JP2009249203A - System for desulfurizing raw fuel for producing fuel hydrogen for fuel cell - Google Patents

System for desulfurizing raw fuel for producing fuel hydrogen for fuel cell Download PDF

Info

Publication number
JP2009249203A
JP2009249203A JP2008096414A JP2008096414A JP2009249203A JP 2009249203 A JP2009249203 A JP 2009249203A JP 2008096414 A JP2008096414 A JP 2008096414A JP 2008096414 A JP2008096414 A JP 2008096414A JP 2009249203 A JP2009249203 A JP 2009249203A
Authority
JP
Japan
Prior art keywords
hydrodesulfurizer
raw fuel
fuel
room temperature
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008096414A
Other languages
Japanese (ja)
Inventor
Hisayuki Saimiya
久幸 斎宮
Hiroshi Fujiki
広志 藤木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2008096414A priority Critical patent/JP2009249203A/en
Publication of JP2009249203A publication Critical patent/JP2009249203A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem generated by conventional room temperature desulfurization and hydrodesulfurization. <P>SOLUTION: The system for desulfurizing a raw fuel for producing fuel hydrogen for a fuel cell comprises a room temperature desulfurizer and hydrodesulfurizer which are arranged in parallel. A raw fuel introducing pipe is branched into two, and one of the branched pipes obtained by branching the raw fuel introducing pipe is connected to the room temperature desulfurizer and the other branched pipe is connected to the hydrodesulfurizer. A first opening and closing valve is disposed in the one of the branched pipes connected to the room temperature desulfurizer, and a desulfurized raw fuel delivery tube, in which a second opening and closing valve is disposed, is disposed at the outlet of the desulfurized raw fuel from the room temperature desulfurizer. A third opening and closing valve is disposed in the other branched pipe connected to the hydrodesulfurizer, and a fourth opening and closing valve is disposed at the outlet of the desulfurized raw fuel from the hydrodesulfurizer. In a low temperature state after starting, the raw fuel is supplied to the room temperature desulfurizer to be desulfurized, and when the temperature in the hydrodesulfurizer reaches operating temperature, the raw fuel is supplied to the hydrodesulfurizer to be desulfurized. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、燃料電池の燃料水素製造用原燃料の脱硫システムに関し、より具体的には燃料電池に供給する燃料である水素を製造するための水蒸気改質器、CO変成器及びCO除去器を含む水素製造システムにおいて、水蒸気改質器に供給する原燃料を脱硫するためのシステムに関する。   The present invention relates to a raw fuel desulfurization system for producing fuel hydrogen of a fuel cell, and more specifically, a steam reformer, a CO converter, and a CO remover for producing hydrogen as fuel to be supplied to the fuel cell. The present invention relates to a system for desulfurizing raw fuel supplied to a steam reformer in a hydrogen production system including the same.

燃料電池、例えば固体高分子形燃料電池(PEFC)の燃料である水素は、炭化水素やアルコール類やエーテル類、あるいはそれらの混合物などの原燃料を水蒸気改質法や部分酸化法により改質することで製造される。このうち水蒸気改質法は、原燃料を水蒸気により改質して水素リッチな改質ガスを生成させる方法である。水蒸気改質法では改質器における接触反応によりそれら原燃料が水素リッチな改質ガスへ変えられる。   Hydrogen, which is a fuel of a fuel cell, for example, a polymer electrolyte fuel cell (PEFC), reforms raw fuel such as hydrocarbons, alcohols, ethers, or mixtures thereof by a steam reforming method or a partial oxidation method. It is manufactured by. Among these, the steam reforming method is a method for generating a hydrogen-rich reformed gas by reforming raw fuel with steam. In the steam reforming method, the raw fuel is converted into hydrogen-rich reformed gas by a catalytic reaction in the reformer.

水蒸気改質器は、概略、バーナあるいは白金等の燃焼触媒を配置した燃焼部(加熱部)と改質触媒を配置した改質部とにより構成される。改質部では原燃料を水蒸気と反応させて水素リッチな改質ガスが生成される。改質部で起こる反応は大きな吸熱を伴うので、反応の進行のためには外部からの熱が必要であり、600℃程度以上の温度が必要である。このため燃焼部での燃料ガスの空気による燃焼により発生した燃焼熱(ΔH)が改質部に供給される。改質触媒としてはNi系、Ru系等の触媒が用いられる。   The steam reformer is generally composed of a combustion part (heating part) in which a combustion catalyst such as burner or platinum is arranged and a reforming part in which a reforming catalyst is arranged. In the reforming section, the raw fuel is reacted with steam to generate hydrogen-rich reformed gas. Since the reaction occurring in the reforming part involves a large endotherm, heat from the outside is necessary for the progress of the reaction, and a temperature of about 600 ° C. or higher is required. For this reason, combustion heat (ΔH) generated by combustion of fuel gas with air in the combustion section is supplied to the reforming section. As the reforming catalyst, a Ni-based or Ru-based catalyst is used.

図6は、上記のような水蒸気改質器を用い、原燃料の処理からPEFCに至るまでの態様例を説明する図である。都市ガスやLPガス、あるいはガソリン、灯油などにはメルカプタン類、サルファイド類、あるいはチオフェンなどの硫黄化合物が付臭剤として添加されている。改質触媒は、それらの硫黄化合物により被毒し性能劣化を来すので、それらの硫黄化合物を除去するために脱硫器へ導入される。次いで、別途設けられた水蒸気発生器からの水蒸気を添加、混合して改質器へ導入し、改質器中での原燃料の水蒸気による改質反応により水素リッチな改質ガスが生成される。   FIG. 6 is a diagram for explaining an exemplary embodiment from raw fuel processing to PEFC using the steam reformer as described above. Sulfur compounds such as mercaptans, sulfides, and thiophene are added as odorants to city gas, LP gas, gasoline, kerosene, and the like. Since the reforming catalyst is poisoned by these sulfur compounds and deteriorates performance, the reforming catalyst is introduced into the desulfurizer to remove these sulfur compounds. Next, steam from a steam generator provided separately is added, mixed and introduced into the reformer, and a hydrogen-rich reformed gas is generated by the reforming reaction of the raw fuel with steam in the reformer. .

原燃料がメタンである場合の改質反応は「CH4+2H2O→CO2+4H2」で示される。生成する改質ガス中には未反応のメタン、未反応の水蒸気、炭酸ガスのほか、一酸化炭素(CO)が副生して8〜15%(容量%、以下%について同じ)程度含まれている。このため改質ガスは、副生COを炭酸ガスへ変えて除去するためにCO変成器にかけられる。CO変成器では銅ー亜鉛系や白金触媒等の触媒が用いられるが、その触媒を機能させるには200〜250℃程度の温度が必要である。CO変成器中での反応は「CO+H2O→CO2+H2」で示され、この反応で必要な水蒸気としては改質器において未反応の残留水蒸気が利用される。 The reforming reaction when the raw fuel is methane is represented by “CH 4 + 2H 2 O → CO 2 + 4H 2 ”. The reformed gas produced contains about 8-15% (capacity%, the same applies to the following%) of carbon monoxide (CO) as a by-product in addition to unreacted methane, unreacted water vapor, carbon dioxide ing. For this reason, the reformed gas is subjected to a CO converter in order to convert by-product CO into carbon dioxide gas and remove it. In the CO converter, a catalyst such as a copper-zinc system or a platinum catalyst is used, but a temperature of about 200 to 250 ° C. is necessary to make the catalyst function. The reaction in the CO converter is represented by “CO + H 2 O → CO 2 + H 2 ”, and unreacted residual steam is utilized in the reformer as the steam necessary for this reaction.

CO変成器から出る改質ガスは、未反応のメタンと余剰水蒸気を除けば、水素と炭酸ガスとからなっている。このうち水素が目的とする成分であるが、CO変成器を経て得られる改質ガスについても、COは完全には除去されず、微量のCOが含まれている。PEFCに供給する燃料水素中のCO含有量は100ppm(容量ppm、以下ppmについて同じ)程度が限度であり、これを越えると電池性能が著しく劣化するので、CO成分はPEFCへ導入する前にできる限り除去する必要がある。   The reformed gas exiting from the CO converter is composed of hydrogen and carbon dioxide gas except for unreacted methane and excess water vapor. Of these, hydrogen is an intended component, but the reformed gas obtained through the CO converter also does not completely remove CO, but contains a trace amount of CO. The CO content in the fuel hydrogen supplied to the PEFC is limited to about 100 ppm (capacity ppm, the same applies to the following ppm), and beyond this, the cell performance is significantly deteriorated, so the CO component can be formed before being introduced into the PEFC. As long as it is necessary to remove.

このため、改質ガスはCO変成器によりCO濃度を1%程度以下まで低下させた後、CO酸化器にかけられる。ここで空気等の酸化剤ガスが添加され、COの酸化反応(CO+1/2O2=CO2)により、COを100ppm程度以下、好ましくは50ppm以下、さらに好ましくは10ppm以下というように低減させる。CO酸化器の作動温度は100〜150℃程度である。こうして精製された水素がPEFCの燃料極に供給される。 For this reason, the reformed gas is applied to the CO oxidizer after the CO concentration is lowered to about 1% or less by the CO converter. Here, an oxidant gas such as air is added, and CO is reduced to about 100 ppm or less, preferably 50 ppm or less, more preferably 10 ppm or less by an oxidation reaction of CO (CO + 1 / 2O 2 = CO 2 ). The operating temperature of the CO oxidizer is about 100 to 150 ° C. The purified hydrogen is supplied to the fuel electrode of PEFC.

本明細書中、水蒸気改質器、CO変成器及びCO酸化器を含む水素製造装置、すなわちそれら機器を含む水素製造システムを“改質器系”と称し、水蒸気改質器での改質用に水蒸気改質器に供給する燃料を“原燃料”と称している。   In this specification, a hydrogen production apparatus including a steam reformer, a CO converter and a CO oxidizer, that is, a hydrogen production system including these devices is referred to as a “reformer system” and is used for reforming in a steam reformer. The fuel supplied to the steam reformer is called “raw fuel”.

原燃料としては、メタン、エタン、プロパン、ブタン、都市ガス、LPガス、天然ガス、ガソリン、灯油、その他の炭化水素(2種以上の炭化水素の混合物を含む)やメタノール等のアルコール類やエーテル類、それらの混合物が使用される。   Raw fuel includes methane, ethane, propane, butane, city gas, LP gas, natural gas, gasoline, kerosene, other hydrocarbons (including mixtures of two or more hydrocarbons), alcohols such as methanol, and ethers A mixture of these is used.

改質器系の水蒸気改質器に供給する原燃料中の硫黄化合物を除去する方法として脱硫剤による常温脱硫方式と水添触媒による水添脱硫方式の2通りがあることが一般的に知られている。常温脱硫方式では、常温で原燃料を脱硫剤に流通させるだけで硫黄化合物を除去できるためシステムフローが簡素化される。しかしその一方で、脱硫剤の吸着容量〔3wt%−S(=硫黄分としての吸着量)〕は、水添触媒の吸着容量〔20wt%−S(=水添触媒→吸着剤による硫黄分としての吸着量)〕と比較して小さいことから、燃料電池システムを長期間運転する際には、水蒸気改質器に供給する原燃料に硫黄化合物が流出する前に脱硫剤を交換して対応する必要がある。   It is generally known that there are two methods for removing sulfur compounds in the raw fuel supplied to the steam reformer of the reformer system: a room temperature desulfurization method using a desulfurizing agent and a hydrodesulfurization method using a hydrogenation catalyst. ing. The room temperature desulfurization method simplifies the system flow because sulfur compounds can be removed simply by circulating the raw fuel through the desulfurization agent at room temperature. However, on the other hand, the adsorption capacity [3 wt% -S (= adsorption amount as sulfur content)] of the desulfurizing agent is equal to the adsorption capacity [20 wt% -S (= hydrogenation catalyst → sulfur content by the adsorbent) of the hydrogenation catalyst. Therefore, when the fuel cell system is operated for a long period of time, the desulfurization agent is exchanged before the sulfur compound flows out to the raw fuel supplied to the steam reformer. There is a need.

水添脱硫方式では、硫黄分の吸着容量が大きいことから長期間運転でも交換の必要がなく、化学反応によって安定して脱硫することが可能である。しかし、その一方で、水添脱硫方式での脱硫反応には水素が必要であり、しかも水添触媒の作動温度の観点から、水添触媒の種類にもよるが、少なくとも200℃程度の温度、200〜400℃程度の高温状態にする必要がある。このため、常温に比べて余分なライン、すなわち余分な配管系が必要になり、またそのような高温状態にする必要があることから加熱が必要である。   In the hydrodesulfurization method, since the adsorption capacity of sulfur is large, there is no need for replacement even during long-term operation, and it is possible to stably desulfurize by a chemical reaction. However, on the other hand, hydrogen is required for the desulfurization reaction in the hydrodesulfurization system, and from the viewpoint of the operating temperature of the hydrogenation catalyst, depending on the type of hydrogenation catalyst, a temperature of at least about 200 ° C., It is necessary to make it a high temperature state of about 200-400 degreeC. For this reason, an extra line compared with normal temperature, ie, an extra piping system, is needed, and since it is necessary to be in such a high temperature state, heating is required.

水添脱硫方式においては、通常、硫黄化合物を水素により硫化水素に変える水添触媒層(X)と生成硫化水素を吸着する第1吸着剤層(Y)との2種の層の組み合わせで構成されるが、PEFCなどの燃料水素製造用の原燃料の脱硫システムのように特に微量の硫黄分をも除去する必要があるシステムにおいては、第1吸着剤からリークする僅かな硫化水素を低濃度まで抑える(低減させる)第2吸着剤層(Z)を加えた3種の層から構成される。200℃までの昇温中にも硫黄分をリークさせないように脱硫可能な第2吸着剤層を余分に積み増しておくことにより対応することもあるが、起動−停止回数が多い燃料電池システムにおいては第2吸着剤層が大容量化してしまうという問題が生じる。また、起動−停止の繰り返しによる温度変動によってその吸着剤(脱硫剤)からの硫黄分の脱離、リークも懸念されるため、更に第2吸着剤を積み増す必要がある。   In the hydrodesulfurization system, it is usually composed of a combination of two types of layers: a hydrogenation catalyst layer (X) that converts sulfur compounds into hydrogen sulfide by hydrogen and a first adsorbent layer (Y) that adsorbs the generated hydrogen sulfide. However, in a system that needs to remove even a very small amount of sulfur, such as a desulfurization system of raw fuel for producing fuel hydrogen such as PEFC, a slight concentration of hydrogen sulfide leaking from the first adsorbent is low. It is comprised from 3 types of layers which added the 2nd adsorbent layer (Z) to suppress (reduce) to. In the fuel cell system where the number of start-stops is large, it is possible to cope by adding an extra second adsorbent layer that can be desulfurized so that the sulfur content does not leak even during the temperature rise to 200 ° C. There arises a problem that the capacity of the second adsorbent layer is increased. Further, since there is a concern about the desorption and leakage of sulfur from the adsorbent (desulfurization agent) due to temperature fluctuations due to repeated start-stop, it is necessary to further accumulate the second adsorbent.

