JP2007098314A - Reactor and reformer for fuel cell - Google Patents

Reactor and reformer for fuel cell Download PDF

Info

Publication number
JP2007098314A
JP2007098314A JP2005293144A JP2005293144A JP2007098314A JP 2007098314 A JP2007098314 A JP 2007098314A JP 2005293144 A JP2005293144 A JP 2005293144A JP 2005293144 A JP2005293144 A JP 2005293144A JP 2007098314 A JP2007098314 A JP 2007098314A
Authority
JP
Japan
Prior art keywords
reaction
heating medium
catalyst layer
gas
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005293144A
Other languages
Japanese (ja)
Inventor
Tomohiro Iihara
智宏 飯原
Yoshikazu Abe
芳和 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Corona Corp
Original Assignee
Idemitsu Kosan Co Ltd
Corona Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd, Corona Corp filed Critical Idemitsu Kosan Co Ltd
Priority to JP2005293144A priority Critical patent/JP2007098314A/en
Publication of JP2007098314A publication Critical patent/JP2007098314A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reactor and a reformer for a fuel cell which are hard to generate a dispersion of a reaction temperature in a catalyst layer as a reaction gas does not drift, and makes the catalyst effectively work to perform a good reaction. <P>SOLUTION: The reactor and the reformer for the fuel cell have a reaction part which is formed in the shape of an outer cylinder surrounding a periphery side of a heating medium passage, is arranged with an inlet of the reaction gas at an opening end arranged at an end, and has a blocking end at the other end, the reaction catalyst layer packed in the reaction part, and a reaction product-gas returning passage, which keeps the heating medium passage wound from the blocking end towards the opening end to be spirally circled in the reaction catalyst layer and which has an outlet of a reaction product gas opened at the blocking end. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、反応装置および燃料電池用改質装置に関する。   The present invention relates to a reactor and a reformer for a fuel cell.

一般に、内部に充填された反応触媒層に、反応ガスを供給して反応させる反応装置が広く用いられている。例えば、図4に示す燃料電池システム101では、炭化水素原料と水の反応によって改質ガスを製造する改質器104と、改質ガス中の一酸化炭素または未反応の炭化水素と水蒸気との反応によって水素を生成させ、さらに水素含有量が増加した改質ガスを製造するシフト反応器105と、残余の一酸化炭素を酸化して一酸化炭素濃度を極力低減させた改質ガスを製造する一酸化炭素(CO)選択酸化器106とを備える。この燃料電池システムでは、改質器104、シフト反応器105および一酸化炭素(CO)選択酸化器106によって生成した、一酸化炭素含有量が低減された水素リッチな改質ガスが、燃料電池スタック110のアノード111に供給され、カソード112に空気が供給されることによって、水素と酸素の電気化学反応による発電が行われる。この燃料電池システム101における改質器104、シフト反応器105および一酸化炭素選択酸化反応器106として、内部に触媒層が設けられ、その触媒層内を反応ガスが流通しながら各反応が行われる形式の装置が用いられる。   In general, a reaction apparatus is widely used in which a reaction gas is supplied to a reaction catalyst layer filled therein to react. For example, in the fuel cell system 101 shown in FIG. 4, a reformer 104 that produces a reformed gas by a reaction between a hydrocarbon raw material and water, and a combination of carbon monoxide or unreacted hydrocarbon and steam in the reformed gas. A shift reactor 105 that produces hydrogen by the reaction and produces a reformed gas having an increased hydrogen content, and a reformed gas that oxidizes the remaining carbon monoxide to reduce the carbon monoxide concentration as much as possible. And a carbon monoxide (CO) selective oxidizer 106. In this fuel cell system, hydrogen-rich reformed gas having a reduced carbon monoxide content generated by the reformer 104, the shift reactor 105, and the carbon monoxide (CO) selective oxidizer 106 is converted into a fuel cell stack. By supplying air to the anode 111 of 110 and supplying air to the cathode 112, power generation is performed by an electrochemical reaction between hydrogen and oxygen. As a reformer 104, a shift reactor 105, and a carbon monoxide selective oxidation reactor 106 in the fuel cell system 101, a catalyst layer is provided therein, and each reaction is performed while a reaction gas flows through the catalyst layer. A type of device is used.

