JP6197561B2 - Hydrogen generator - Google Patents

Hydrogen generator Download PDF

Info

Publication number
JP6197561B2
JP6197561B2 JP2013213847A JP2013213847A JP6197561B2 JP 6197561 B2 JP6197561 B2 JP 6197561B2 JP 2013213847 A JP2013213847 A JP 2013213847A JP 2013213847 A JP2013213847 A JP 2013213847A JP 6197561 B2 JP6197561 B2 JP 6197561B2
Authority
JP
Japan
Prior art keywords
packed bed
adsorbent
cylinders
catalyst
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013213847A
Other languages
Japanese (ja)
Other versions
JP2015074601A (en
Inventor
祐大 金子
祐大 金子
信 稲垣
信 稲垣
雅史 大橋
雅史 大橋
本道 正樹
正樹 本道
香那子 宮▲崎▼
香那子 宮▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2013213847A priority Critical patent/JP6197561B2/en
Publication of JP2015074601A publication Critical patent/JP2015074601A/en
Application granted granted Critical
Publication of JP6197561B2 publication Critical patent/JP6197561B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、炭化水素ガスと水蒸気とを反応させて水素含有ガスを生成させる水素生成装置に係り、特に水添脱硫器を備えた水素生成装置に関する。   The present invention relates to a hydrogen generator that reacts a hydrocarbon gas with water vapor to generate a hydrogen-containing gas, and more particularly to a hydrogen generator that includes a hydrodesulfurizer.

一般に、燃料電池発電システムにおいては、まず、改質部によって原料ガス(炭化水素ガス)と水蒸気を原料として水蒸気改質反応により水素、二酸化炭素、一酸化炭素、未反応の原料ガス及び水蒸気等を含む改質ガスを生成させる。つぎに、変成部や選択酸化部などの一酸化炭素低減部によって一酸化炭素を除去して水素含有ガスを生成させ、得られた水素含有ガスを用いて燃料電池で発電を行う。原料ガスがメタンの場合、改質反応は、典型的には次の(1)及び(2)式として表わされる。
CH+HO → CO+3H ・・・(1)
CO+HO → CO+H ・・・(2)
In general, in a fuel cell power generation system, first, hydrogen, carbon dioxide, carbon monoxide, unreacted source gas, water vapor, and the like are generated by a steam reforming reaction using raw material gas (hydrocarbon gas) and steam as raw materials by a reforming unit. A reformed gas containing is generated. Next, carbon monoxide is removed by a carbon monoxide reduction unit such as a shift conversion unit or a selective oxidation unit to generate a hydrogen-containing gas, and electricity is generated in the fuel cell using the obtained hydrogen-containing gas. When the raw material gas is methane, the reforming reaction is typically expressed by the following equations (1) and (2).
CH 4 + H 2 O → CO + 3H 2 (1)
CO + H 2 O → CO 2 + H 2 (2)

水蒸気改質反応に必要な水蒸気は、改質部の上流に設けた蒸発部で、水を蒸発させることにより得られる。蒸発に要する熱としては、通常、燃料電池から排出されるアノードオフガスを燃焼部で燃焼して得られる熱や、改質ガスが有する熱が用いられる。   The water vapor necessary for the steam reforming reaction is obtained by evaporating water in an evaporation section provided upstream of the reforming section. As the heat required for evaporation, heat obtained by burning the anode off-gas discharged from the fuel cell in the combustion section or heat of the reformed gas is usually used.

原料ガスである都市ガス、LPガス、及び天然ガスなどには付臭剤として有機硫黄化合物が添加されている。改質触媒は、硫黄化合物により被毒し性能劣化をきたすので、原料ガス中の硫黄化合物を許容濃度以下まで除去するために、改質触媒に原料ガスを通流させる前処理として脱硫工程を設ける必要がある。   An organic sulfur compound is added as an odorant to a source gas such as city gas, LP gas, and natural gas. Since the reforming catalyst is poisoned by the sulfur compound and deteriorates its performance, a desulfurization step is provided as a pretreatment for passing the raw material gas through the reforming catalyst in order to remove the sulfur compound in the raw material gas to an allowable concentration or less. There is a need.

原料ガス中の硫黄化合物を除去する脱硫方法として、常温脱硫方式と水添脱硫方式がある。水添脱硫方式は、原料ガスに水素を混合し硫黄化合物を水素化した後、吸着剤で吸着除去するものである。水添脱硫方式による硫黄化合物の吸着容量は、常温脱硫方式による硫黄化合物の吸着容量に比べて多いので、水添脱硫方式は、水素生成装置の長期間運転による低コスト化において有利である。   There are a room temperature desulfurization method and a hydrodesulfurization method as desulfurization methods for removing sulfur compounds in the raw material gas. In the hydrodesulfurization method, hydrogen is mixed with a raw material gas to hydrogenate a sulfur compound, and then adsorbed and removed with an adsorbent. Since the adsorption capacity of the sulfur compound by the hydrodesulfurization method is larger than the adsorption capacity of the sulfur compound by the room temperature desulfurization method, the hydrodesulfurization method is advantageous in reducing the cost by long-term operation of the hydrogen generator.

水添脱硫器では、水素化触媒により硫黄化合物が水素と反応して分解され、吸着剤によって吸着除去される。水素化触媒としてはCuZn系、Ni系、CoMo(コバルト・モリブデン)系などが用いられ、吸着剤としてはZnO(酸化亜鉛)系、その他金属酸化物(例えば、酸化鉄、酸化マンガン)などが用いられる。触媒に適切な反応を生じさせるために、触媒種にもよるが、触媒を200℃〜400℃程度の高温状態に保つ必要がある。   In a hydrodesulfurizer, a sulfur compound reacts with hydrogen by a hydrogenation catalyst and decomposes, and is adsorbed and removed by an adsorbent. CuZn-based, Ni-based, CoMo (cobalt / molybdenum) -based materials are used as hydrogenation catalysts, and ZnO (zinc oxide) -based materials and other metal oxides (for example, iron oxide and manganese oxide) are used as adsorbents. It is done. In order to cause an appropriate reaction in the catalyst, it is necessary to keep the catalyst at a high temperature of about 200 ° C. to 400 ° C., depending on the type of catalyst.

水添脱硫器への熱供給の高効率化および水添脱硫器のコンパクト化を図るため、改質器の周囲に同心円状に水添脱硫器を設置した水素生成装置や、変成器の周囲に同心円状に水添脱硫器を設置した水素生成装置が提案されている。   In order to increase the efficiency of heat supply to the hydrodesulfurizer and to make the hydrodesulfurizer more compact, a hydrodesulfurizer installed concentrically around the reformer and around the transformer A hydrogen generation apparatus in which hydrodesulfurizers are installed concentrically has been proposed.

特許文献1の水素生成装置では、水添脱硫器が、変成器またはCO除去器と伝熱するよう設置されている。水添脱硫剤は、水素化剤と吸着剤で構成されるもの、あるいは、水素化かつ吸着の両方の機能をもつ剤で構成され、吸着の機能をもつ剤はCuを含む。この特許文献1の水素生成装置では、燃料処理装置の最も外側に配される変成器またはCO除去器の周囲に全ての水添脱硫剤を設置すると、燃料処理装置の幅が大きくなり、広い設置スペースを必要としてしまう。   In the hydrogen generator of Patent Document 1, a hydrodesulfurizer is installed so as to transfer heat with a shift converter or a CO remover. The hydrodesulfurization agent is composed of a hydrogenating agent and an adsorbent, or an agent having both hydrogenation and adsorption functions, and the agent having the adsorption function contains Cu. In the hydrogen generator of Patent Document 1, when all the hydrodesulfurization agents are installed around the transformer or the CO remover disposed on the outermost side of the fuel processor, the width of the fuel processor increases, and the installation is wide. It needs space.

特許文献2の水素生成装置では、水添脱硫器が、改質器と伝熱するよう断熱材を介して設置されている。また、改質器と伝熱し、かつCO浄化部(変成器、CO除去器を示す)と伝熱するよう設置されている。また、原料ガスの予熱がCO浄化部の外周面でおこなわれる。この特許文献2では、CO浄化部に原料ガスの予熱配管を設置すると、構造が複雑になる。また、水添脱硫器への伝熱を断熱材を介して改質器から行う場合、水添脱硫剤の温度が燃料処理装置の負荷変動による影響を受けやすくなり、水添脱硫剤を適正な温度に保つことが難しくなる。   In the hydrogen generator of Patent Document 2, a hydrodesulfurizer is installed via a heat insulating material so as to transfer heat to the reformer. Further, it is installed so as to transfer heat to the reformer and to transfer heat to the CO purification unit (showing a transformer and a CO remover). Further, the preheating of the source gas is performed on the outer peripheral surface of the CO purification unit. In Patent Document 2, if a preheating pipe for raw material gas is installed in the CO purification section, the structure becomes complicated. In addition, when heat transfer to the hydrodesulfurizer is performed from the reformer via a heat insulating material, the temperature of the hydrodesulfurization agent is easily affected by load fluctuations of the fuel processing device, and the hydrodesulfurization agent is It becomes difficult to keep the temperature.

