JP4356330B2 - Fuel cell reformer - Google Patents

Fuel cell reformer Download PDF

Info

Publication number
JP4356330B2
JP4356330B2 JP2003038111A JP2003038111A JP4356330B2 JP 4356330 B2 JP4356330 B2 JP 4356330B2 JP 2003038111 A JP2003038111 A JP 2003038111A JP 2003038111 A JP2003038111 A JP 2003038111A JP 4356330 B2 JP4356330 B2 JP 4356330B2
Authority
JP
Japan
Prior art keywords
gas
flow path
layer
pipe
narrow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003038111A
Other languages
Japanese (ja)
Other versions
JP2004247241A (en
Inventor
俊雄 篠木
光家 松村
達典 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003038111A priority Critical patent/JP4356330B2/en
Publication of JP2004247241A publication Critical patent/JP2004247241A/en
Application granted granted Critical
Publication of JP4356330B2 publication Critical patent/JP4356330B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【0001】
【発明の属する技術分野】
この発明は、炭化水素ガスを改質して水素ガスを得る燃料電池用改質器に関するものである。
【0002】
【従来の技術】
従来の燃料電池用改質器は、例えばメタンガスを改質して水素ガスを主成分とする改質ガスを得る。改質ガスには一酸化炭素(以下COとする)が10%程度含まれるが、シフト層を通過するとCOは0.5%程度まで低減される。さらに改質ガスは導入室に進入し、導入室には空気供給口から空気も導入される。改質ガスと空気とが1つの孔を通過する間にオリフィス効果によって混合され、COは選択的酸化によって10ppm以下まで除去されるようにしている(例えば、特許文献1参照。)。
【0003】
【特許文献1】
特開2002−187705号公報(段落0060−0080)
【0004】
【発明が解決しようとする課題】
しかしながら、改質ガスは主成分が水素ガスで低比重であるうえに空気より高温であるため、従来の技術では、改質ガスが上側で空気が下側というように相分離したまま孔を通過することがある。このような相分離をしていると、オリフィス効果による十分な混合は得られないという問題がある。
【0005】
また、相分離を抑制しようとして導入室の小容積化を行うと、シフト層においてガス偏流やそれに伴なう局部的な高温化をもたらすおそれがある。シフト層の高温化は触媒の寿命低下の原因となる。さらに、シフト層にガス偏流が生じると局部的にガス空間速度が大きくなり、改質ガスは触媒との接触時間が不足してCO濃度が低下しないままシフト層を通過してしまう。そのため、改質ガスに含まれるCOの残存濃度が高くなるという問題がある。
【0006】
この発明は、上記のような問題点を解決するためになされたものであり、比重差のある改質ガスと空気とを十分に混合させ、改質ガスに含まれるCOを効率的に除去する燃料電池用改質器を提供する。
【0007】
【課題を解決するための手段】
この発明における燃料電池用改質器は、同心状に配置された内径側の第1の管及び外径側の第2の管との間に設けられ炭化水素ガスを改質反応によって水素ガスに変換するための改質層と、この改質層を通過したガスから一酸化炭素を低減するためのシフト層と、このシフト層を通過したガスから一酸化炭素を除去するための一酸化炭素選択酸化層と、シフト層と一酸化炭素選択酸化層とを接続するガス流路とを備え、シフト層と一酸化炭素選択酸化層とガス流路は第1の管及び第2の管に同心状に配置され第2の管より外径側の第3の管と第2の管との間に設けられ、ガス流路は円環状の仕切手段で分割され、シフト層に接する環状の第1のガス通路と一酸化炭素選択酸化層に接する環状の第2のガス通路とからなり、第1のガス通路と第2のガス通路とを接続し、ガスが流通する方向に垂直なガス流通面積が第1のガス通路のガス流通面積よりも小さく、前記第3の管の外径側に配置された円管状の狭流路と、この狭流路に設けられた空気供給口とを有し、狭流路における空気供給口の下流端部から第2のガス通路までの区間は、該狭流路におけるガスが流通する断面の中心をガスが流れる長さである代表長さと該狭流路のガス流通面積に基づく代表径との比が1.3以上である。
【0008】
【発明の実施の形態】
実施の形態1.
図1は、本発明が適用される燃料電池用改質器の実施の形態1を説明するための断面図である。この種の燃料電池用改質器は、改質層1、シフト層2、CO選択酸化層3の3つの反応層を備えるものであり、それぞれの反応層について概略を説明する。
【0009】
改質層1では、例えばメタンガスなどの炭化水素ガスを水蒸気の存在下で、下式の改質反応によって水素ガスに変換する。
(改質反応) CH+HO → CO+3H
【0010】
改質反応によって、乾燥ガス換算で水素ガスを70%以上含む改質ガスが得られる。この段階でCO濃度は10%程度である。続くシフト層2とCO選択酸化層3とによってCO濃度を10ppm以下まで低減する。
【0011】
まずシフト層2では、改質層1で生成されたCOを下式のシフト反応で0.5%程度まで低減する。シフト反応に寄与する水蒸気は、改質反応で残存した水蒸気であり、改質ガス中の水素ガスは75%程度となる。
(シフト反応) CO+HO → CO+H
【0012】
さらに改質ガスは空気と混合されてCO選択酸化層3に流入する。ここでのCO選択酸化反応によって、シフト層2で残存したCOを酸化し、CO濃度を10ppm以下にする。このとき、空気中の酸素ガスがCOを選択的に酸化し、水素ガスの消費を抑制するように、反応条件を制御している。
(CO選択酸化反応) 2CO+O → 2CO
【0013】
それぞれの反応で用いられる触媒は、改質反応では例えばRu系やNi系、シフト反応では例えばPt系、Cu−Zn系、Fe−Cr系、CO選択酸化反応では例えばPt系やRu系が挙げられる。
【0014】
このようにして得られた改質ガスのCO濃度が10ppmを超えている場合、例えば固体高分子型燃料電池では、電極内等にあるPt系触媒が被毒して出力電圧の急激な低下を引き起こす。そのため、改質ガス中のCOを極力除去することが重要であるが、CO選択酸化触媒はガス濃度など反応系に関する動作領域が比較的狭いため、改質ガスと空気とが十分に混合されていなければならない。改質ガスと空気の混合性が悪くCO選択酸化層3内で局部的に酸素濃度が高い部分ができると、酸素ガスと水素ガスとの反応が進みその反応熱により高温となる。この結果、CO選択性が悪くなるばかりかメタン生成反応など別の副次的な反応が進行する場合もあり、さらに触媒寿命にも悪影響を与える。一方で局部的に酸素濃度が低いと、反応温度も低くなり、触媒活性も低下することからCO選択酸化反応が進行せず、残存CO濃度が高くなる。すなわち、CO除去には均一なガス混合性の実現が重要である。
【0015】
次に、燃料電池用改質器について動作を中心に詳細に説明する。図1において、同心状に円筒の内管4、中間管5および外管6が配置されており、断熱材7によって全体が覆われている。内管4と外管6とは図示下端部において円環状板の溶接等によって接続されており、内管4と中間管5とが形成する空間と中間管5と外管6とが形成する空間とは、この下端部においてガス流通できるように結合している。内管4の内部にはセンタープラグ8が配置されている。
【0016】
原料ガス供給口9から内管4と中間管5との間の第一ガス流路11に、炭化水素ガスと水蒸気または水からなる原料ガスが供給される。また、燃焼ガス供給口10から内管4とセンタープラグ8との間の加熱流体流路12に、改質反応の熱源としての1000℃程度の燃焼ガスが供給される。
【0017】
加熱流体流路12を流通する燃焼ガスは、内管4を介した熱交換によって、改質層1および第一ガス流路11を加熱する。例えば、改質層1の図示下端においては700℃程度、改質層1と第一ガス流路11との境界付近は400℃程度に加熱される。そのため、原料ガスは400℃程度に予熱されて改質層1に流入する。さらに、改質層1において加熱されて改質反応を生じ、水素ガスを主成分とする700℃程度の改質ガスになる。
【0018】
700℃程度の改質ガスは、改質層1とシフト層2とを接続する第二ガス流路13を通過して、シフト層2に流入する。ここで、改質ガスの温度は、第二ガス流路13を通過する際に350℃程度に低下する。これは、改質反応が吸熱反応であることから、改質層1が中間管5を介して第二ガス流路13から熱回収するためである。ここで、触媒に関する一般論として、機能および寿命の面からその触媒に応じた適切な温度領域で使用することが必要である。例えば、シフト反応が発熱反応であることや、CO選択酸化反応は改質反応に比して低温が適していることから、シフト層2を適切な温度になるように冷却してもかまわない。
【0019】
シフト層2においてCO濃度0.5%程度に低減された改質ガスは、シフト層2とCO選択酸化層3とを接続する第三ガス流路を通過して、CO選択酸化層3に流入する。ここで、図2はこの実施の形態における第三ガス流路の斜視図である。第三ガス流路は円環状仕切板15によって図示上下段の第三ガス流路分室14に分離され、第三ガス流路分室14の側壁にはその上段と下段とを結合する円管状の狭流路16が設けられている。すなわち第三ガス流路は第三ガス流路分室14と狭流路16とで構成されている。狭流路16のガス流通面積は、第三ガス流路分室14の下段側即ちシフト層2側の区間より小さくなるようにする。さらに、狭流路16の途中には空気供給口17が設けられている。改質ガスは狭流路16に流入したときに流速が大きくなり、そこに空気供給口17から空気が供給されて、改質ガスと空気との混合ガスが得られる。
【0020】
改質ガスと空気との混合ガスは、150〜100℃程度でCO選択酸化層3に流入する。ここで、改質ガスは水素ガスを主成分として低比重であることに加え、狭流路16に流入する直前でも200〜150℃の高温である。一方、空気は通常室温で供給される。また、例えば改質ガスの密度が0.355kg/mであるのに対して供給する空気の密度は1.22kg/mであり、両者の比重も大きく異なる。さらに、CO選択酸化触媒のCO選択性を確保するために、空気中の酸素ガスと改質ガス中のCOとは体積流量比で1.5〜2.5程度の範囲で供給される必要がある。これを改質ガスと空気との流量比に換算すると約36〜50対1に相当し、この範囲となるように改質ガスと空気とを供給しなければならない。
【0021】
ところで、一般に管路状のガス流路については、圧力損失が増大しないでかつ流れが乱流との遷移領域に入らないよう、レイノルズ数1500程度以下、流速8m/s程度以下で設計する。狭流路16はガス混合性を高めるため、それぞれの上限であるレイノルズ数1500、流速8m/sに極力近いことが望ましい。
【0022】