本発明は、常温脱硫方式、水添脱硫方式で生じる以上の問題点を、改質器系の水蒸気改質器に供給する原燃料中の硫黄化合物を除去するのに常温脱硫方式と水添脱硫方式のそれぞれのメリットを生かして併用することにより解決してなる燃料電池の燃料水素製造用原燃料の脱硫システムを提供することを目的とするものである。   The present invention solves the above-mentioned problems caused by the normal temperature desulfurization method and the hydrodesulfurization method in order to remove sulfur compounds in the raw fuel supplied to the steam reformer of the reformer system. An object of the present invention is to provide a raw fuel desulfurization system for fuel hydrogen production of a fuel cell, which is solved by making use of the merits of each method.

なお、常温脱硫方式と水添脱硫方式を併用するものとして特開2002−60204号公報、特開2006−8459号公報などが提案され、常温脱硫方式と高温脱硫方式を併用するものとして特開2006−111766号公報などが提案されているが、これらは本発明とは内容的に異なるものである。   JP-A-2002-60204, JP-A-2006-8459 and the like have been proposed as a combination of the room-temperature desulfurization method and the hydrodesulfurization method, and JP-A-2006 as a combination of the room-temperature desulfurization method and the high-temperature desulfurization method. -111766 is proposed, but these are different from the present invention.

特開2002−60204号公報JP 2002-60204 A 特開2006−8459号公報JP 2006-8459 A 特開2006−111766号公報JP 2006-111766 A

本発明(1)は、燃料電池の燃料水素製造用原燃料の脱硫システムであって、
(A)常温脱硫器と水添脱硫器とを並列に配置するとともに、原燃料導入管を二つに分岐し、
(B)前記分岐した一方の分岐管を常温脱硫器に連結するとともに、前記分岐した他方の分岐管を水添脱硫器に連結し、
(C)常温脱硫器に連結した前記一方の分岐管に第1の開閉弁aを配置するとともに、常温脱硫器からの脱硫済み原燃料の出口側に第2の開閉弁bを配置した脱硫済み原燃料導出管を配置し、
(D)水添脱硫器に連結した前記他方の分岐管に、第3の開閉弁cを配置するとともに、第5の開閉弁eを配置した水素供給管を配置し、水添脱硫器からの脱硫済み原燃料の出口側に第4の開閉弁dを配置した脱硫済み原燃料導出管を配置し、且つ、
(E)常温脱硫器からの脱硫済み原燃料の出口側導管を第4の開閉弁dに続く導管に配置してなり、
(F)その起動時以降、水添脱硫器の水添触媒の温度が作動温度より低い状態では原燃料を常温脱硫器に供給して脱硫し、水添脱硫器の水添触媒の温度が作動温度に達した時点で原燃料を水添脱硫器のみに供給して脱硫するようにしてなる
ことを特徴とする燃料電池の燃料水素製造用原燃料の脱硫システムである。
The present invention (1) is a desulfurization system for raw fuel for fuel hydrogen production of a fuel cell,
(A) A room temperature desulfurizer and a hydrodesulfurizer are arranged in parallel, and the raw fuel introduction pipe is branched into two.
(B) The one branched pipe is connected to a room temperature desulfurizer, and the other branched pipe is connected to a hydrodesulfurizer,
(C) The first on-off valve a is disposed on the one branch pipe connected to the room temperature desulfurizer, and the second on-off valve b is disposed on the outlet side of the desulfurized raw fuel from the room temperature desulfurizer. Place the raw fuel outlet pipe,
(D) A third on-off valve c and a hydrogen supply pipe on which a fifth on-off valve e is arranged are arranged on the other branch pipe connected to the hydrodesulfurizer. A desulfurized raw fuel outlet pipe having a fourth on-off valve d disposed on the outlet side of the desulfurized raw fuel, and
(E) An outlet side conduit for desulfurized raw fuel from a room temperature desulfurizer is disposed in a conduit following the fourth on-off valve d,
(F) After the start-up, when the temperature of the hydrogenation catalyst of the hydrodesulfurizer is lower than the operating temperature, the raw fuel is supplied to the room temperature desulfurizer for desulfurization, and the temperature of the hydrogenation catalyst of the hydrodesulfurizer is activated. A raw fuel desulfurization system for fuel hydrogen production of a fuel cell, wherein the raw fuel is supplied only to a hydrodesulfurizer when the temperature is reached and desulfurized.

本発明(2)は、燃料電池の燃料水素製造用原燃料の脱硫システムであって、
(A)常温脱硫器と水添脱硫器とを直列に配置するとともに、原燃料導入管を二つに分岐し、
(B)前記分岐した一方の分岐管を常温脱硫器に連結し、前記分岐した他方の分岐管を水添脱硫器に連結するとともに、水添脱硫器の出口側に脱硫済み原燃料の導出管を連結し、
(C)前記分岐した一方の分岐管に第1の開閉弁aを配置し、常温脱硫器からの脱硫済み原燃料導出管に第2の開閉弁bを配置し、前記分岐した他方の分岐管に、第3の開閉弁cを配置するとともに、第4の開閉弁eを配置した水素供給管を配置し、且つ、
(D)前記第2の開閉弁bを配置した脱硫済み原燃料導出管を前記第3の開閉弁cと水添脱硫器との間の導管に配置してなり、
(E)その起動時以降、水添脱硫器の水添触媒の温度が作動温度より低い状態では原燃料を常温脱硫器に供給して脱硫し、水添脱硫器の水添触媒の温度が作動温度に達した時点で原燃料を水添脱硫器のみに供給して脱硫するようにしてなる
ことを特徴とする燃料電池の燃料水素製造用原燃料の脱硫システムである。
The present invention (2) is a desulfurization system for raw fuel for fuel hydrogen production of a fuel cell,
(A) A normal temperature desulfurizer and a hydrodesulfurizer are arranged in series, and the raw fuel introduction pipe is branched into two,
(B) The one branched pipe is connected to a room temperature desulfurizer, the other branched pipe is connected to a hydrodesulfurizer, and a desulfurized raw fuel outlet pipe is connected to the outlet side of the hydrodesulfurizer. And
(C) The first on-off valve a is arranged on the one branched pipe, the second on-off valve b is arranged on the desulfurized raw fuel outlet pipe from the room temperature desulfurizer, and the other branched pipe is branched. And a hydrogen supply pipe having a fourth on-off valve e and a third on-off valve c, and
(D) The desulfurized raw fuel lead-out pipe in which the second on-off valve b is arranged is arranged in a conduit between the third on-off valve c and the hydrodesulfurizer,
(E) After the start-up, when the temperature of the hydrogenation catalyst of the hydrodesulfurizer is lower than the operating temperature, the raw fuel is supplied to the room temperature desulfurizer for desulfurization, and the temperature of the hydrogenation catalyst of the hydrodesulfurizer is activated. A raw fuel desulfurization system for fuel hydrogen production of a fuel cell, wherein the raw fuel is supplied only to a hydrodesulfurizer when the temperature is reached and desulfurized.

本発明(3)は、燃料電池の燃料水素製造用原燃料の脱硫システムであって、
(A)常温脱硫器と水添脱硫器とを直列に配置するとともに、原燃料導入管を二つに分岐し、
(B)前記分岐した一方の分岐管を常温脱硫器に連結し、前記分岐した他方の分岐管を水添脱硫器に連結するとともに、常温脱硫器の出口側に脱硫済み原燃料の導出管を連結し、
(C)常温脱硫器に連結した前記分岐した一方の分岐管に第1の開閉弁aを配置し、水添脱硫器に連結した前記分岐した他方の分岐管に、第2の開閉弁bを配置するとともに、第4の開閉弁eを配置した水素供給管を配置し、且つ、
(D)水添脱硫器からの脱硫済み原燃料導出管に第3の開閉弁cを配置し、前記水添脱硫器からの脱硫済み原燃料導出管を前記第1の開閉弁aから常温脱硫器に至る導管に配置してなり、
(E)その起動時以降、水添脱硫器の水添触媒の温度が作動温度より低い状態では原燃料を常温脱硫器に供給して脱硫し、水添脱硫器の水添触媒の温度が作動温度に達した時点で原燃料を水添脱硫器のみに供給して脱硫するようにしてなる
ことを特徴とする燃料電池の燃料水素製造用原燃料の脱硫システムである。
The present invention (3) is a desulfurization system for raw fuel for fuel hydrogen production of a fuel cell,
(A) A normal temperature desulfurizer and a hydrodesulfurizer are arranged in series, and the raw fuel introduction pipe is branched into two,
(B) The one branched pipe is connected to a room temperature desulfurizer, the other branched pipe is connected to a hydrodesulfurizer, and a desulfurized raw fuel outlet pipe is connected to the outlet side of the room temperature desulfurizer. Concatenate,
(C) A first on-off valve a is disposed on the one branched pipe connected to the room temperature desulfurizer, and a second on-off valve b is provided on the other branched pipe connected to the hydrodesulfurizer. And a hydrogen supply pipe having a fourth on-off valve e disposed therein, and
(D) A third on-off valve c is arranged in the desulfurized raw fuel outlet pipe from the hydrodesulfurizer, and the desulfurized raw fuel outlet pipe from the hydrodesulfurizer is desulfurized at room temperature from the first on-off valve a. Arranged in a conduit leading to the vessel,
(E) After the start-up, when the temperature of the hydrogenation catalyst of the hydrodesulfurizer is lower than the operating temperature, the raw fuel is supplied to the room temperature desulfurizer for desulfurization, and the temperature of the hydrogenation catalyst of the hydrodesulfurizer is activated. A raw fuel desulfurization system for fuel hydrogen production of a fuel cell, wherein the raw fuel is supplied only to a hydrodesulfurizer when the temperature is reached and desulfurized.

本発明(4)は、燃料電池の燃料水素製造用原燃料の脱硫システムであって、
(A)常温脱硫器を改質器系外に配置し、水添脱硫器を改質器系内に配置するとともに、原燃料導入管を二つに分岐し、
(B)前記分岐した一方の分岐管を常温脱硫器に連結するとともに、前記分岐した他方の分岐管を水添脱硫器に連結し、
(C)常温脱硫器に連結した前記一方の分岐管に第1の開閉弁aを配置し、常温脱硫器からの脱硫済み原燃料の出口側導管に第2の開閉弁bを配置するとともに、前記出口側導管を改質器系の水蒸気改質器に連結し、且つ、
(D)前記水添脱硫器に連結した他方の分岐管に、第3の開閉弁cを配置するとともに、第5の開閉弁eを配置した水素供給管を配置してなり、
(E)その起動時以降、水添脱硫器の水添触媒の温度が作動温度より低い状態では原燃料を常温脱硫器に供給して脱硫し、水添脱硫器の水添触媒の温度が作動温度に達した時点で原燃料を水添脱硫器のみに供給して脱硫するようにしてなる
ことを特徴とする燃料電池の燃料水素製造用原燃料の脱硫システムである。
The present invention (4) is a raw fuel desulfurization system for fuel hydrogen production of a fuel cell,
(A) A room temperature desulfurizer is placed outside the reformer system, a hydrodesulfurizer is placed inside the reformer system, and the raw fuel introduction pipe is branched in two.
(B) The one branched pipe is connected to a room temperature desulfurizer, and the other branched pipe is connected to a hydrodesulfurizer,
(C) The first on-off valve a is arranged in the one branch pipe connected to the room temperature desulfurizer, the second on-off valve b is arranged in the outlet side conduit of the desulfurized raw fuel from the room temperature desulfurizer, Connecting the outlet conduit to a steam reformer of a reformer system, and
(D) In the other branch pipe connected to the hydrodesulfurizer, a third on-off valve c and a hydrogen supply pipe on which a fifth on-off valve e is arranged are arranged.
(E) After the start-up, when the temperature of the hydrogenation catalyst of the hydrodesulfurizer is lower than the operating temperature, the raw fuel is supplied to the room temperature desulfurizer for desulfurization, and the temperature of the hydrogenation catalyst of the hydrodesulfurizer is activated. A raw fuel desulfurization system for fuel hydrogen production of a fuel cell, wherein the raw fuel is supplied only to a hydrodesulfurizer when the temperature is reached and desulfurized.

本発明(5)は、燃料電池の燃料水素製造用原燃料の脱硫システムであって、
(A)常温脱硫器を改質器系外に配置し、水添脱硫器を改質器系内に配置するとともに、原燃料導入管を二つに分岐し、
(B)前記分岐した一方の分岐管を常温脱硫器に連結するとともに、前記分岐した他方の分岐管を水添脱硫器に連結し、
(C)常温脱硫器に連結した前記一方の分岐管に第1の開閉弁aを配置し、常温脱硫器からの脱硫済み原燃料の出口側導管に第2の開閉弁bを配置し、水添脱硫器に連結した前記他方の分岐管に第3の開閉弁cを配置し、且つ、
(D)前記第3の開閉弁cから水添脱硫器に至る導管に、前記第2の開閉弁bを配置した常温脱硫器からの出口側導管を配置するとともに、第4の開閉弁eを配置した水素供給管を配置してなり、
(E)その起動時以降、水添脱硫器の水添触媒の温度が作動温度より低い状態では原燃料を常温脱硫器に供給して脱硫し、水添脱硫器の水添触媒の温度が作動温度に達した時点で原燃料を水添脱硫器のみに供給して脱硫するようにしてなる
ことを特徴とする燃料電池の燃料水素製造用原燃料の脱硫システムである。
The present invention (5) is a desulfurization system for raw fuel for fuel hydrogen production of a fuel cell,
(A) A room temperature desulfurizer is placed outside the reformer system, a hydrodesulfurizer is placed inside the reformer system, and the raw fuel introduction pipe is branched in two.
(B) The one branched pipe is connected to a room temperature desulfurizer, and the other branched pipe is connected to a hydrodesulfurizer,
(C) A first on-off valve a is arranged on the one branch pipe connected to the room temperature desulfurizer, a second on-off valve b is arranged on the outlet side conduit of desulfurized raw fuel from the room temperature desulfurizer, A third on-off valve c is disposed in the other branch pipe connected to the addition desulfurizer; and
(D) In the conduit from the third on-off valve c to the hydrodesulfurizer, an outlet side conduit from the room temperature desulfurizer in which the second on-off valve b is arranged is arranged, and a fourth on-off valve e is provided. Arranged hydrogen supply pipe arranged,
(E) After the start-up, when the temperature of the hydrogenation catalyst of the hydrodesulfurizer is lower than the operating temperature, the raw fuel is supplied to the room temperature desulfurizer for desulfurization, and the temperature of the hydrogenation catalyst of the hydrodesulfurizer is activated. A raw fuel desulfurization system for fuel hydrogen production of a fuel cell, wherein the raw fuel is supplied only to a hydrodesulfurizer when the temperature is reached and desulfurized.