特許文献3の水素含有ガス生成装置では、水添脱硫器が、改質器と変成器の間に設置され、改質器と伝熱する。改質器は温度が高いため、特許文献3では、水添脱硫剤にとって適正な温度を得ることが難しい。従って、使用する水添脱硫剤が限定される、また、使用する脱硫剤の量を適正化することが難しいなどの難点がある。   In the hydrogen-containing gas generator of Patent Document 3, a hydrodesulfurizer is installed between the reformer and the transformer, and transfers heat with the reformer. Since the reformer has a high temperature, in Patent Document 3, it is difficult to obtain an appropriate temperature for the hydrodesulfurization agent. Therefore, there are difficulties such as limitations on the hydrodesulfurization agent used and difficulty in optimizing the amount of desulfurization agent used.

特許文献4の燃料改質装置では、水添脱硫器が変成器と伝熱するよう設置されている。また、上部から未気化の改質用水と原料が投入される。この特許文献4では、燃料改質装置の最も外側に配される変成器の周囲に全ての水添脱硫剤を設置すると、燃料改質装置の幅が大きくなり、広い設置スペースを必要としてしまう。   In the fuel reformer of Patent Document 4, a hydrodesulfurizer is installed so as to transfer heat to the transformer. Also, unvaporized reforming water and raw materials are introduced from the top. In Patent Document 4, when all the hydrodesulfurization agents are installed around the transformer disposed on the outermost side of the fuel reformer, the width of the fuel reformer becomes large and a large installation space is required.

特許文献5,6の水添脱硫器一体型円筒式水蒸気改質器では、水添脱硫器が、改質器と伝熱するよう、断熱材を介して設置されている。また、水添脱硫剤が水添触媒層、第1吸着剤層及び第2吸着剤層の3種で構成されている。この特許文献5,6では、燃料処理装置の触媒層表面からの伝熱を、断熱材を介しておこなう場合、水添脱硫剤の温度を一定に保つことが難しく、特に負荷変動で流量が変わったり、本体の温度が変わる等の際に、水添脱硫剤を適正な温度に保つことが難しくなる。   In the hydrodesulfurizer-integrated cylindrical steam reformer of Patent Documents 5 and 6, the hydrodesulfurizer is installed via a heat insulating material so as to transfer heat to the reformer. Further, the hydrodesulfurization agent is composed of three types of hydrogenation catalyst layer, first adsorbent layer, and second adsorbent layer. In Patent Documents 5 and 6, when heat transfer from the catalyst layer surface of the fuel processor is performed via a heat insulating material, it is difficult to keep the temperature of the hydrodesulfurization agent constant. When the temperature of the main body changes, it becomes difficult to keep the hydrodesulfurizing agent at an appropriate temperature.

特開2012−240893号公報JP 2012-240893 A 特開2013−23421号公報JP 2013-23421 A 特開2003−160306号公報JP 2003-160306 A 特開2007−15911号公報JP 2007-15911 A 特開2012−176897号公報JP 2012-176897 A 特開2010−58995号公報JP 2010-58995 A

改質器周囲に水添脱硫器を設置する場合、水添脱硫器が高温に曝されやすくなる。例えば、改質器は、通常、400℃〜700℃の温度範囲で使用されるため、水添脱硫器が高温になり、水添脱硫触媒の熱劣化により、水素化反応、吸着反応の性能が低下する。   When a hydrodesulfurizer is installed around the reformer, the hydrodesulfurizer is easily exposed to high temperatures. For example, since the reformer is usually used in a temperature range of 400 ° C. to 700 ° C., the hydrodesulfurizer becomes hot, and the hydrodesulfurization catalyst is thermally deteriorated so that the performance of the hydrogenation reaction and the adsorption reaction is improved. descend.

また、変成器周囲に水添脱硫器を設置した場合、改質器周囲に設置する場合に比べ、水添脱硫器の温度は低温化するが、吸着剤の種類によっては、硫化水素の吸着容量が小さいものとなる。   In addition, when a hydrodesulfurizer is installed around the transformer, the hydrodesulfurizer temperature is lower than when installed around the reformer, but depending on the type of adsorbent, the adsorption capacity of hydrogen sulfide. Is small.

本発明は、このような事情に鑑みてなされたものであり、従来の水素生成装置に比べて、水添脱硫器による硫化水素の吸着容量が向上し、小型化が可能な水素生成装置を提供することを目的とする。   The present invention has been made in view of such circumstances, and provides a hydrogen generator that can be reduced in size by improving the adsorption capacity of hydrogen sulfide by a hydrodesulfurizer compared to a conventional hydrogen generator. The purpose is to do.

本発明の水素生成装置は、筒軸心方向を上下方向とした筒状の燃焼室内にバーナーが設置され、該燃焼室の外周囲に、下段側から改質触媒の充填層、変成触媒の充填層及び選択酸化触媒の充填層が設置されており、さらに外周囲に水素化触媒の充填層と、第1の吸着剤充填層と、第2の吸着剤充填層とが設けられており、水素添加原料ガスが該水素化触媒の充填層に供給され、順次に第1の吸着剤充填層、第2の吸着剤充填層、改質触媒の充填層、変成触媒の充填層及び選択酸化触媒の充填層を通過する水素生成装置において、該第1の吸着剤充填層の少なくとも一部が該改質触媒充填層から該変成触媒層に通じるガス流路(17a)に隣接して配置され、該第2の吸着剤充填層が該変成触媒充填層の外周囲に配置されていることを特徴とするものである。   In the hydrogen generator of the present invention, a burner is installed in a cylindrical combustion chamber whose vertical direction is the cylinder axis direction, and a reforming catalyst packed bed and a shift catalyst packing are formed on the outer periphery of the combustion chamber from the lower stage side. A hydrogenation catalyst packed bed, a first adsorbent packed bed, and a second adsorbent packed bed are provided around the outer periphery, and a hydrogen absorbing catalyst packed bed is provided. The additive raw material gas is supplied to the hydrogenation catalyst packed bed, and sequentially, the first adsorbent packed bed, the second adsorbent packed bed, the reforming catalyst packed bed, the shift catalyst packed bed, and the selective oxidation catalyst In the hydrogen generator that passes through the packed bed, at least a part of the first adsorbent packed bed is disposed adjacent to the gas flow path (17a) leading from the reformed catalyst packed bed to the shift catalyst bed, A second adsorbent packed bed is disposed on the outer periphery of the shift catalyst packed bed. It is intended.

前記第1の吸着剤充填層や、第1の吸着剤充填層を出た原料ガスからの伝熱によって水素添加原料ガスを予熱するための予熱手段が設けられていることが好ましい。   It is preferable that preheating means for preheating the hydrogenated raw material gas by heat transfer from the first adsorbent packed layer or the raw material gas exiting the first adsorbent packed layer is provided.

前記改質触媒充填層と変成触媒充填層とが上下に離隔しており、この改質触媒充填層から変成触媒充填層に通じるガス流路(17a)に隣接して前記水素化触媒層が配置されていることが好ましい。   The reforming catalyst packed bed and the shift catalyst packed bed are separated from each other in the vertical direction, and the hydrogenation catalyst layer is disposed adjacent to the gas flow path (17a) leading from the reformed catalyst packed bed to the shift catalyst packed bed. It is preferable that

本発明では、前記第1の吸着剤の充填層の外周囲に前記水素化触媒充填層が設けられていることが好ましい。   In the present invention, it is preferable that the hydrogenation catalyst packed bed is provided on the outer periphery of the packed bed of the first adsorbent.

本発明の一態様では、該水素生成装置の下部に前記第1の吸着剤の充填層が設けられており、該装置下部において同心状に5重に金属製筒体が設置され、内側から1番目の筒体内が前記燃焼室となっており、1番目と2番目の筒体の間が、該燃焼室からの燃焼ガスの上昇流路となっており、2番目と3番目の筒体の間に前記改質触媒充填層と、原料ガスと水蒸気の混合ガス流路が設けられ、3番目と4番目の筒体間が該改質触媒充填層を通過したガスの上昇流路となっており、4番目と5番目の筒体の間のうち上位側に水素化触媒の充填層が設けられ、下位側に第1の吸着剤充填層が設けられている。   In one aspect of the present invention, a packed bed of the first adsorbent is provided in the lower part of the hydrogen generator, and metal cylinders are installed in a concentric five-fold manner in the lower part of the apparatus. The second cylinder is the combustion chamber, and the passage between the first and second cylinders is an upward flow path for the combustion gas from the combustion chamber, and the second and third cylinders Between the reforming catalyst packed bed and the mixed gas flow path of the raw material gas and water vapor, the third and fourth cylinders serve as the rising flow path of the gas passing through the reforming catalyst packed bed. In addition, a hydrogenation catalyst packed bed is provided on the upper side between the fourth and fifth cylinders, and a first adsorbent packed bed is provided on the lower side.