図3は、この実施の形態を説明するためのガス混合特性図であり、円管内を流れる流量Q、レイノルズ数1500、流速8m/sの改質ガスに対して流量Q/40の空気を混合させた場合のガス混合性を示すものである。図3において、縦軸はガス混合性の指標としての混合ガス組成の標準偏差であり、横軸は円管の代表長さLと代表径Dとの比である。これより、L/Dが1.3以上で標準偏差が0.25%以下となり、おおむね混合がなされている。標準偏差が0.25%を超えると、CO選択酸化触媒の機能低下や短寿命化といった不具合を生じやすい。狭流路16の空気供給口17よりCO選択酸化層3側の区間におけるL/Dが1.3以上の場合、良好なガス混合性が得られ、CO選択酸化層3においてCO濃度を十分に低下できる。
【0023】
これまで述べてきたことから、L/Dを1.3以上とすると、CO選択酸化触媒を動作領域で機能させるように、COと酸素ガスとを混合させることができる。CO選択酸化触媒の本来の触媒機能を引き出すことで、10ppm以下までCO濃度を低減できる。
【0024】
さらに、燃料電池用改質器として原料ガスの供給変動や空気の供給変動などが生じても、CO選択酸化触媒が安定な動作領域となることが望ましい。このようなガス供給変動による混合ガス組成の標準偏差の変動は、設計値の2倍以内におさまる。そのため、混合ガス組成の標準偏差を安定的に0.25%以下に抑えるには、設計値を0.12%以下とすればよい。すなわちL/Dは6以上である場合、安定的に改質ガスと空気とを適正な混合状態で供給することができる。したがって、燃料電池用改質器としての信頼性が向上する。
【0025】
また、図2において図示下段の第三ガス流路分室14から狭流路16に流入する改質ガスの流通方向に対して、空気供給口における空気の流通方向が垂直であると、狭流路16における圧力損失を抑制できるとともに、高いガス混合性を得られるために狭流路16をコンパクト化できる。なお、このような効果が得られる範囲であれば、改質ガスの流通方向と空気の流通方向とが垂直から多少ずれていても許容される。
【0026】
このようにして、改質ガスと空気とが狭流路16で十分に混合されるため、CO選択酸化層3においてCO濃度を10ppm以下にできる。なお、この実施の形態では内管、中間管及び外管は円筒状であるが、これに限定することなく、例えば矩形状管であってもかまわない。さらに、狭流路のガス流通断面も円形に限定するものではない。円形以外の場合の代表径Dは、ガス流通断面積S、濡れぶち長さlとすると、D=4S/lとなる。
【0027】
参考の形態2.
図4は参考の形態2を説明するための狭流路の斜視図であり、図5は同じく側面図である。この参考の形態は、シフト層と一酸化炭素選択酸化層とは同心状に配置された外管と中間管の間に配置され、シフト層とCO選択酸化層とを接続するガス流路をガス流路仕切手段としての円環状仕切板2枚および矩形状仕切板によって仕切り、これらの仕切板で形成された空間を狭流路としたものである。図4において、狭流路16は、2枚の円環状仕切板15aに挟まれた空間に矩形状仕切板15bを設けて形成されている。改質ガスは、図示下段の第三ガス流路分室14から通過孔18aを経て狭流路16に流入し、外管6および中間管5の円周形状に沿うように狭流路16内を流通し、通過孔18bを経て図示上段の第三ガス流路分室14に流入する。ここで、狭流路16のガス流通面積は、第三ガス流路分室14の下段側より小さい。さらに、狭流路16の途中には空気供給口17が設けられており、改質ガスと空気との混合ガスが得られる。
【0028】
この参考の形態では、外管と中間管との間のスペースに狭流路を形成することで、第三ガス流路を簡易に形成するとともに省スペース化できる。さらに、狭流路を外管の内部に形成することで、狭流路通過時のガス放熱を抑制でき、放熱防止として施される断熱材を薄型化できる。そのため、燃料電池用改質器として小型化できる。
【0029】
さらに図6は、この参考の形態の変形例を説明するための狭流路の側面図であり、ガス流路仕切手段としてらせん状仕切板を用いたものである。図6において改質ガスは、通過孔18aを経て狭流路16に流入し、らせん状仕切板15cに案内されるように狭流路16内を流通し、通過孔18bから流出する。らせん状仕切板15cを用いた場合は、ガス混合は下流側で主に行なわれるため、らせん状仕切板15cと外管6もしくは中間管5との間であまりシール性を要求されない。したがって、狭流路の形成が容易になる。
【0030】
参考の形態3.
図7は、参考の形態3を説明するための狭流路の斜視図である。この参考の形態は、シフト層とCO選択酸化層とを接続するガス流路内に2枚の円環状仕切板によって狭流路を形成し、さらに狭流路が2方向に分岐しているものである。図7において、狭流路16は、2枚の円環状仕切板15aに挟まれた空間に形成されている。改質ガスは、図示下段の第三ガス流路分室14から通過孔18aを経て狭流路16に流入し、外管および中間管の円周形状に沿うように図示手前側と図示奥側の2方向に分岐しながら狭流路16内を流通する。分岐して狭流路16内を流通した改質ガスは、通過孔18bを通過する際に合流して図示上段の第三ガス流路分室14に流入する。ここで、狭流路16のガス流通面積は、第三ガス流路分室14の下段側より小さい。さらに、狭流路16には通過孔18aに近接して空気供給口17が設けられており、改質ガスと空気との混合ガスが得られる。
【0031】
この参考の形態では、分岐した各ガス流通方向の狭流路におけるガス流量は、分岐しない場合に比べて半減する。そのため、シフト層におけるガス偏流やそれに伴なう局部的な高温化をもたらすことなく狭流路のガス流通面積を減少させ、狭流路を一段と省スペース化できる。
【0032】
さらに、図8はこの参考の形態の変形例を説明するための狭流路の斜視図、図9は同じく側面図であり、分岐した狭流路にそれぞれ整流板を配置したものである。通過孔18aから狭流路16に流入し2方向に分岐した改質ガスは、空気供給口17から供給された空気とともに、通過孔18a側の円環状仕切板15aに配置された整流板19aによって圧力損失の均等化が図られる。続いて、通過孔18b側の円環状仕切板15aに配置された整流板19bによって圧力損失のさらなる均等化が図られる。ここで、整流板19aおよび19bの高さは狭流路16の高さの半分以上あることが好ましい。また、各整流板の配置や傾斜角度は適宜設計できる。
【0033】
このように整流板を設けることによって、改質ガスあるいは空気が分岐した際に流量変動が生じてもこれらが合流するまでの間に、整流板が有する圧力変動の緩衝機能ならびにガス攪拌機能が作用する。そのため、流動変動の影響を抑制することができ、ガス混合性を高めることができる。
【0034】
【発明の効果】
この発明によれば、比重差のある改質ガスと空気とを十分に混合させ、改質ガスに含まれるCOを効率的に除去する燃料電池用改質器を提供できる。
【図面の簡単な説明】
【図1】 実施の形態1を説明するための燃料電池用改質器の断面図である。
【図2】 実施の形態1を説明するための第三ガス流路の斜視図である。
【図3】 実施の形態1を説明するためのガス混合特性図である。
【図4】 参考の形態2を説明するための狭流路の斜視図である。
【図5】 参考の形態2を説明するための狭流路の側面図である。
【図6】 参考の形態2の変形例を説明するための狭流路の側面図である。
【図7】 参考の形態3を説明するための狭流路の斜視図である。
【図8】 参考の形態3の変形例を説明するための狭流路の斜視図である。
【図9】 参考の形態3の変形例を説明するための狭流路の側面図である。
【符号の説明】
1 改質層、2 シフト層、3 一酸化炭素選択酸化層、4 内管、5 中間管、6 外管、7 断熱材、8 センタープラグ、9 原料ガス供給口、10 燃焼ガス供給口、11 第一ガス流路、12 加熱流体流路、13 第二ガス流路、14 第三ガス流路分室、15 仕切板、16 狭流路、17 空気供給口、18a〜18b 通過孔、19a〜19b 整流板。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fuel cell reformer for reforming hydrocarbon gas to obtain hydrogen gas.
[0002]
[Prior art]
Conventional fuel cell reformers, for example, reform methane gas to obtain reformed gas mainly composed of hydrogen gas. The reformed gas contains about 10% of carbon monoxide (hereinafter referred to as CO), but when it passes through the shift layer, CO is reduced to about 0.5%. Further, the reformed gas enters the introduction chamber, and air is also introduced into the introduction chamber from the air supply port. The reformed gas and air are mixed by the orifice effect while passing through one hole, and CO is removed to 10 ppm or less by selective oxidation (see, for example, Patent Document 1).
[0003]
[Patent Document 1]
JP 2002-187705 A (paragraphs 0060-0080)
[0004]
[Problems to be solved by the invention]
However, since the reformed gas is mainly composed of hydrogen gas and has a lower specific gravity and higher temperature than air, in the conventional technology, the reformed gas passes through the holes while being phase-separated so that the reformed gas is on the upper side and the air is on the lower side. There are things to do. When such phase separation is performed, there is a problem that sufficient mixing due to the orifice effect cannot be obtained.
[0005]
Further, if the volume of the introduction chamber is reduced in order to suppress phase separation, there is a risk of causing gas drift in the shift layer and a local high temperature associated therewith. The high temperature of the shift layer causes a reduction in the life of the catalyst. Further, when gas drift occurs in the shift layer, the gas space velocity locally increases, and the reformed gas passes through the shift layer without decreasing the CO concentration due to insufficient contact time with the catalyst. Therefore, there is a problem that the residual concentration of CO contained in the reformed gas becomes high.