例えば、特許文献1には、改質触媒を充填した反応管と、その反応管の外側を囲む伝熱部とを有する燃料電池用改質器が記載されている(特許文献1等参照)。また、図5に示すように、加熱媒体HFが流通する加熱媒体流通路51と、前記加熱媒体流通路51の外周側を囲む外筒状に形成され、反応触媒が充填された反応部52とを有し、加熱媒体流通路51を流通する加熱媒体によって、反応部52の触媒層を流通する反応ガスRGを加熱し、触媒の存在下に反応させる反応装置も知られている。   For example, Patent Document 1 describes a fuel cell reformer having a reaction tube filled with a reforming catalyst and a heat transfer portion surrounding the reaction tube (see Patent Document 1 and the like). Further, as shown in FIG. 5, a heating medium flow passage 51 through which the heating medium HF flows, and a reaction section 52 formed in an outer cylindrical shape surrounding the outer peripheral side of the heating medium flow passage 51 and filled with a reaction catalyst, There is also known a reaction apparatus that heats the reaction gas RG flowing through the catalyst layer of the reaction section 52 by the heating medium flowing through the heating medium flow passage 51 and reacts in the presence of the catalyst.

こうした触媒層内に反応ガスを流通させて反応させる形式の反応装置では、触媒層内で反応ガスの偏流が生じると、反応に関与しない部分(デッド部)が生じるため、触媒層の各部での反応温度のバラツキが生じて触媒が有効に機能しない部分が生じる。そのため、最悪の場合、触媒層内における反応が平衡に達することなく、反応装置から反応ガスの一部または全部が未反応の状態のまま導出されるおそれがある。
特開平06−231789号公報(段落番号0006、図2)
In a reaction apparatus of a type in which a reaction gas is circulated and reacted in such a catalyst layer, if a drift of the reaction gas occurs in the catalyst layer, a part not involved in the reaction (dead part) is generated. Therefore, in each part of the catalyst layer, Variations in the reaction temperature occur, resulting in a portion where the catalyst does not function effectively. Therefore, in the worst case, the reaction in the catalyst layer does not reach equilibrium, and there is a possibility that part or all of the reaction gas is led out from the reaction apparatus in an unreacted state.
Japanese Patent Laid-Open No. 06-231789 (paragraph number 0006, FIG. 2)

そこで、本発明は、前記した問題を解決し、反応ガスが偏流しないため触媒層における反応温度のバラツキが生じにくく、触媒が有効に機能して良好な反応を行うことができる反応装置および燃料電池用改質装置を提供することを目的とする。   Accordingly, the present invention solves the above-mentioned problems, and since the reaction gas does not drift, the reaction temperature in the catalyst layer is unlikely to vary, and the reaction apparatus and the fuel cell capable of performing a good reaction with the catalyst functioning effectively An object of the present invention is to provide an industrial reformer.

請求項1に記載の発明は、加熱媒体が流通する加熱媒体流通路と、前記加熱媒体流通路の外周側を囲む外筒状に形成され、一端に設けられた開放端に反応ガスの導入口が設けられ、他端に閉塞端を有する反応部と、前記反応部内に充填された反応触媒層と、前記反応触媒層の内部に、前記閉塞端から前記開放端に向けて前記加熱媒体流通路を巻回して螺旋状に旋回し、前記閉塞端に開口した反応生成ガス導出口を備える反応生成ガス戻り管路と、を備えることを特徴とする反応装置を提供するものである。   According to the first aspect of the present invention, there is provided a heating medium flow passage through which a heating medium flows, and an outer cylindrical shape surrounding an outer peripheral side of the heating medium flow passage, and a reaction gas inlet at an open end provided at one end. And a reaction part having a closed end at the other end, a reaction catalyst layer filled in the reaction part, and the heating medium flow path from the closed end toward the open end inside the reaction catalyst layer And a reaction product gas return pipe provided with a reaction product gas outlet opening opened at the closed end and provided in a spiral shape.

この反応装置では、反応部内に設けられた反応触媒層の内部に、前記閉塞端から前記開放端に向けて前記加熱媒体流通路を巻回して螺旋状に旋回し、前記閉塞端に開口した反応生成ガス導出口を備える反応生成ガス戻り管路を備えることによって、反応部の触媒層に反応ガスが偏流しないため反応温度のバラツキが生じにくく、触媒が有効に機能して反応を安定して行わせることができる。   In this reaction apparatus, the heating medium flow passage is wound around the reaction catalyst layer provided in the reaction section from the closed end toward the open end, and the reaction medium opens in the closed end. By providing a reaction product gas return pipe with a product gas outlet, the reaction gas does not flow unevenly in the catalyst layer of the reaction part, so that the reaction temperature is less likely to vary, and the catalyst functions effectively and performs the reaction stably. Can be made.