本発明の別の一態様では、該水素生成装置の下部に前記第1の吸着剤の充填層が設けられており、該装置下部において同心状に6重に金属製筒体が設置され、内側から1番目の筒体内が前記燃焼室となっており、1番目と2番目の筒体の間が、該燃焼室からの燃焼ガスの上昇流路となっており、2番目と3番目の筒体の間に前記改質触媒充填層と、原料ガスと水蒸気の混合ガス流路が設けられ、3番目と4番目の筒体間が該改質触媒充填層を通過したガスの上昇流路となっており、4番目と5番目の筒体の間に第1の吸着剤充填層が設けられ、5番目と6番目の筒体の間に水素化触媒充填層が設けられている。   In another aspect of the present invention, a packed bed of the first adsorbent is provided in the lower part of the hydrogen generator, and six metal cylinders are installed concentrically in the lower part of the apparatus. The first cylinder from the combustion chamber is the combustion chamber, and between the first and second cylinders is a combustion gas rising passage from the combustion chamber. The second and third cylinders The reforming catalyst packed bed and the mixed gas flow path of the raw material gas and water vapor are provided between the bodies, and the gas rising path passing through the reforming catalyst packed bed is provided between the third and fourth cylinders. The first adsorbent packed bed is provided between the fourth and fifth cylinders, and the hydrogenation catalyst packed bed is provided between the fifth and sixth cylinders.

本発明では、該水素生成装置の上下方向の途中部に前記第2の吸着剤の充填層が設けられており、該装置途中部において同心状に6重に金属製筒体が設置され、内側から1番目の筒体内が前記燃焼室となっており、1番目と2番目の筒体の間が、該燃焼室からの燃焼ガスの上昇流路となっており、2番目と3番目の筒体の間が蒸発部となっており、3番目と4番目の筒体の間が水蒸気と原料ガスとの混合室及び原料ガス流路となっており、4番目と5番目の筒体の間に前記変成触媒の充填層が設けられており、5番目と6番目の筒体の間に第2の吸着剤充填層が設けられていることが好ましい。   In the present invention, a packed bed of the second adsorbent is provided in the middle part of the hydrogen generating apparatus in the vertical direction, and a metal cylinder is installed in a six-fold concentric manner in the middle part of the apparatus. The first cylinder from the combustion chamber is the combustion chamber, and between the first and second cylinders is a combustion gas rising passage from the combustion chamber. The second and third cylinders Between the bodies is an evaporation section, and between the third and fourth cylinders is a mixing chamber of water vapor and source gas and a source gas flow path, between the fourth and fifth cylinders It is preferable that a packed bed of the shift catalyst is provided, and a second adsorbent packed bed is provided between the fifth and sixth cylinders.

本発明では、前記予熱手段は、前記第1の吸着剤充填層や、第1の吸着剤充填層を出た原料ガスからの伝熱によって前記水素添加原料ガスを加熱するように設けられていることが好ましい。   In the present invention, the preheating means is provided so as to heat the hydrogenated raw material gas by heat transfer from the first adsorbent packed bed or the raw material gas exiting the first adsorbent packed bed. It is preferable.

前記水素化触媒は最適温度が250〜400℃であり、第1の吸着剤は最適温度が350〜400℃であり、第2の吸着剤は最適温度が200〜300℃であることが好ましい。   It is preferable that the hydrogenation catalyst has an optimum temperature of 250 to 400 ° C, the first adsorbent has an optimum temperature of 350 to 400 ° C, and the second adsorbent has an optimum temperature of 200 to 300 ° C.

本発明の水素生成装置は、硫黄化合物含有原料ガス中の硫黄化合物を水素と反応させて硫黄化合物を分解し、この分解生成物を含む原料ガスを第1の吸着剤及び第2の吸着剤に順次に通して分解生成物を吸着除去し、その後、この原料ガスを改質反応させるようにしたものである。本発明の水素生成装置によれば、第1の吸着剤及び第2の吸着剤をそれぞれ適切な温度に維持することができ、水添脱硫器による硫化水素等の吸着容量が向上する。   In the hydrogen generator of the present invention, a sulfur compound in a sulfur compound-containing raw material gas is reacted with hydrogen to decompose the sulfur compound, and the raw material gas containing the decomposition product is used as the first adsorbent and the second adsorbent. The decomposition product is adsorbed and removed sequentially, and then this raw material gas is subjected to a reforming reaction. According to the hydrogen generator of the present invention, the first adsorbent and the second adsorbent can be maintained at appropriate temperatures, respectively, and the adsorption capacity of hydrogen sulfide and the like by the hydrodesulfurizer is improved.

本発明の水素生成装置は、前記特許文献1〜6のものに比べて次の長所を有する。   The hydrogen generator of the present invention has the following advantages over those of Patent Documents 1-6.

特許文献1,4では、変成器、CO除去器の周囲に全ての水添脱硫剤を設置するため、燃料処理装置の外径が大きくなり、燃料電池への燃料処理装置設置に際し、大きな設置スペースを必要とする。本発明では、水素化触媒と第1の吸着剤とを外径が小さい改質器上流部から変成器手前に設置する構成とすることにより、水素生成装置の外径を小さくし、コンパクト化することが可能である。   In Patent Documents 1 and 4, since all hydrodesulfurization agents are installed around the transformer and the CO remover, the outer diameter of the fuel processing device becomes large, and a large installation space is required when installing the fuel processing device in the fuel cell. Need. In the present invention, the hydrogen generating device and the first adsorbent are installed from the upstream portion of the reformer having a small outer diameter in front of the transformer, thereby reducing the outer diameter of the hydrogen generator and making it compact. It is possible.

特許文献2では、原料ガスの予熱をCO浄化器の外周でおこなっているが、CO浄化器の外周に水添脱硫剤を設置する場合、構造が複雑になる。また、水添脱硫器への伝熱を断熱材を介して改質器から行う場合、水添脱硫剤の温度が燃料処理装置の負荷変動による影響を受けやすくなり、水添脱硫剤を適正な温度に保つことが難しくなる。本発明では、予熱を第1の吸着剤の外周からの伝熱で行うことにより、構造の簡素化が可能である。   In Patent Document 2, the source gas is preheated on the outer periphery of the CO purifier. However, when a hydrodesulfurizing agent is installed on the outer periphery of the CO purifier, the structure becomes complicated. In addition, when heat transfer to the hydrodesulfurizer is performed from the reformer via a heat insulating material, the temperature of the hydrodesulfurization agent is easily affected by load fluctuations of the fuel processing device, and the hydrodesulfurization agent is It becomes difficult to keep the temperature. In the present invention, the structure can be simplified by performing preheating by heat transfer from the outer periphery of the first adsorbent.

特許文献3では、原料ガスの予熱を改質器の外周でおこなっているが、改質器は高温のため、水添脱硫剤の種類、設置可能場所が限定される可能性がある。本発明では、水素化触媒、第1の吸着剤、第2の吸着剤を別個に配置することにより、水素化触媒及び各吸着剤の適正温度範囲を広く取ることが出来る。また、原料ガス量に対する水蒸気量の割合が高い燃料処理装置仕様(高S/C仕様)の場合、水蒸気量が増加する事で反応が促進され、改質器の温度を低くする事が可能になるため、水素化触媒及び各吸着剤の適正温度範囲を広く取ることが出来る。これらの特徴により、水素化触媒及び各吸着剤の温度を最適化する事が可能となり、水添脱硫触媒搭載量の低減、水添脱硫器のコンパクト化、ひいては水素生成装置の低コスト化が可能となる。   In Patent Document 3, the raw material gas is preheated on the outer periphery of the reformer. However, since the reformer is at a high temperature, the type of hydrodesulfurization agent and the place where it can be installed may be limited. In the present invention, by arranging the hydrogenation catalyst, the first adsorbent, and the second adsorbent separately, the appropriate temperature range of the hydrogenation catalyst and each adsorbent can be widened. In addition, in the case of a fuel processor specification (high S / C specification) in which the ratio of the amount of water vapor to the amount of raw material gas is high, the reaction is promoted by increasing the amount of water vapor and the temperature of the reformer can be lowered. Therefore, the appropriate temperature range of the hydrogenation catalyst and each adsorbent can be widened. These features make it possible to optimize the temperature of the hydrogenation catalyst and each adsorbent, reducing the amount of hydrodesulfurization catalyst mounted, making the hydrodesulfurizer compact, and thus reducing the cost of the hydrogen generator. It becomes.

特許文献5では、断熱材を介して改質器より伝熱するため、水素化触媒と吸着剤の温度を一定に保つことが難しく、特に負荷変動で流量が変わる等の際に、水素化触媒と吸着剤を適正な温度に保つことが難しくなる。本発明では、断熱材を使用せずに水素化触媒と吸着剤に伝熱させるため、水素化触媒と吸着剤の温度を適正に保つことが可能となる。   In Patent Document 5, since the heat is transferred from the reformer via the heat insulating material, it is difficult to keep the temperature of the hydrogenation catalyst and the adsorbent constant, especially when the flow rate changes due to load fluctuations. It becomes difficult to keep the adsorbent at an appropriate temperature. In the present invention, since heat is transferred to the hydrogenation catalyst and the adsorbent without using a heat insulating material, the temperatures of the hydrogenation catalyst and the adsorbent can be maintained appropriately.