本発明(1)〜(5)の燃料電池の燃料水素製造用原燃料の脱硫システムは、特に、PEFCに燃料水素を供給するための水素製造用燃料の脱硫システムとして適用されるが、固体酸化物形燃料電池(SOFC)に燃料水素を供給するための水素製造用燃料の脱硫システムとしても適用可能である。   The raw fuel desulfurization system for fuel hydrogen production of the fuel cells of the present invention (1) to (5) is particularly applied as a desulfurization system for hydrogen production fuel for supplying fuel hydrogen to PEFC. The present invention is also applicable as a fuel desulfurization system for hydrogen production for supplying fuel hydrogen to a physical fuel cell (SOFC).

本発明によれば下記(ア)〜(ウ)の効果が得られる。
(ア)本発明の脱硫システムによれば、常温脱硫方式の課題である長時間運転で必要な脱硫剤の交換に関して、その交換が必要でないシステムとすることができる。すなわち、常温脱硫器は、脱硫システムの起動開始時から水添脱硫器の水添脱硫触媒の温度が作動温度に達する時点まで利用するだけであるので、常温脱硫器中の脱硫剤の交換が長時間にわたり必要でないシステムとすることができる。
(イ)本発明の脱硫システムによれば、水添脱硫方式の課題である第2吸着剤の大容量化が抑えられ、その吸着剤を積み増す必要もなくなる。すなわち、水添脱硫器をその作動温度に達した時点以降で利用するので、第2吸着剤層が大容量化することがない。
(ウ)本発明の脱硫システムによれば、温度変動による第2吸着剤からの硫黄分の脱離すなわち硫黄分リークの懸念もなくなる。すなわち、水添脱硫器をその作動温度に達した時点以降で利用するので、起動−停止の繰り返しに伴う温度変動による第2吸着剤からの硫黄分のリークの懸念がなくなる。
(エ)以上(ア)〜(ウ)の結果として、全体的に脱硫システムの大容量化を抑え、低コスト且つメンテナンスフリーな燃料電池の燃料水素製造用原燃料の脱硫システムとすることができる。
According to the present invention, the following effects (a) to (c) can be obtained.
(A) According to the desulfurization system of the present invention, regarding the replacement of the desulfurization agent necessary for the long-time operation, which is a problem of the room temperature desulfurization method, it is possible to obtain a system that does not require replacement. That is, the room temperature desulfurizer is only used from the start of the desulfurization system until the temperature of the hydrodesulfurization catalyst of the hydrodesulfurization system reaches the operating temperature. It can be a system that is not needed over time.
(I) According to the desulfurization system of the present invention, the increase in capacity of the second adsorbent, which is a problem of the hydrodesulfurization method, is suppressed, and it is not necessary to increase the adsorbent. That is, since the hydrodesulfurizer is used after the operating temperature is reached, the capacity of the second adsorbent layer does not increase.
(C) According to the desulfurization system of the present invention, there is no fear of sulfur desorption from the second adsorbent due to temperature fluctuation, that is, sulfur leak. That is, since the hydrodesulfurizer is used after reaching its operating temperature, there is no concern about leakage of sulfur from the second adsorbent due to temperature fluctuations associated with repeated start-stop.
(D) As a result of (a) to (c) above, it is possible to suppress the increase in capacity of the desulfurization system as a whole, and to provide a low-cost and maintenance-free raw fuel desulfurization system for fuel hydrogen production of a fuel cell. .

本発明(1)〜(5)は、燃料電池の燃料水素製造用原燃料の脱硫システムである。以下、本発明の前提となる技術との関連を含めて本発明を順次説明する。   The present inventions (1) to (5) are raw fuel desulfurization systems for fuel hydrogen production of fuel cells. Hereinafter, the present invention will be described in order, including the relationship with the technology that is the premise of the present invention.

原燃料の脱硫器、改質器系、燃料電池を含むシステムにおける、その改質器系としては円筒式水蒸気改質器、その他各種形式、構造の水蒸気改質器があり、円筒式水蒸気改質器にも各種形式、構造のものがあるが、本発明(1)〜(5)は、それらいずれの改質器系における原燃料の脱硫システムとしても適用される。   In the system including the raw fuel desulfurizer, reformer system, and fuel cell, the reformer system includes a cylindrical steam reformer and other various types and structures of steam reformers. Cylindrical steam reforming Although there are various types and structures of the reactor, the present inventions (1) to (5) are also applied as a raw fuel desulfurization system in any of these reformer systems.

ここでは、円筒式水蒸気改質器のうち、その一例を基に説明するが、他の改質器系についても同様である。図7は、その円筒式水蒸気改質器を配したシステムについ説明する図で、縦断面を示している。この円筒式水蒸気改質器は本発明と相前後して開発したものである〔特願2008−028234(出願日:平成20年2月7日)〕。   Here, although it demonstrates based on the example among cylindrical steam reformers, it is the same also about another reformer system. FIG. 7 is a view for explaining the system provided with the cylindrical steam reformer, and shows a longitudinal section. This cylindrical steam reformer was developed in parallel with the present invention [Japanese Patent Application No. 2008-028234 (filing date: February 7, 2008)].

図7のとおり、直径を順次大きくした、第1円筒体1、第2円筒体2及び第3円筒体3が中心軸を同一にして間隔を置いて配置され、第3円筒体3の上部には第3円筒体3より直径を大きくした第4円筒体4が配置されている。図7中、一点鎖線はその中心軸を示し、矢印はその中心軸の方向、すなわち軸方向を示している。第1円筒体1の内側には中心軸を同じくして、第1円筒体1より直径の小さい円筒状の伝熱隔壁すなわち輻射筒5が配置され、輻射筒5内にはバーナ6が配置されている。バーナ6は、中心軸部に配置され、輻射筒5の内側に上蓋兼バーナ取付台7を介して取り付けられている。   As shown in FIG. 7, the first cylindrical body 1, the second cylindrical body 2, and the third cylindrical body 3, whose diameters are sequentially increased, are arranged at intervals with the same central axis. The fourth cylinder 4 having a diameter larger than that of the third cylinder 3 is arranged. In FIG. 7, the alternate long and short dash line indicates the central axis, and the arrow indicates the direction of the central axis, that is, the axial direction. Inside the first cylindrical body 1, a cylindrical heat transfer partition having a diameter smaller than that of the first cylindrical body 1, i.e., the radiation cylinder 5, is arranged, and a burner 6 is disposed in the radiation cylinder 5. ing. The burner 6 is disposed at the central shaft portion and is attached to the inside of the radiation tube 5 via an upper lid / burner mounting base 7.

輻射筒5は、その下端と第1円筒体1の底板8の間に間隔を設けて配置してあり、この間隙と、これに連なる輻射筒5と第1円筒体1の間の空隙とがバーナ6からの燃焼排ガスの排気通路9を形成している。底板8は第1円筒体1の直径に対応した直径で円盤状に構成されている。排気通路9は、その上部で排気通路9の上蓋(上蓋兼バーナ取付台7の下面)と隔壁10(CO除去触媒層36の上蓋)と隔壁61との間の間隙が予熱層14へ連なる構造となっている。   The radiation cylinder 5 is disposed with a gap between the lower end thereof and the bottom plate 8 of the first cylindrical body 1, and this gap and the gap between the radiation cylinder 5 and the first cylindrical body 1 connected to the gap are provided. An exhaust passage 9 for combustion exhaust gas from the burner 6 is formed. The bottom plate 8 is formed in a disc shape with a diameter corresponding to the diameter of the first cylindrical body 1. The exhaust passage 9 has a structure in which the gap between the upper cover of the exhaust passage 9 (the upper cover and the lower surface of the burner mounting base 7), the partition wall 10 (the upper cover of the CO removal catalyst layer 36), and the partition wall 61 is connected to the preheating layer 14 at the upper part. It has become.

符号61は、CO除去触媒層36の上部の隔壁10に対して間隔を置いて配置された、第1円筒体1の上端部から第4円筒体4に至る隔壁である。当該隔壁61は、第1円筒体1の直径に相当する部分内にはバーナ6による燃焼室、輻射筒5、燃焼排ガスの排気通路9が配置されているので、ドーナツ状の板体である。   Reference numeral 61 denotes a partition wall that is disposed at a distance from the partition wall 10 above the CO removal catalyst layer 36 and extends from the upper end of the first cylinder 1 to the fourth cylinder 4. The partition wall 61 is a donut-shaped plate body because the combustion chamber, the radiant cylinder 5, and the exhaust passage 9 for the combustion exhaust gas are disposed in a portion corresponding to the diameter of the first cylindrical body 1.

符号12は原燃料の供給管である。図示のとおり、原燃料供給管12には脱硫器が配置されている。第1円筒体1と第2円筒体2の間の空間内には、その上部に予熱層14、予熱層14に続く下部に改質触媒層16が設けられている。予熱層14の内部に棒材(丸棒、角棒等)15が螺旋状に配置され、これにより予熱層14の内部に連続した螺旋状のガス通路が形成されている。棒材は一つでも複数でもよく、複数の場合には複数の螺旋状の通路が形成される。改質触媒層16の改質触媒は、その下端部で多孔板、網目体等の支持体17で支持されている。   Reference numeral 12 denotes a raw fuel supply pipe. As illustrated, a desulfurizer is disposed in the raw fuel supply pipe 12. In the space between the first cylindrical body 1 and the second cylindrical body 2, a preheating layer 14 is provided in the upper part, and a reforming catalyst layer 16 is provided in the lower part following the preheating layer 14. A bar (round bar, square bar, etc.) 15 is spirally arranged inside the preheating layer 14, and a continuous spiral gas passage is formed inside the preheating layer 14. One or a plurality of bars may be used, and in the case of a plurality of bars, a plurality of spiral passages are formed. The reforming catalyst of the reforming catalyst layer 16 is supported at its lower end by a support 17 such as a perforated plate or a mesh body.

供給管12から供給された原燃料には、水供給管26から供給される水(水蒸気)が混合され、予熱層14を経て、改質触媒層16に導入され、混合ガス中の原燃料が下降しながら水蒸気により改質される。改質触媒層16における改質反応は吸熱反応であり、バーナ6で発生する燃焼熱を吸収して改質反応が進行する。すなわち、バーナ6での燃焼ガスが輻射筒5と第1円筒体1の間の排気通路9を流通して通過するときに、燃焼ガスの熱が改質触媒層16に吸収され、改質反応が進行する。   The raw fuel supplied from the supply pipe 12 is mixed with water (steam) supplied from the water supply pipe 26, introduced into the reforming catalyst layer 16 through the preheating layer 14, and the raw fuel in the mixed gas is mixed. It is reformed by steam while descending. The reforming reaction in the reforming catalyst layer 16 is an endothermic reaction, and the reforming reaction proceeds by absorbing the combustion heat generated in the burner 6. That is, when the combustion gas in the burner 6 flows through the exhaust passage 9 between the radiation cylinder 5 and the first cylindrical body 1, the heat of the combustion gas is absorbed by the reforming catalyst layer 16, and the reforming reaction is performed. Progresses.

第2円筒体2の下端は第3円筒体3の底板18との間に間隔を置いて配置してあり、第2円筒体2と第3円筒体3の間は、改質ガスの流通路19を構成している。底板18は第3円筒体3の直径に対応した直径で円盤状に構成されている。改質ガスは、第2円筒体2の下端と第3円筒体3の底板18の間で折り返して第2円筒体2と第3円筒体3の間で形成された流通路19を流通する。第3円筒体3の上部には第3円筒体3より直径を大きくした第4円筒体4が配置され、第2円筒体2と第4円筒体4の間にCO変成触媒層22が設けられている。   The lower end of the second cylindrical body 2 is spaced from the bottom plate 18 of the third cylindrical body 3, and the reformed gas flow path is between the second cylindrical body 2 and the third cylindrical body 3. 19 is constituted. The bottom plate 18 is formed in a disc shape with a diameter corresponding to the diameter of the third cylindrical body 3. The reformed gas is folded between the lower end of the second cylindrical body 2 and the bottom plate 18 of the third cylindrical body 3 and flows through the flow passage 19 formed between the second cylindrical body 2 and the third cylindrical body 3. A fourth cylindrical body 4 having a diameter larger than that of the third cylindrical body 3 is disposed above the third cylindrical body 3, and a CO shift catalyst layer 22 is provided between the second cylindrical body 2 and the fourth cylindrical body 4. ing.

第3円筒体3の上端部と第4円筒体4の下端部には板体20(第3円筒体3の直径に相当する部分は第3円筒体3で占められるので、ドーナツ状の板体)が配置され、板体20の上に、間隔を置いてガス流通用の複数の孔を有する支持板21(第2円筒体2の直径に相当する部分は第2円筒体2で占められるので、ドーナツ状の支持板)が配置されている。CO変成触媒層22は、支持板21とガス流通用の複数の孔を有する仕切板23(第2円筒体2の直径に相当する部分は第2円筒体2で占められるのでドーナツ状の仕切板、CO変成触媒層22の上部)の間に設けられている。   A plate 20 (the portion corresponding to the diameter of the third cylinder 3 is occupied by the third cylinder 3 at the upper end of the third cylinder 3 and the lower end of the fourth cylinder 4, so a donut-shaped plate ) And a support plate 21 having a plurality of holes for gas circulation at intervals on the plate 20 (the portion corresponding to the diameter of the second cylinder 2 is occupied by the second cylinder 2). , A donut-shaped support plate) is disposed. The CO conversion catalyst layer 22 includes a support plate 21 and a partition plate 23 having a plurality of holes for gas flow (a portion corresponding to the diameter of the second cylinder 2 is occupied by the second cylinder 2, so a donut-shaped partition plate , The upper part of the CO shift catalyst layer 22).

支持板21、仕切板23は金属製等の網目体で構成してもよく、この場合には網目体の網目がガス流通孔となる。流通路19を流通した改質ガスは、支持板21の孔を経てCO変成触媒層22に供給される。CO変成触媒層22では、CO変成反応「CO+H2O→CO2+H2」により、改質ガス中のCOが二酸化炭素に変成され、併せて水素が生成する。 The support plate 21 and the partition plate 23 may be formed of a mesh body made of metal or the like. In this case, the mesh body of the mesh body serves as a gas flow hole. The reformed gas flowing through the flow passage 19 is supplied to the CO shift catalyst layer 22 through the holes of the support plate 21. In the CO conversion catalyst layer 22, CO in the reformed gas is converted into carbon dioxide by a CO conversion reaction “CO + H 2 O → CO 2 + H 2 ”, and hydrogen is also generated.

