用することができる。そして、それら断熱材の厚さを選ぶことにより、その周りに配置する水添脱硫器の加熱温度を適切に制御することができる。   In the present invention, the kind of the heat insulating material is not particularly limited, and appropriate materials such as glass wool (glass cotton), slag wool, magnesium carbonate powder, magnesium oxide powder, and other various refractories can be used. And the heating temperature of the hydrodesulfurizer arrange | positioned around it can be appropriately controlled by selecting the thickness of these heat insulating materials.

〈本発明(3)〜(4)の態様〉
本発明(3)は、前述(A)の構造をもつ円筒式水蒸気改質器において、当該円筒式水蒸気改質器における、第3筒体の外周のうち改質触媒層が位置する外周に断熱材層101を配置し、当該断熱材層101の外周に水添脱硫器のうち水添触媒層及び第1吸着剤層を配置し、第2吸着剤層を円筒式水蒸気改質器の外部に配置してなることを特徴とする。
<Aspects of the present invention (3) to (4)>
The present invention (3) is a cylindrical steam reformer having the structure of (A) described above, and in the cylindrical steam reformer, heat insulation is provided on the outer periphery of the third cylindrical body where the reforming catalyst layer is located. The material layer 101 is arranged, the hydrogenation catalyst layer and the first adsorbent layer of the hydrodesulfurizer are arranged on the outer periphery of the heat insulating material layer 101, and the second adsorbent layer is disposed outside the cylindrical steam reformer. It is characterized by being arranged.

本発明(4)は、前述(B)の構造をもつ円筒式水蒸気改質器において、当該円筒式水蒸気改質器における、第3筒体の外周のうち改質触媒層が位置する外周に断熱材層101を配置し、当該断熱材層101の外周に水添脱硫器のうち水添触媒層及び第1吸着剤層を配置し、第2吸着剤層を円筒式水蒸気改質器の外部に配置してなることを特徴とする。   The present invention (4) is the cylindrical steam reformer having the structure of (B) described above, and in the cylindrical steam reformer, heat insulation is provided on the outer periphery of the third cylindrical body where the reforming catalyst layer is located. The material layer 101 is arranged, the hydrogenation catalyst layer and the first adsorbent layer of the hydrodesulfurizer are arranged on the outer periphery of the heat insulating material layer 101, and the second adsorbent layer is disposed outside the cylindrical steam reformer. It is characterized by being arranged.

図6〜8は本発明(3)〜(4)の態様を説明する図である。そのうち図8は、図6〜7中、断熱材層101、水添脱硫器(水添触媒層X、第1吸着剤層Y、第2吸着剤層Zからなる)の部分を取り出して示した図で、断面図として示している。図6〜8のとおり、水添脱硫器のうち水添触媒層Xと第1吸着剤層Yを断熱材層101を介して円筒式水蒸気改質器に組み込み、第2吸着剤層Zを円筒式水蒸気改質器の外部に配置する。   6-8 is a figure explaining the aspect of this invention (3)-(4). Among them, FIG. 8 shows the portions of the heat insulating material layer 101 and the hydrodesulfurizer (consisting of the hydrogenation catalyst layer X, the first adsorbent layer Y, and the second adsorbent layer Z) in FIGS. In the figure, it is shown as a cross-sectional view. As shown in FIGS. 6 to 8, the hydrogenation catalyst layer X and the first adsorbent layer Y in the hydrodesulfurizer are incorporated into the cylindrical steam reformer via the heat insulating material layer 101, and the second adsorbent layer Z is cylindrical. Placed outside the steam reformer.

図6〜8中、円筒式水蒸気改質器に水添触媒層Xと第1吸着剤層Yを組み込んだ部分を符号120で示している。水添触媒層X及び第1吸着剤層Yは円筒状であり、下部から上部へ順次、水素を混合した原燃料の供給部S1、水添触媒層X、第1吸着剤層Y、当該第1吸着剤層Yを経た原燃料の排出部S3により構成する。   6-8, the part which incorporated the hydrogenation catalyst layer X and the 1st adsorbent layer Y in the cylindrical steam reformer is shown with the code | symbol 120. In FIG. The hydrogenation catalyst layer X and the first adsorbent layer Y are cylindrical, and the raw fuel supply unit S1, the hydrogenation catalyst layer X, the first adsorbent layer Y, the first adsorbent layer Y mixed with hydrogen in order from the bottom to the top. It is constituted by a raw fuel discharge part S3 that has passed through one adsorbent layer Y.