実施の形態に係る水素生成装置の縦断面図である。It is a longitudinal cross-sectional view of the hydrogen generator which concerns on embodiment. 別の実施の形態に係る水素生成装置の縦断面図である。It is a longitudinal cross-sectional view of the hydrogen generator which concerns on another embodiment.

以下、図面を参照して実施の形態について説明する。図1は第1の実施の形態に係る水素生成装置1の縦断面図である。   Hereinafter, embodiments will be described with reference to the drawings. FIG. 1 is a longitudinal sectional view of a hydrogen generator 1 according to the first embodiment.

この水素生成装置1は、バーナ2を備えた燃焼室3の外周囲に、改質触媒4、変成触媒5、選択酸化触媒6、蒸発部8および脱硫器9を配置したものであり、水素添加原料ガスを脱硫器9で脱硫処理した後、蒸発部8からの水蒸気を添加混合し、改質触媒4で改質反応させ、変成触媒5、選択酸化触媒6を経て水素含有ガス出口14bから水素含有ガスを取り出すようにしたものである。   In this hydrogen generator 1, a reforming catalyst 4, a shift catalyst 5, a selective oxidation catalyst 6, an evaporator 8 and a desulfurizer 9 are arranged around the outer periphery of a combustion chamber 3 equipped with a burner 2. After the raw material gas is desulfurized by the desulfurizer 9, the steam from the evaporation section 8 is added and mixed, reformed by the reforming catalyst 4, passed through the shift catalyst 5 and the selective oxidation catalyst 6, and hydrogen is supplied from the hydrogen-containing gas outlet 14 b. The contained gas is taken out.

燃焼室3は、円筒状の第1筒体11で囲まれており、その軸心部に上方からバーナ2が差し込まれている。第1筒体11と燃焼室底面との間の間隙から燃焼ガスが流出し、第1筒体11と、該第1筒体11を取り巻く第2筒体12との間の流路11aを上昇し、ガス排出口11bから流出する。   The combustion chamber 3 is surrounded by a cylindrical first cylinder 11, and a burner 2 is inserted into the axial center portion from above. Combustion gas flows out from the gap between the first cylinder 11 and the bottom surface of the combustion chamber, and the flow path 11a between the first cylinder 11 and the second cylinder 12 surrounding the first cylinder 11 rises. And flows out from the gas discharge port 11b.

第2筒体12と、該第2筒体12を取り巻く第3筒体13との間に螺旋棒12aが配置され、該筒体12,13間に螺旋状の通路よりなる蒸発部8が形成されている。この蒸発部8に給水口8aから水が導入され、螺旋状の蒸発部8を流れる間に加熱されて蒸発し、水蒸気となる。   A spiral rod 12 a is disposed between the second cylinder 12 and the third cylinder 13 surrounding the second cylinder 12, and an evaporation section 8 formed of a spiral passage is formed between the cylinders 12 and 13. Has been. Water is introduced into the evaporation section 8 from the water supply port 8a and is heated and evaporated while flowing through the spiral evaporation section 8 to become water vapor.

第1筒体11及び第2筒体12は、水素生成装置1のほぼ全高にわたって上下方向に延在しているが、第3筒体13は、第2筒体12の上部から第2筒体12の上下方向の中間よりも若干下位にまで延在している。   The first cylinder 11 and the second cylinder 12 extend in the vertical direction over almost the entire height of the hydrogen generator 1, but the third cylinder 13 extends from the upper part of the second cylinder 12 to the second cylinder. 12 extends slightly below the middle in the vertical direction.

第3筒体13の上部を取り巻くように第4筒体14が設けられ、この筒体13,14間が水素含有ガスの流路14aとなっている。該流路14aの上端は水素含有ガスの出口14bに連通している。   A fourth cylinder 14 is provided so as to surround the upper part of the third cylinder 13, and a hydrogen-containing gas flow path 14 a is formed between the cylinders 13 and 14. The upper end of the flow path 14a communicates with the hydrogen-containing gas outlet 14b.

第3筒体13の下方には、第2筒体12を取り巻く第5筒体15が設けられている。第3筒体13の下部と、該第5筒体15と、第2筒体12の下部とを取り巻くように第6筒体16が設けられており、第3筒体13の下部及び第5筒体15と第6筒体16の上部との間が第1混合室16aとなっている。第5筒体15と第6筒体16との間に螺旋棒16bが設置され、該第1混合室16aの下部が螺旋状に形成されている。   A fifth cylinder 15 surrounding the second cylinder 12 is provided below the third cylinder 13. A sixth cylinder 16 is provided so as to surround the lower part of the third cylinder 13, the fifth cylinder 15, and the lower part of the second cylinder 12, and the lower part of the third cylinder 13 and the fifth A space between the cylinder 15 and the upper portion of the sixth cylinder 16 is a first mixing chamber 16a. A spiral rod 16b is installed between the fifth cylinder 15 and the sixth cylinder 16, and the lower part of the first mixing chamber 16a is formed in a spiral shape.

第3筒体13の下端と第5筒体15の上端との間は離隔して間隙が形成されており、蒸発部8からの水蒸気がこの間隙を通って第1混合室16aに流入する。   A gap is formed between the lower end of the third cylinder 13 and the upper end of the fifth cylinder 15, and water vapor from the evaporator 8 flows into the first mixing chamber 16 a through this gap.

第2筒体12と第5筒体15との間が第2混合室15aとなっている。この第2混合室15aに螺旋棒15bが設置され、第2混合室15aが螺旋状に形成されている。   A space between the second cylinder 12 and the fifth cylinder 15 is a second mixing chamber 15a. A spiral rod 15b is installed in the second mixing chamber 15a, and the second mixing chamber 15a is formed in a spiral shape.

この第2混合室15aは、第5筒体15に設けられた開口15cを介して第1混合室16aの下部(螺旋棒16bよりも下側)に連通している。第5筒体15の下端と第6筒体16との間は仕切壁15dで閉鎖されている。   The second mixing chamber 15a communicates with the lower portion of the first mixing chamber 16a (below the spiral rod 16b) through an opening 15c provided in the fifth cylinder 15. A space between the lower end of the fifth cylinder 15 and the sixth cylinder 16 is closed by a partition wall 15d.

第6筒体16の下部と、第2筒体12の下部との間に改質触媒4が充填されている。   The reforming catalyst 4 is filled between the lower part of the sixth cylinder 16 and the lower part of the second cylinder 12.

第6筒体16の下部を第7筒体17が取り巻いており、筒体16,17間がガスの上昇流路17aとなっている。この上昇流路17aの上部には螺旋棒(符号略)が設置され、該流路17aが螺旋状となっていても良い。なお、上昇流路17aの上部の螺旋棒については設置されなくてもよい。   A seventh cylinder 17 surrounds the lower part of the sixth cylinder 16, and a gas rising channel 17 a is formed between the cylinders 16 and 17. A spiral rod (not shown) may be installed on the upper part of the ascending channel 17a, and the channel 17a may be spiral. In addition, it is not necessary to install about the spiral bar of the upper part of the ascending flow path 17a.

第7筒体17の上部を第8筒体18が取り巻いており、筒体17,18間が触媒及び吸着剤の充填室となっている。この充填室内の上部に水素化触媒24が充填され、下部に高温型の第1の吸着剤25が充填されている。この第1の吸着剤としては、350〜400℃において吸着特性が最も良好となるものが好ましい。このような第1の吸着剤としては、例えばZnO系、その他金属酸化物(例えば、酸化鉄、酸化マンガン)などを用いることができる。   An eighth cylinder 18 surrounds the upper part of the seventh cylinder 17, and a space between the cylinders 17 and 18 is a catalyst and adsorbent filling chamber. The upper portion of the filling chamber is filled with a hydrogenation catalyst 24, and the lower portion is filled with a high temperature type first adsorbent 25. As this 1st adsorption agent, what has the adsorption | suction characteristic best in 350-400 degreeC is preferable. As such a first adsorbent, for example, a ZnO-based material and other metal oxides (for example, iron oxide and manganese oxide) can be used.

第6筒体16の上部及び第3筒体13の下部の外周を取り巻くように第9筒体19が設置されている。筒体16,13と筒体19との間が触媒充填室となっている。この触媒充填室は、水平な仕切板19aによって上下2室に区画されており、下側の室に変成触媒5が充填され、上側の室に選択酸化触媒6が充填されている。   A ninth cylinder 19 is installed so as to surround the outer periphery of the upper part of the sixth cylinder 16 and the lower part of the third cylinder 13. A space between the cylinders 16 and 13 and the cylinder 19 is a catalyst filling chamber. This catalyst filling chamber is divided into two upper and lower chambers by a horizontal partition plate 19a, the lower chamber is filled with the shift catalyst 5, and the upper chamber is filled with the selective oxidation catalyst 6.

変成触媒5が充填された下側の室の下部は、上昇流路17aに連通している。また、この室の上部スペース(変成触媒5と仕切板19aとの間のスペース)に空気を吹き込むように空気供給口19bが設けられている。   The lower part of the lower chamber filled with the shift catalyst 5 communicates with the ascending flow path 17a. An air supply port 19b is provided so as to blow air into the upper space of this chamber (the space between the shift catalyst 5 and the partition plate 19a).