ここで、CO変成触媒層から出る改質ガスは、未反応の原燃料(メタン等)と余剰水蒸気を除けば、水素と二酸化炭素からなっている。このうち水素が燃料電池(PEFC)の燃料となるが、CO変成触媒層22を経て得られる改質ガスについても、COは完全には除去されず、1%(容量%)程度以下ではあるが、尚COが含まれている。   Here, the reformed gas emitted from the CO shift catalyst layer is composed of hydrogen and carbon dioxide except for unreacted raw fuel (such as methane) and excess steam. Of these, hydrogen serves as fuel for the fuel cell (PEFC), but the reformed gas obtained through the CO shift catalyst layer 22 is not completely removed of CO but is less than about 1% (volume%). In addition, CO is included.

PEFCに供給する水素中のCOの許容濃度は10ppm(ppm=容量ppm、以下同じ)程度であり、これを超えると電池性能が著しく劣化する。このため、改質ガスはCO変成触媒層22によりCO濃度を1%程度以下まで低下させた後、CO除去触媒層36に供給される。CO除去触媒層36では酸化剤ガスが添加され、COの酸化反応によりCOをCO2に変えることでCOを除去し、CO濃度を10ppm以下、あるいは5ppm以下というように低減させる。なお、酸化剤ガスとしては空気、酸素富化空気、酸素などが使用されるが、通常は空気であるので、以下空気と記載する。 The allowable concentration of CO in the hydrogen supplied to the PEFC is about 10 ppm (ppm = capacity ppm, the same applies hereinafter), and battery performance is significantly deteriorated when exceeding this. Therefore, the reformed gas is supplied to the CO removal catalyst layer 36 after the CO concentration is lowered to about 1% or less by the CO shift catalyst layer 22. In the CO removal catalyst layer 36, an oxidant gas is added, CO is removed by changing CO to CO 2 by the oxidation reaction of CO, and the CO concentration is reduced to 10 ppm or less, or 5 ppm or less. As the oxidant gas, air, oxygen-enriched air, oxygen, or the like is used. However, since it is usually air, it is hereinafter referred to as air.

CO除去触媒層36には、CO除去触媒(PROX触媒とも呼ばれる)が充填してあり、PROX触媒によりCO除去反応、すなわちCOの選択的酸化反応によりCOをCO2に変えることでCOを除去し、CO濃度をppmレベルにまで低減させる。COを除去した改質ガスは、その上蓋である仕切板38に設けられた複数個の孔39から排出され、仕切板38と隔壁10の間の間隙から改質ガス取出管40を経て、PEFCの燃料水素として供給される。 The CO removal catalyst layer 36 is filled with a CO removal catalyst (also referred to as a PROX catalyst). The CO removal reaction is performed by the PROX catalyst, that is, CO is removed by changing CO to CO 2 by a selective oxidation reaction of CO. Reduce CO concentration to ppm level. The reformed gas from which the CO has been removed is discharged from a plurality of holes 39 provided in the partition plate 38 which is the upper lid, passes through the reformed gas take-out pipe 40 from the gap between the partition plate 38 and the partition wall 10, and then passes through the PEFC. Supplied as hydrogen fuel.

CO変成触媒層22の上部の仕切板23との間に間隔を置いて、1個の改質ガス流通孔52を有する第1の仕切板51が配置され、その上部に、当該第1の仕切板51との間に間隔を置いて1個の改質ガス流通孔55を有する第2の仕切板54を配置し、その上部に、当該第2の仕切板54との間に間隔を置いてCO除去触媒層36が位置するように配置されている。   A first partition plate 51 having a single reformed gas flow hole 52 is disposed at a distance from the upper partition plate 23 of the CO conversion catalyst layer 22, and the first partition is disposed above the first partition plate 51. A second partition plate 54 having one reformed gas flow hole 55 is disposed with a space between the plate 51 and an upper portion with a space between the second partition plate 54. It arrange | positions so that the CO removal catalyst layer 36 may be located.

そして、第1の仕切板51の改質ガス流通孔52と第2の仕切板54の改質ガス流通孔55とが周方向に相対する位置、すなわち周方向に反対側に位置するように配置する。図7には、改質ガス流通孔52と改質ガス流通孔55とを周方向に180°反対側の位置に配置した場合を示している。上記周方向に相対する位置は、周方向に180°の反対側の位置であるのが最もよいが、±10°を限度にずれた位置でもよい。   The reformed gas flow holes 52 of the first partition plate 51 and the reformed gas flow holes 55 of the second partition plate 54 are disposed so as to be opposed to each other in the circumferential direction, that is, on the opposite side in the circumferential direction. To do. FIG. 7 shows a case where the reformed gas circulation holes 52 and the reformed gas circulation holes 55 are arranged at positions opposite to the circumferential direction by 180 °. The position facing the circumferential direction is best at a position on the opposite side of 180 ° in the circumferential direction, but may be a position shifted within ± 10 °.

そのように形成されたCO変成触媒層22の上部の仕切板23と第1の仕切板51との間の隙間に空気を供給するようにする。空気は、空気供給管30により供給され、CO変成触媒層22から、その上部に配置された、ガス流出用の複数の孔60を有する仕切板23から流出するCO変成済み改質ガスと混合しながら、第1の仕切板51の改質ガス流通孔52を介して、第1の仕切板51と第2の仕切板54との間の隙間に流入する。   Air is supplied to the gap between the partition plate 23 and the first partition plate 51 on the upper side of the CO shift catalyst layer 22 thus formed. The air is supplied from the air supply pipe 30 and mixed with the CO-modified reformed gas flowing out from the partition plate 23 having a plurality of gas outlet holes 60 arranged at the upper part thereof from the CO-converting catalyst layer 22. However, it flows into the gap between the first partition plate 51 and the second partition plate 54 via the reformed gas flow hole 52 of the first partition plate 51.

空気とCO変成済み改質ガスは、第1の仕切板51と第2の仕切板54との間の隙間でさらに混合しながら、第2の仕切板54の改質ガス流通孔55に至り、当該改質ガス流通孔55を介して、第2の仕切板54とCO除去触媒層22との間の隙間に流入する。   The air and the CO-modified reformed gas reach the reformed gas circulation hole 55 of the second partition plate 54 while being further mixed in the gap between the first partition plate 51 and the second partition plate 54. It flows into the gap between the second partition plate 54 and the CO removal catalyst layer 22 via the reformed gas flow hole 55.

改質ガス流通孔54は、改質ガス流通孔52に対して、周方向に反対側に配置されているので、空気とCO変成済み改質ガスは、第1の仕切板51と第2の仕切板54との間の隙間で混合しながら、改質ガス流通孔52側から改質ガス流通孔55へ向けて流れる。第2の仕切板54とCO除去触媒層36との間の隙間に流入した空気とCO変成済み改質ガスは、支持板34の複数個の孔35からCO除去触媒層36へ流入し、CO除去触媒層36でCO変成済み改質ガス中のCOを除去する。   Since the reformed gas circulation hole 54 is disposed on the opposite side in the circumferential direction with respect to the reformed gas circulation hole 52, the reformed gas having undergone air and CO conversion is separated from the first partition plate 51 and the second gas. It flows from the reformed gas circulation hole 52 side toward the reformed gas circulation hole 55 while mixing in the gap between the partition plate 54 and the partition plate 54. The air and the CO-modified reformed gas that have flowed into the gap between the second partition plate 54 and the CO removal catalyst layer 36 flow into the CO removal catalyst layer 36 through the plurality of holes 35 of the support plate 34, The removal catalyst layer 36 removes CO in the CO-modified reformed gas.

本発明(1)〜(5)の燃料電池の燃料水素製造用原燃料の脱硫システムは、例えば、以上に記載した改質器系における脱硫器の箇所に配置して使用される。   The raw fuel desulfurization system for producing fuel hydrogen of the fuel cell of the present invention (1) to (5) is used, for example, by being disposed at the position of the desulfurizer in the reformer system described above.

〈本発明(1)〜(5)に共通する態様〉
本発明(1)〜(5)の燃料電池の燃料水素製造用原燃料の脱硫システムは、常温脱硫器と水添脱硫器と改質器系を備え、燃料電池の燃料である水素製造用の原燃料から硫黄化合物を除去するための脱硫システムである。
<Mode Common to Present Inventions (1) to (5)>
The raw fuel desulfurization system for producing fuel hydrogen of a fuel cell according to the present invention (1) to (5) includes a room temperature desulfurizer, a hydrodesulfurizer, and a reformer system for producing hydrogen as fuel for the fuel cell. A desulfurization system for removing sulfur compounds from raw fuel.

常温脱硫器は、容器に脱硫剤を充填することで構成される。充填した脱硫剤により、原燃料である都市ガスやガソリン、灯油、その他の原燃料に含まれるメルカプタン類、サルファイド類、あるいはチオフェン類などの硫黄化合物を吸着除去する。脱硫剤には活性炭、金属化合物、ゼオライト、金属担持のゼオライト(ゼオライトにAg、Cu、Zn、Fe、Co、Niなどの金属を担持したもの)、その他各種あるが、いずれも使用される。   The room temperature desulfurizer is configured by filling a container with a desulfurization agent. Adsorbing and removing sulfur compounds such as mercaptans, sulfides, or thiophenes contained in city gas, gasoline, kerosene, and other raw fuels, which are raw fuels, with the filled desulfurizing agent. There are various types of desulfurizing agents such as activated carbon, metal compounds, zeolite, metal-supported zeolite (a zeolite in which a metal such as Ag, Cu, Zn, Fe, Co, Ni, etc. is supported), and various others.

それらの脱硫剤には常温域はもちろん、それより高い温度でも有効な脱硫剤も含まれる。一例としてAgなどの金属担持のゼオライトの場合、常温域から70℃程度の温度まで有効である。本発明においてはそれらの脱硫剤を常温脱硫器に充填して使用する。本明細書中、常温脱硫器における“常温”とは、水添触媒の作動温度との関係で使用しており、常温域から使用脱硫剤が脱硫剤として有効に機能する温度までを含む意味である。   These desulfurization agents include desulfurization agents that are effective not only at room temperature but also at higher temperatures. As an example, a metal-supported zeolite such as Ag is effective from a normal temperature range to a temperature of about 70 ° C. In the present invention, these desulfurizing agents are used by filling them into a room temperature desulfurizer. In this specification, “normal temperature” in the normal temperature desulfurizer is used in relation to the operating temperature of the hydrogenation catalyst, and includes the range from the normal temperature range to the temperature at which the used desulfurization agent functions effectively as a desulfurization agent. is there.

水添脱硫器は、容器に順次、硫黄化合物を水素により硫化水素に変える水添触媒層、硫化水素を吸着する第1吸着剤層、第1吸着剤からリークする僅かな硫化水素を低濃度まで抑える第2吸着剤層を配置することで構成される。水添触媒は、有機硫黄化合物を水素と反応させて、有機硫黄化合物中の硫黄分を硫化水素に変化させるNi−Mo系、Co−Mo系などからなる触媒である。水添触媒により、有機硫黄化合物は200℃程度以上の温度で、その中のS分が水素と置換して離脱し、離脱したS分は硫化水素となる。吸着剤は、生成硫化水素を吸着除去するZnOなどからなる吸着剤である。ZnOは反応:ZnO+H2S→ZnS+H2Oにより、硫化水素のS分を吸着する。 The hydrodesulfurizer is a hydrogenation catalyst layer that sequentially converts sulfur compounds into hydrogen sulfide by hydrogen in a vessel, a first adsorbent layer that adsorbs hydrogen sulfide, and a slight concentration of hydrogen sulfide that leaks from the first adsorbent to a low concentration. It is comprised by arrange | positioning the 2nd adsorbent layer to suppress. The hydrogenation catalyst is a catalyst made of Ni—Mo, Co—Mo, or the like that reacts an organic sulfur compound with hydrogen to change the sulfur content in the organic sulfur compound to hydrogen sulfide. Due to the hydrogenation catalyst, the organic sulfur compound is at a temperature of about 200 ° C. or more, and the S component therein is replaced with hydrogen and separated, and the separated S component becomes hydrogen sulfide. The adsorbent is an adsorbent made of ZnO or the like that adsorbs and removes generated hydrogen sulfide. ZnO adsorbs the S content of hydrogen sulfide by the reaction: ZnO + H 2 S → ZnS + H 2 O.

〈本発明(1)の態様〉
図1は本発明(1)の態様を説明する図である。図1のとおり、常温脱硫器と水添脱硫器とを並列に配置する。原燃料導入管1を二つに分岐し、分岐した一方の分岐管2を常温脱硫器に連結するとともに、分岐した他方の分岐管4を水添脱硫器に連結する。常温脱硫器に連結した一方の分岐管に第1の開閉弁aを配置するとともに、常温脱硫器の脱硫済み原燃料の出口側に第2の開閉弁bを配置した脱硫済み原燃料導出管3を配置する。
なお、常温脱硫器は容器内に脱硫剤を充填することで構成され、水添脱硫器は容器内に水添触媒、第1吸着剤及び第2吸着剤をこの順に充填することで構成されるが、図1中、容器の記載は省略している。この点、図2〜5についても同様である。
<Aspect of the present invention (1)>
FIG. 1 is a diagram for explaining an embodiment of the present invention (1). As shown in FIG. 1, a room temperature desulfurizer and a hydrodesulfurizer are arranged in parallel. The raw fuel introduction pipe 1 is branched into two, one branched branch pipe 2 is connected to a room temperature desulfurizer, and the other branched branch pipe 4 is connected to a hydrodesulfurizer. A desulfurized raw fuel outlet pipe 3 in which a first on-off valve a is arranged on one branch pipe connected to the room temperature desulfurizer and a second on-off valve b is arranged on the outlet side of the desulfurized raw fuel of the room temperature desulfurizer. Place.
The room temperature desulfurizer is configured by filling a vessel with a desulfurizing agent, and the hydrodesulfurizer is configured by filling the vessel with a hydrogenation catalyst, a first adsorbent, and a second adsorbent in this order. However, the description of the container is omitted in FIG. This also applies to FIGS.

水添脱硫器に連結した他方の分岐管4に第3の開閉弁cを配置するとともに、水添脱硫器の脱硫済み原燃料の出口側に第4の開閉弁dを配置した脱硫済み原燃料導出管5を配置する。常温脱硫器からの脱硫済み原燃料導出管3は、水添脱硫器からの原燃料導出管5における第4の開閉弁dの配置箇所に続く位置に連結する。原燃料導出管3を連結した箇所に続く導管6は、改質器系の水蒸気改質器への原燃料供給管であり、前述図7の円筒式水蒸気改質器で言えば原燃料供給管12に相当している。   A desulfurized raw fuel in which a third on-off valve c is arranged in the other branch pipe 4 connected to the hydrodesulfurizer and a fourth on-off valve d is arranged on the desulfurized raw fuel outlet side of the hydrodesulfurizer. A lead-out pipe 5 is arranged. The desulfurized raw fuel outlet pipe 3 from the room temperature desulfurizer is connected to a position following the location of the fourth on-off valve d in the raw fuel outlet pipe 5 from the hydrodesulfurizer. A conduit 6 following the location where the raw fuel outlet pipe 3 is connected is a raw fuel supply pipe to the steam reformer of the reformer system. In the case of the cylindrical steam reformer of FIG. This corresponds to 12.