断熱材層101は、第3筒体3の外周と水添触媒層X及び第1吸着剤層Yの内周との間に配置する。なお、断熱材層101は、第3筒体3の外周と供給部S1との間、第3筒体3の外周と排出部S3の内周との間にも配置してよい。102は断熱材層101に接する水添触媒層X及び第1吸着剤層Yの内筒、105は水添触媒層Xを囲む外筒、106は第1吸着剤層Y及び原燃料の排出部S3を囲む外筒である。外筒105は図6〜8では傾斜した態様を示しているが、外筒106と同じく傾斜なしの構造でもよい。   The heat insulating material layer 101 is disposed between the outer periphery of the third cylinder 3 and the inner periphery of the hydrogenation catalyst layer X and the first adsorbent layer Y. In addition, you may arrange | position the heat insulating material layer 101 also between the outer periphery of the 3rd cylinder 3, and supply part S1, and between the outer periphery of the 3rd cylinder 3, and the inner periphery of discharge part S3. 102 is an inner cylinder of the hydrogenation catalyst layer X and the first adsorbent layer Y in contact with the heat insulating material layer 101, 105 is an outer cylinder surrounding the hydrogenation catalyst layer X, and 106 is a discharge section for the first adsorbent layer Y and raw fuel. It is an outer cylinder surrounding S3. Although the outer cylinder 105 is shown in an inclined manner in FIGS. 6 to 8, the outer cylinder 105 may have a structure without an inclination like the outer cylinder 106.

原燃料の供給部S1は、第3筒体3の外周と下端部の板体103と外筒104と多孔板108とにより構成する。それらのうち、板体103に水素を混入した原燃料の導入管112を配置する。原燃料の排出部S3は、第3筒体3の外周と上端部の板体107と外筒106と多孔板110とにより構成する。   The raw fuel supply unit S <b> 1 includes the outer periphery and the lower end plate 103, the outer cylinder 104, and the porous plate 108 of the third cylinder 3. Among them, an introduction pipe 112 for raw fuel mixed with hydrogen is arranged in the plate body 103. The raw fuel discharge part S3 is constituted by the outer periphery of the third cylinder 3, the plate 107 at the upper end, the outer cylinder 106, and the porous plate 110.

また、円筒式水蒸気改質器の外部に配置した第2吸着剤層Zは、そのための容器121中に収容、配置して構成する。第2吸着剤層Zは、円筒式水蒸気改質器の外部に配置するので、その形状に制約がなく、各種形状で構成できる。その配置箇所についても適宜の箇所に配置することができる。第2吸着剤層は、円筒式水蒸気改質器の外部に配置するので第1吸着剤層よりも低温であり、その温度は配置箇所等の如何により決まるが、第2吸着剤としては、ZnOとは限らず、各種金属酸化物などそのような温度で有効な硫化水素吸着剤を適宜選択して使用できる。これらの点は、後述第2吸着剤層を円筒式水蒸気改質器の外部に配置する他の態様についても同様である。   Further, the second adsorbent layer Z disposed outside the cylindrical steam reformer is housed and configured in a container 121 therefor. Since the second adsorbent layer Z is disposed outside the cylindrical steam reformer, its shape is not limited and can be configured in various shapes. The arrangement location can also be arranged at an appropriate location. Since the second adsorbent layer is arranged outside the cylindrical steam reformer, the temperature is lower than that of the first adsorbent layer, and the temperature is determined depending on the arrangement location, etc. As the second adsorbent, ZnO However, the hydrogen sulfide adsorbent effective at such temperatures such as various metal oxides can be appropriately selected and used. These points are the same also about the other aspect which arrange | positions the 2nd adsorbent layer mentioned later outside a cylindrical steam reformer.

容器121には、第1吸着剤層Yを経た原燃料の供給部S4、第2吸着剤層Z、当該第2吸着剤層Zを経た脱硫済み原燃料の排出部S5により構成する。符号122〜123は、その間に第2吸着剤層Zを配置し、供給部S4、排出部S5を区画する多孔板である。   The container 121 includes a raw fuel supply unit S4 that has passed through the first adsorbent layer Y, a second adsorbent layer Z, and a desulfurized raw fuel discharge unit S5 that has passed through the second adsorbent layer Z. Reference numerals 122 to 123 are perforated plates in which the second adsorbent layer Z is arranged between them to partition the supply unit S4 and the discharge unit S5.

水添触媒層Xを経た硫化水素を含む原燃料は、多孔板109を介して第1吸着剤に流入する。第1吸着剤では原燃料中の硫化水素が吸着、除去される。第1吸着剤を経た原燃料は、排出部S3、導管114を経て、容器121の供給部S4を介して第2吸着剤層Zに導入される。第2吸着剤Zでは第1吸着剤Yでリークした僅かな硫化水素を吸着除去し、硫化水素をさらに低濃度まで低下させる。そして、脱硫済み原燃料は排出部S5を介して、円筒式水蒸気改質器への脱硫済み原燃料導入管12へ供給される。   The raw fuel containing hydrogen sulfide that has passed through the hydrogenation catalyst layer X flows into the first adsorbent through the porous plate 109. In the first adsorbent, hydrogen sulfide in the raw fuel is adsorbed and removed. The raw fuel that has passed through the first adsorbent is introduced into the second adsorbent layer Z via the supply section S4 of the container 121 via the discharge section S3 and the conduit 114. The second adsorbent Z adsorbs and removes a slight amount of hydrogen sulfide leaking from the first adsorbent Y, thereby reducing the hydrogen sulfide to a lower concentration. The desulfurized raw fuel is supplied to the desulfurized raw fuel introduction pipe 12 to the cylindrical steam reformer via the discharge part S5.