[0006]
The present invention has been made to solve the above-described problems. The reformed gas having a specific gravity difference and air are sufficiently mixed to efficiently remove CO contained in the reformed gas. A fuel cell reformer is provided.
[0007]
[Means for Solving the Problems]
The fuel cell reformer according to the present invention is provided between a first pipe on the inner diameter side and a second pipe on the outer diameter side that are concentrically arranged, and converts the hydrocarbon gas into hydrogen gas by a reforming reaction. A modified layer for conversion, a shift layer for reducing carbon monoxide from the gas that has passed through the modified layer, and carbon monoxide selection for removing carbon monoxide from the gas that has passed through the shift layer An oxide layer, and a gas flow path connecting the shift layer and the carbon monoxide selective oxidation layer are provided, and the shift layer, the carbon monoxide selective oxidation layer, and the gas flow path are concentric with the first pipe and the second pipe. The gas flow path is divided by an annular partitioning means, and is arranged between the third pipe on the outer diameter side of the second pipe and the second pipe. A gas passage and an annular second gas passage in contact with the carbon monoxide selective oxidation layer. Of connecting the gas passage, the vertical gas flow area in the direction in which gas flows is rather smaller than the gas flow area of the first gas passage, the third circular tube disposed on the outer diameter side of the tube The narrow channel and an air supply port provided in the narrow channel, and the section from the downstream end of the air supply port to the second gas passage in the narrow channel has a gas in the narrow channel. The ratio of the representative length, which is the length of the gas flowing through the center of the cross section that circulates, to the representative diameter based on the gas flow area of the narrow channel is 1.3 or more.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
FIG. 1 is a cross-sectional view for explaining Embodiment 1 of a fuel cell reformer to which the present invention is applied. This type of fuel cell reformer includes three reaction layers, namely, a reforming layer 1, a shift layer 2, and a CO selective oxidation layer 3. The outline of each reaction layer will be described.
[0009]
In the reforming layer 1, for example, a hydrocarbon gas such as methane gas is converted into hydrogen gas by the following reforming reaction in the presence of water vapor.
(Reforming reaction) CH 4 + H 2 O → CO + 3H 2
[0010]
By the reforming reaction, a reformed gas containing 70% or more of hydrogen gas in terms of dry gas can be obtained. At this stage, the CO concentration is about 10%. The subsequent shift layer 2 and CO selective oxidation layer 3 reduce the CO concentration to 10 ppm or less.
[0011]
First, in the shift layer 2, CO generated in the modified layer 1 is reduced to about 0.5% by the shift reaction of the following formula. The water vapor contributing to the shift reaction is the water vapor remaining in the reforming reaction, and the hydrogen gas in the reformed gas is about 75%.
(Shift reaction) CO + H 2 O → CO 2 + H 2
[0012]
Further, the reformed gas is mixed with air and flows into the CO selective oxidation layer 3. By the CO selective oxidation reaction here, the CO remaining in the shift layer 2 is oxidized to reduce the CO concentration to 10 ppm or less. At this time, the reaction conditions are controlled so that oxygen gas in the air selectively oxidizes CO and suppresses consumption of hydrogen gas.
(CO selective oxidation reaction) 2CO + O 2 → 2CO 2
[0013]
The catalyst used in each reaction is, for example, Ru-based or Ni-based for reforming reaction, Pt-based, Cu-Zn-based, Fe-Cr-based for shift reaction, or Pt-based or Ru-based for CO selective oxidation reaction, for example. It is done.
[0014]
When the CO concentration of the reformed gas thus obtained exceeds 10 ppm, for example, in a polymer electrolyte fuel cell, the Pt-based catalyst in the electrode or the like is poisoned, and the output voltage is rapidly reduced. cause. For this reason, it is important to remove CO in the reformed gas as much as possible. However, since the CO selective oxidation catalyst has a relatively narrow operating range related to the reaction system such as gas concentration, the reformed gas and air are sufficiently mixed. There must be. When the reformed gas and air are poorly mixed and a portion having a locally high oxygen concentration is formed in the CO selective oxidation layer 3, the reaction between the oxygen gas and the hydrogen gas proceeds and the reaction heat becomes high. As a result, not only the CO selectivity is deteriorated, but another secondary reaction such as a methane production reaction may proceed, and the catalyst life is also adversely affected. On the other hand, when the oxygen concentration is locally low, the reaction temperature also decreases and the catalytic activity also decreases, so that the CO selective oxidation reaction does not proceed and the residual CO concentration increases. That is, it is important to achieve uniform gas mixing for CO removal.