また、請求項2に記載の発明は、炭化水素原料と水との反応によって水素含有ガスを製造する燃料電池用改質装置であって、加熱媒体が流通する加熱媒体流通路と、前記加熱媒体流通路の外周側を囲む外筒状に形成され、一端に設けられた開放端に前記炭化水素原料と水の導入口が設けられ、他端に閉塞端を有する改質反応部と、前記改質反応部内に充填された改質用触媒層と、前記改質用触媒層の内部に、前記閉塞端から前記開放端に向けて前記加熱媒体流通路を巻回して螺旋状に旋回し、前記閉塞端に開口した水素含有ガス導出口を備える水素含有ガス戻り管路と、を備えることを特徴とする燃料電池用改質装置を提供するものである。   The invention according to claim 2 is a reformer for a fuel cell that produces a hydrogen-containing gas by a reaction between a hydrocarbon raw material and water, a heating medium flow passage through which a heating medium flows, and the heating medium The reforming reaction section is formed in an outer cylindrical shape surrounding the outer peripheral side of the flow path, the hydrocarbon raw material and water introduction port is provided at an open end provided at one end, and the closed end is provided at the other end, and the modified A reforming catalyst layer filled in a mass reaction section, and inside the reforming catalyst layer, the heating medium flow passage is wound from the closed end toward the open end, and spirally swung, A reformer for a fuel cell, comprising: a hydrogen-containing gas return pipe having a hydrogen-containing gas outlet opening opened at a closed end.

この燃料電池用改質装置では、改質反応部内に充填された改質用触媒層の内部に、前記閉塞端から前記開放端に向けて前記加熱媒体流通路を巻回して螺旋状に旋回し、前記閉塞端に開口した水素含有ガス導出口を備える水素含有ガス戻り管路と、を備えることによって、改質反応部の触媒層に反応ガスが偏流しないため反応温度のバラツキが生じにくく、触媒が有効に機能して反応を安定して行わせることができる。   In this fuel cell reforming apparatus, the heating medium flow passage is wound from the closed end toward the open end inside the reforming catalyst layer filled in the reforming reaction section, and spirally swirled. And a hydrogen-containing gas return pipe having a hydrogen-containing gas outlet opening opened at the closed end, so that the reaction gas does not flow unevenly in the catalyst layer of the reforming reaction section, and the reaction temperature is less likely to vary. Can function effectively and allow the reaction to be performed stably.

本発明の反応装置は、触媒層内に設ける反応生成ガス戻り管路を螺旋状に形成することによって、反応部に導入される反応ガスが触媒層を旋回しながら反応する。そのため、触媒層にデッド部ができにくく、さらに、この結果、反応部に反応温度のバラツキが生じにくくなるため、反応部の触媒層における反応を制御し易く、反応も安定して行わせることが可能となる。   In the reaction apparatus of the present invention, the reaction gas introduced into the reaction section reacts while swirling the catalyst layer by forming the reaction product gas return pipe provided in the catalyst layer in a spiral shape. Therefore, it is difficult to form a dead part in the catalyst layer, and as a result, the reaction part is less likely to vary in reaction temperature, so that the reaction in the catalyst layer of the reaction part can be easily controlled and the reaction can be performed stably. It becomes possible.

また、請求項2の燃料電池用改質装置は、改質反応部内の触媒層に設ける水素含有ガス戻り管路を螺旋状に形成することによって、改質反応部に導入される反応ガスが触媒層を旋回しながら反応する。そのため、触媒層にデッド部ができにくく、さらに、この結果、改質反応部に反応温度のバラツキが生じにくくなるため、改質反応部の触媒層における炭化水素原料と水との改質反応を制御し易く、改質反応も安定して行わせることが可能となる。   According to another aspect of the present invention, there is provided a reformer for a fuel cell in which the hydrogen-containing gas return pipe provided in the catalyst layer in the reforming reaction section is formed in a spiral shape so that the reaction gas introduced into the reforming reaction section is a catalyst. React with swirling layers. Therefore, it is difficult to form a dead part in the catalyst layer, and as a result, the reaction temperature is less likely to vary in the reforming reaction part. Therefore, the reforming reaction between the hydrocarbon raw material and water in the catalyst layer of the reforming reaction part is prevented. It is easy to control and the reforming reaction can be performed stably.

次に、本発明の実施形態について、適宜図面を参照しながら詳細に説明する。図1は、本発明の第1の実施形態に係る反応装置の構成を示す模式図、図2はその反応装置の一部を切り欠いて示す概念図である。   Next, embodiments of the present invention will be described in detail with reference to the drawings as appropriate. FIG. 1 is a schematic diagram showing the configuration of the reaction apparatus according to the first embodiment of the present invention, and FIG. 2 is a conceptual diagram showing a part of the reaction apparatus cut away.

この反応装置1は、管状の装置本体11の軸中心を貫通する加熱媒体流通路12と、加熱媒体流通路12の外周側を囲んで設けられ、内部に反応触媒層14が設けられた反応部13とを有する2重管構造を有する。   This reaction apparatus 1 is provided with a heating medium flow passage 12 penetrating the axial center of a tubular apparatus main body 11 and an outer peripheral side of the heating medium flow path 12, and a reaction section in which a reaction catalyst layer 14 is provided. 13 and a double tube structure.