〈本発明(5)と(7)に共通する態様〉
本発明(5)、(7)は、輻射筒の無い円筒式水蒸気改質器に適用するもので、下記(C)の構造をもつ円筒式水蒸気改質器を対象とする。本発明(5)、(7)の水添脱硫器一体型円筒式水蒸気改質器は、当該(C)の構造をもつ円筒式水蒸気改質器であればいずれも対象とし、適用することができる。
(C)同心状に間隔を置いて配置した順次径の大きい第1筒体、第2筒体及び第3筒体からなる複数の円筒体と、第1筒体の径方向中心部分に配置されたバーナと、前記第1筒体と前記第2筒体により半径方向に区画された間隙に改質触媒を充填した改質触媒層を備え、改質触媒層で生成した改質ガスを前記第2筒体と第3筒体により半径方向に区画された間隙に反転させて流通させるようにしてなる円筒式水蒸気改質器。
<Mode Common to the Present Inventions (5) and (7)>
The present invention (5) and (7) are applied to a cylindrical steam reformer having no radiation cylinder, and are intended for a cylindrical steam reformer having the following structure (C). The hydrodesulfurizer integrated cylindrical steam reformer of the present invention (5), (7) can be applied to any cylindrical steam reformer having the structure (C). it can.
(C) A plurality of cylindrical bodies composed of a first cylindrical body, a second cylindrical body, and a third cylindrical body, which are arranged concentrically and spaced apart from each other in order, and a radial center portion of the first cylindrical body. And a reforming catalyst layer filled with a reforming catalyst in a gap defined in the radial direction by the first cylinder and the second cylinder, and the reformed gas generated in the reforming catalyst layer A cylindrical steam reformer configured to be circulated in a gap defined by two cylinders and a third cylinder in a radial direction.

そして、本発明(5)は、当該(C)の構造をもつ円筒式水蒸気改質器における、前記第3筒体の外周のうち前記改質触媒層が位置する外周に断熱材層を配置し、当該断熱材層の外周に水添触媒層、第1吸着剤層及び第2吸着剤層からなる水添脱硫器を配置してなることを特徴とする。
また、本発明(7)は、当該(C)の構造をもつ円筒式水蒸気改質器における、前記第3筒体の外周のうち前記改質触媒層が位置する外周に断熱材層を配置し、当該断熱材層の外周に水添脱硫器のうち水添触媒層及び第1吸着剤層を配置し、第2吸着剤層を円筒式水蒸気改質器の外部に配置してなることを特徴とする。
And this invention (5) arrange | positions a heat insulating material layer in the outer periphery where the said reforming catalyst layer is located among the outer periphery of the said 3rd cylinder in the cylindrical steam reformer which has the structure of the said (C). A hydrodesulfurizer comprising a hydrogenation catalyst layer, a first adsorbent layer and a second adsorbent layer is disposed on the outer periphery of the heat insulating material layer.
Further, in the present invention (7), in the cylindrical steam reformer having the structure (C), a heat insulating material layer is disposed on the outer periphery of the third cylindrical body where the reforming catalyst layer is located. The hydrogenation catalyst layer and the first adsorbent layer of the hydrodesulfurizer are disposed on the outer periphery of the heat insulating material layer, and the second adsorbent layer is disposed outside the cylindrical steam reformer. And

〈本発明(6)と(8)に共通する態様〉
本発明(6)、(8)は、輻射筒を有する円筒式水蒸気改質器に適用するもので、下記(D)の構造をもつ円筒式水蒸気改質器を対象とする。本発明(6)、(8)の水添脱硫器一体型円筒式水蒸気改質器は、当該(D)の構造をもつ円筒式水蒸気改質器であればいずれも対象とし、適用することができる。
(D)同心状に間隔を置いて配置した順次径の大きい第1筒体、第2筒体及び第3筒体からなる複数の円筒体と、第1筒体の内部にこれと同軸にして配置された輻射筒と、前記輻射筒の径方向中心部分に配置されたバーナと、前記第1筒体と前記第2筒体により半径方向に区画された間隙に改質触媒を充填した改質触媒層を備え、改質触媒層で生成した改質ガスを前記第2筒体と第3筒体により半径方向に区画された間隙に反転させて流通させるようにしてなる円筒式水蒸気改質器。
<Mode Common to Present Inventions (6) and (8)>
The present invention (6) and (8) are applied to a cylindrical steam reformer having a radiation cylinder, and are intended for a cylindrical steam reformer having the following structure (D). The hydrodesulfurizer integrated cylindrical steam reformer of the present invention (6), (8) can be applied to any cylindrical steam reformer having the structure (D). it can.
(D) A plurality of cylindrical bodies composed of a first cylindrical body, a second cylindrical body and a third cylindrical body, which are arranged concentrically and spaced apart from each other, and are coaxially arranged inside the first cylindrical body. A reformer in which a reforming catalyst is filled in a radial partition defined by the disposed radiation tube, a burner disposed in a radial center portion of the radiation tube, and the first and second cylinders A cylindrical steam reformer comprising a catalyst layer, wherein the reformed gas generated in the reforming catalyst layer is circulated by being reversed into a gap defined in the radial direction by the second and third cylinders. .