水添脱硫器に連結した他方の分岐管4には第4の開閉弁eを配置した水素供給管7を配置する。分岐管4に対する水素供給管7の配置箇所は、分岐管4の原燃料導入管1からの分岐位置から水添脱硫器の入口部までの間のいずれの位置でもよいが、好ましくは第3の開閉弁cの後に連結する。図1(a)にはその場合を示している。   The other branch pipe 4 connected to the hydrodesulfurizer is provided with a hydrogen supply pipe 7 provided with a fourth on-off valve e. The hydrogen supply pipe 7 may be disposed on the branch pipe 4 at any position between the branch position of the branch pipe 4 from the raw fuel introduction pipe 1 and the inlet portion of the hydrodesulfurizer. It connects after the on-off valve c. FIG. 1A shows such a case.

本発明(1)に係る燃料電池の燃料水素製造用原燃料の脱硫システムにおいて、その起動時以降、水添脱硫器の温度がその作動温度より低い状態では原燃料を常温脱硫器に供給して脱硫し、その間水添脱硫器を加熱する。そして、水添脱硫器の水添脱硫触媒の温度が作動温度に達した時点で原燃料を水添脱硫器に供給して脱硫するようにする。これら過程における各開閉弁a〜eの弁操作を図1(b)に示している。   In the raw fuel desulfurization system for fuel hydrogen production of a fuel cell according to the present invention (1), after the start-up, the raw fuel is supplied to the room temperature desulfurizer when the temperature of the hydrodesulfurizer is lower than its operating temperature. During the desulfurization, the hydrodesulfurizer is heated. Then, when the temperature of the hydrodesulfurization catalyst of the hydrodesulfurizer reaches the operating temperature, the raw fuel is supplied to the hydrodesulfurizer and desulfurized. FIG. 1B shows the valve operations of the on-off valves a to e in these processes.

起動開始時には、開閉弁a、bを開、開閉弁c、d、eを閉とし、原燃料を常温脱硫器に供給して脱硫する。この間、水添脱硫器を加熱手段〔図1(a)では昇温ヒータと表示〕で加熱し、温度センサ等の温度検出手段により水添触媒の温度を計測し、監視する。この計測、監視を水添脱硫器の水添触媒の温度が作動温度に達するまで続ける。この時点までは、脱硫済み原燃料は導管3、開閉弁bを経て導管6(図7で言えば12)を介して改質器系の水蒸気改質器に供給される。   At the start of startup, the on-off valves a and b are opened, the on-off valves c, d, and e are closed, and the raw fuel is supplied to the room temperature desulfurizer for desulfurization. During this time, the hydrodesulfurizer is heated by heating means (indicated as a temperature rising heater in FIG. 1A), and the temperature of the hydrogenation catalyst is measured and monitored by temperature detecting means such as a temperature sensor. This measurement and monitoring is continued until the temperature of the hydrogenation catalyst of the hydrodesulfurizer reaches the operating temperature. Up to this point, the desulfurized raw fuel is supplied to the steam reformer of the reformer system via the conduit 3 and the on-off valve b and the conduit 6 (12 in FIG. 7).

水添脱硫器の水添触媒の温度が作動温度にまで昇温したら、開閉弁a、bを閉に切り替え、開閉弁c、d、eを開に切り替える。それら開閉弁の切り替え後は、原燃料は水添脱硫器による脱硫となり、脱硫済み原燃料は導管5、開閉弁d、導管6を介して改質器系の水蒸気改質器に供給される。   When the temperature of the hydrogenation catalyst of the hydrodesulfurizer rises to the operating temperature, the on-off valves a and b are switched to close and the on-off valves c, d and e are switched to open. After the switching of these on-off valves, the raw fuel is desulfurized by the hydrodesulfurizer, and the desulfurized raw fuel is supplied to the reformer steam reformer via the conduit 5, the on-off valve d, and the conduit 6.

水添脱硫器の加熱手段は、電気ヒータなどの加熱源でもよく、改質器系の燃焼排ガスなど「燃料電池の燃料水素製造用原燃料の脱硫システム」内の熱源を利用してもよい。また、水素供給管7を介して供給する水素は別途用意した水素ボンベ等から供給してもよく、「燃料電池の燃料水素製造用原燃料の脱硫システム」内の改質器系で製造した水素を利用してもよい。これらの点は本発明(2)〜(5)についても同様である。   The heating means of the hydrodesulfurizer may be a heating source such as an electric heater, or a heat source in a “raw fuel desulfurization system for fuel hydrogen production of a fuel cell” such as a combustion exhaust gas of a reformer system. The hydrogen supplied through the hydrogen supply pipe 7 may be supplied from a separately prepared hydrogen cylinder or the like, and the hydrogen produced by the reformer system in the “desulfurization system of raw fuel for producing fuel hydrogen for fuel cells” May be used. These points also apply to the present inventions (2) to (5).

〈本発明(2)の態様〉
図2は本発明(2)の態様を説明する図である。図2のとおり、常温脱硫器と水添脱硫器とを、この順に直列に配置する。原燃料導入管1を二つに分岐し、分岐した一方の分岐管2を常温脱硫器に連結し、分岐した他方の分岐管4を水添脱硫器に連結する。常温脱硫器に連結した一方の分岐管に第1の開閉弁aを配置し、常温脱硫器の脱硫済み原燃料の出口側に第2の開閉弁bを配置した脱硫済み原燃料導出管3を配置する。
<Aspect of the present invention (2)>
FIG. 2 is a diagram for explaining an aspect of the present invention (2). As shown in FIG. 2, the room temperature desulfurizer and the hydrodesulfurizer are arranged in series in this order. The raw fuel introduction pipe 1 is branched into two, one branched pipe 2 is connected to a room temperature desulfurizer, and the other branched branch pipe 4 is connected to a hydrodesulfurizer. A desulfurized raw fuel outlet pipe 3 in which a first on-off valve a is arranged on one branch pipe connected to the room temperature desulfurizer and a second on-off valve b is arranged on the outlet side of the desulfurized raw fuel of the room temperature desulfurizer is provided. Deploy.

水添脱硫器に連結した他方の分岐管4に第3の開閉弁cを配置し、水添脱硫器の脱硫済み原燃料の出口側に脱硫済み原燃料導出管5を配置する。常温脱硫器からの脱硫済み原燃料導出管3は、水添脱硫器への原燃料導入管4における第3の開閉弁cの配置箇所に続く位置に連結する。分岐管4は、水添脱硫器への原燃料導入管に相当するが、原燃料導出管3が連結された箇所以降は常温脱硫器からの脱硫済み原燃料の導出管を兼ねている。水添脱硫器からの原燃料導出管5は、改質器系の水蒸気改質器への脱硫済み原燃料の供給管であり、前述図7の円筒式水蒸気改質器で言えば原燃料供給管12に相当している。   A third on-off valve c is arranged on the other branch pipe 4 connected to the hydrodesulfurizer, and a desulfurized raw fuel outlet pipe 5 is arranged on the desulfurized raw fuel outlet side of the hydrodesulfurizer. The desulfurized raw fuel lead-out pipe 3 from the room temperature desulfurizer is connected to a position following the location of the third on-off valve c in the raw fuel introduction pipe 4 to the hydrodesulfurizer. The branch pipe 4 corresponds to a raw fuel introduction pipe to the hydrodesulfurizer, but also serves as a desulfurized raw fuel lead-out pipe from the room temperature desulfurizer after the position where the raw fuel lead-out pipe 3 is connected. The raw fuel outlet pipe 5 from the hydrodesulfurizer is a supply pipe for desulfurized raw fuel to the steam reformer of the reformer system. In the case of the cylindrical steam reformer of FIG. This corresponds to the tube 12.

水添脱硫器に連結した他方の分岐管4には第4の開閉弁eを配置した水素供給管7を配置する。分岐管4に対する水素供給管7の配置箇所は、分岐管4の原燃料導入管1からの分岐位置から水添脱硫器の入口部までの間のいずれの位置でもよいが、好ましくは第3の開閉弁cに続く導管のうち、常温脱硫器からの脱硫済み原燃料導出管3の配置箇所以降にに連結する。図2(a)にはその場合を示している。   The other branch pipe 4 connected to the hydrodesulfurizer is provided with a hydrogen supply pipe 7 provided with a fourth on-off valve e. The hydrogen supply pipe 7 may be disposed on the branch pipe 4 at any position between the branch position of the branch pipe 4 from the raw fuel introduction pipe 1 and the inlet portion of the hydrodesulfurizer. Among the conduits following the on-off valve c, the pipes are connected after the arrangement position of the desulfurized raw fuel outlet pipe 3 from the room temperature desulfurizer. FIG. 2A shows such a case.

本発明(2)に係る燃料電池の燃料水素製造用原燃料の脱硫システムにおいて、その起動時以降、水添脱硫器の温度が低い状態では原燃料を常温脱硫器に供給して脱硫し、その間水添脱硫器を加熱する。水添脱硫器の温度が作動温度に達した時点で原燃料を水添脱硫器に供給して脱硫するようにする。これら過程における各開閉弁a〜c、eの弁操作を図2(b)に示している。   In the raw fuel desulfurization system for fuel hydrogen production of a fuel cell according to the present invention (2), the raw fuel is supplied to the room temperature desulfurizer and desulfurized after the start-up when the temperature of the hydrodesulfurizer is low, Heat the hydrodesulfurizer. When the temperature of the hydrodesulfurizer reaches the operating temperature, the raw fuel is supplied to the hydrodesulfurizer and desulfurized. FIG. 2B shows the valve operations of the on-off valves a to c and e in these processes.

起動開始時には、開閉弁a、bを開、開閉弁c、eを閉とし、原燃料を常温脱硫器に供給して脱硫する。この間、水添脱硫器を加熱手段〔図2(a)では昇温ヒータと表示〕で加熱し、温度検出手段により水添触媒の温度を計測、監視する。この状態を水添脱硫器の水添触媒の温度が作動温度に達するまで続ける。この時点までは、脱硫済み原燃料は導管3、開閉弁bを経て導管4(開閉弁cに続く導管)、水添脱硫器を経て導管5(図7で言えば12)を介して改質器系の水蒸気改質器に供給される。   At the start of startup, the on-off valves a and b are opened, the on-off valves c and e are closed, and the raw fuel is supplied to the room temperature desulfurizer for desulfurization. During this time, the hydrodesulfurizer is heated by heating means (indicated as a temperature raising heater in FIG. 2A), and the temperature of the hydrogenation catalyst is measured and monitored by the temperature detecting means. This state is continued until the temperature of the hydrogenation catalyst of the hydrodesulfurizer reaches the operating temperature. Up to this point, the desulfurized raw fuel is reformed through the conduit 3, the on-off valve b, the conduit 4 (the conduit following the on-off valve c), and the hydrodesulfurizer through the conduit 5 (12 in FIG. 7). Is supplied to a steam reformer.

水添脱硫器の水添触媒の温度が作動温度にまで昇温したら、開閉弁a、bを閉に切り替え、開閉弁c、eを開に切り替える。切り替え後は、原燃料は水添脱硫器による脱硫となり、脱硫済み原燃料は導管5を介して改質器系の水蒸気改質器に供給される。   When the temperature of the hydrogenation catalyst of the hydrodesulfurizer rises to the operating temperature, the on-off valves a and b are switched to close and the on-off valves c and e are switched to open. After the switching, the raw fuel is desulfurized by the hydrodesulfurizer, and the desulfurized raw fuel is supplied to the steam reformer of the reformer system via the conduit 5.

〈本発明(3)の態様〉
図3は本発明(3)の態様を説明する図である。図3のとおり、水添脱硫器と常温脱硫器とを、この順に直列に配置する。前述本発明(2)との対比で言えば、水添脱硫器と常温脱硫器の両脱硫器を直列に配置する点では同じであるが、本発明(3)では、原燃料の流れ方向でみて、水添脱硫器を先に配置し、これに続き常温脱硫器を配置する点で本発明(2)とは異なる。
<Aspect of the present invention (3)>
FIG. 3 is a diagram for explaining an aspect of the present invention (3). As shown in FIG. 3, the hydrodesulfurizer and the room temperature desulfurizer are arranged in series in this order. In contrast to the above-mentioned present invention (2), the hydrodesulfurizer and the room temperature desulfurizer are the same in that both desulfurizers are arranged in series, but in the present invention (3), the flow direction of raw fuel is the same. In view of this, it differs from the present invention (2) in that the hydrodesulfurizer is arranged first, followed by the room temperature desulfurizer.

原燃料導入管1を二つに分岐し、分岐した一方の分岐管2を常温脱硫器に連結し、分岐した他方の分岐管4を水添脱硫器に連結する。常温脱硫器に連結した一方の分岐管に第1の開閉弁aを配置し、常温脱硫器の出口側に導管5を配置する。導管5は、改質器系の水蒸気改質器への脱硫済み原燃料の供給管であり、前述図7の円筒式水蒸気改質器で言えば原燃料供給管12に相当している。   The raw fuel introduction pipe 1 is branched into two, one branched pipe 2 is connected to a room temperature desulfurizer, and the other branched branch pipe 4 is connected to a hydrodesulfurizer. A first on-off valve a is arranged on one branch pipe connected to the room temperature desulfurizer, and a conduit 5 is arranged on the outlet side of the room temperature desulfurizer. The conduit 5 is a supply pipe for desulfurized raw fuel to the steam reformer of the reformer system, and corresponds to the raw fuel supply pipe 12 in the case of the cylindrical steam reformer of FIG.

水添脱硫器に連結した他方の分岐管4に第2の開閉弁bを配置し、水添脱硫器の脱硫済み原燃料の出口側に第3の開閉弁cを配置した脱硫済み原燃料導出管4を配置する。水添脱硫器からの脱硫済み原燃料導出管4は、常温脱硫器への原燃料導入管2における第1の開閉弁aの配置箇所に続く位置に連結する。   Desulfurized raw fuel derivation in which a second on-off valve b is arranged on the other branch pipe 4 connected to the hydrodesulfurizer, and a third on-off valve c is arranged on the desulfurized raw fuel outlet side of the hydrodesulfurizer. Place the tube 4. The desulfurized raw fuel lead-out pipe 4 from the hydrodesulfurizer is connected to a position following the location of the first on-off valve a in the raw fuel introduction pipe 2 to the room temperature desulfurizer.