加熱媒体流通路12は、装置本体11の軸中心を貫通し、バーナ(図示せず)等によって加熱された加熱媒体HFが流通する流路である。この加熱媒体流通路12は、装置本体11の内周壁11aを介して、反応部13内の反応触媒層14を流通する反応ガスを加熱するためのものである。なお、内周壁11aにフィン等の伝熱促進部材を設けて加熱媒体HFの熱を効率よく反応部13を加熱することもできる。   The heating medium flow passage 12 is a flow path through which the heating medium HF that passes through the axial center of the apparatus main body 11 and is heated by a burner (not shown) or the like flows. The heating medium flow passage 12 is for heating the reaction gas flowing through the reaction catalyst layer 14 in the reaction section 13 via the inner peripheral wall 11 a of the apparatus main body 11. In addition, the reaction part 13 can also be efficiently heated by providing a heat transfer promoting member such as a fin on the inner peripheral wall 11a.

反応部13は、加熱媒体流通路12の外周側を囲み、装置本体11の内周壁11aと外周壁11bとの間に外筒状に形成され、内周壁11aによって、加熱媒体流通路12と画成されている。この反応部13は、一端に開放端13aを、他端に閉塞端13bを有し、開放端13aには、反応ガスの導入口13cが設けられている。
また、反応部13は、内周壁11aと外周壁11bとの間に反応触媒を充填して形成された反応触媒層14と、その反応触媒層14の内部に配設された反応生成ガス戻り管路15とを備える。
The reaction unit 13 surrounds the outer peripheral side of the heating medium flow passage 12 and is formed in an outer cylindrical shape between the inner peripheral wall 11a and the outer peripheral wall 11b of the apparatus main body 11, and is separated from the heating medium flow passage 12 by the inner peripheral wall 11a. It is made. The reaction unit 13 has an open end 13a at one end and a closed end 13b at the other end, and a reaction gas inlet 13c is provided at the open end 13a.
The reaction unit 13 includes a reaction catalyst layer 14 formed by filling a reaction catalyst between the inner peripheral wall 11a and the outer peripheral wall 11b, and a reaction product gas return pipe disposed inside the reaction catalyst layer 14. Road 15 is provided.

反応生成ガス戻り管路15は、前記閉塞端13bに開口した反応生成ガス導出口15aと、前記加熱媒体流通路12を巻回して反応触媒層14内を螺旋状に旋回する管路本体15bとを有し、管路本体15bは、開放端13aから反応部13の外部に導出された反応生成ガス導出口15cを有する。反応生成ガス導出口15cは、他の装置に接続される。例えば、反応装置1が燃料電池用改質装置である場合は、反応生成ガス導出口15cは、シフト反応装置のガス導入口に接続される。ここで、反応生成ガス戻り管路15の管路本体15bの外径Rは、装置本体11の内周壁11aと外周壁11bとの間の間隔Lに対して、R<Lとなるように構成される。すなわち、図2に示すように、反応生成ガス戻り管路15の管路本体15aと、装置本体11の内周壁11aと外周壁11bとの間には、空隙16a,16bが形成され、この空隙16a,16bを反応ガスが通過できるように構成される。このとき、R/Lは、0.5〜1.0の範囲で選択され、空隙を広く取ることで反応装置1内に反応生成ガス戻り管路15を挿入する組み付け作業が容易になると共に、反応装置1内への触媒の充填作業も容易となる。   The reaction product gas return pipe 15 includes a reaction product gas outlet 15a that opens to the closed end 13b, a pipe body 15b that spirals around the reaction catalyst layer 14 around the heating medium flow path 12, and The pipe body 15b has a reaction product gas outlet 15c led out of the reaction section 13 from the open end 13a. The reaction product gas outlet 15c is connected to another device. For example, when the reactor 1 is a fuel cell reformer, the reaction product gas outlet 15c is connected to a gas inlet of the shift reactor. Here, the outer diameter R of the pipe main body 15 b of the reaction product gas return pipe 15 is configured such that R <L with respect to the distance L between the inner peripheral wall 11 a and the outer peripheral wall 11 b of the apparatus main body 11. Is done. That is, as shown in FIG. 2, gaps 16 a and 16 b are formed between the pipe main body 15 a of the reaction product gas return pipe 15 and the inner peripheral wall 11 a and the outer peripheral wall 11 b of the apparatus main body 11. The reaction gas is configured to pass through 16a and 16b. At this time, R / L is selected in the range of 0.5 to 1.0, and the assembly work for inserting the reaction product gas return pipe 15 into the reactor 1 is facilitated by taking a wide gap, The filling operation of the catalyst into the reactor 1 is also facilitated.