そして、本発明(6)は、当該(D)の構造をもつ円筒式水蒸気改質器における、前記第3筒体の外周のうち改質触媒層が位置する外周に断熱材層を配置し、当該断熱材層の外周に水添触媒層、第1吸着剤層及び第2吸着剤層からなる水添脱硫器を配置してなることを特徴とする。
また、本発明(8)は、当該(D)の構造をもつ円筒式水蒸気改質器における、前記第3筒体の外周のうち改質触媒層が位置する外周に断熱材層を配置し、当該断熱材層の外周に水添脱硫器のうち水添触媒層及び第1吸着剤層を配置し、第2吸着剤層を円筒式水蒸気改質器の外部に配置してなることを特徴とする。
And this invention (6) arrange | positions a heat insulating material layer in the outer periphery in which the reforming catalyst layer is located among the outer periphery of the said 3rd cylinder in the cylindrical steam reformer which has the structure of the said (D), A hydrodesulfurizer comprising a hydrogenation catalyst layer, a first adsorbent layer, and a second adsorbent layer is disposed on the outer periphery of the heat insulating material layer.
Moreover, this invention (8) arrange | positions a heat insulating material layer in the outer periphery in which the reforming catalyst layer is located among the outer periphery of the said 3rd cylinder in the cylindrical steam reformer which has the structure of the said (D), The hydrogenation catalyst layer and the first adsorbent layer of the hydrodesulfurizer are arranged on the outer periphery of the heat insulating material layer, and the second adsorbent layer is arranged outside the cylindrical steam reformer. To do.

〈本発明(5)の態様〉
図9は本発明(5)の態様を説明する図である。本発明(5)においては、前記(C)の構造をもつ円筒式水蒸気改質器に、図9中符号100として示すように水添脱硫器を組み込んで構成する。すなわち、円筒式水蒸気改質器における第3筒体3の外周のうち、改質触媒層16が位置する外周に断熱材層101を配置し、当該断熱材層101の外周に水添脱硫器の水添触媒層Xと第1吸着剤層Yと第2吸着剤層Zを配置して構成する。
<Aspect of the present invention (5)>
FIG. 9 is a diagram for explaining an aspect of the present invention (5). In the present invention (5), a hydrodesulfurizer is incorporated into the cylindrical steam reformer having the structure (C) as indicated by reference numeral 100 in FIG. That is, among the outer circumferences of the third cylinder 3 in the cylindrical steam reformer, the heat insulating material layer 101 is arranged on the outer circumference where the reforming catalyst layer 16 is located, and the hydrodesulfurizer is placed on the outer circumference of the heat insulating material layer 101. The hydrogenation catalyst layer X, the first adsorbent layer Y, and the second adsorbent layer Z are arranged.

〈本発明(6)の態様〉
図10は本発明(6)の態様を説明する図である。本発明(6)においては、前記(D)の構造をもつ円筒式水蒸気改質器に、図10中符号100として示すように、水添脱硫器を組み込んで構成する。すなわち、円筒式水蒸気改質器における第3筒体3の外周のうち、改質触媒層16が位置する外周に断熱材層101を配置し、当該断熱材層101の外周に水添脱硫器の水添触媒層Xと第1吸着剤層Yと第2吸着剤層Zを配置して構成する。
<Aspect of the present invention (6)>
FIG. 10 is a diagram for explaining an aspect of the present invention (6). In the present invention (6), a hydrodesulfurizer is incorporated into the cylindrical steam reformer having the structure of (D) as indicated by reference numeral 100 in FIG. That is, among the outer circumferences of the third cylinder 3 in the cylindrical steam reformer, the heat insulating material layer 101 is arranged on the outer circumference where the reforming catalyst layer 16 is located, and the hydrodesulfurizer is placed on the outer circumference of the heat insulating material layer 101. The hydrogenation catalyst layer X, the first adsorbent layer Y, and the second adsorbent layer Z are arranged.

本発明(5)〜(6)において、水素を混合した原燃料の供給部S1、水添触媒層X、第1吸着剤層Y、第2吸着剤層Z、脱硫済み原燃料の排出部S2等の構成については前述本発明(1)〜(2)、図1〜4の構成と同様である。   In the present inventions (5) to (6), a raw fuel supply unit S1 mixed with hydrogen, a hydrogenation catalyst layer X, a first adsorbent layer Y, a second adsorbent layer Z, and a desulfurized raw fuel discharge unit S2 About the structure of these, it is the same as that of the above-mentioned this invention (1)-(2) and the structure of FIGS.