選択酸化触媒6を収容した上側の触媒充填室は、筒体13,14間の流路14aに連通している。選択酸化触媒6を収容した上側の室と、変成触媒5を収容した下側の室とは、仕切板19aに設けられた開口19cによって連通している。   The upper catalyst filling chamber containing the selective oxidation catalyst 6 communicates with the flow path 14 a between the cylinders 13 and 14. The upper chamber containing the selective oxidation catalyst 6 and the lower chamber containing the shift catalyst 5 are communicated with each other through an opening 19c provided in the partition plate 19a.

なお、図1では第8筒体18と第9筒体19とは同一直径となっているが、異なってもよい。   In FIG. 1, the eighth cylinder 18 and the ninth cylinder 19 have the same diameter, but may be different.

第9筒体19のうち、変成触媒5の充填部の外周を取り巻くように第10筒体20が設けられ、該第9筒体19と第10筒体20との間の室に低温型の第2の吸着剤27が充填されている。第2の吸着剤としては、200〜300℃において吸着特性が最も良好となるものが好ましい。このような第2の吸着剤としては例えばCuZn系のものを用いることができる。   A tenth cylindrical body 20 is provided in the ninth cylindrical body 19 so as to surround the outer periphery of the charging portion of the shift catalyst 5, and a low temperature type chamber is provided in the chamber between the ninth cylindrical body 19 and the tenth cylindrical body 20. The second adsorbent 27 is filled. As the second adsorbent, those having the best adsorption characteristics at 200 to 300 ° C. are preferable. As such a second adsorbent, for example, a CuZn-based one can be used.

第8筒体18のうち第1の吸着剤25の充填部下部の外周を取り巻くように、原料ガス加熱用のチューブ(配管)22が螺旋状に巻きつけられている。このチューブ22は、伝熱によって第1の吸着剤25を出た原料ガスを冷却し、水素化触媒24に入る原料ガスを加熱する。チューブ22の末端は水素化触媒24の充填部の上部に連通している。第1の吸着剤25の充填部の下端は、配管26を介して第10筒体20内の第2の吸着剤27の充填部の下端に接続されている。第2の吸着剤27の充填部の上端は配管28を介して第1混合室16aに連通している。前記脱硫器9は、このチューブ22と、水素化触媒24、吸着剤25,27及び配管26,28等によって構成されている。水素化触媒24としてはCuZn系、Ni系、CoMo系などが用いられる。   A source gas heating tube (pipe) 22 is spirally wound so as to surround the outer periphery of the lower portion of the first adsorbent 25 in the eighth cylindrical body 18. The tube 22 cools the raw material gas exiting the first adsorbent 25 by heat transfer, and heats the raw material gas entering the hydrogenation catalyst 24. The end of the tube 22 communicates with the upper part of the filling portion of the hydrogenation catalyst 24. The lower end of the filling portion of the first adsorbent 25 is connected to the lower end of the filling portion of the second adsorbent 27 in the tenth cylindrical body 20 via the pipe 26. The upper end of the filling portion of the second adsorbent 27 communicates with the first mixing chamber 16a via a pipe 28. The desulfurizer 9 includes the tube 22, a hydrogenation catalyst 24, adsorbents 25 and 27, pipes 26 and 28, and the like. As the hydrogenation catalyst 24, CuZn-based, Ni-based, CoMo-based, or the like is used.

なお、上記筒体11〜20及び後述の筒体21はいずれもステンレス等の金属製である。   The cylinders 11 to 20 and the cylinder 21 described later are all made of metal such as stainless steel.

この実施の形態では、水素生成装置1の下部に第1の吸着剤25の充填層が設けられており、該装置下部において同心状に5重に金属製筒体11,12,16,17,18が設置され、内側から1番目の筒体11内が燃焼室3となっており、1番目と2番目の筒体11,12の間が、該燃焼室3からの燃焼ガスの上昇流路11aとなっており、2番目と3番目の筒体12,16の間に改質触媒4の充填層と、原料ガスと水蒸気の混合ガス流路が設けられ、3番目と4番目の筒体16,17間が該改質触媒充填層を通過したガスの上昇流路17aとなっており、4番目と5番目の筒体17,18の間のうち上位側に水素化触媒24の充填層が設けられ、下位側に第1の吸着剤25の充填層が設けられている。   In this embodiment, a packed bed of the first adsorbent 25 is provided in the lower part of the hydrogen generator 1, and the metal cylinders 11, 12, 16, 17, 18 is installed, the inside of the first cylinder 11 from the inside is the combustion chamber 3, and the rising flow path of the combustion gas from the combustion chamber 3 is between the first and second cylinders 11, 12. 11a, a packed bed of the reforming catalyst 4 and a mixed gas flow path of source gas and water vapor are provided between the second and third cylinders 12 and 16, and the third and fourth cylinders A gas flow path 17a that passes through the reforming catalyst packed bed is formed between 16 and 17, and a packed bed of the hydrogenation catalyst 24 is disposed on the upper side between the fourth and fifth cylindrical bodies 17 and 18. And a packed layer of the first adsorbent 25 is provided on the lower side.

また、この実施の形態では、水素生成装置1の上下方向の途中部に前記第2の吸着剤27の充填層が設けられており、該装置途中部において同心状に6重に金属製筒体11,12,13,16,19,20が設置され、内側から1番目の筒体11内が燃焼室3となっており、1番目と2番目の筒体11,12の間が、該燃焼室3からの燃焼ガスの上昇流路11aとなっており、2番目と3番目の筒体12,13の間が蒸発部8となっており、3番目と4番目の筒体13,16の間が水蒸気と原料ガスとの混合用の第1の混合室16aとなっており、4番目と5番目の筒体16,19の間に変成触媒5の充填層が設けられており、5番目と6番目の筒体19,20の間に第2の吸着剤27の充填層が設けられている。   Further, in this embodiment, a packed bed of the second adsorbent 27 is provided in the middle part of the hydrogen generator 1 in the vertical direction, and the metal cylinder is concentrically arranged in the middle part of the apparatus. 11, 12, 13, 16, 19, and 20 are installed, the inside of the first cylinder 11 from the inside is the combustion chamber 3, and the combustion is between the first and second cylinders 11 and 12. Combustion gas ascending flow path 11a from the chamber 3 is formed between the second and third cylinders 12 and 13, and an evaporation section 8 is formed. The third and fourth cylinders 13 and 16 A first mixing chamber 16a for mixing the water vapor and the raw material gas is provided between them, a packed bed of the shift catalyst 5 is provided between the fourth and fifth cylinders 16 and 19, and the fifth And the sixth cylinders 19 and 20 are provided with a packed bed of the second adsorbent 27.

この水素生成装置1により処理される原料ガスとしては、都市ガス、LPガス、天然ガスなどが例示される。付臭剤として添加される硫黄化合物としては、メルカプタン類などが例示される。   Examples of the raw material gas processed by the hydrogen generator 1 include city gas, LP gas, and natural gas. Examples of the sulfur compound added as an odorant include mercaptans.

改質触媒4としてはRu系、Pt系などが用いられる。変成触媒5としては、Cu−Zn系などの遷移金属系またはPt、Ru系などの貴金属系のものが用いられ、CO選択酸化触媒6としては、例えば、粒状のアルミナ担体にPtやRu等の貴金属を担持したものが用いられる。水蒸気改質反応に必要な反応熱を供給するバーナ2の燃料としては、燃料電池から排出されるアノードオフガスが用いられる。   As the reforming catalyst 4, Ru-based, Pt-based or the like is used. As the shift catalyst 5, a transition metal type such as Cu—Zn type or a noble metal type such as Pt, Ru type is used. As the CO selective oxidation catalyst 6, for example, a granular alumina carrier such as Pt or Ru is used. Those carrying a noble metal are used. As the fuel for the burner 2 that supplies reaction heat necessary for the steam reforming reaction, anode off-gas discharged from the fuel cell is used.

このように構成された水素生成装置1において、原料ガスに水素を添加したガスがチューブ22に供給され、筒体18を介して伝わる熱によって好ましくは250〜400℃に加熱された後、水素化触媒24と接触し、硫黄化合物が水素と反応し、硫化水素等に分解される。この硫化水素等を含有した炭化水素ガスは、好ましくは350〜400℃に維持された第1の吸着剤25の充填層を通過し、硫化水素の多くが吸着除去された後、配管26から、好ましくは200〜300℃に維持された第2の吸着剤27の充填層に導かれ、残りの硫化水素が吸着除去される。   In the hydrogen generator 1 configured as described above, a gas obtained by adding hydrogen to the raw material gas is supplied to the tube 22, and is preferably heated to 250 to 400 ° C. by heat transmitted through the cylinder 18, and then hydrogenated. In contact with the catalyst 24, the sulfur compound reacts with hydrogen and decomposes into hydrogen sulfide and the like. The hydrocarbon gas containing hydrogen sulfide or the like preferably passes through the packed bed of the first adsorbent 25 maintained at 350 to 400 ° C., and after most of the hydrogen sulfide is adsorbed and removed, from the pipe 26, Preferably, it is guided to the packed bed of the second adsorbent 27 maintained at 200 to 300 ° C., and the remaining hydrogen sulfide is adsorbed and removed.