[0015]
Next, the fuel cell reformer will be described in detail focusing on the operation. In FIG. 1, a cylindrical inner tube 4, an intermediate tube 5, and an outer tube 6 are disposed concentrically and are entirely covered with a heat insulating material 7. The inner tube 4 and the outer tube 6 are connected to each other at the lower end of the figure by welding an annular plate or the like, and a space formed by the inner tube 4 and the intermediate tube 5 and a space formed by the intermediate tube 5 and the outer tube 6. Are coupled so that gas can flow at the lower end. A center plug 8 is disposed inside the inner tube 4.
[0016]
A source gas composed of hydrocarbon gas and water vapor or water is supplied from the source gas supply port 9 to the first gas passage 11 between the inner pipe 4 and the intermediate pipe 5. Further, a combustion gas of about 1000 ° C. as a heat source for the reforming reaction is supplied from the combustion gas supply port 10 to the heating fluid flow path 12 between the inner tube 4 and the center plug 8.
[0017]
The combustion gas flowing through the heating fluid channel 12 heats the reformed layer 1 and the first gas channel 11 by heat exchange via the inner pipe 4. For example, the lower end of the modified layer 1 is heated to about 700 ° C., and the vicinity of the boundary between the modified layer 1 and the first gas flow path 11 is heated to about 400 ° C. Therefore, the source gas is preheated to about 400 ° C. and flows into the reformed layer 1. Furthermore, the reforming layer 1 is heated to cause a reforming reaction, and becomes a reformed gas of about 700 ° C. mainly containing hydrogen gas.
[0018]
The reformed gas at about 700 ° C. passes through the second gas flow path 13 connecting the reformed layer 1 and the shift layer 2 and flows into the shift layer 2. Here, the temperature of the reformed gas decreases to about 350 ° C. when passing through the second gas flow path 13. This is because the reforming layer 1 recovers heat from the second gas flow path 13 via the intermediate pipe 5 because the reforming reaction is an endothermic reaction. Here, as a general theory regarding the catalyst, it is necessary to use it in an appropriate temperature range according to the catalyst in terms of function and life. For example, since the shift reaction is an exothermic reaction and the CO selective oxidation reaction is suitable at a lower temperature than the reforming reaction, the shift layer 2 may be cooled to an appropriate temperature.
[0019]
The reformed gas having a CO concentration reduced to about 0.5% in the shift layer 2 passes through the third gas flow path connecting the shift layer 2 and the CO selective oxidation layer 3 and flows into the CO selective oxidation layer 3. To do. Here, FIG. 2 is a perspective view of the third gas flow path in this embodiment. The third gas flow path is separated into an upper and lower third gas flow path compartment 14 by an annular partition plate 15, and the side wall of the third gas flow path compartment 14 has a tubular narrow shape connecting the upper and lower stages. A flow path 16 is provided. That is, the third gas channel is composed of the third gas channel compartment 14 and the narrow channel 16. The gas flow area of the narrow channel 16 is set to be smaller than the lower side of the third gas channel compartment 14, that is, the section on the shift layer 2 side. Further, an air supply port 17 is provided in the middle of the narrow channel 16. When the reformed gas flows into the narrow flow path 16, the flow velocity increases, and air is supplied to the reformed gas from the air supply port 17 to obtain a mixed gas of the reformed gas and air.
[0020]
The mixed gas of the reformed gas and air flows into the CO selective oxidation layer 3 at about 150 to 100 ° C. Here, the reformed gas has a high specific temperature of 200 to 150 ° C. just before flowing into the narrow flow path 16 in addition to the low specific gravity mainly composed of hydrogen gas. On the other hand, air is usually supplied at room temperature. Further, for example, the density of the reformed gas is 0.355 kg / m 3 , whereas the density of the supplied air is 1.22 kg / m 3 , and the specific gravity of both is also greatly different. Furthermore, in order to ensure the CO selectivity of the CO selective oxidation catalyst, the oxygen gas in the air and the CO in the reformed gas need to be supplied in a volume flow rate ratio range of about 1.5 to 2.5. is there. When this is converted into a flow rate ratio between the reformed gas and air, it corresponds to about 36 to 50 to 1, and the reformed gas and air must be supplied so as to be within this range.
[0021]
By the way, in general, the tubular gas flow path is designed with a Reynolds number of about 1500 or less and a flow velocity of about 8 m / s or less so that the pressure loss does not increase and the flow does not enter the transition region with turbulent flow. In order to improve the gas mixing property, the narrow flow path 16 is desirably as close as possible to the upper limit of Reynolds number 1500 and flow velocity 8 m / s.
[0022]