この反応装置1においては、反応ガスは、反応ガスの導入口13cから導入され、反応触媒層14内に反応生成ガス戻り管路15によって螺旋状に形成された反応ガス流通路16を旋回しながら閉塞端13bに向けて流通する。また、反応ガスは、図2に示すように、前記空隙16a,16bを通過し、次の反応ガス流通路に流通することもできる。この空隙16a,16bを反応ガスが通過することで、反応生成ガス戻り管路15周りの反応ガスの流れを促進して反応触媒を有効に利用することができる。反応ガスは、加熱媒体流通路12を流通する加熱媒体によって加熱され、反応触媒層14を形成する反応触媒の作用によって反応する。このとき、反応ガスが反応触媒層14内で偏流せず、反応触媒層14内を円滑に流通する。そのため、反応触媒層14における反応温度のバラツキが生じにくく、触媒が有効に機能して良好な反応を行うことができる。反応によって生成した生成物を含む反応生成ガスは、閉塞端13bに開口した反応生成ガス導出口15aから反応生成ガス戻り管路15に導入され、反応触媒層14内を螺旋状に旋回しながら反応生成ガス導出口15cに向けて管路本体15b内を流通する。このとき、反応生成ガスは、管路本体15b内を流通しながら、反応触媒層14内を流通する反応ガスと熱交換して、反応ガスを加熱する。これによって、反応生成ガスが有する熱エネルギを、反応ガスの加熱に有効に利用できるとともに、後段の反応器、もしくは装置に適切な温度のガスとして導入することができる。   In this reaction apparatus 1, the reaction gas is introduced from the reaction gas introduction port 13 c, and swirls around the reaction gas flow path 16 formed in a spiral shape by the reaction product gas return pipe 15 in the reaction catalyst layer 14. It flows toward the closed end 13b. In addition, as shown in FIG. 2, the reaction gas can pass through the gaps 16a and 16b and flow to the next reaction gas flow passage. By passing the reaction gas through the gaps 16a and 16b, the flow of the reaction gas around the reaction product gas return pipe 15 can be promoted to effectively use the reaction catalyst. The reaction gas is heated by the heating medium flowing through the heating medium flow passage 12 and reacts by the action of the reaction catalyst that forms the reaction catalyst layer 14. At this time, the reaction gas does not drift in the reaction catalyst layer 14 and smoothly flows in the reaction catalyst layer 14. Therefore, variations in reaction temperature in the reaction catalyst layer 14 are unlikely to occur, and the catalyst can function effectively and perform a good reaction. The reaction product gas containing the product generated by the reaction is introduced into the reaction product gas return pipe 15 from the reaction product gas outlet 15a opened at the closed end 13b, and reacts while spirally turning in the reaction catalyst layer 14. It circulates in the pipe body 15b toward the product gas outlet 15c. At this time, the reaction product gas exchanges heat with the reaction gas flowing through the reaction catalyst layer 14 while flowing through the pipe body 15b, thereby heating the reaction gas. Accordingly, the thermal energy of the reaction product gas can be effectively used for heating the reaction gas, and can be introduced into the subsequent reactor or apparatus as a gas having an appropriate temperature.

第1の実施形態に係る反応装置1の具体例として、燃料電池用改質反応装置、燃料電池用水蒸気改質反応装置、燃料電池用部分酸化改質反応装置、シフト反応装置、一酸化炭素選択酸化反応装置が挙げられる。例えば、前記反応装置1における反応ガスを炭化水素原料と水蒸気の混合ガスとし、反応触媒として改質触媒を用いる燃料電池用改質装置を構成することができる。この燃料電池用改質装置においては、反応生成ガスは、水素含有ガスとなる。したがって、この燃料電池用改質装置は、炭化水素原料と水との反応によって水素含有ガスを製造する燃料電池用改質装置であって、加熱媒体が流通する加熱媒体流通路と、前記加熱媒体流通路の外周側を囲む外筒状に形成され、一端に設けられた開放端に前記炭化水素原料と水の導入口が設けられ、他端に閉塞端を有する改質反応部と、前記改質反応部内に充填された改質用触媒層と、前記改質用触媒層の内部に、前記閉塞端から前記開放端に向けて前記加熱媒体流通路を巻回して螺旋状に旋回し、前記閉塞端に開口した水素含有ガス導出口を備える水素含有ガス戻り管路と、を備える燃料電池用改質装置を構成することができる。この改質反応装置で生成した水素含有ガスは、燃料電池システムを構成するシフト反応器等の後段の反応器、H透過膜等の処理装置、SOFC(Solid Oxide Fuel Cell)固体酸化物型燃料電池)のシステムの場合には、直接、燃料電池スタックに水素含有ガス導出路を介して導出される。 Specific examples of the reactor 1 according to the first embodiment include a fuel cell reforming reactor, a fuel cell steam reforming reactor, a fuel cell partial oxidation reforming reactor, a shift reactor, and a carbon monoxide selection. An oxidation reaction apparatus is mentioned. For example, a reformer for a fuel cell that uses a reaction gas in the reactor 1 as a mixed gas of a hydrocarbon raw material and water vapor and uses a reforming catalyst as a reaction catalyst can be configured. In this fuel cell reformer, the reaction product gas is a hydrogen-containing gas. Therefore, this fuel cell reforming apparatus is a fuel cell reforming apparatus for producing a hydrogen-containing gas by a reaction between a hydrocarbon raw material and water, a heating medium flow passage through which a heating medium flows, and the heating medium. The reforming reaction section is formed in an outer cylindrical shape surrounding the outer peripheral side of the flow path, the hydrocarbon raw material and water introduction port is provided at an open end provided at one end, and the closed end is provided at the other end, and the modified A reforming catalyst layer filled in a mass reaction section, and inside the reforming catalyst layer, the heating medium flow passage is wound from the closed end toward the open end, and spirally swung, A reformer for a fuel cell comprising a hydrogen-containing gas return pipe having a hydrogen-containing gas outlet opening opened at the closed end can be configured. The hydrogen-containing gas produced by this reforming reactor is a reactor in the subsequent stage such as a shift reactor that constitutes the fuel cell system, a processing device such as a H 2 permeable membrane, a solid oxide fuel cell (SOFC) solid oxide fuel. In the case of a battery) system, it is directly led to the fuel cell stack through a hydrogen-containing gas lead-out path.