水添脱硫器に連結した他方の分岐管3には第3の開閉弁eを配置した水素供給管7を配置する。分岐管3に対する水素供給管7の配置箇所は、分岐管3の原燃料導入管1からの分岐位置から水添脱硫器の入口部までの間のいずれの位置でもよいが、好ましくは第2の開閉弁bの後に連結する。図3(a)にはその場合を示している。   The other branch pipe 3 connected to the hydrodesulfurizer is provided with a hydrogen supply pipe 7 provided with a third on-off valve e. The hydrogen supply pipe 7 may be disposed on the branch pipe 3 at any position between the branch position of the branch pipe 3 from the raw fuel introduction pipe 1 and the inlet portion of the hydrodesulfurizer, preferably the second position. It connects after the on-off valve b. FIG. 3A shows such a case.

本発明(3)に係る燃料電池の燃料水素製造用原燃料の脱硫システムにおいて、その起動時以降、水添脱硫器の温度が低い状態では原燃料を常温脱硫器に供給して脱硫し、その間水添脱硫器を加熱する。水添脱硫器の温度が作動温度に達した時点で原燃料を水添脱硫器に供給して脱硫するようにする。これら過程における各開閉弁a〜eの弁操作を図3(b)に示している。   In the raw fuel desulfurization system for fuel hydrogen production of a fuel cell according to the present invention (3), after the start-up, when the temperature of the hydrodesulfurizer is low, the raw fuel is supplied to the room temperature desulfurizer and desulfurized, Heat the hydrodesulfurizer. When the temperature of the hydrodesulfurizer reaches the operating temperature, the raw fuel is supplied to the hydrodesulfurizer and desulfurized. FIG. 3B shows the valve operations of the on-off valves a to e in these processes.

起動開始時には、開閉弁aを開、開閉弁b、c、eを閉とし、原燃料を常温脱硫器に供給して脱硫する。この間、水添脱硫器を加熱手段〔図3(a)では昇温ヒータと表示〕により加熱し、温度検出手段により水添触媒の温度を計測、監視する。この状態を水添脱硫器の水添触媒の温度が作動温度に達するまで続ける。この間、原燃料は常温脱硫器による脱硫となり、脱硫済み原燃料は導管5(図7で言えば12)を介して改質器系の水蒸気改質器に供給される。   At the start of startup, the on-off valve a is opened, the on-off valves b, c, and e are closed, and the raw fuel is supplied to the room temperature desulfurizer for desulfurization. During this time, the hydrodesulfurizer is heated by heating means (indicated as a temperature rising heater in FIG. 3A), and the temperature of the hydrogenation catalyst is measured and monitored by the temperature detecting means. This state is continued until the temperature of the hydrogenation catalyst of the hydrodesulfurizer reaches the operating temperature. During this time, the raw fuel is desulfurized by the room temperature desulfurizer, and the desulfurized raw fuel is supplied to the steam reformer of the reformer system through the conduit 5 (12 in FIG. 7).

水添脱硫器の水添触媒の温度が作動温度にまで昇温したら、開閉弁aを閉に切り替え、開閉弁b、c、eを開に切り替える。切り替え後は、原燃料は水添脱硫器による脱硫となり、脱硫済み原燃料は導管4、開閉弁c、常温脱硫器を経て、導管5を介して改質器系の水蒸気改質器に供給される。   When the temperature of the hydrogenation catalyst of the hydrodesulfurizer rises to the operating temperature, the on / off valve a is switched to close and the on / off valves b, c, and e are switched to open. After the switching, the raw fuel is desulfurized by the hydrodesulfurizer, and the desulfurized raw fuel is supplied to the steam reformer of the reformer system via the conduit 4, the on-off valve c, and the room temperature desulfurizer. The

〈本発明(4)の態様〉
図4は本発明(4)を説明する図である。図4のとおり、常温脱硫器を改質器系外に配置し、水添脱硫器を改質器系の下部に配置する。これを前述図7の例にして言えば、改質触媒部Aの下部に配置する。作動時に改質触媒部Aは600℃程度以上の温度であるので、水添脱硫器を第3円筒体3の底板18の下部に配置することにより、その熱を水添脱硫器の加熱に利用することができる。
<Aspect of the present invention (4)>
FIG. 4 is a diagram for explaining the present invention (4). As shown in FIG. 4, the room temperature desulfurizer is disposed outside the reformer system, and the hydrodesulfurizer is disposed at the lower part of the reformer system. In the example of FIG. 7 described above, this is disposed at the lower part of the reforming catalyst portion A. Since the reforming catalyst part A is at a temperature of about 600 ° C. or more during operation, the heat is utilized for heating the hydrodesulfurizer by disposing the hydrodesulfurizer below the bottom plate 18 of the third cylindrical body 3. can do.

原燃料導入管1を二つに分岐し、分岐した一方の分岐管2を常温脱硫器に連結し、分岐した他方の分岐管5を水添脱硫器に連結する。常温脱硫器に連結した一方の分岐管2に第1の開閉弁aを配置し、常温脱硫器の脱硫済み原燃料の出口側に第2の開閉弁bを配置した脱硫済み原燃料導出管3、4を配置する。以下での説明の便のため、第2の開閉弁bに続く導管を原燃料導出管4としている。   The raw fuel introduction pipe 1 is branched into two, one branched pipe 2 is connected to a room temperature desulfurizer, and the other branched branch pipe 5 is connected to a hydrodesulfurizer. A desulfurized raw fuel outlet pipe 3 in which a first on-off valve a is arranged in one branch pipe 2 connected to the room temperature desulfurizer and a second on-off valve b is arranged on the outlet side of the desulfurized raw fuel in the room temperature desulfurizer. 4 are arranged. For convenience of the following explanation, a conduit following the second on-off valve b is a raw fuel outlet tube 4.

水添脱硫器に連結した他方の分岐管5に第3の開閉弁cを配置する。分岐管5は水添脱硫器への原燃料導入管に相当する。水添脱硫器の脱硫済み原燃料の出口側に第4の開閉弁dを配置した脱硫済み原燃料導出管6を配置する。原燃料導出管6は第2の開閉弁bの位置に続く原燃料導出管4に連結する。原燃料導出管4は、改質器系の水蒸気改質器への脱硫済み原燃料の供給管であり、前述図7の円筒式水蒸気改質器で言えば原燃料供給管12に相当している。   A third on-off valve c is disposed on the other branch pipe 5 connected to the hydrodesulfurizer. The branch pipe 5 corresponds to a raw fuel introduction pipe to the hydrodesulfurizer. A desulfurized raw fuel lead-out pipe 6 in which a fourth on-off valve d is arranged is arranged on the desulfurized raw fuel outlet side of the hydrodesulfurizer. The raw fuel outlet pipe 6 is connected to the raw fuel outlet pipe 4 following the position of the second on-off valve b. The raw fuel outlet pipe 4 is a supply pipe for desulfurized raw fuel to the steam reformer of the reformer system, and corresponds to the raw fuel supply pipe 12 in the case of the cylindrical steam reformer of FIG. Yes.

水添脱硫器に連結した他方の分岐管5には第5の開閉弁eを配置した水素供給管7を配置する。分岐管5に対する水素供給管7の配置箇所は、分岐管5の原燃料導入管1からの分岐位置から水添脱硫器の入口部までの間のいずれの位置でもよいが、好ましくは第5の開閉弁cの後に連結する。図4(a)にはその場合を示している。   The other branch pipe 5 connected to the hydrodesulfurizer is provided with a hydrogen supply pipe 7 provided with a fifth on-off valve e. The hydrogen supply pipe 7 may be disposed at any position between the branch position of the branch pipe 5 from the raw fuel introduction pipe 1 and the inlet portion of the hydrodesulfurizer, preferably the fifth pipe. It connects after the on-off valve c. FIG. 4A shows such a case.

本発明(4)に係る燃料電池の燃料水素製造用原燃料の脱硫システムにおいて、その起動時以降、水添脱硫器の温度が低い状態では原燃料を常温脱硫器に供給して脱硫し、その間水添脱硫器を加熱する。水添脱硫器の温度が作動温度に達した時点で原燃料を水添脱硫器に供給して脱硫するようにする。このら過程における各開閉弁a〜eの弁操作を図4(b)に示している。   In the raw fuel desulfurization system for fuel hydrogen production of a fuel cell according to the present invention (4), the raw fuel is supplied to the normal temperature desulfurizer and desulfurized after the start-up when the temperature of the hydrodesulfurizer is low. Heat the hydrodesulfurizer. When the temperature of the hydrodesulfurizer reaches the operating temperature, the raw fuel is supplied to the hydrodesulfurizer and desulfurized. FIG. 4B shows the valve operations of the on-off valves a to e in these processes.

起動開始時には、開閉弁a、bを開、開閉弁c、d、eを閉とし、原燃料を常温脱硫器に供給して脱硫する。この間、水添脱硫器を改質器系により加熱し、温度検出手段により水添触媒の温度を計測し、監視する。この状態を水添脱硫器の水添触媒の温度が作動温度に達するまで続ける。この間、原燃料は常温脱硫器による脱硫となり、脱硫済み原燃料は導管3、開閉弁bを経て、導管4を介して改質器系の水蒸気改質器に供給される。   At the start of startup, the on-off valves a and b are opened, the on-off valves c, d, and e are closed, and the raw fuel is supplied to the room temperature desulfurizer for desulfurization. During this time, the hydrodesulfurizer is heated by the reformer system, and the temperature of the hydrogenation catalyst is measured and monitored by the temperature detection means. This state is continued until the temperature of the hydrogenation catalyst of the hydrodesulfurizer reaches the operating temperature. During this time, the raw fuel is desulfurized by the room temperature desulfurizer, and the desulfurized raw fuel is supplied to the reformer steam reformer via the conduit 3 and the on-off valve b.

水添脱硫器の水添触媒の温度が作動温度にまで昇温したら、開閉弁a、bを閉に切り替え、開閉弁c、d、eを開に切り替える。切り替え後は、原燃料は水添脱硫器による脱硫となり、脱硫済み原燃料は導管6、開閉弁dを経て、導管4(図7で言えば12)を介して改質器系の水蒸気改質器に供給される。   When the temperature of the hydrogenation catalyst of the hydrodesulfurizer rises to the operating temperature, the on-off valves a and b are switched to close and the on-off valves c, d and e are switched to open. After the switching, the raw fuel is desulfurized by the hydrodesulfurizer, and the desulfurized raw fuel is subjected to steam reforming of the reformer system through the conduit 6 and the on-off valve d and through the conduit 4 (12 in FIG. 7). Supplied to the vessel.

本発明(4)の脱硫システムにおいては、水添脱硫器の加熱に必要な熱として改質器系の余熱を利用するので、前述本発明(1)〜(3)の脱硫システムにおいては別途必要な加熱手段(図1〜3では昇温ヒータと表示)を省略することができる。   In the desulfurization system of the present invention (4), since the residual heat of the reformer system is used as the heat necessary for heating the hydrodesulfurizer, it is necessary separately in the desulfurization system of the present invention (1) to (3). Heating means (shown as a temperature raising heater in FIGS. 1 to 3) can be omitted.

〈本発明(5)の態様〉
図5は本発明(5)を説明する図である。図5のとおり、常温脱硫器を改質器系外に配置し、水添脱硫器を改質器系の下部に配置する。これを前述図7の例にして言えば、改質触媒部Aの下部に配置する。改質触媒部Aは600℃程度以上の温度であるので、水添脱硫器を第3円筒体3の底板18の下部に配置することにより、その熱を水添脱硫器の加熱に利用することができる。
<Aspect of the present invention (5)>
FIG. 5 is a diagram for explaining the present invention (5). As shown in FIG. 5, the room temperature desulfurizer is disposed outside the reformer system, and the hydrodesulfurizer is disposed at the lower part of the reformer system. In the example of FIG. 7 described above, this is disposed at the lower part of the reforming catalyst portion A. Since the reforming catalyst part A is at a temperature of about 600 ° C. or higher, the heat is utilized for heating the hydrodesulfurizer by disposing the hydrodesulfurizer below the bottom plate 18 of the third cylindrical body 3. Can do.

原燃料導入管1を二つに分岐し、分岐した一方の分岐管2を常温脱硫器に連結し、分岐した他方の分岐管4を水添脱硫器に連結する。常温脱硫器に連結した一方の分岐管2に第1の開閉弁aを配置し、常温脱硫器の脱硫済み原燃料の出口側に第2の開閉弁bを配置した脱硫済み原燃料導出管3を配置する。原燃料導出管3は分岐管4に連結する。   The raw fuel introduction pipe 1 is branched into two, one branched pipe 2 is connected to a room temperature desulfurizer, and the other branched branch pipe 4 is connected to a hydrodesulfurizer. A desulfurized raw fuel outlet pipe 3 in which a first on-off valve a is arranged in one branch pipe 2 connected to the room temperature desulfurizer and a second on-off valve b is arranged on the outlet side of the desulfurized raw fuel in the room temperature desulfurizer. Place. The raw fuel outlet pipe 3 is connected to the branch pipe 4.

水添脱硫器に連結した他方の分岐管4に第3の開閉弁cを配置する。分岐管4は、水添脱硫器への原燃料導入管に相当するが、原燃料導出管3が連結された箇所以降は常温脱硫器からの脱硫済み原燃料の導出管を兼ねている。水添脱硫器からの脱硫済み原燃料の出口側に脱硫済み原燃料導出管5を配置する。原燃料導出管5は、改質器系の水蒸気改質器への脱硫済み原燃料の供給管であり、前述図7の円筒式水蒸気改質器で言えば原燃料供給管12に相当している。   A third on-off valve c is disposed on the other branch pipe 4 connected to the hydrodesulfurizer. The branch pipe 4 corresponds to a raw fuel introduction pipe to the hydrodesulfurizer, but also serves as a desulfurized raw fuel lead-out pipe from the room temperature desulfurizer after the position where the raw fuel lead-out pipe 3 is connected. A desulfurized raw fuel outlet pipe 5 is arranged on the outlet side of the desulfurized raw fuel from the hydrodesulfurizer. The raw fuel outlet pipe 5 is a supply pipe for desulfurized raw fuel to the steam reformer of the reformer system, and corresponds to the raw fuel supply pipe 12 in the case of the cylindrical steam reformer of FIG. Yes.

水添脱硫器に連結した他方の分岐管4には第4の開閉弁eを配置した水素供給管7を配置する。分岐管4に対する水素供給管7の配置箇所は、原燃料導入管1からの分岐管4の分岐位置から水添脱硫器の入口部までの間のいずれの位置でもよいが、好ましくは分岐管4に対する原燃料導出管3の連結部に続く導管に連結する。図5(a)にはその場合を示している。   The other branch pipe 4 connected to the hydrodesulfurizer is provided with a hydrogen supply pipe 7 provided with a fourth on-off valve e. The hydrogen supply pipe 7 may be disposed at any position between the branch position of the branch pipe 4 from the raw fuel introduction pipe 1 and the inlet portion of the hydrodesulfurizer, preferably the branch pipe 4. It connects with the conduit | pipe following the connection part of the raw fuel outlet tube 3 with respect to. FIG. 5A shows such a case.