〈本発明(7)の態様〉
図11は本発明(7)の態様を説明する図である。本発明(7)においては、前述(C)の構造をもつ円筒式水蒸気改質器に、図11中符号120、121として示すように水添脱硫器を組み込んで構成する。すなわち、水添脱硫器のうち水添触媒層Xと第1吸着剤層Yを断熱材層101を介して円筒式水蒸気改質器に組み込み、第2吸着剤層Zを円筒式水蒸気改質器の外部に配置する。
<Aspect of the present invention (7)>
FIG. 11 is a diagram for explaining an aspect of the present invention (7). In the present invention (7), a hydrodesulfurizer is incorporated into the cylindrical steam reformer having the above-described structure (C) as indicated by reference numerals 120 and 121 in FIG. That is, in the hydrodesulfurizer, the hydrogenation catalyst layer X and the first adsorbent layer Y are incorporated into the cylindrical steam reformer via the heat insulating material layer 101, and the second adsorbent layer Z is incorporated into the cylindrical steam reformer. Place outside of.

〈本発明(8)の態様〉
図12は本発明(8)の態様を説明する図である。本発明(8)においては、前述(D)の構造をもつ円筒式水蒸気改質器に、図12中符号120、121として示すように水添脱硫器を組み込んで構成する。すなわち、水添脱硫器のうち水添触媒層Xと第1吸着剤層Yを断熱材層101を介して円筒式水蒸気改質器に組み込み、第2吸着剤層Zを円筒式水蒸気改質器の外部に配置する。
<Aspect of the present invention (8)>
FIG. 12 is a diagram for explaining an aspect of the present invention (8). In the present invention (8), a hydrodesulfurizer is incorporated into the cylindrical steam reformer having the above-mentioned structure (D) as indicated by reference numerals 120 and 121 in FIG. That is, in the hydrodesulfurizer, the hydrogenation catalyst layer X and the first adsorbent layer Y are incorporated into the cylindrical steam reformer via the heat insulating material layer 101, and the second adsorbent layer Z is incorporated into the cylindrical steam reformer. Place outside of.

水素を混合した原燃料の供給部S1、水添触媒層X、第1吸着剤層Y、原燃料の排出部S3、第1吸着剤層Yを経た原燃料の供給部S4、第2吸着剤層Z、当該第2吸着剤層Zを経た脱硫済み原燃料の排出部S5等の構成については前述本発明(3)〜(4)、図6〜8の構成と同様である。   Raw fuel supply unit S1 mixed with hydrogen, hydrogenation catalyst layer X, first adsorbent layer Y, raw fuel discharge unit S3, raw fuel supply unit S4 after passing through the first adsorbent layer Y, second adsorbent The configurations of the layer Z, the desulfurized raw fuel discharge section S5 and the like that have passed through the second adsorbent layer Z are the same as the configurations of the present inventions (3) to (4) and FIGS.

本発明(5)〜(8)の水添脱硫器一体型円筒式水蒸気改質器で生成した改質ガスはSOFCの燃料として使用することができる。また、その改質ガスをCO変成触媒及びCO除去触媒に通して精製した水素はPEFCの燃料として使用することができる。   The reformed gas produced by the hydrodesulfurizer integrated cylindrical steam reformer of the present invention (5) to (8) can be used as fuel for SOFC. Further, hydrogen purified by passing the reformed gas through a CO shift catalyst and a CO removal catalyst can be used as a fuel for PEFC.

輻射筒を備えない円筒式水蒸気改質器の一例及び本発明(1)の態様を説明する図The figure explaining an example of the cylindrical steam reformer which is not provided with a radiation cylinder, and the aspect of this invention (1) 輻射筒を備える円筒式水蒸気改質器の一例及び本発明(2)の態様を説明する図The figure explaining an example of a cylindrical steam reformer provided with a radiation pipe, and the mode of the present invention (2) 図1〜2のうち水添脱硫器、断熱材層の部分を取出して示した図The figure which extracted and showed the part of the hydrodesulfurizer and the heat insulating material layer among FIGS. 図1〜2のうち水添脱硫器、断熱材層の部分を取出した部分の斜視図The perspective view of the part which took out the part of the hydrodesulfurizer and the heat insulating material layer among FIGS. 水添脱硫器一体型円筒式水蒸気改質器において、第3筒体の外周のうち改質触媒層が位置する外周に“断熱材層を介在させて”水添脱硫器を配置した場合における定常運転時における温度実測値を示した図In a hydrodesulfurizer-integrated cylindrical steam reformer, steady operation when a hydrodesulfurizer is disposed “with a heat insulating material layer” on the outer periphery of the third cylindrical body where the reforming catalyst layer is located. A figure showing the measured temperature during operation 本発明(3)〜(4)の態様を説明する図The figure explaining the aspect of this invention (3)-(4) 本発明(3)〜(4)の態様を説明する図The figure explaining the aspect of this invention (3)-(4) 本発明(3)〜(4)の態様を説明する図The figure explaining the aspect of this invention (3)-(4) 本発明(5)の態様を説明する図The figure explaining the aspect of this invention (5) 本発明(6)の態様を説明する図The figure explaining the aspect of this invention (6) 本発明(7)の態様を説明する図The figure explaining the aspect of this invention (7) 本発明(8)の態様を説明する図The figure explaining the aspect of this invention (8) 原燃料の処理からPEFC、SOFCに至るまでの態様例を説明する図The figure explaining the example of the form from processing of raw fuel to PEFC and SOFC 水添脱硫方式を実施する水添脱硫器の概略を説明する図Diagram explaining the outline of a hydrodesulfurizer that implements the hydrodesulfurization method