このとき、改質反応部における改質反応は、改質触媒の存在下に、例えば、550〜700℃の範囲の改質反応温度の下で、炭化水素原料が含む炭化水素分と水蒸気との反応によって、水素含有ガスを生成する。用いられる改質触媒は、白金(Pt)、パラジウム(Pd)、ルテニウム(Ru)等の貴金属系触媒等が挙げられ、これらの改質触媒は、セラミック製の多孔質粒状体に担持され、改質反応部の内部に、その多孔質粒状体が充填されて触媒層を形成する。   At this time, the reforming reaction in the reforming reaction section is performed in the presence of the reforming catalyst, for example, at a reforming reaction temperature in the range of 550 to 700 ° C., between the hydrocarbon content contained in the hydrocarbon raw material and steam. The reaction produces a hydrogen-containing gas. Examples of the reforming catalyst used include noble metal catalysts such as platinum (Pt), palladium (Pd), and ruthenium (Ru). These reforming catalysts are supported on porous ceramic particles. The porous reaction product is filled in the inside of the quality reaction part to form a catalyst layer.

改質反応部に供給される炭化水素原料は、燃料電池用改質装置の改質反応部における改質反応によって水素を製造できるものであれば、特に制限されない。例えば、灯油、軽油、重油、アスファルテン、オイルサンド油、メタノール、ナフサ、石炭液化油、石炭系重質油、ガソリン等の液状炭化水素混合物、都市ガス、LPG等の気体状炭化水素混合物などの各種の炭化水素混合物を用いることができる。これらの中でも、灯油は、水素源としてのエネルギー密度が非常に高く、可搬性および貯蔵性に富むため、家庭用の小型の定置型燃料電池システム用の炭化水素原料として好適である。これらの炭化水素原料は、硫黄分が多い場合には、改質反応部に供給する前に、脱硫装置で脱硫することが望ましい。また、用いる炭化水素原料が、硫黄分が少なく、改質反応部における改質反応に供給可能なものであれば、脱硫装置を省略して、改質反応部に、直接、炭化水素原料を供給することができる。   The hydrocarbon raw material supplied to the reforming reaction section is not particularly limited as long as hydrogen can be produced by the reforming reaction in the reforming reaction section of the fuel cell reforming apparatus. Examples include kerosene, light oil, heavy oil, asphaltene, oil sand oil, methanol, naphtha, coal liquefied oil, coal heavy oil, liquid hydrocarbon mixtures such as gasoline, gaseous hydrocarbon mixtures such as city gas and LPG, etc. Can be used. Among these, kerosene has a very high energy density as a hydrogen source and is highly portable and storable, and is therefore suitable as a hydrocarbon raw material for a small stationary fuel cell system for home use. When these hydrocarbon raw materials contain a large amount of sulfur, it is desirable to desulfurize them with a desulfurization apparatus before supplying them to the reforming reaction section. If the hydrocarbon raw material to be used is low in sulfur content and can be supplied to the reforming reaction in the reforming reaction section, the hydrocarbon raw material is directly supplied to the reforming reaction section by omitting the desulfurization unit. can do.