本発明(5)に係る燃料電池の燃料水素製造用原燃料の脱硫システムにおいて、その起動時以降、水添脱硫器の温度が低い状態では原燃料を常温脱硫器に供給して脱硫し、その間水添脱硫器を加熱する。水添脱硫器の温度が作動温度に達した時点で原燃料を水添脱硫器に供給して脱硫するようにする。このら過程における各開閉弁a〜c、eの弁操作を図5(b)に示している。   In the raw fuel desulfurization system for fuel hydrogen production of a fuel cell according to the present invention (5), after the start-up, when the temperature of the hydrodesulfurizer is low, the raw fuel is supplied to the room temperature desulfurizer and desulfurized, Heat the hydrodesulfurizer. When the temperature of the hydrodesulfurizer reaches the operating temperature, the raw fuel is supplied to the hydrodesulfurizer and desulfurized. FIG. 5B shows the valve operations of the on-off valves a to c and e in these processes.

起動開始時には、開閉弁a、bを開、開閉弁c、eを閉とし、原燃料を常温脱硫器に供給して脱硫する。この間、水添脱硫器を改質器系により加熱し、温度検出手段により水添触媒の温度を計測、監視する。この状態を水添脱硫器の水添触媒の温度が作動温度に達するまで続ける。この間、原燃料は常温脱硫器による脱硫となり、脱硫済み原燃料は導管3、開閉弁b、分岐管4のうち開閉弁cに続く導管、水添脱硫器を経て、導管5(図7で言えば12)を介して改質器系の水蒸気改質器に供給される。   At the start of startup, the on-off valves a and b are opened, the on-off valves c and e are closed, and the raw fuel is supplied to the room temperature desulfurizer for desulfurization. During this time, the hydrodesulfurizer is heated by the reformer system, and the temperature of the hydrogenation catalyst is measured and monitored by the temperature detection means. This state is continued until the temperature of the hydrogenation catalyst of the hydrodesulfurizer reaches the operating temperature. During this time, the raw fuel is desulfurized by a room temperature desulfurizer, and the desulfurized raw fuel passes through the conduit 3, the on-off valve b and the branch pipe 4, the conduit following the on-off valve c, and the hydrodesulfurizer, and then the conduit 5 (in FIG. 7). 12) to the steam reformer of the reformer system.

水添脱硫器の水添触媒の温度が作動温度にまで昇温したら、開閉弁a、bを閉に切り替え、開閉弁c、eを開に切り替える。切り替え後は、原燃料は水添脱硫器による脱硫となり、脱硫済み原燃料は導管5を介して改質器系の水蒸気改質器に供給される。   When the temperature of the hydrogenation catalyst of the hydrodesulfurizer rises to the operating temperature, the on-off valves a and b are switched to close and the on-off valves c and e are switched to open. After the switching, the raw fuel is desulfurized by the hydrodesulfurizer, and the desulfurized raw fuel is supplied to the steam reformer of the reformer system via the conduit 5.

本発明(5)の脱硫システムにおいては、本発明(4)と同様、水添脱硫器の加熱に必要な熱を改質器系の余熱を利用するので、本発明(1)〜(3)の脱硫システムにおいては別途必要な加熱手段(図1〜3では昇温ヒータと表示)を省略することができる。   In the desulfurization system of the present invention (5), as in the case of the present invention (4), since the heat necessary for heating the hydrodesulfurizer is used as the residual heat of the reformer system, the present invention (1) to (3) In the desulfurization system, a heating means (represented as a temperature raising heater in FIGS. 1 to 3) that is separately required can be omitted.

本発明(1)の態様を説明する図The figure explaining the aspect of this invention (1) 本発明(2)の態様を説明する図The figure explaining the aspect of this invention (2) 本発明(3)の態様を説明する図The figure explaining the aspect of this invention (3) 本発明(4)の態様を説明する図The figure explaining the aspect of this invention (4) 本発明(5)の態様を説明する図The figure explaining the aspect of this invention (5) 水蒸気改質器を用い、原燃料の処理からPEFCに至るまでの態様例を説明する図The figure explaining the example of a mode from processing of raw fuel to PEFC using a steam reformer 本発明を適用する改質器系の一例を説明する図The figure explaining an example of the reformer system to which the present invention is applied

符号の説明Explanation of symbols

1 第1円筒体
2 第2円筒体
3 第3円筒体
4 第4円筒体
5 輻射筒
6 バーナ
7 上蓋兼バーナ取付台
8 底板
9 燃焼排ガスの排気通路
10 隔壁(後述予熱層14の上蓋)
11 燃焼排ガスの排出口
12 原燃料供給管
22 CO変成触媒層
26 水供給管
36 CO除去触媒層
30 空気供給管
40 改質ガス取出管(導出管)
51 第1の仕切板
52 1個の改質ガス流通孔
54 第2の仕切板
55 1個の改質ガス流通孔
61 隔壁
DESCRIPTION OF SYMBOLS 1 1st cylindrical body 2 2nd cylindrical body 3 3rd cylindrical body 4 4th cylindrical body 5 Radiation tube 6 Burner 7 Upper cover and burner mounting base 8 Bottom plate 9 Exhaust passage of combustion exhaust gas 10 Bulkhead (upper cover of preheating layer 14 described later)
11 Combustion exhaust gas discharge port 12 Raw fuel supply pipe 22 CO conversion catalyst layer 26 Water supply pipe 36 CO removal catalyst layer 30 Air supply pipe 40 Reformed gas take-out pipe (outlet pipe)
51 1st partition plate 52 1 reformed gas flow hole 54 2nd partition plate 55 1 reformed gas flow hole 61 partition

Claims (5)

燃料電池の燃料水素製造用原燃料の脱硫システムであって、
(A)常温脱硫器と水添脱硫器とを並列に配置するとともに、原燃料導入管を二つに分岐し、
(B)前記分岐した一方の分岐管を常温脱硫器に連結するとともに、前記分岐した他方の分岐管を水添脱硫器に連結し、
(C)常温脱硫器に連結した前記一方の分岐管に第1の開閉弁aを配置するとともに、常温脱硫器からの脱硫済み原燃料の出口側に第2の開閉弁bを配置した脱硫済み原燃料導出管を配置し、
(D)水添脱硫器に連結した前記他方の分岐管に、第3の開閉弁cを配置するとともに、第5の開閉弁eを配置した水素供給管を配置し、水添脱硫器からの脱硫済み原燃料の出口側に第4の開閉弁dを配置した脱硫済み原燃料導出管を配置し、且つ、
(E)常温脱硫器からの脱硫済み原燃料の出口側導管を第4の開閉弁dに続く導管に配置してなり、
(F)その起動時以降、水添脱硫器の水添触媒の温度が作動温度より低い状態では原燃料を常温脱硫器に供給して脱硫し、水添脱硫器の水添触媒の温度が作動温度に達した時点で原燃料を水添脱硫器のみに供給して脱硫するようにしてなる
ことを特徴とする燃料電池の燃料水素製造用原燃料の脱硫システム。
A desulfurization system for raw fuel for fuel hydrogen production of a fuel cell,
(A) A room temperature desulfurizer and a hydrodesulfurizer are arranged in parallel, and the raw fuel introduction pipe is branched into two.
(B) The one branched pipe is connected to a room temperature desulfurizer, and the other branched pipe is connected to a hydrodesulfurizer,
(C) The first on-off valve a is disposed on the one branch pipe connected to the room temperature desulfurizer, and the second on-off valve b is disposed on the outlet side of the desulfurized raw fuel from the room temperature desulfurizer. Place the raw fuel outlet pipe,
(D) A third on-off valve c and a hydrogen supply pipe on which a fifth on-off valve e is arranged are arranged on the other branch pipe connected to the hydrodesulfurizer. A desulfurized raw fuel outlet pipe having a fourth on-off valve d disposed on the outlet side of the desulfurized raw fuel, and
(E) An outlet side conduit for desulfurized raw fuel from a room temperature desulfurizer is disposed in a conduit following the fourth on-off valve d,
(F) After the start-up, when the temperature of the hydrogenation catalyst of the hydrodesulfurizer is lower than the operating temperature, the raw fuel is supplied to the room temperature desulfurizer for desulfurization, and the temperature of the hydrogenation catalyst of the hydrodesulfurizer is activated. When the temperature is reached, the raw fuel is supplied only to the hydrodesulfurizer for desulfurization. A raw fuel desulfurization system for producing fuel hydrogen for a fuel cell.
燃料電池の燃料水素製造用原燃料の脱硫システムであって、
(A)常温脱硫器と水添脱硫器とを直列に配置するとともに、原燃料導入管を二つに分岐し、
(B)前記分岐した一方の分岐管を常温脱硫器に連結し、前記分岐した他方の分岐管を水添脱硫器に連結するとともに、水添脱硫器の出口側に脱硫済み原燃料の導出管を連結し、
(C)前記分岐した一方の分岐管に第1の開閉弁aを配置し、常温脱硫器からの脱硫済み原燃料導出管に第2の開閉弁bを配置し、前記分岐した他方の分岐管に、第3の開閉弁cを配置するとともに、第4の開閉弁eを配置した水素供給管を配置し、且つ、
(D)前記第2の開閉弁bを配置した脱硫済み原燃料導出管を前記第3の開閉弁cと水添脱硫器との間の導管に配置してなり、
(E)その起動時以降、水添脱硫器の水添触媒の温度が作動温度より低い状態では原燃料を常温脱硫器に供給して脱硫し、水添脱硫器の水添触媒の温度が作動温度に達した時点で原燃料を水添脱硫器のみに供給して脱硫するようにしてなる
ことを特徴とする燃料電池の燃料水素製造用原燃料の脱硫システム。
A desulfurization system for raw fuel for fuel hydrogen production of a fuel cell,
(A) A normal temperature desulfurizer and a hydrodesulfurizer are arranged in series, and the raw fuel introduction pipe is branched into two,
(B) The one branched pipe is connected to a room temperature desulfurizer, the other branched pipe is connected to a hydrodesulfurizer, and a desulfurized raw fuel outlet pipe is connected to the outlet side of the hydrodesulfurizer. And
(C) The first on-off valve a is arranged on the one branched pipe, the second on-off valve b is arranged on the desulfurized raw fuel outlet pipe from the room temperature desulfurizer, and the other branched pipe is branched. And a hydrogen supply pipe having a fourth on-off valve e and a third on-off valve c, and
(D) The desulfurized raw fuel lead-out pipe in which the second on-off valve b is arranged is arranged in a conduit between the third on-off valve c and the hydrodesulfurizer,
(E) After the start-up, when the temperature of the hydrogenation catalyst of the hydrodesulfurizer is lower than the operating temperature, the raw fuel is supplied to the room temperature desulfurizer for desulfurization, and the temperature of the hydrogenation catalyst of the hydrodesulfurizer is activated. When the temperature is reached, the raw fuel is supplied only to the hydrodesulfurizer for desulfurization. A raw fuel desulfurization system for producing fuel hydrogen for a fuel cell.
燃料電池の燃料水素製造用原燃料の脱硫システムであって、
(A)常温脱硫器と水添脱硫器とを直列に配置するとともに、原燃料導入管を二つに分岐し、
(B)前記分岐した一方の分岐管を常温脱硫器に連結し、前記分岐した他方の分岐管を水添脱硫器に連結するとともに、常温脱硫器の出口側に脱硫済み原燃料の導出管を連結し、
(C)常温脱硫器に連結した前記分岐した一方の分岐管に第1の開閉弁aを配置し、水添脱硫器に連結した前記分岐した他方の分岐管に、第2の開閉弁bを配置するとともに、第4の開閉弁eを配置した水素供給管を配置し、且つ、
(D)水添脱硫器からの脱硫済み原燃料導出管に第3の開閉弁cを配置し、前記水添脱硫器からの脱硫済み原燃料導出管を前記第1の開閉弁aから常温脱硫器に至る導管に配置してなり、
(E)その起動時以降、水添脱硫器の水添触媒の温度が作動温度より低い状態では原燃料を常温脱硫器に供給して脱硫し、水添脱硫器の水添触媒の温度が作動温度に達した時点で原燃料を水添脱硫器のみに供給して脱硫するようにしてなる
ことを特徴とする燃料電池の燃料水素製造用原燃料の脱硫システム。
A desulfurization system for raw fuel for fuel hydrogen production of a fuel cell,
(A) A normal temperature desulfurizer and a hydrodesulfurizer are arranged in series, and the raw fuel introduction pipe is branched into two,
(B) The one branched pipe is connected to a room temperature desulfurizer, the other branched pipe is connected to a hydrodesulfurizer, and a desulfurized raw fuel outlet pipe is connected to the outlet side of the room temperature desulfurizer. Concatenate,
(C) A first on-off valve a is disposed on the one branched pipe connected to the room temperature desulfurizer, and a second on-off valve b is provided on the other branched pipe connected to the hydrodesulfurizer. And a hydrogen supply pipe having a fourth on-off valve e disposed therein, and
(D) A third on-off valve c is arranged in the desulfurized raw fuel outlet pipe from the hydrodesulfurizer, and the desulfurized raw fuel outlet pipe from the hydrodesulfurizer is desulfurized at room temperature from the first on-off valve a. Arranged in a conduit leading to the vessel,
(E) After the start-up, when the temperature of the hydrogenation catalyst of the hydrodesulfurizer is lower than the operating temperature, the raw fuel is supplied to the room temperature desulfurizer for desulfurization, and the temperature of the hydrogenation catalyst of the hydrodesulfurizer is activated. When the temperature is reached, the raw fuel is supplied only to the hydrodesulfurizer for desulfurization. A raw fuel desulfurization system for producing fuel hydrogen for a fuel cell.
燃料電池の燃料水素製造用原燃料の脱硫システムであって、
(A)常温脱硫器を改質器系外に配置し、水添脱硫器を改質器系内に配置するとともに、原燃料導入管を二つに分岐し、
(B)前記分岐した一方の分岐管を常温脱硫器に連結するとともに、前記分岐した他方の分岐管を水添脱硫器に連結し、
(C)常温脱硫器に連結した前記一方の分岐管に第1の開閉弁aを配置し、常温脱硫器からの脱硫済み原燃料の出口側導管に第2の開閉弁bを配置するとともに、前記出口側導管を改質器系の水蒸気改質器に連結し、且つ、
(D)前記水添脱硫器に連結した他方の分岐管に、第3の開閉弁cを配置するとともに、第5の開閉弁eを配置した水素供給管を配置してなり、
(E)その起動時以降、水添脱硫器の水添触媒の温度が作動温度より低い状態では原燃料を常温脱硫器に供給して脱硫し、水添脱硫器の水添触媒の温度が作動温度に達した時点で原燃料を水添脱硫器のみに供給して脱硫するようにしてなる
ことを特徴とする燃料電池の燃料水素製造用原燃料の脱硫システム。
A desulfurization system for raw fuel for fuel hydrogen production of a fuel cell,
(A) A room temperature desulfurizer is placed outside the reformer system, a hydrodesulfurizer is placed inside the reformer system, and the raw fuel introduction pipe is branched in two.
(B) The one branched pipe is connected to a room temperature desulfurizer, and the other branched pipe is connected to a hydrodesulfurizer,
(C) The first on-off valve a is arranged in the one branch pipe connected to the room temperature desulfurizer, the second on-off valve b is arranged in the outlet side conduit of the desulfurized raw fuel from the room temperature desulfurizer, Connecting the outlet conduit to a steam reformer of a reformer system, and
(D) In the other branch pipe connected to the hydrodesulfurizer, a third on-off valve c and a hydrogen supply pipe on which a fifth on-off valve e is arranged are arranged.
(E) After the start-up, when the temperature of the hydrogenation catalyst of the hydrodesulfurizer is lower than the operating temperature, the raw fuel is supplied to the room temperature desulfurizer for desulfurization, and the temperature of the hydrogenation catalyst of the hydrodesulfurizer is activated. When the temperature is reached, the raw fuel is supplied only to the hydrodesulfurizer for desulfurization. A raw fuel desulfurization system for producing fuel hydrogen for a fuel cell.
燃料電池の燃料水素製造用原燃料の脱硫システムであって、
(A)常温脱硫器を改質器系外に配置し、水添脱硫器を改質器系内に配置するとともに、原燃料導入管を二つに分岐し、
(B)前記分岐した一方の分岐管を常温脱硫器に連結するとともに、前記分岐した他方の分岐管を水添脱硫器に連結し、
(C)常温脱硫器に連結した前記一方の分岐管に第1の開閉弁aを配置し、常温脱硫器からの脱硫済み原燃料の出口側導管に第2の開閉弁bを配置し、水添脱硫器に連結した前記他方の分岐管に第3の開閉弁cを配置し、且つ、
(D)前記第3の開閉弁cから水添脱硫器に至る導管に、前記第2の開閉弁bを配置した常温脱硫器からの出口側導管を配置するとともに、第4の開閉弁eを配置した水素供給管を配置してなり、
(E)その起動時以降、水添脱硫器の水添触媒の温度が作動温度より低い状態では原燃料を常温脱硫器に供給して脱硫し、水添脱硫器の水添触媒の温度が作動温度に達した時点で原燃料を水添脱硫器のみに供給して脱硫するようにしてなる
ことを特徴とする燃料電池の燃料水素製造用原燃料の脱硫システム。
A desulfurization system for raw fuel for fuel hydrogen production of a fuel cell,
(A) A room temperature desulfurizer is placed outside the reformer system, a hydrodesulfurizer is placed inside the reformer system, and the raw fuel introduction pipe is branched in two.
(B) The one branched pipe is connected to a room temperature desulfurizer, and the other branched pipe is connected to a hydrodesulfurizer,
(C) A first on-off valve a is arranged on the one branch pipe connected to the room temperature desulfurizer, a second on-off valve b is arranged on the outlet side conduit of desulfurized raw fuel from the room temperature desulfurizer, A third on-off valve c is disposed in the other branch pipe connected to the addition desulfurizer; and
(D) In the conduit from the third on-off valve c to the hydrodesulfurizer, an outlet side conduit from the room temperature desulfurizer in which the second on-off valve b is arranged is arranged, and a fourth on-off valve e is provided. Arranged hydrogen supply pipe arranged,
(E) After the start-up, when the temperature of the hydrogenation catalyst of the hydrodesulfurizer is lower than the operating temperature, the raw fuel is supplied to the room temperature desulfurizer for desulfurization, and the temperature of the hydrogenation catalyst of the hydrodesulfurizer is activated. When the temperature is reached, the raw fuel is supplied only to the hydrodesulfurizer for desulfurization. A raw fuel desulfurization system for producing fuel hydrogen for a fuel cell.
JP2008096414A 2008-04-02 2008-04-02 System for desulfurizing raw fuel for producing fuel hydrogen for fuel cell Pending JP2009249203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008096414A JP2009249203A (en) 2008-04-02 2008-04-02 System for desulfurizing raw fuel for producing fuel hydrogen for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008096414A JP2009249203A (en) 2008-04-02 2008-04-02 System for desulfurizing raw fuel for producing fuel hydrogen for fuel cell