符号の説明Explanation of symbols

1 第1円筒体
2 第2円筒体
3 第3円筒体
4 第4円筒体
5 輻射筒
6 バーナ
7 上蓋兼バーナ取付台
8 底板
9 燃焼排ガスの排気通路
10 隔壁(後述予熱層14の上蓋)
11 燃焼排ガスの排出口
12 原燃料供給管
22 CO変成触媒層
26 水供給管
36 CO除去触媒層
30 空気供給管
40 改質ガス取出管(導出管)
51、54 仕切板
52、55 一個の改質ガス流通孔
61 隔壁
100 水添脱硫器
101 断熱材層
102 断熱材層101に接する水添脱硫器の内筒
103 下端部の板体
104 円筒状隔壁
105 水添触媒層Xを囲む外筒
106 第1吸着剤層Y、第2吸着剤層Z、脱硫済み原燃料の排出用ヘッダS2を囲む外筒
107 板体
108、109、111、122、123 多孔板
112 原燃料導入管
113 水素供給管
114 脱硫済み原燃料導出管
120 円筒式水蒸気改質器に水添触媒層Xと第1吸着剤層Yを組み込んだ部分
121 円筒式水蒸気改質器の外部に配置する第2吸着剤層Zの収容容器
DESCRIPTION OF SYMBOLS 1 1st cylindrical body 2 2nd cylindrical body 3 3rd cylindrical body 4 4th cylindrical body 5 Radiation tube 6 Burner 7 Upper cover and burner mounting base 8 Bottom plate 9 Exhaust passage of combustion exhaust gas 10 Bulkhead (upper cover of preheating layer 14 described later)
11 Combustion exhaust gas discharge port 12 Raw fuel supply pipe 22 CO conversion catalyst layer 26 Water supply pipe 36 CO removal catalyst layer 30 Air supply pipe 40 Reformed gas take-out pipe (outlet pipe)
51, 54 Partition plate 52, 55 One reformed gas flow hole 61 Partition 100 Hydrodesulfurizer 101 Heat insulating material layer 102 Inner cylinder of hydrodesulfurizer in contact with heat insulating material layer 103 Plate body at lower end portion 104 Cylindrical partition wall 105 outer cylinder surrounding the hydrogenation catalyst layer X 106 first adsorbent layer Y, second adsorbent layer Z, outer cylinder surrounding the desulfurized raw fuel discharge header S2 107 plate 108, 109, 111, 122, 123 Perforated plate 112 Raw fuel introduction pipe 113 Hydrogen supply pipe 114 Desulfurized raw fuel outlet pipe 120 Portion in which hydrogenation catalyst layer X and first adsorbent layer Y are incorporated in a cylindrical steam reformer 121 of the cylindrical steam reformer Container for second adsorbent layer Z arranged outside

Claims (1)