FIG. 3 is a gas mixing characteristic diagram for explaining this embodiment, in which air having a flow rate Q / 40 is mixed with a reformed gas having a flow rate Q, a Reynolds number of 1500, and a flow rate of 8 m / s flowing in the circular pipe. It shows the gas mixing property in the case of making them. In FIG. 3, the vertical axis represents the standard deviation of the mixed gas composition as an index of gas mixing property, and the horizontal axis represents the ratio between the representative length L and the representative diameter D of the circular tube. As a result, L / D is 1.3 or more and the standard deviation is 0.25% or less, and mixing is generally performed. When the standard deviation exceeds 0.25%, problems such as a reduction in the function and shortening of the life of the CO selective oxidation catalyst are likely to occur. When the L / D in the section on the CO selective oxidation layer 3 side from the air supply port 17 of the narrow channel 16 is 1.3 or more, good gas mixing property is obtained, and the CO concentration in the CO selective oxidation layer 3 is sufficiently high. Can be reduced.
[0023]
As described above, when L / D is 1.3 or more, CO and oxygen gas can be mixed so that the CO selective oxidation catalyst functions in the operation region. By extracting the original catalytic function of the CO selective oxidation catalyst, the CO concentration can be reduced to 10 ppm or less.
[0024]
Further, it is desirable that the CO selective oxidation catalyst be in a stable operating region even when a supply gas supply fluctuation or air supply fluctuation occurs as a fuel cell reformer. The variation of the standard deviation of the mixed gas composition due to such a gas supply variation falls within twice the design value. Therefore, in order to stably suppress the standard deviation of the mixed gas composition to 0.25% or less, the design value may be set to 0.12% or less. That is, when L / D is 6 or more, the reformed gas and air can be stably supplied in an appropriate mixed state. Therefore, the reliability as a fuel cell reformer is improved.
[0025]
In addition, when the flow direction of the air at the air supply port is perpendicular to the flow direction of the reformed gas flowing into the narrow flow path 16 from the lower third gas flow path compartment 14 in FIG. While being able to suppress the pressure loss in 16 and obtaining high gas mixing properties, the narrow flow path 16 can be made compact. It should be noted that, as long as such an effect can be obtained, even if the flow direction of the reformed gas and the flow direction of the air are slightly deviated from vertical, it is allowed.
[0026]
In this way, the reformed gas and air are sufficiently mixed in the narrow channel 16, so that the CO concentration in the CO selective oxidation layer 3 can be made 10 ppm or less. In this embodiment, the inner tube, the intermediate tube, and the outer tube are cylindrical. However, the present invention is not limited to this, and may be, for example, a rectangular tube. Furthermore, the gas flow section of the narrow channel is not limited to a circle. The representative diameter D in a case other than a circle is D = 4 S / l, where the gas flow cross-sectional area S and the wetting edge length l are D.
[0027]
Reference form 2.
FIG. 4 is a perspective view of a narrow channel for explaining the reference embodiment 2, and FIG. 5 is a side view of the same. In this reference form, the shift layer and the carbon monoxide selective oxidation layer are arranged between the outer pipe and the intermediate pipe arranged concentrically, and the gas flow path connecting the shift layer and the CO selective oxidation layer is formed by gas. Partitioning is performed by two annular partition plates as a channel partition means and a rectangular partition plate, and a space formed by these partition plates is a narrow channel. In FIG. 4, the narrow channel 16 is formed by providing a rectangular partition plate 15b in a space between two annular partition plates 15a. The reformed gas flows into the narrow flow path 16 from the lower third gas flow path compartment 14 through the passage hole 18a and passes through the narrow flow path 16 so as to follow the circumferential shape of the outer pipe 6 and the intermediate pipe 5. It circulates and flows into the third gas flow path compartment 14 in the upper stage of the figure through the passage hole 18b. Here, the gas flow area of the narrow channel 16 is smaller than the lower side of the third gas channel compartment 14. Furthermore, an air supply port 17 is provided in the middle of the narrow flow path 16 to obtain a mixed gas of reformed gas and air.
[0028]
In this reference embodiment, by forming the narrow flow path in the space between the outer pipe and the intermediate pipe, the third gas flow path can be easily formed and the space can be saved. Furthermore, by forming the narrow flow path inside the outer tube, it is possible to suppress the heat radiation of the gas when passing through the narrow flow path, and it is possible to reduce the thickness of the heat insulating material applied as heat radiation prevention. Therefore, the fuel cell reformer can be miniaturized.
[0029]