また、前記反応装置1として、燃料電池システムのシフト反応装置を構成することができる。このとき、反応ガスは、前記改質反応装置で生成した水素含有ガスである。このシフト反応装置は、酸化鉄、銅−亜鉛系、銅−クロム系等のシフト触媒(反応触媒)の存在下に、例えば150〜300°Cの温度において、燃料電池用改質装置で生成した水素含有ガス中に含まれる一酸化炭素と水蒸気の発熱反応(CO+HO→CO+H)によって、一酸化炭素を二酸化炭素に変成して、一酸化炭素濃度を低減させるとともに、さらに水素含有量が増加された水素含有ガス(以下、「シフトガス」という)を生成する装置である。これによって、燃料電池スタックFCに供給される水素含有ガスが含む水素が、燃料電池スタックのアノードに供給される発電用水素資源として有効利用される。 Further, as the reaction apparatus 1, a shift reaction apparatus of a fuel cell system can be configured. At this time, the reaction gas is a hydrogen-containing gas generated by the reforming reaction apparatus. This shift reactor was produced by a fuel cell reformer at a temperature of, for example, 150 to 300 ° C. in the presence of a shift catalyst (reaction catalyst) such as iron oxide, copper-zinc, or copper-chromium. Carbon monoxide is converted to carbon dioxide by exothermic reaction of carbon monoxide and water vapor contained in the hydrogen-containing gas (CO + H 2 O → CO 2 + H 2 ), reducing the carbon monoxide concentration and further containing hydrogen. This is an apparatus for generating a hydrogen-containing gas (hereinafter referred to as “shift gas”) having an increased amount. Thereby, hydrogen contained in the hydrogen-containing gas supplied to the fuel cell stack FC is effectively used as a power generation hydrogen resource supplied to the anode of the fuel cell stack.

さらに、前記反応装置1として、燃料電池システムの一酸化炭素(CO)選択酸化装置を構成することができる。このとき、反応ガスは、前記シフト反応装置で生成された、水素含有量が増加されたシフトガスである。この一酸化炭素(CO)選択酸化装置は、燃料電池スタックの電極の被毒の問題を回避するため、シフト反応装置から供給されるシフトガス中に微量に存在する一酸化炭素を酸化させて、シフトガスの一酸化炭素濃度をさらに低減させた水素含有ガスを燃料電池スタックに供給するための装置である。通常、この一酸化炭素選択酸化装置において、シフトガス中の一酸化炭素濃度が10ppm以下に低減される。一酸化炭素選択酸化装置における反応は、例えば、白金、ルテニウム、ロジウム等の貴金属系触媒の存在下に、105〜150°Cの範囲の温度で行なわれる。   Further, as the reaction apparatus 1, a carbon monoxide (CO) selective oxidation apparatus for a fuel cell system can be configured. At this time, the reaction gas is a shift gas generated in the shift reaction apparatus and having an increased hydrogen content. This carbon monoxide (CO) selective oxidizer oxidizes carbon monoxide present in a minute amount in the shift gas supplied from the shift reactor in order to avoid the problem of poisoning of the electrodes of the fuel cell stack. Is a device for supplying a hydrogen-containing gas having a further reduced carbon monoxide concentration to the fuel cell stack. Usually, in this carbon monoxide selective oxidizer, the concentration of carbon monoxide in the shift gas is reduced to 10 ppm or less. The reaction in the carbon monoxide selective oxidizer is performed at a temperature in the range of 105 to 150 ° C. in the presence of a noble metal catalyst such as platinum, ruthenium or rhodium.

本発明の実施形態に係る反応装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the reaction apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る反応装置の一部を切り欠いて示す図である。It is a figure which notches and shows a part of reactor which concerns on embodiment of this invention. 燃料改質型の燃料電池システムを主要構成を示すブロック図である。1 is a block diagram showing a main configuration of a fuel reforming fuel cell system. 触媒層を有する反応装置の構造例を示す概念図である。It is a conceptual diagram which shows the structural example of the reaction apparatus which has a catalyst layer.

符号の説明Explanation of symbols

1 反応装置
12 加熱媒体流通路
13 反応部
13a 開放端
13b 閉塞端
13c 導入口
14 反応触媒層
15a 反応生成ガス導出口
15c 反応生成ガス導出口
HF 加熱媒体
DESCRIPTION OF SYMBOLS 1 Reaction apparatus 12 Heating medium flow path 13 Reaction part 13a Open end 13b Closed end 13c Inlet 14 Reaction catalyst layer 15a Reaction product gas outlet 15c Reaction product gas outlet HF Heating medium

Claims (2)