このように硫黄化合物が除去された炭化水素ガスが、配管28から第1混合室16aに導入される。   The hydrocarbon gas from which the sulfur compound has been removed is introduced from the pipe 28 into the first mixing chamber 16a.

給水口8aから供給された水は、螺旋棒12aによって区切られた螺旋状の空間(流路)よりなる蒸発部8を流下しながら加熱されて水蒸気となる。この水蒸気が第1混合室16aに流入し、配管28からの炭化水素ガスに添加混合される。   The water supplied from the water supply port 8a is heated to flow into the water vapor while flowing down the evaporating section 8 composed of a spiral space (flow path) partitioned by the spiral rod 12a. This water vapor flows into the first mixing chamber 16a and is added to and mixed with the hydrocarbon gas from the pipe 28.

水蒸気と炭化水素ガスとは、第1混合室16a内を螺旋棒16bに沿って螺旋状に流れながら混合され、次いで開口15cから第2混合室15aに流入し、螺旋棒15bに沿って螺旋状に流れ、十分に混合される。この炭化水素ガスと水蒸気との混合ガスが改質触媒4の充填層を通過し、改質触媒4の作用により、炭化水素と水蒸気とが反応して、水素、二酸化炭素、一酸化炭素、未反応のメタン及び水蒸気等を含む改質ガスが生成する。   The water vapor and the hydrocarbon gas are mixed while flowing spirally along the spiral rod 16b in the first mixing chamber 16a, and then flow into the second mixing chamber 15a from the opening 15c and spiral along the spiral rod 15b. Flow and mix thoroughly. This mixed gas of hydrocarbon gas and water vapor passes through the packed bed of the reforming catalyst 4, and by the action of the reforming catalyst 4, the hydrocarbon and water vapor react to produce hydrogen, carbon dioxide, carbon monoxide, A reformed gas containing methane, water vapor and the like is generated.

この改質ガスは、筒体16の下端を回り込んで上昇流路17aを上昇し、変成触媒4の充填層を通過し、改質ガスに含まれる一酸化炭素が、変成触媒5によって改質ガス中の水蒸気と反応して1%以下程度の濃度にまで低減される。   The reformed gas goes around the lower end of the cylindrical body 16, rises in the ascending flow path 17 a, passes through the packed bed of the shift catalyst 4, and carbon monoxide contained in the reformed gas is reformed by the shift catalyst 5. It reacts with water vapor in the gas and is reduced to a concentration of about 1% or less.

変成触媒4の充填層を通過した改質ガスは、空気供給口19bから供給された空気と混合され、選択酸化触媒6によって一酸化炭素が選択的に酸化され、10ppm以下程度のCO濃度にまで低減された水素含有ガスが生成する。生成した水素含有ガスは、流路14aを経て水素含有ガス出口14bから取り出され、燃料電池へ供給される。この水素含有ガスの一部は、チューブ22に向う原料ガス(炭化水素ガス)に添加される。   The reformed gas that has passed through the packed bed of the shift catalyst 4 is mixed with the air supplied from the air supply port 19b, and the carbon monoxide is selectively oxidized by the selective oxidation catalyst 6 to a CO concentration of about 10 ppm or less. A reduced hydrogen-containing gas is produced. The generated hydrogen-containing gas is taken out from the hydrogen-containing gas outlet 14b through the flow path 14a and supplied to the fuel cell. A part of this hydrogen-containing gas is added to the raw material gas (hydrocarbon gas) facing the tube 22.

この実施の形態では、水素化触媒24を、改質触媒4の充填層と変成触媒5の充填層との間に配置しており、250〜400℃の温度に維持されるようになり、水素化反応が効率よく進行する。   In this embodiment, the hydrogenation catalyst 24 is disposed between the packed bed of the reforming catalyst 4 and the packed bed of the shift catalyst 5, and is maintained at a temperature of 250 to 400 ° C. The reaction proceeds efficiently.

また、第1の吸着剤25を改質触媒4の外周位置に配置していると共に、その外周にチューブ22を配置しており、350〜400℃の温度に維持される第1の吸着剤25、特に第1の吸着剤25を出た原料ガスからの伝熱により、原料ガスが予熱される。また、第2の吸着剤27が、変成触媒5の外周に配置されており、第1の吸着剤25を出た原料ガスが配管26により冷却され、200〜300℃の温度に維持され、効率よく硫化水素が吸着される。   In addition, the first adsorbent 25 is disposed at the outer peripheral position of the reforming catalyst 4, and the tube 22 is disposed at the outer periphery thereof, and the first adsorbent 25 maintained at a temperature of 350 to 400 ° C. In particular, the raw material gas is preheated by heat transfer from the raw material gas exiting the first adsorbent 25. Further, the second adsorbent 27 is disposed on the outer periphery of the shift catalyst 5, and the raw material gas exiting the first adsorbent 25 is cooled by the pipe 26 and maintained at a temperature of 200 to 300 ° C. Hydrogen sulfide is often adsorbed.

この実施の形態では、蒸発部8の伝熱面積を大きくするとよい。それにより水の蒸発能力が向上し、原料ガス量に対する水蒸気量の割合が高い燃料処理装置仕様(高S/C仕様)とすることができる。水蒸気量が増加することで改質反応が促進され、改質触媒の温度を低くすることが可能となり、水素化触媒24の温度を250〜400℃、第1の吸着剤25の温度を350〜400℃に維持することが容易となる。   In this embodiment, the heat transfer area of the evaporator 8 is preferably increased. Thereby, the water evaporation capability is improved, and the fuel processor specification (high S / C specification) in which the ratio of the water vapor amount to the raw material gas amount is high can be achieved. By increasing the amount of water vapor, the reforming reaction is promoted, the temperature of the reforming catalyst can be lowered, the temperature of the hydrogenation catalyst 24 is 250-400 ° C., and the temperature of the first adsorbent 25 is 350- It becomes easy to maintain at 400 ° C.

この実施の形態では、水素化触媒24の充填層の下方位置に第1の吸着剤25の充填層を設けており、水素化触媒24の温度を制御しやすくする事が出来、構造を簡素化する事が出来る。   In this embodiment, the packed bed of the first adsorbent 25 is provided below the packed bed of the hydrogenation catalyst 24, the temperature of the hydrogenated catalyst 24 can be easily controlled, and the structure is simplified. I can do it.

図1の実施の形態では筒体17,18間の充填室に水素化触媒と吸着剤25とを充填しているが、本発明では、図2に示す第2の実施の形態に係る水素生成装置1’のように、筒体18の外周に第11の筒体21を設け、筒体18,21間の充填室に水素化触媒24を充填してもよい。筒体17,18間の充填室には吸着剤25のみを充填している。   In the embodiment of FIG. 1, the filling chamber between the cylinders 17 and 18 is filled with the hydrogenation catalyst and the adsorbent 25. However, in the present invention, the hydrogen generation according to the second embodiment shown in FIG. As in the apparatus 1 ′, an eleventh cylinder 21 may be provided on the outer periphery of the cylinder 18, and the filling chamber between the cylinders 18 and 21 may be filled with the hydrogenation catalyst 24. The filling chamber between the cylinders 17 and 18 is filled only with the adsorbent 25.

筒体21の上下長さは筒体18よりも短い。筒体21の上端は筒体18の上端と同一であるが、若干下位でもよい。筒体21の下端は筒体18の下端よりも上位となっている。筒体18の下部は筒体21で包囲されておらず、この筒体18下部にチューブ22が巻き付けられている。   The vertical length of the cylinder 21 is shorter than that of the cylinder 18. The upper end of the cylinder 21 is the same as the upper end of the cylinder 18, but may be slightly lower. The lower end of the cylinder 21 is higher than the lower end of the cylinder 18. The lower part of the cylinder 18 is not surrounded by the cylinder 21, and a tube 22 is wound around the lower part of the cylinder 18.

チューブ22の末端は、筒体21の下端に接続され、水素化触媒24の充填室内に連通している。筒体17,18間の充填室と、筒体18,21間の充填室とは、筒体18の上部に設けられた開口18bによって連通している。チューブ22を通って加熱された水素添加原料ガスは、筒体18,21間の水素化触媒24と接触した後、この開口18bを通って筒体17,18間の吸着剤25の充填層に導入される。   The end of the tube 22 is connected to the lower end of the cylindrical body 21 and communicates with the filling chamber of the hydrogenation catalyst 24. The filling chamber between the cylinders 17 and 18 and the filling chamber between the cylinders 18 and 21 are communicated with each other through an opening 18 b provided in the upper part of the cylinder 18. The hydrogenated source gas heated through the tube 22 comes into contact with the hydrogenation catalyst 24 between the cylinders 18 and 21, and then passes through the opening 18b to fill the adsorbent 25 between the cylinders 17 and 18. be introduced.