固体高分子形燃料電池の燃料水素製造用の水添脱硫器一体型円筒式水蒸気改質器であって、
前記円筒式水蒸気改質器が、
(a)同心状に間隔を置いて配置した順次径の大きい第1筒体、第2筒体及び第3筒体からなる複数の円筒体と、第1筒体の径方向中心部分に配置されたバーナと、前記第1筒体と前記第2筒体により半径方向に区画された間隙に改質触媒を充填した改質触媒層を備えるとともに、
(b)前記改質触媒層の上方位置の第2筒体及び第3筒体間の間隙に順次CO変成触媒層及びCO除去触媒層を備え、且つ、
(c)前記CO変成触媒層を、前記改質触媒層と軸方向の一端で流路方向を反転させた間隙内に形成してなる円筒式水蒸気改質器であり、
(d)当該円筒式水蒸気改質器における、前記第3筒体の外周のうち前記改質触媒層が位置する外周に断熱材層を配置し、当該断熱材層の外周に水添触媒層、第1吸着剤層及び第2吸着剤層からなる水添脱硫器を配置してなる円筒式水蒸気改質器であって、
(e)空気供給管(30)の空気供給口が、CO変成触媒層(22)と第1の仕切板(51)との間で、前記第1の仕切板(51)が有する1個の改質ガス流通孔(52)と周方向に相対する側に配置されてなり、空気供給口から放出される空気は、CO変成触媒層(22)の上部の仕切板(23)を流出するCO変成済み改質ガスと混合しながら、第1の仕切板(51)が有する前記1個の改質ガス流通孔(52)を介して、第1の仕切板(51)と第2の仕切板(54)との間に流入し、第1の仕切板(51)と第2の仕切板(54)との間の隙間で混合しながら、第1の仕切板(51)が有する改質ガス流通孔(52)側から当該改質ガス流通孔(52)と対する側の、第2の仕切板(54)が有する1個の改質ガス流通孔(55)へ向けて流れ、当該1個の改質ガス流通孔(55)を介して、第2の仕切板(54)とCO除去触媒層(36)との間の隙間に流入するようにしてなる、ことを特徴とする固体高分子形燃料電池に燃料水素を供給するための水添脱硫器一体型円筒式水蒸気改質器。
A hydrodesulfurizer integrated cylindrical steam reformer for fuel hydrogen production of a polymer electrolyte fuel cell,
The cylindrical steam reformer is
(A) A plurality of cylindrical bodies composed of a first cylindrical body, a second cylindrical body, and a third cylindrical body, which are arranged concentrically and spaced apart from each other in sequence, and a radial central portion of the first cylindrical body. And a reforming catalyst layer in which a reforming catalyst is filled in a gap defined in the radial direction by the first cylinder and the second cylinder,
(B) a CO conversion catalyst layer and a CO removal catalyst layer are sequentially provided in the gap between the second cylinder and the third cylinder above the reforming catalyst layer; and
(C) a cylindrical steam reformer formed by forming the CO shift catalyst layer in a gap in which the flow direction is reversed at one end in the axial direction with the reforming catalyst layer;
(D) In the cylindrical steam reformer, a heat insulating material layer is disposed on an outer periphery of the third cylindrical body where the reforming catalyst layer is located, and a hydrogenation catalyst layer is disposed on the outer periphery of the heat insulating material layer. A cylindrical steam reformer comprising a hydrodesulfurizer comprising a first adsorbent layer and a second adsorbent layer,
(E) an air supply port of the air supply pipe (30) is, CO shift catalyst layer (22) and the first partition plate between the (51), that the first partition plate (51) Yusuke 1 Arranged on the side facing each of the reformed gas circulation holes (52) in the circumferential direction, the air discharged from the air supply port flows out of the partition plate (23) on the upper side of the CO shift catalyst layer (22). The first partition plate (51) and the second partition plate (51) and the second partition plate (51) through the one reformed gas flow hole (52) while being mixed with the CO-modified reformed gas. The first partition plate (51) has a modification while flowing into the partition plate (54) and mixing in the gap between the first partition plate (51) and the second partition plate (54). from quality gas distributing holes (52) side of the side against with the reformed gas flow holes (52), to one of the reformed gas flow holes having a second partition plate (54) (55) Only flows through the one of the reformed gas flow holes (55), made so as to flow into the gap between the second partition plate (54) CO removal catalyst layer (36), it A hydrodesulfurizer-integrated cylindrical steam reformer for supplying fuel hydrogen to a polymer electrolyte fuel cell.
JP2008224187A 2008-09-01 2008-09-01 Cylindrical steam reformer with integrated hydrodesulfurizer Active JP5191840B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008224187A JP5191840B2 (en) 2008-09-01 2008-09-01 Cylindrical steam reformer with integrated hydrodesulfurizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008224187A JP5191840B2 (en) 2008-09-01 2008-09-01 Cylindrical steam reformer with integrated hydrodesulfurizer

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012139692A Division JP2012176897A (en) 2012-06-21 2012-06-21 Hydrogenation desulfurizer-integrated cylindrical steam reformer

Publications (2)

Publication Number Publication Date
JP2010058995A JP2010058995A (en) 2010-03-18
JP5191840B2 true JP5191840B2 (en) 2013-05-08

Family

ID=42186264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008224187A Active JP5191840B2 (en) 2008-09-01 2008-09-01 Cylindrical steam reformer with integrated hydrodesulfurizer

Country Status (1)