Publications (1)

Publication Number Publication Date
JP2009249203A true JP2009249203A (en) 2009-10-29

Family

ID=41310250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008096414A Pending JP2009249203A (en) 2008-04-02 2008-04-02 System for desulfurizing raw fuel for producing fuel hydrogen for fuel cell

Country Status (1)

Country Link
JP (1) JP2009249203A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011077753A1 (en) * 2009-12-25 2011-06-30 パナソニック株式会社 Hydrogen generator and fuel cell system
JP2011216350A (en) * 2010-03-31 2011-10-27 Eneos Celltech Co Ltd Fuel cell system
JP2012158489A (en) * 2011-01-31 2012-08-23 Panasonic Corp Hydrogen generating device and operation method of fuel cell system
JP2012169044A (en) * 2011-02-10 2012-09-06 Aisin Seiki Co Ltd Fuel cell system
JP2012169045A (en) * 2011-02-10 2012-09-06 Aisin Seiki Co Ltd Fuel cell system
EP2518012A1 (en) * 2009-12-25 2012-10-31 Panasonic Corporation Hydrogen generation device, fuel cell system, and method for operating hydrogen generation device
WO2012169199A1 (en) * 2011-06-08 2012-12-13 パナソニック株式会社 Hydrogen generator, fuel cell system comprising same, and method for operating hydrogen generator
EP2644564A1 (en) * 2012-03-27 2013-10-02 IFP Energies nouvelles Temporary desulphurization reactor for pre-treatment of a hydrocarbon feedstock prior to steam reforming in order to produce hydrogen
EP2703340A1 (en) * 2011-04-26 2014-03-05 Panasonic Corporation Hydrogen generator and fuel cell system
EP2716597A1 (en) * 2011-05-27 2014-04-09 Panasonic Corporation Hydrogen-generating device, method for operating same, and fuel cell system
US20140248545A1 (en) * 2012-03-29 2014-09-04 Panasonic Corporation Fuel cell system
JP5884075B2 (en) * 2013-01-24 2016-03-15 パナソニックIpマネジメント株式会社 Fuel cell system
US9312555B2 (en) 2012-12-27 2016-04-12 Panasonic Intellectual Property Management Co., Ltd. Hydrogen generator and fuel cell system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01143155A (en) * 1987-11-27 1989-06-05 Ishikawajima Harima Heavy Ind Co Ltd Fuel cell power generator
JPH01275697A (en) * 1988-04-27 1989-11-06 Mitsubishi Electric Corp Reformer
JPH05114414A (en) * 1991-10-21 1993-05-07 Mitsubishi Electric Corp Fuel cell power generation system
JP2006111766A (en) * 2004-10-15 2006-04-27 Nippon Oil Corp Desulfurization apparatus and hydrogen-producing apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01143155A (en) * 1987-11-27 1989-06-05 Ishikawajima Harima Heavy Ind Co Ltd Fuel cell power generator
JPH01275697A (en) * 1988-04-27 1989-11-06 Mitsubishi Electric Corp Reformer
JPH05114414A (en) * 1991-10-21 1993-05-07 Mitsubishi Electric Corp Fuel cell power generation system
JP2006111766A (en) * 2004-10-15 2006-04-27 Nippon Oil Corp Desulfurization apparatus and hydrogen-producing apparatus

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9252443B2 (en) 2009-12-25 2016-02-02 Panasonic Intellectual Property Management Co., Ltd. Hydrogen generation apparatus, fuel cell system, and hydrogen generation apparatus operation method
JP4832614B2 (en) * 2009-12-25 2011-12-07 パナソニック株式会社 Hydrogen generator and fuel cell system
CN102395523A (en) * 2009-12-25 2012-03-28 松下电器产业株式会社 Hydrogen generator and fuel cell system
EP2518012A4 (en) * 2009-12-25 2014-01-29 Panasonic Corp Hydrogen generation device, fuel cell system, and method for operating hydrogen generation device
CN102395523B (en) * 2009-12-25 2015-04-22 松下电器产业株式会社 Hydrogen generator and fuel cell system
EP2518012A1 (en) * 2009-12-25 2012-10-31 Panasonic Corporation Hydrogen generation device, fuel cell system, and method for operating hydrogen generation device
US9334164B2 (en) 2009-12-25 2016-05-10 Panasonic Intellectual Property Management Co., Ltd. Hydrogen generator and fuel cell system
WO2011077753A1 (en) * 2009-12-25 2011-06-30 パナソニック株式会社 Hydrogen generator and fuel cell system
JP2011216350A (en) * 2010-03-31 2011-10-27 Eneos Celltech Co Ltd Fuel cell system
JP2012158489A (en) * 2011-01-31 2012-08-23 Panasonic Corp Hydrogen generating device and operation method of fuel cell system
JP2012169045A (en) * 2011-02-10 2012-09-06 Aisin Seiki Co Ltd Fuel cell system
EP2487742A3 (en) * 2011-02-10 2013-05-01 Aisin Seiki Kabushiki Kaisha Fuel cell system
JP2012169044A (en) * 2011-02-10 2012-09-06 Aisin Seiki Co Ltd Fuel cell system
US9083015B2 (en) 2011-02-10 2015-07-14 Aisin Seiki Kabushiki Kaisha Fuel cell system
US9090464B2 (en) 2011-04-26 2015-07-28 Panasonic Intellectual Property Management Co., Ltd. Hydrogen generation apparatus and fuel cell system
EP2703340A1 (en) * 2011-04-26 2014-03-05 Panasonic Corporation Hydrogen generator and fuel cell system
EP2703340A4 (en) * 2011-04-26 2014-03-05 Panasonic Corp Hydrogen generator and fuel cell system
EP2716597A1 (en) * 2011-05-27 2014-04-09 Panasonic Corporation Hydrogen-generating device, method for operating same, and fuel cell system
US9492777B2 (en) 2011-05-27 2016-11-15 Panasonic Intellectual Property Management Co., Ltd. Hydrogen generation device, operation method thereof, and fuel cell system
EP2716597A4 (en) * 2011-05-27 2014-10-29 Panasonic Corp Hydrogen-generating device, method for operating same, and fuel cell system
JPWO2012169199A1 (en) * 2011-06-08 2015-02-23 パナソニック株式会社 HYDROGEN GENERATOR, FUEL CELL SYSTEM INCLUDING THE SAME, AND METHOD FOR OPERATING HYDROGEN GENERATOR
JP5681211B2 (en) * 2011-06-08 2015-03-04 パナソニックIpマネジメント株式会社 HYDROGEN GENERATOR, FUEL CELL SYSTEM INCLUDING THE SAME, AND METHOD FOR OPERATING HYDROGEN GENERATOR
WO2012169199A1 (en) * 2011-06-08 2012-12-13 パナソニック株式会社 Hydrogen generator, fuel cell system comprising same, and method for operating hydrogen generator
US9005829B2 (en) 2011-06-08 2015-04-14 Panasonic Intellectual Property Management Co., Ltd. Hydrogen generation apparatus, fuel cell system including the same, and method of operating hydrogen generation apparatus
EP2719658A4 (en) * 2011-06-08 2014-04-16 Panasonic Corp Hydrogen generator, fuel cell system comprising same, and method for operating hydrogen generator
EP2719658A1 (en) * 2011-06-08 2014-04-16 Panasonic Corporation Hydrogen generator, fuel cell system comprising same, and method for operating hydrogen generator
EP2644564A1 (en) * 2012-03-27 2013-10-02 IFP Energies nouvelles Temporary desulphurization reactor for pre-treatment of a hydrocarbon feedstock prior to steam reforming in order to produce hydrogen
FR2988622A1 (en) * 2012-03-27 2013-10-04 IFP Energies Nouvelles TEMPORARY DESULFURATION REACTOR FOR PRETREATMENT OF HYDROCARBON CHARGE BEFORE VAPOREFORMING FOR HYDROGEN PRODUCTION
US9174901B2 (en) 2012-03-27 2015-11-03 IFP Energies Nouvelles Temporary desulphurization reactor for pre-treating a hydrocarbon feed before steam reforming with a view to hydrogen production
EP2833455A1 (en) * 2012-03-29 2015-02-04 Panasonic Corporation Fuel cell system
EP2833455A4 (en) * 2012-03-29 2015-04-01 Panasonic Corp Fuel cell system
US20140248545A1 (en) * 2012-03-29 2014-09-04 Panasonic Corporation Fuel cell system
US9520603B2 (en) 2012-03-29 2016-12-13 Panasonic Intellectual Property Management Co., Ltd. Fuel cell system
US9312555B2 (en) 2012-12-27 2016-04-12 Panasonic Intellectual Property Management Co., Ltd. Hydrogen generator and fuel cell system
JP5884075B2 (en) * 2013-01-24 2016-03-15 パナソニックIpマネジメント株式会社 Fuel cell system
US9966621B2 (en) 2013-01-24 2018-05-08 Panasonic Intellectual Property Management Co., Ltd. Fuel cell system

Similar Documents

Publication Publication Date Title
JP2009249203A (en) System for desulfurizing raw fuel for producing fuel hydrogen for fuel cell
JP5191840B2 (en) Cylindrical steam reformer with integrated hydrodesulfurizer
JP4911927B2 (en) Solid oxide fuel cell system
JP2009078954A (en) Reforming apparatus
EP2716598B1 (en) Hydrogen generator and fuel cell system
JP5272183B2 (en) Fuel cell reformer
JP4754242B2 (en) Hydrogen production apparatus and fuel cell system
JP5160389B2 (en) Multi-cylinder steam reformer for fuel cells
JP2012240893A (en) Hydrogen generating apparatus
JP2007112644A (en) Co(carbon monoxide)-removal device, fuel reforming apparatus, and fuel cell system
JP5161621B2 (en) Fuel cell reformer
JP4764651B2 (en) Hydrogen production apparatus and fuel cell system
JP5329944B2 (en) Steam reformer for fuel cell
JP2006076802A (en) Hydrogen production apparatus and fuel cell system equipped with the same, and method for producing hydrogen
JP5307043B2 (en) CO reformer separate steam reformer
JP4932165B2 (en) Steam reforming system
JP5938580B2 (en) Hydrogen generator
JP4278393B2 (en) Hydrogen production apparatus and fuel cell system
JP2010044885A (en) Pretreatment system of original fuel for producing fuel hydrogen of fuel cell
JP2005089255A (en) Hydrogen generator and its method
JP5269679B2 (en) Raw material pretreatment system for fuel hydrogen production of fuel cells
JP5274986B2 (en) Multi-cylinder steam reformer for fuel cells
JP2012176897A (en) Hydrogenation desulfurizer-integrated cylindrical steam reformer
JP5530540B2 (en) Raw material pretreatment system for fuel hydrogen production of fuel cells
JP6089210B2 (en) Hydrogen generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120622

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120814