加熱媒体が流通する加熱媒体流通路と、
前記加熱媒体流通路の外周側を囲む外筒状に形成され、一端に設けられた開放端に反応ガスの導入口が設けられ、他端に閉塞端を有する反応部と、
前記反応部内に充填された反応触媒層と、
前記反応触媒層の内部に、前記閉塞端から前記開放端に向けて前記加熱媒体流通路を巻回して螺旋状に旋回し、前記閉塞端に開口した反応生成ガス導出口を備える反応生成ガス戻り管路と、を備えることを特徴とする反応装置。
A heating medium flow path through which the heating medium flows;
A reaction part formed in an outer cylinder surrounding the outer periphery of the heating medium flow path, having a reaction gas inlet at an open end provided at one end, and a closed end at the other end;
A reaction catalyst layer filled in the reaction section;
A reaction product gas return having a reaction product gas outlet opening spirally wound around the heating medium flow path from the closed end to the open end inside the reaction catalyst layer and spirally opened. And a conduit.
炭化水素原料と水との反応によって水素含有ガスを製造する燃料電池用改質装置であって、
加熱媒体が流通する加熱媒体流通路と、
前記加熱媒体流通路の外周側を囲む外筒状に形成され、一端に設けられた開放端に前記炭化水素原料と水の導入口が設けられ、他端に閉塞端を有する改質反応部と、
前記改質反応部内に充填された改質用触媒層と、
前記改質用触媒層の内部に、前記閉塞端から前記開放端に向けて前記加熱媒体流通路を巻回して螺旋状に旋回し、前記閉塞端に開口した水素含有ガス導出口を備える水素含有ガス戻り管路と、を備えることを特徴とする燃料電池用改質装置。
A reformer for a fuel cell that produces a hydrogen-containing gas by a reaction between a hydrocarbon raw material and water,
A heating medium flow path through which the heating medium flows;
A reforming reaction section that is formed in an outer cylinder surrounding the outer periphery of the heating medium flow path, the hydrocarbon raw material and water inlet is provided at an open end provided at one end, and a closed end is provided at the other end; ,
A reforming catalyst layer filled in the reforming reaction section;
Inside the reforming catalyst layer, the heating medium flow path is wound from the closed end toward the open end, spirally swirled, and provided with a hydrogen-containing gas outlet opening opened at the closed end A fuel cell reformer comprising: a gas return pipe.
JP2005293144A 2005-10-06 2005-10-06 Reactor and reformer for fuel cell Withdrawn JP2007098314A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005293144A JP2007098314A (en) 2005-10-06 2005-10-06 Reactor and reformer for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005293144A JP2007098314A (en) 2005-10-06 2005-10-06 Reactor and reformer for fuel cell

Publications (1)

Publication Number Publication Date
JP2007098314A true JP2007098314A (en) 2007-04-19

Family

ID=38025771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005293144A Withdrawn JP2007098314A (en) 2005-10-06 2005-10-06 Reactor and reformer for fuel cell

Country Status (1)

Country Link
JP (1) JP2007098314A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013095025A1 (en) * 2011-12-23 2013-06-27 포스코에너지 주식회사 Humidifying heat exchanger for fuel cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013095025A1 (en) * 2011-12-23 2013-06-27 포스코에너지 주식회사 Humidifying heat exchanger for fuel cell

Similar Documents

Publication Publication Date Title
JP4335535B2 (en) Single chamber compact fuel processor
JP5015590B2 (en) Method and apparatus for rapid heating of fuel reforming reactants
US7846594B2 (en) Reformer and fuel cell system having the same
JP5154272B2 (en) Fuel cell reformer
JP2009242171A (en) Apparatus for producing hydrogen and fuel cell system using the same
JP5272183B2 (en) Fuel cell reformer
KR100857703B1 (en) Reaction vessel and reaction device
JP4887021B2 (en) CO removing device, fuel reforming device, and fuel cell system
JP4464230B2 (en) Reforming apparatus and method, and fuel cell system
JP2002208426A (en) Reforming device for fuel cell
JP2012240893A (en) Hydrogen generating apparatus
JP5161621B2 (en) Fuel cell reformer
JP2009084135A (en) Fuel processor, driving method therefor, and fuel cell system
JP4486832B2 (en) Steam reforming system
US20120114537A1 (en) Reformer
JP2007098314A (en) Reactor and reformer for fuel cell
KR100969803B1 (en) Reaction vessel and reaction device
JP2009007204A (en) Hydrogen production apparatus and fuel cell system
JP5809049B2 (en) Method of using steam reforming catalyst for fuel cell and hydrogen production system
JP5065825B2 (en) Hydrogen production equipment
JP2006248863A (en) Hydrogen production apparatus and fuel cell system
JP2009078938A (en) Desulfurizer and method for operating the same, and fuel cell system
JP4920311B2 (en) Oxidation autothermal reformer
JP2003303610A (en) Fuel cell system and its operating method and auto- thermal reforming device
JP2007227237A (en) Solid oxide fuel battery module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080311

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20110114