Country Link
JP (1) JP5191840B2 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5534899B2 (en) * 2010-03-30 2014-07-02 Jx日鉱日石エネルギー株式会社 Hydrogen production apparatus and fuel cell system
JP2012246179A (en) * 2011-05-27 2012-12-13 Panasonic Corp Hydrogen generation apparatus and fuel cell system
EP2716598B1 (en) 2011-05-27 2019-01-16 Panasonic Intellectual Property Management Co., Ltd. Hydrogen generator and fuel cell system
JP5927572B2 (en) * 2011-10-24 2016-06-01 パナソニックIpマネジメント株式会社 Hydrodesulfurization device, hydrogen generator, and fuel cell system
JP5531168B2 (en) * 2012-04-05 2014-06-25 パナソニック株式会社 Hydrogen generator
WO2013153732A1 (en) * 2012-04-10 2013-10-17 パナソニック株式会社 Method for operating hydrogen generation device and method for operating fuel cell system
US9144781B2 (en) 2012-06-25 2015-09-29 Panasonic International Property Management Co., Ltd. Fuel processing device
EP2835345B1 (en) * 2012-06-25 2018-08-08 Panasonic Intellectual Property Management Co., Ltd. Fuel treatment device
WO2014064859A1 (en) * 2012-10-25 2014-05-01 パナソニック株式会社 Fuel cell system and method for manufacturing same
JP5993721B2 (en) * 2012-11-16 2016-09-14 東芝燃料電池システム株式会社 Hydrogen production apparatus and fuel cell system
US20150303502A1 (en) * 2012-12-17 2015-10-22 Panasonic Intellectual Property Management Management Co., Ltd. Hydrogen generator
JP5879552B2 (en) 2013-03-19 2016-03-08 パナソニックIpマネジメント株式会社 Hydrogen generator, fuel cell system including the same, method of operating hydrogen generator, and method of operating fuel cell system
JP6197561B2 (en) * 2013-10-11 2017-09-20 東京瓦斯株式会社 Hydrogen generator
JP6205581B2 (en) * 2014-02-17 2017-10-04 パナソニックIpマネジメント株式会社 Hydrogen generator and fuel cell system using the same
JP6506932B2 (en) * 2014-09-17 2019-04-24 フタバ産業株式会社 Fuel cell reforming unit and fuel cell module
JP2016115537A (en) * 2014-12-15 2016-06-23 東京瓦斯株式会社 Fuel cell module
JP6528934B2 (en) * 2015-01-28 2019-06-12 Toto株式会社 Solid oxide fuel cell device
JP2017088490A (en) * 2015-11-09 2017-05-25 東京瓦斯株式会社 Hydrogen production apparatus

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0333191A (en) * 1989-03-17 1991-02-13 Fuji Electric Co Ltd Desulfurizer
JP2812486B2 (en) * 1989-05-15 1998-10-22 大阪瓦斯株式会社 Hydrocarbon steam reforming method
JP2001325981A (en) * 2000-05-15 2001-11-22 Takuma Co Ltd Processed gas reforming mechanism, solid polymer fuel cell system, and processed gas reforming method
DE60222123T2 (en) * 2001-06-04 2007-12-20 Tokyo Gas Co. Ltd. CYLINDRICAL WATER VAPOR REFORMING UNIT
JP4356330B2 (en) * 2003-02-17 2009-11-04 三菱電機株式会社 Fuel cell reformer
JP4536391B2 (en) * 2004-02-09 2010-09-01 日本電信電話株式会社 Fuel cell power generation system and fuel cell module
JP4480486B2 (en) * 2004-06-30 2010-06-16 三洋電機株式会社 Fuel cell reformer
JP4550617B2 (en) * 2005-02-24 2010-09-22 東京瓦斯株式会社 Hydrocarbon fuel steam reformer
JP4979935B2 (en) * 2005-06-10 2012-07-18 富士電機株式会社 Fuel reformer

Also Published As

Publication number Publication date
JP2010058995A (en) 2010-03-18

Similar Documents

Publication Publication Date Title
JP5191840B2 (en) Cylindrical steam reformer with integrated hydrodesulfurizer
JP4520100B2 (en) Hydrogen production apparatus and fuel cell system
JP2009249203A (en) System for desulfurizing raw fuel for producing fuel hydrogen for fuel cell
JP2009078954A (en) Reforming apparatus
JP4799995B2 (en) Steam reformer
JP5301419B2 (en) Multi-cylinder steam reformer for fuel cells
JP5160389B2 (en) Multi-cylinder steam reformer for fuel cells
JP5272183B2 (en) Fuel cell reformer
JP5600460B2 (en) Hydrogen production apparatus and fuel cell system
JP4464230B2 (en) Reforming apparatus and method, and fuel cell system
JP5161621B2 (en) Fuel cell reformer
JP2006248864A (en) Hydrogen production apparatus and fuel cell system
JP5329944B2 (en) Steam reformer for fuel cell
JP4764651B2 (en) Hydrogen production apparatus and fuel cell system
JP5307043B2 (en) CO reformer separate steam reformer
JP2012176897A (en) Hydrogenation desulfurizer-integrated cylindrical steam reformer
JP4932165B2 (en) Steam reforming system
US7332003B1 (en) Hydrocarbon fuel processing for hydrogen generation
JP5274986B2 (en) Multi-cylinder steam reformer for fuel cells
JP5938580B2 (en) Hydrogen generator
JP5534899B2 (en) Hydrogen production apparatus and fuel cell system
JP2005089255A (en) Hydrogen generator and its method
JP6197561B2 (en) Hydrogen generator
JP5538025B2 (en) Hydrogen production apparatus and fuel cell system
JP5433892B2 (en) Startup method for stationary hydrogen generator reformer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130130

R150 Certificate of patent or registration of utility model

Ref document number: 5191840

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160208

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250