Furthermore, FIG. 6 is a side view of a narrow flow path for explaining a modification of this reference embodiment, and uses a helical partition plate as a gas flow path partitioning means. In FIG. 6, the reformed gas flows into the narrow channel 16 through the passage hole 18a, flows through the narrow channel 16 so as to be guided by the spiral partition plate 15c, and flows out from the passage hole 18b. When the spiral partition plate 15c is used, gas mixing is mainly performed on the downstream side, so that a sealing property is not required so much between the spiral partition plate 15c and the outer tube 6 or the intermediate tube 5. Therefore, it becomes easy to form a narrow channel.
[0030]
Reference form 3.
Figure 7 is a perspective view of a narrow channel for describing the reference of the third. In this reference form, a narrow channel is formed by two annular partition plates in the gas channel connecting the shift layer and the CO selective oxidation layer, and the narrow channel is further branched in two directions. It is. In FIG. 7, the narrow channel 16 is formed in a space sandwiched between two annular partition plates 15a. The reformed gas flows from the third gas channel compartment 14 shown in the lower part of the figure into the narrow channel 16 through the passage hole 18a, and is arranged on the near side and the far side in the figure so as to follow the circumferential shape of the outer tube and the intermediate tube. It circulates in the narrow flow path 16 while branching in two directions. The reformed gas that has branched and circulated in the narrow flow path 16 joins when passing through the passage hole 18b and flows into the third gas flow path compartment 14 in the upper stage in the drawing. Here, the gas flow area of the narrow channel 16 is smaller than the lower side of the third gas channel compartment 14. Further, the narrow flow path 16 is provided with an air supply port 17 in the vicinity of the passage hole 18a, and a mixed gas of the reformed gas and air is obtained.
[0031]
In this reference embodiment, the gas flow rate in the narrow flow path in each branched gas flow direction is halved compared to the case where the gas flow is not branched. Therefore, the gas flow area of the narrow channel can be reduced without causing gas drift in the shift layer and the accompanying local high temperature, and the narrow channel can be further saved in space.
[0032]
Further, FIG. 8 is a perspective view of a narrow channel for explaining a modified example of this reference embodiment, and FIG. 9 is a side view of the same, in which a rectifying plate is arranged in each branched narrow channel. The reformed gas that has flowed into the narrow flow path 16 from the passage hole 18a and branched in two directions, together with the air supplied from the air supply port 17, is rectified by a rectifying plate 19a disposed on the annular partition plate 15a on the passage hole 18a side. The pressure loss is equalized. Subsequently, the pressure loss is further equalized by the rectifying plate 19b disposed on the annular partition plate 15a on the passing hole 18b side. Here, the height of the rectifying plates 19a and 19b is preferably at least half the height of the narrow channel 16. Further, the arrangement and inclination angle of each rectifying plate can be designed as appropriate.
[0033]
By providing the current plate in this way, even if the flow rate fluctuates when the reformed gas or air branches, the pressure fluctuation buffering function and gas agitation function of the current flow plate function before they merge. To do. Therefore, the influence of flow fluctuation can be suppressed, and the gas mixing property can be enhanced.
[0034]
【The invention's effect】
According to the present invention, it is possible to provide a reformer for a fuel cell that sufficiently mixes reformed gas having a specific gravity difference with air and efficiently removes CO contained in the reformed gas.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a reformer for a fuel cell for explaining Embodiment 1. FIG.
FIG. 2 is a perspective view of a third gas flow path for explaining the first embodiment.
FIG. 3 is a gas mixing characteristic diagram for explaining the first embodiment;
4 is a perspective view of a narrow channel for explaining the reference to the second embodiment.
FIG. 5 is a side view of a narrow channel for explaining a reference embodiment 2;
6 is a side view of a narrow channel for explaining a modification of Reference Embodiment 2. FIG.
FIG. 7 is a perspective view of a narrow channel for explaining a reference form 3;
FIG. 8 is a perspective view of a narrow flow path for explaining a modification of Reference Embodiment 3.
FIG. 9 is a side view of a narrow channel for explaining a modification of the reference embodiment 3;
[Explanation of symbols]
1 reforming layer, 2 shift layer, 3 carbon monoxide selective oxidation layer, 4 inner tube, 5 intermediate tube, 6 outer tube, 7 heat insulating material, 8 center plug, 9 raw material gas supply port, 10 combustion gas supply port, 11 1st gas flow path, 12 Heating fluid flow path, 13 2nd gas flow path, 14 3rd gas flow path compartment, 15 Partition plate, 16 Narrow flow path, 17 Air supply port, 18a-18b Passing hole, 19a-19b rectifier.