この水素生成装置1’では、該装置1’の下部において同心状に6重に金属製筒体11,12,16,17,18,21が設置され、内側から1番目の筒体11内が燃焼室3となっており、1番目と2番目の筒体11,12の間が、該燃焼室3からの燃焼ガスの上昇流路11aとなっており、2番目と3番目の筒体12,16の間に改質触媒4の充填層が設けられ、3番目と4番目の筒体16,17間が該改質触媒充填層を通過したガスの上昇流路17aとなっており、4番目と5番目の筒体17,18の間に第1の吸着剤25の充填層が設けられ、5番目と6番目の筒体18,21の間に水素化触媒24の充填層が設けられている。   In this hydrogen generator 1 ′, metal cylinders 11, 12, 16, 17, 18, and 21 are installed in a concentric manner in the lower part of the apparatus 1 ′, and the inside of the first cylinder 11 from the inside is formed. Combustion chamber 3, and between the first and second cylinders 11, 12 is a combustion gas rising passage 11 a from the combustion chamber 3, and the second and third cylinders 12. , 16 is provided with a packed bed of the reforming catalyst 4, and the third and fourth cylinders 16, 17 constitute a gas ascending flow path 17a passing through the reforming catalyst packed bed. A packed bed of the first adsorbent 25 is provided between the fifth and fifth cylinders 17, 18, and a packed bed of the hydrogenation catalyst 24 is provided between the fifth and sixth cylinders 18, 21. ing.

図2の実施の形態のその他の構成は図1と同一であり、同一符号は同一部分を示す。   Other configurations of the embodiment of FIG. 2 are the same as those of FIG. 1, and the same reference numerals denote the same parts.

この実施の形態では、水素化触媒24は、第1の吸着剤25から伝わる熱によって250〜400℃に維持される。第1の吸着剤25は350〜400℃に維持され、低温用吸着剤27は200〜300℃に維持される。   In this embodiment, the hydrogenation catalyst 24 is maintained at 250 to 400 ° C. by the heat transferred from the first adsorbent 25. The first adsorbent 25 is maintained at 350 to 400 ° C., and the low temperature adsorbent 27 is maintained at 200 to 300 ° C.

この実施の形態では、水素化触媒24と第1の吸着剤25の充填層高さを図1の実施の形態よりも長くとることができ、水素化触媒24と第1の吸着剤25のL/D(触媒層長さ/触媒層断面積比)を大きくすることができ、ガスの吹き抜けを防ぎ、硫黄化合物の水素化反応、吸着反応をより効率よく行うことが可能となる。   In this embodiment, the height of the packed bed of the hydrogenation catalyst 24 and the first adsorbent 25 can be made longer than that in the embodiment of FIG. 1, and the L of the hydrogenation catalyst 24 and the first adsorbent 25 can be increased. / D (catalyst layer length / catalyst layer cross-sectional area ratio) can be increased, gas blow-off can be prevented, and sulfur compound hydrogenation and adsorption reactions can be performed more efficiently.

上記図1,2の実施の形態では、チューブ22を筒体18の外周に巻き付けているが、第1の吸着剤25の充填層内にチューブ22を配置してもよい。上記実施の形態ではチューブ22を用いているが、筒体18の外周を取り巻くジャケットを設け、このジャケット内に水素添加原料ガスを通すようにしてもよい。   In the embodiment shown in FIGS. 1 and 2, the tube 22 is wound around the outer periphery of the cylindrical body 18, but the tube 22 may be disposed in the packed bed of the first adsorbent 25. Although the tube 22 is used in the above embodiment, a jacket surrounding the outer periphery of the cylinder 18 may be provided, and the hydrogenated source gas may be passed through the jacket.

上記実施の形態はいずれも本発明の一例であり、本発明は図示以外の形態とされてもよい。   Each of the above embodiments is an example of the present invention, and the present invention may be configured other than illustrated.

1,1’ 水素生成装置
2 バーナ
3 燃焼室
4 改質触媒
5 変成触媒
6 選択酸化触媒
8 蒸発部
11〜21 筒体
15a 第2混合室
16a 第1混合室
19b 空気供給口
24 水素化触媒
25 高温型の第1の吸着剤
27 低温型の第2の吸着剤
DESCRIPTION OF SYMBOLS 1,1 'Hydrogen generator 2 Burner 3 Combustion chamber 4 Reforming catalyst 5 Shifting catalyst 6 Selective oxidation catalyst 8 Evaporating part 11-21 Cylindrical body 15a 2nd mixing chamber 16a 1st mixing chamber 19b Air supply port 24 Hydrogenation catalyst 25 High temperature type first adsorbent 27 Low temperature type second adsorbent

Claims (9)