Claims (2)

同心状に配置された内径側の第1の管及び外径側の第2の管との間に設けられ炭化水素ガスを改質反応によって水素ガスに変換するための改質層と、この改質層を通過したガスから一酸化炭素を低減するためのシフト層と、このシフト層を通過したガスから一酸化炭素を除去するための一酸化炭素選択酸化層と、前記シフト層と前記一酸化炭素選択酸化層とを接続するガス流路とを備え、
前記シフト層と前記一酸化炭素選択酸化層と前記ガス流路は前記第1の管及び第2の管に同心状に配置され前記第2の管より外径側の第3の管と前記第2の管との間に設けられ、前記ガス流路は円環状の仕切手段で分割され、前記シフト層に接する環状の第1のガス通路と前記一酸化炭素選択酸化層に接する環状の第2のガス通路とからなり、
前記第1のガス通路と前記第2のガス通路とを接続し、ガスが流通する方向に垂直なガス流通面積が前記第1のガス通路のガス流通面積よりも小さく、前記第3の管の外径側に配置された円管状の狭流路と、この狭流路に設けられた空気供給口とを有し、
前記狭流路における前記空気供給口の下流端部から前記第2のガス通路までの区間は、該狭流路におけるガスが流通する断面の中心をガスが流れる長さである代表長さと該狭流路のガス流通面積に基づく代表径との比が1.3以上であることを特徴とする燃料電池用改質器
A reforming layer provided between a first pipe on the inner diameter side and a second pipe on the outer diameter side disposed concentrically for converting hydrocarbon gas into hydrogen gas by a reforming reaction, A shift layer for reducing carbon monoxide from the gas that has passed through the porous layer, a carbon monoxide selective oxidation layer for removing carbon monoxide from the gas that has passed through the shift layer, the shift layer, and the monoxide A gas flow path connecting the carbon selective oxidation layer,
The shift layer, the carbon monoxide selective oxidation layer, and the gas flow path are disposed concentrically with the first pipe and the second pipe, and the third pipe and the third pipe on the outer diameter side of the second pipe. The gas flow path is divided by an annular partitioning means, and an annular first gas passage in contact with the shift layer and an annular second gas in contact with the carbon monoxide selective oxidation layer are provided. Gas path,
The first connected to the gas passage and the second gas passage, rather smaller than the gas flow area of the vertical gas flow area in the direction in which gas flows first gas passage, the third tube A narrow tubular channel disposed on the outer diameter side of the air channel, and an air supply port provided in the narrow channel,
The section from the downstream end of the air supply port to the second gas passage in the narrow channel has a representative length that is the length of the gas flowing through the center of the cross section through which the gas flows in the narrow channel and the narrow channel. A reformer for a fuel cell, wherein a ratio with a representative diameter based on a gas flow area of a flow path is 1.3 or more .
狭流路における前記空気供給口の下流端部から前記第2のガス通路までの区間は、前記代表長さと前記代表径との比が6以上であることを特徴とする請求項1記載の燃料電池用改質器。  2. The fuel according to claim 1, wherein a ratio of the representative length to the representative diameter in a section from the downstream end portion of the air supply port to the second gas passage in the narrow flow path is 6 or more. Battery reformer.
JP2003038111A 2003-02-17 2003-02-17 Fuel cell reformer Expired - Fee Related JP4356330B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003038111A JP4356330B2 (en) 2003-02-17 2003-02-17 Fuel cell reformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003038111A JP4356330B2 (en) 2003-02-17 2003-02-17 Fuel cell reformer