筒軸心方向を上下方向とした筒状の燃焼室内にバーナーが設置され、該燃焼室の外周囲に、下段側から改質触媒の充填層、変成触媒の充填層及び選択酸化触媒の充填層が設置されており、さらに外周囲に水素化触媒の充填層と、第1の吸着剤充填層と、第2の吸着剤充填層とが設けられており、
水素添加原料ガスが該水素化触媒の充填層に供給され、順次に第1の吸着剤充填層、第2の吸着剤充填層、改質触媒の充填層、変成触媒の充填層及び選択酸化触媒の充填層を通過する水素生成装置において、
該第1の吸着剤充填層の少なくとも一部が該改質触媒充填層から該変成触媒層に通じるガス流路に隣接して配置され、
該第2の吸着剤充填層が該変成触媒充填層の外周囲に配置されており、
前記第1の吸着剤充填層からの伝熱によって水素添加原料ガスを予熱するための予熱手段が設けられていることを特徴とする水素生成装置。
A burner is installed in a cylindrical combustion chamber whose vertical direction is the cylinder axis direction, and a reforming catalyst packed bed, a shift catalyst packed bed, and a selective oxidation catalyst packed bed are formed around the outer periphery of the combustion chamber from the lower stage side. Is installed, and further, a hydrogenation catalyst packed bed, a first adsorbent packed bed, and a second adsorbent packed bed are provided on the outer periphery,
A hydrogenation source gas is supplied to the hydrogenation catalyst packed bed, and in turn, a first adsorbent packed bed, a second adsorbent packed bed, a reforming catalyst packed bed, a shift catalyst packed bed, and a selective oxidation catalyst In the hydrogen generator that passes through the packed bed of
At least a portion of the first adsorbent packed bed is disposed adjacent to a gas flow path leading from the reforming catalyst packed bed to the shift catalyst bed;
The second adsorbent packed bed is disposed on the outer periphery of the shift catalyst packed bed ;
A hydrogen generating apparatus , comprising preheating means for preheating the hydrogenated raw material gas by heat transfer from the first adsorbent packed bed .
請求項において、前記改質触媒充填層と変成触媒充填層とが上下に離隔しており、この改質触媒充填層から該変成触媒層に通じるガス流路に隣接して前記水素化触媒充填層が配置されていることを特徴とする水素生成装置。 2. The hydrogenation catalyst filling according to claim 1 , wherein the reforming catalyst filling layer and the shift catalyst filling layer are separated from each other in the vertical direction, and adjacent to the gas flow path leading from the reforming catalyst filling layer to the shift catalyst layer. A hydrogen generator characterized in that a layer is arranged. 請求項において、前記第1の吸着剤の充填層の外周囲に前記水素化触媒充填層が設けられていることを特徴とする水素生成装置。 2. The hydrogen generation apparatus according to claim 1 , wherein the hydrogenation catalyst packed bed is provided on an outer periphery of the packed bed of the first adsorbent. 3. 請求項において、該水素生成装置の下部に前記第1の吸着剤の充填層が設けられており、該装置下部において同心状に5重に金属製筒体が設置され、
内側から1番目の筒体内が前記燃焼室となっており、
1番目と2番目の筒体の間が、該燃焼室からの燃焼ガスの上昇流路となっており、
2番目と3番目の筒体の間に前記改質触媒充填層と、原料ガスと水蒸気の混合ガス流路とが設けられ、
3番目と4番目の筒体間が該改質触媒充填層を通過したガスの上昇流路となっており、
4番目と5番目の筒体の間のうち上位側に水素化触媒の充填層が設けられ、下位側に第1の吸着剤充填層が設けられている
ことを特徴とする水素生成装置。
In Claim 2 , a packed bed of the first adsorbent is provided in the lower part of the hydrogen generator, and metal cylinders are installed in five layers concentrically in the lower part of the apparatus.
The first cylinder from the inside is the combustion chamber,
Between the first and second cylinders is an upward flow path for the combustion gas from the combustion chamber,
Between the second and third cylinders, the reforming catalyst packed bed and a mixed gas flow path of the raw material gas and water vapor are provided,
Between the third and fourth cylinders is an upward flow path for the gas that has passed through the reforming catalyst packed bed,
A hydrogen generating apparatus, wherein a hydrogenation catalyst packed bed is provided on the upper side between the fourth and fifth cylinders, and a first adsorbent packed bed is provided on the lower side.
請求項において、該水素生成装置の下部に前記第1の吸着剤の充填層が設けられており、該装置下部において同心状に6重に金属製筒体が設置され、
内側から1番目の筒体内が前記燃焼室となっており、
1番目と2番目の筒体の間が、該燃焼室からの燃焼ガスの上昇流路となっており、
2番目と3番目の筒体の間に前記改質触媒充填層と、原料ガスと水蒸気の混合ガス流路とが設けられ、
3番目と4番目の筒体間が該改質触媒充填層を通過したガスの上昇流路となっており、
4番目と5番目の筒体の間に第1の吸着剤充填層が設けられ、
5番目と6番目の筒体の間に水素化触媒充填層が設けられていることを特徴とする水素生成装置。
In Claim 3 , the packed bed of the 1st adsorbent is provided in the lower part of the hydrogen generating device, and metal cylinders are installed in six layers concentrically in the lower part of the device.
The first cylinder from the inside is the combustion chamber,
Between the first and second cylinders is an upward flow path for the combustion gas from the combustion chamber,
Between the second and third cylinders, the reforming catalyst packed bed and a mixed gas flow path of the raw material gas and water vapor are provided,
Between the third and fourth cylinders is an upward flow path for the gas that has passed through the reforming catalyst packed bed,
A first adsorbent packed bed is provided between the fourth and fifth cylinders;
A hydrogen generating apparatus, wherein a hydrogenation catalyst packed bed is provided between the fifth and sixth cylinders.
請求項又はにおいて、該水素生成装置の上下方向の途中部に前記第2の吸着剤の充填層が設けられており、該装置途中部において同心状に6重に金属製筒体が設置され、
内側から1番目の筒体内が前記燃焼室となっており、
1番目と2番目の筒体の間が、該燃焼室からの燃焼ガスの上昇流路となっており、
2番目と3番目の筒体の間が蒸発部となっており、
3番目と4番目の筒体間が水蒸気と原料ガスとの混合室及び原料ガス流路となっており、
4番目と5番目の筒体の間に前記変成触媒の充填層が設けられており、
5番目と6番目の筒体の間に第2の吸着剤充填層が設けられている
ことを特徴とする水素生成装置。
Installation according to claim 4 or 5, the filling layer of the second adsorbent in the middle portion in the vertical direction is provided in the hydrogen generating apparatus, a metallic cylindrical body to sextuple concentrically in said apparatus middle portion And
The first cylinder from the inside is the combustion chamber,
Between the first and second cylinders is an upward flow path for the combustion gas from the combustion chamber,
The evaporation part is between the second and third cylinders,
Between the third and fourth cylinders is a mixing chamber of water vapor and source gas and a source gas flow path,
A packed bed of the shift catalyst is provided between the fourth and fifth cylinders;
A hydrogen generating apparatus, wherein a second adsorbent packed bed is provided between the fifth and sixth cylinders.
請求項ないしのいずれか1項において、前記予熱手段は、前記第1の吸着剤の充填層を出たガスからの伝熱によって前記水素添加原料ガスを加熱するように設けられていることを特徴とする水素生成装置。 In claims 4 to any one of 6, the preheating means, it is provided to heat the hydrogenation feed gas by heat transfer from the first gas exiting the packed bed of adsorbent A hydrogen generator characterized by this. 請求項1ないしのいずれか1項において、前記水素化触媒は最適温度が250〜400℃であり、前記第1の吸着剤は最適温度が350〜400℃であり、前記第2の吸着剤は最適温度が200〜300℃であることを特徴とする水素生成装置。 In any one of claims 1 to 7, wherein the hydrogenation catalyst is a temperature optimum 250 to 400 ° C., the first adsorbent is optimal temperature is 350 to 400 ° C., the second adsorbent Is a hydrogen generator characterized in that the optimum temperature is 200 to 300 ° C. 筒軸心方向を上下方向とした筒状の燃焼室内にバーナーが設置され、該燃焼室の外周囲に、下段側から改質触媒の充填層、変成触媒の充填層及び選択酸化触媒の充填層が設置されており、さらに外周囲に水素化触媒の充填層と、第1の吸着剤充填層と、第2の吸着剤充填層とが設けられており、  A burner is installed in a cylindrical combustion chamber whose vertical direction is the cylinder axis direction, and a reforming catalyst packed bed, a shift catalyst packed bed, and a selective oxidation catalyst packed bed are formed around the outer periphery of the combustion chamber from the lower stage side. Is installed, and further, a hydrogenation catalyst packed bed, a first adsorbent packed bed, and a second adsorbent packed bed are provided on the outer periphery,
水素添加原料ガスが該水素化触媒の充填層に供給され、順次に第1の吸着剤充填層、第2の吸着剤充填層、改質触媒の充填層、変成触媒の充填層及び選択酸化触媒の充填層を通過する水素生成装置において、  A hydrogenation source gas is supplied to the hydrogenation catalyst packed bed, and in turn, a first adsorbent packed bed, a second adsorbent packed bed, a reforming catalyst packed bed, a shift catalyst packed bed, and a selective oxidation catalyst In the hydrogen generator that passes through the packed bed of
該第1の吸着剤充填層の少なくとも一部が該改質触媒充填層から該変成触媒層に通じるガス流路に隣接して配置され、  At least a portion of the first adsorbent packed bed is disposed adjacent to a gas flow path leading from the reforming catalyst packed bed to the shift catalyst bed;
該第2の吸着剤充填層が該変成触媒充填層の外周囲に配置されており、  The second adsorbent packed bed is disposed on the outer periphery of the shift catalyst packed bed;
前記第1の吸着剤の充填層の外周囲に前記水素化触媒充填層が設けられていることを特徴とする水素生成装置。  The hydrogen generating apparatus, wherein the hydrogenation catalyst packed bed is provided on the outer periphery of the packed bed of the first adsorbent.
JP2013213847A 2013-10-11 2013-10-11 Hydrogen generator Active JP6197561B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013213847A JP6197561B2 (en) 2013-10-11 2013-10-11 Hydrogen generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013213847A JP6197561B2 (en) 2013-10-11 2013-10-11 Hydrogen generator

Publications (2)

Publication Number Publication Date
JP2015074601A JP2015074601A (en) 2015-04-20
JP6197561B2 true JP6197561B2 (en) 2017-09-20

Family

ID=52999736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013213847A Active JP6197561B2 (en) 2013-10-11 2013-10-11 Hydrogen generator

Country Status (1)

Country Link
JP (1) JP6197561B2 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07115843B2 (en) * 1988-01-22 1995-12-13 日本石油株式会社 Method for producing hydrogen from kerosene fraction
JP5191840B2 (en) * 2008-09-01 2013-05-08 東京瓦斯株式会社 Cylindrical steam reformer with integrated hydrodesulfurizer
JP5307043B2 (en) * 2010-01-16 2013-10-02 東京瓦斯株式会社 CO reformer separate steam reformer
JP5371013B2 (en) * 2010-03-02 2013-12-18 東京瓦斯株式会社 Multi-cylinder steam reformer
JP5534900B2 (en) * 2010-03-30 2014-07-02 Jx日鉱日石エネルギー株式会社 Hydrogen production apparatus and fuel cell system
JP2012020898A (en) * 2010-07-14 2012-02-02 Panasonic Corp Hydrogen generating apparatus and fuel cell system provided with the same
JP2012240893A (en) * 2011-05-20 2012-12-10 Panasonic Corp Hydrogen generating apparatus
JP2012246179A (en) * 2011-05-27 2012-12-13 Panasonic Corp Hydrogen generation apparatus and fuel cell system
JP5807167B2 (en) * 2011-07-22 2015-11-10 パナソニックIpマネジメント株式会社 Hydrogen generator

Also Published As

Publication number Publication date
JP2015074601A (en) 2015-04-20

Similar Documents

Publication Publication Date Title
JP5191840B2 (en) Cylindrical steam reformer with integrated hydrodesulfurizer
JP4335535B2 (en) Single chamber compact fuel processor
JP4285992B2 (en) Single chamber compact fuel processor
JP2009249203A (en) System for desulfurizing raw fuel for producing fuel hydrogen for fuel cell
WO2019093158A1 (en) Hydrogen generator
EP2735541B1 (en) Fuel processing device
JP5160389B2 (en) Multi-cylinder steam reformer for fuel cells
JP2009087586A (en) Reforming device for fuel cell
WO2011122418A1 (en) Hydrogen production apparatus and fuel cell system
JP5161621B2 (en) Fuel cell reformer
JP6197561B2 (en) Hydrogen generator
JP5314381B2 (en) Hydrogen production equipment
KR100647331B1 (en) Shift reactor, fuel cell system employing the same, and operating method of the same
JP5135605B2 (en) Stationary hydrogen production reformer
JP4764651B2 (en) Hydrogen production apparatus and fuel cell system
JP5307043B2 (en) CO reformer separate steam reformer
JP2005089255A (en) Hydrogen generator and its method
JP4932165B2 (en) Steam reforming system
JP5938580B2 (en) Hydrogen generator
KR102005715B1 (en) Hydrogen production reactor including feed preheating part
JP6402362B2 (en) Hydrogen generator and fuel cell system
JP5538025B2 (en) Hydrogen production apparatus and fuel cell system
JP5135606B2 (en) Startup method for stationary hydrogen production equipment
JP2017105646A (en) Hydrogen generator and fuel cell system using the same
JP2012176897A (en) Hydrogenation desulfurizer-integrated cylindrical steam reformer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170807

R150 Certificate of patent or registration of utility model

Ref document number: 6197561

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250