Publications (2)

Publication Number Publication Date
JP2004247241A JP2004247241A (en) 2004-09-02
JP4356330B2 true JP4356330B2 (en) 2009-11-04

Family

ID=33022722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003038111A Expired - Fee Related JP4356330B2 (en) 2003-02-17 2003-02-17 Fuel cell reformer

Country Status (1)

Country Link
JP (1) JP4356330B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5023432B2 (en) * 2005-03-23 2012-09-12 日産自動車株式会社 Fuel cell system control apparatus and fuel cell system control method
JP4953231B2 (en) * 2006-06-15 2012-06-13 パナソニック株式会社 Hydrogen generator and fuel cell power generator using the same
JP5165407B2 (en) * 2008-02-07 2013-03-21 東京瓦斯株式会社 Cylindrical steam reformer
JP5191840B2 (en) * 2008-09-01 2013-05-08 東京瓦斯株式会社 Cylindrical steam reformer with integrated hydrodesulfurizer
JP5269679B2 (en) * 2009-04-07 2013-08-21 東京瓦斯株式会社 Raw material pretreatment system for fuel hydrogen production of fuel cells
JP2011105523A (en) * 2009-11-12 2011-06-02 Kao Corp Method for producing water gas
JP5530540B2 (en) * 2013-03-06 2014-06-25 東京瓦斯株式会社 Raw material pretreatment system for fuel hydrogen production of fuel cells

Also Published As

Publication number Publication date
JP2004247241A (en) 2004-09-02

Similar Documents

Publication Publication Date Title
US8426071B2 (en) Method and apparatus for separating liquid from a gas stream
JP4870491B2 (en) Fuel reformer
JP5015590B2 (en) Method and apparatus for rapid heating of fuel reforming reactants
JP5227706B2 (en) Reformer
US7846594B2 (en) Reformer and fuel cell system having the same
JP5154272B2 (en) Fuel cell reformer
AU2005289675B2 (en) Apparatus and method for preferential oxidation of carbon monoxide
JP4356330B2 (en) Fuel cell reformer
JP4887021B2 (en) CO removing device, fuel reforming device, and fuel cell system
US7470294B2 (en) Fuel processor design and method of manufacture
US20130065144A1 (en) Hydrogen production apparatus and fuel cell system
JP4545118B2 (en) Fuel reforming system and fuel cell system including fuel reforming system
JP5161621B2 (en) Fuel cell reformer
WO2000061491A1 (en) Apparatus for selective oxidation of carbon monoxide
US8263027B2 (en) Apparatus, systems and methods for the production of hydrogen
JP4107407B2 (en) Air mixing method in CO selective oxidation reaction of oxidation reactor and hydrogen production apparatus
JP5551407B2 (en) Fuel cell reactor
JP5066472B2 (en) Hydrogen production apparatus and fuel cell system
JP5065825B2 (en) Hydrogen production equipment
KR100422804B1 (en) Apparatus to remove carbon monoxide for fuel cell
JP2011207701A (en) Hydrogen production apparatus and fuel cell system
JP2011178613A (en) Multiple cylindrical steam reformer
JP2007227237A (en) Solid oxide fuel battery module
JP5065117B2 (en) Carbon monoxide removal device and hydrogen production device
JP2007098314A (en) Reactor and reformer for fuel cell

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040712

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090429

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090714

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090727

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090624

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130814

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees