JP2002208426A - Reforming device for fuel cell - Google Patents

Reforming device for fuel cell

Info

Publication number
JP2002208426A
JP2002208426A JP2001003805A JP2001003805A JP2002208426A JP 2002208426 A JP2002208426 A JP 2002208426A JP 2001003805 A JP2001003805 A JP 2001003805A JP 2001003805 A JP2001003805 A JP 2001003805A JP 2002208426 A JP2002208426 A JP 2002208426A
Authority
JP
Japan
Prior art keywords
reforming
tube
gas
reaction tube
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001003805A
Other languages
Japanese (ja)
Inventor
Jun Komiya
純 小宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2001003805A priority Critical patent/JP2002208426A/en
Publication of JP2002208426A publication Critical patent/JP2002208426A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a reforming device whose entity including auxiliaries is downsized, and which can prevent local heating, and drastically reduce heat radiation that is an energy loss by an internal combustion reforming method. SOLUTION: The reforming device of hydrocarbon gas by an internal combustion reforming method is equipped with a double pipe which consists of an inner pipe and an outer pipe arranged concentrically with spaces, where, an oxidative reaction tube filled with oxidative catalyst in the inner pipe, and a reforming reaction tube with reforming catalyst filled between the inner and the outer pipe are provided, and also a burner heating the inside of the reforming device at the time of driving is arranged at an upper end in the oxidant reaction tube, and hydrocarbon gas, steam, air are circulated from the upper end in the oxidant reaction tube for oxidative reaction, then circulated to the reforming reaction tube after turning back from a lower end, hydrocarbon gas is reformed to reforming gas.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、固体高分子型燃料
電池やリン酸型燃料電池の燃料である水素を製造するた
めの内燃式改質法による炭化水素ガスの改質装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for reforming hydrocarbon gas by an internal combustion type reforming method for producing hydrogen as a fuel for a polymer electrolyte fuel cell or a phosphoric acid fuel cell.

【0002】[0002]

【従来の技術】燃料電池には固体高分子型燃料電池(P
EFC)やリン酸型燃料電池(PAFC)、あるいは固
体電解質型燃料電池といったものが知られている。この
うち例えばPEFCは、作動温度が80〜100℃程度
という低温で、(1)出力密度が高く、小型化、軽量化
が可能である、(2)電解質が腐食性でなく、しかも作
動温度が低いため、耐食性の面から電池構成材料の制約
がないか少ないので、コスト低減が容易である、(3)
常温で起動できるため、起動時間が短い、といった優れ
た特長を有している。このためPEFCは、以上のよう
な特長を活かして、業務用や産業用ばかりでなく、一般
家庭用などへの適用が期待されている。
2. Description of the Related Art A fuel cell is a polymer electrolyte fuel cell (P).
EFC), a phosphoric acid fuel cell (PAFC), and a solid oxide fuel cell are known. Among them, for example, PEFC has a low operating temperature of about 80 to 100 ° C., (1) has a high output density, and can be reduced in size and weight, and (2) the electrolyte is not corrosive and the operating temperature is low. Since it is low, there is no or little restriction on the battery constituent material from the viewpoint of corrosion resistance, so that cost reduction is easy. (3)
Since it can be started at room temperature, it has excellent features such as a short start-up time. For this reason, PEFC is expected to be applied not only to business and industrial use but also to general household use by utilizing the above features.

【0003】PEFCやPAFCの燃料には水素(水素
ガス)が用いられる。水素の工業的製造方法には水の電
解法その他各種あるが、その例として炭化水素ガスの部
分酸化法(部分燃焼法)や水蒸気改質法、あるいは両者
を組み合わせた方法(内燃式改質法)がある。これらの
改質法では、メタン、エタン、プロパン、ブタン、都市
ガス、LPガス、その他の炭化水素ガス(2種以上の炭
化水素の混合ガスを含む)を改質して水素を主成分とす
る改質ガスを生成させるが、いずれの場合にも改質器が
用いられる。
[0003] Hydrogen (hydrogen gas) is used as fuel for PEFC and PAFC. There are various methods for industrial production of hydrogen, such as water electrolysis and other methods. Examples of such methods include partial oxidation of hydrocarbon gas (partial combustion), steam reforming, or a combination of both (internal combustion reforming). ). In these reforming methods, methane, ethane, propane, butane, city gas, LP gas, and other hydrocarbon gases (including a mixed gas of two or more hydrocarbons) are reformed to contain hydrogen as a main component. A reformed gas is generated, and a reformer is used in each case.

【0004】図1は、内燃式改質法による改質器を用
い、炭化水素ガス(原料ガス)からPEFCに至るまで
の態様例を示す図でる。燃料電池がPAFCの場合も同
様であるが、この場合はCO酸化器は必要としない。都
市ガスやLPガスにはメルカプタン類、サルファイド
類、あるいはチオフェンなどの付臭剤が添加されてい
る。改質触媒は、これら硫黄化合物により被毒し性能劣
化を来してしまうので、それらの硫黄化合物を除去する
ために脱硫器へ導入される。次いで、改質器へ導入さ
れ、改質器中での改質反応により水素リッチな改質ガス
が生成される。
[0004] Fig. 1 is a diagram showing an example of a mode from a hydrocarbon gas (raw material gas) to PEFC using a reformer based on an internal combustion type reforming method. The same applies to the case where the fuel cell is a PAFC, but in this case, a CO oxidizer is not required. Odorants such as mercaptans, sulfides, and thiophene are added to city gas and LP gas. Since the reforming catalyst is poisoned by these sulfur compounds and deteriorates in performance, the reforming catalyst is introduced into a desulfurizer to remove the sulfur compounds. Next, it is introduced into a reformer, and a hydrogen-rich reformed gas is generated by a reforming reaction in the reformer.

【0005】ところが、生成する改質ガス中には未反応
のメタン、未反応の水蒸気、炭酸ガスのほか、一酸化炭
素(CO)が副生し、改質器の性能等の如何にもよる
が、通常、8〜15%(容量、以下同じ)程度含まれて
いる。このため改質ガスは、この副生COを除去するた
めにCO変成器にかけられる。CO変成器ではシフト反
応(CO+H2O→CO2+H2)によりCOが炭酸ガス
と水素に変えられる。ここでは銅ー亜鉛系や白金触媒等
の触媒が用いられるが、その触媒を機能させるには20
0〜250℃程度の温度が必要である。
However, unreacted methane, unreacted water vapor, carbon dioxide, and carbon monoxide (CO) are produced as by-products in the generated reformed gas, which depends on the performance of the reformer. Is usually contained in an amount of about 8 to 15% (capacity, hereinafter the same). Therefore, the reformed gas is passed through a CO converter to remove the by-product CO. In the CO converter, CO is converted to carbon dioxide and hydrogen by a shift reaction (CO + H 2 O → CO 2 + H 2 ). Here, a catalyst such as a copper-zinc system or a platinum catalyst is used.
A temperature of about 0 to 250 ° C is required.

【0006】CO変成器から出る改質ガスは、未反応の
メタンと余剰水蒸気を除けば、水素と炭酸ガスとからな
っている。このうち水素が目的とする成分であるが、C
O変成器を経て得られる改質ガスについても、COは完
全には除去されず、微量のCOが含まれている。PEF
Cに供給する燃料水素中のCO含有量は100ppm
(容量、以下同じ)程度が限度であり、これを越えると
電池性能が著しく劣化するので、CO成分はPEFCへ
導入する前にできる限り除去する必要がある。
[0006] The reformed gas emitted from the CO converter is composed of hydrogen and carbon dioxide gas except for unreacted methane and excess steam. Of these, hydrogen is the target component, but C
Also in the reformed gas obtained through the O shift converter, CO is not completely removed, but contains a trace amount of CO. PEF
CO content in fuel hydrogen supplied to C is 100ppm
(Capacity, hereinafter the same) is the limit, and if it exceeds this, the battery performance will be remarkably deteriorated. Therefore, it is necessary to remove the CO component as much as possible before introducing it into the PEFC.

【0007】このため、改質ガスはCO変成器によりC
O濃度を1%程度以下まで低下させた後、CO酸化器
(CO選択酸化器)にかけられる。ここで空気等の酸化
剤ガスが添加され、COの酸化反応(CO+1/2O2
=CO2)により、COを100ppm程度以下、好ま
しくは50ppm以下、さらに好ましくは10ppm以
下というように低減させる。こうして精製された水素が
PEFCの燃料極に供給される。
For this reason, the reformed gas is converted into C by the CO converter.
After the O concentration is reduced to about 1% or less, it is subjected to a CO oxidizer (CO selective oxidizer). Here, an oxidizing gas such as air is added, and an oxidation reaction of CO (CO + / O 2) is performed.
= CO 2 ) reduces CO to about 100 ppm or less, preferably 50 ppm or less, more preferably 10 ppm or less. The hydrogen thus purified is supplied to the fuel electrode of the PEFC.

【0008】内燃式改質法による改質は、発熱型の部分
酸化反応と吸熱型の水蒸気改質反応を組み合せたもの
で、原料ガスがメタンの場合の反応は下記式(1)〜
(5)により表される。この反応にはPt、Pd、I
r、Rh、Ru、Ni等の金属触媒やヘキサアルミネー
ト化合物からなる触媒(特開2000−178006)
などが用いられ、式(1)のような一部のメタンの完全
酸化反応、式(2)のような一部のメタンの部分酸化反
応を経て、(3)〜(4)の反応が後続し、(2)〜
(4)の反応で生成するCOを水蒸気と反応させるシフ
ト反応(5)を経て、最終的にH2とCO2が生成され
る。
The reforming by the internal combustion type reforming method is a combination of an exothermic partial oxidation reaction and an endothermic steam reforming reaction. When the raw material gas is methane, the reaction is represented by the following formula (1).
It is represented by (5). Pt, Pd, I
Metal catalysts such as r, Rh, Ru, Ni, etc. and catalysts comprising hexaaluminate compounds (Japanese Patent Laid-Open No. 2000-178006)
And the like, followed by a partial oxidation reaction of methane as shown in formula (1) and a partial oxidation reaction of methane as shown in formula (2), followed by the reactions of (3) and (4). And (2) ~
H 2 and CO 2 are finally generated through a shift reaction (5) in which CO generated by the reaction (4) reacts with water vapor.

【0009】[0009]

【化 1】 [Formula 1]

【0010】このうち(1)、(2)、(5)が発熱反
応、(3)と(4)が吸熱反応であり、(1)、
(2)、(5)で発生する熱は反応(3)と(4)の加
熱用に用いられる。内燃式改質法では改質器が用いられ
るが、概略、酸化触媒を配置した部分酸化反応器と改質
触媒を配置した水蒸気改質反応器とにより構成され、原
料ガス(炭化水素ガス)、水、空気から水素リッチな改
質ガスが得られる。
Of these, (1), (2) and (5) are exothermic reactions, (3) and (4) are endothermic reactions, and (1)
The heat generated in (2) and (5) is used for heating reactions (3) and (4). In the internal combustion type reforming method, a reformer is used. The reformer is generally constituted by a partial oxidation reactor in which an oxidation catalyst is arranged and a steam reforming reactor in which a reforming catalyst is arranged, and a raw material gas (hydrocarbon gas), Hydrogen-rich reformed gas is obtained from water and air.

【0011】図2は内燃式改質法による改質器の幾つか
の態様例を示す図である。図2(a)は反応成分である
原料ガス、水、空気を部分酸化反応器(部分酸化部)に
供給して原料ガスの一部を燃焼させて反応熱(ΔH)を
発生させ、これに続き該部分燃焼ガスを反応成分ととも
に水蒸気改質反応器(水蒸気改質部)に供給する。こう
して反応熱(ΔH)を利用して水素リッチな改質ガスが
生成される(特開平10−291801号)。
FIG. 2 is a view showing some embodiments of a reformer using an internal combustion type reforming method. FIG. 2 (a) shows that the raw material gas, water and air, which are reaction components, are supplied to a partial oxidation reactor (partial oxidation section) to burn a part of the raw material gas to generate reaction heat (ΔH). Subsequently, the partial combustion gas is supplied to a steam reforming reactor (steam reforming section) together with the reaction components. Thus, a hydrogen-rich reformed gas is generated by utilizing the reaction heat (ΔH) (Japanese Patent Laid-Open No. Hei 10-291801).

【0012】図2(b)は図2(a)の変形態様である
(特開平10−291801号)。反応成分である原料
ガス、水(水蒸気)、空気を部分酸化反応器(部分酸化
部)に供給して原料ガスの一部を燃焼させて反応熱(Δ
H)を発生させ、これに続き、該部分燃焼ガスを反応成
分である原料ガス、空気とともに水蒸気改質反応器(水
蒸気改質部)に供給する。水蒸気改質反応器へは原料ガ
スを補給するが、併せて水(水蒸気)を補充してもよ
い。こうして部分酸化反応器で生成した反応熱(ΔH)
を利用して水素リッチな改質ガスが生成される。
FIG. 2B is a modification of FIG. 2A (JP-A-10-291801). The raw material gas, water (steam), and air, which are reaction components, are supplied to a partial oxidation reactor (partial oxidation section) to burn a part of the raw material gas to generate a reaction heat (Δ
H) is generated, and subsequently, the partial combustion gas is supplied to a steam reforming reactor (steam reforming section) together with a raw material gas and air as reaction components. The raw material gas is supplied to the steam reforming reactor, but water (steam) may be supplied together. Reaction heat (ΔH) thus generated in the partial oxidation reactor
To generate a hydrogen-rich reformed gas.

【0013】図2(c)では、原料ガス、空気を部分酸
化反応器に供給し、ここで気相燃焼又は触媒燃焼により
原料ガスの一部を燃焼させて反応熱(ΔH)を発生させ
る。一方、水蒸気改質反応器には別途原料ガス、水を供
給する。水蒸気改質反応器での加熱には部分酸化反応器
で生成した反応熱(ΔH)が利用され、原料ガスが水素
リッチな改質ガスに変えられる。部分酸化反応器では一
部水素が生成するので、水蒸気改質反応器で生成した改
質ガスと合流される。
In FIG. 2C, a raw material gas and air are supplied to a partial oxidation reactor, in which a part of the raw material gas is burned by gas phase combustion or catalytic combustion to generate reaction heat (ΔH). On the other hand, a raw material gas and water are separately supplied to the steam reforming reactor. The heat of reaction (ΔH) generated in the partial oxidation reactor is used for heating in the steam reforming reactor, and the raw material gas is changed to a hydrogen-rich reformed gas. Since hydrogen is partially generated in the partial oxidation reactor, it is combined with the reformed gas generated in the steam reforming reactor.

【0014】[0014]

【発明が解決しようとする課題】しかし、図2(a)〜
(b)の形式の装置では、部分酸化反応と水蒸気改質反
応を逐次連続して行う必要があるため、部分酸化反応器
と水蒸気改質反応器に大きな温度勾配が生じてしまい、
特にその高温部分(Hot Spot)により、触媒や
炉材の劣化が生じてしまう。このため、特開平11−1
99201号では、水の過剰な導入や空気を分散して導
入することにより、温度の低減を図っている。ところ
が、この方法では水の過剰な導入や空気の分散が必要と
なるため効率が悪くなり、反応器が複雑になるなどの欠
点がある。また、図2(c)の形式の装置では、部分酸
化反応と水蒸気改質反応の二つの反応を制御する必要が
あるため、ユーティリティやシステム自体が複雑にな
り、プラントが大型化する原因になってしまう。
However, FIG.
In the apparatus of the type (b), the partial oxidation reaction and the steam reforming reaction need to be performed sequentially and continuously, so that a large temperature gradient occurs between the partial oxidation reactor and the steam reforming reactor,
Particularly, the high temperature portion (Hot Spot) causes deterioration of the catalyst and the furnace material. For this reason, Japanese Patent Application Laid-Open No. 11-1
In JP-A-99201, the temperature is reduced by introducing excessive water or dispersing air. However, this method has disadvantages such as excessive introduction of water and dispersion of air, resulting in poor efficiency and a complicated reactor. Further, in the apparatus of the type shown in FIG. 2 (c), it is necessary to control two reactions, that is, a partial oxidation reaction and a steam reforming reaction, so that the utility and the system itself are complicated, and the plant becomes large. Would.

【0015】本発明は、従来の内燃式改質法による改質
器における以上のような諸問題を解決するためになされ
たものであり、部分酸化反応器と水蒸気改質反応器を一
体化することにより、補機を含む装置全体をコンパクト
化するとともに、放熱量を格段に低減し得るようにし、
また起動時間を大幅に短縮できるなど優れた効果を有す
る新規且つ有用な燃料電池用の内燃式改質法による改質
装置を提供することを目的とする。
The present invention has been made to solve the above-mentioned problems in a conventional reformer using an internal combustion type reforming method, and integrates a partial oxidation reactor and a steam reforming reactor. By doing so, the entire device including the auxiliary equipment can be made more compact, and the amount of heat radiation can be significantly reduced,
It is another object of the present invention to provide a new and useful reformer for an internal combustion reforming method for a fuel cell, which has an excellent effect such as a significantly shortened start-up time.

【0016】[0016]

【課題を解決するための手段】本発明は、(1)内燃式
改質法による炭化水素ガスの改質装置であって、同心状
に間隔を置いて配置された内管と外管で構成された二重
管からなり、内管内に酸化触媒を充填した酸化反応筒、
内管と外管の間に改質触媒を充填した改質反応筒を設
け、且つ、酸化反応筒内の上端に起動時に改質装置内部
を加熱するバーナを配置してなり、炭化水素ガス、水蒸
気、空気を酸化反応筒内の上端から流通して酸化反応さ
せ、下端から折り返した後、改質反応筒に流通させて炭
化水素ガスを改質ガスに改質するようにしてなることを
特徴とする燃料電池用改質装置を提供する。
SUMMARY OF THE INVENTION The present invention relates to (1) an apparatus for reforming hydrocarbon gas by an internal combustion type reforming method, comprising an inner pipe and an outer pipe which are arranged concentrically at intervals. Oxidation reaction tube, consisting of a double tube, filled with an oxidation catalyst in the inner tube,
A reforming reaction tube filled with a reforming catalyst is provided between the inner tube and the outer tube, and a burner that heats the inside of the reformer at the time of startup is arranged at the upper end of the oxidation reaction tube, and a hydrocarbon gas, Water vapor and air are circulated from the upper end of the oxidation reaction tube to cause an oxidation reaction, and after returning from the lower end, are circulated to the reforming reaction tube to reform hydrocarbon gas into a reformed gas. And a reformer for a fuel cell.

【0017】本発明は、(2)内燃式改質法による炭化
水素ガスの改質装置であって、同心状に間隔を置いて配
置された内管と外管で構成された二重管からなり、内管
内を中空の酸化反応筒とし、内管と外管の間に改質触媒
を充填した改質反応筒を設け、且つ、酸化反応筒内の上
端に予混合方式のバーナを配置してなり、炭化水素ガ
ス、水蒸気、空気を酸化反応筒内の上端から流通して酸
化反応させ、下端から折り返した後、改質反応筒に流通
させて炭化水素ガスを改質ガスに改質するようにしてな
ることを特徴とする燃料電池用改質装置を提供する。
The present invention relates to (2) an apparatus for reforming hydrocarbon gas by an internal combustion type reforming method, which comprises a double pipe constituted by an inner pipe and an outer pipe which are arranged concentrically at intervals. The inside of the inner tube is a hollow oxidation reaction tube, a reforming reaction tube filled with a reforming catalyst is provided between the inner tube and the outer tube, and a premix burner is arranged at the upper end of the oxidation reaction tube. The hydrocarbon gas, water vapor, and air flow through the upper end of the oxidation reaction tube to cause an oxidation reaction, and after returning from the lower end, flow through the reforming reaction tube to reform the hydrocarbon gas into a reformed gas. A reformer for a fuel cell characterized by the above is provided.

【0018】[0018]

【発明の実施の形態】本発明の改質装置は、内燃式改質
法による炭化水素ガスの改質装置であって、同心状に間
隔を置いて配置された内管と外管で構成された二重管か
らなり、内管内に酸化触媒を充填した酸化反応筒、内管
と外管の間に改質触媒を充填した改質反応筒を設け、且
つ、酸化反応筒内の上端に起動時に改質装置内部を加熱
するバーナを配置して構成される。そして、炭化水素ガ
ス、水蒸気、空気を酸化反応筒内の上端から流通して酸
化させ、下端から折り返した後、改質反応筒に流通させ
て炭化水素ガスを改質ガスに改質するようにしてなる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The reformer of the present invention is a reformer for hydrocarbon gas by an internal combustion type reforming method, and comprises an inner pipe and an outer pipe which are arranged concentrically at intervals. An oxidation reaction tube filled with an oxidation catalyst in the inner tube, a reforming reaction tube filled with a reforming catalyst between the inner tube and the outer tube, and started at the upper end of the oxidation reaction tube Sometimes, a burner for heating the inside of the reformer is arranged. Then, the hydrocarbon gas, water vapor, and air are circulated from the upper end of the oxidation reaction tube to be oxidized, and are turned back from the lower end, and then are circulated to the reforming reaction tube to reform the hydrocarbon gas into the reformed gas. It becomes.

【0019】この改質装置は、その上下を反転して、す
なわちその上下を逆にして構成してもよい。この場合に
は、酸化反応筒内の下端に起動時に改質装置内部を加熱
するバーナを配置し、そして炭化水素ガス、水蒸気、空
気を酸化反応筒内の下端から流通して酸化反応させ、上
端から折り返した後、改質反応筒に流通させて炭化水素
ガスを水素リッチな改質ガスに改質するように構成され
る。なお、本発明において、酸化触媒は部分酸化触媒、
燃焼触媒としても機能することから、本明細書中、酸化
触媒とは部分酸化触媒、燃焼触媒を含む意味であり、酸
化反応筒とは部分酸化反応筒の意味を含むものである。
This reforming apparatus may be configured with its upside down, that is, its upside down. In this case, a burner for heating the inside of the reformer at the time of start-up is arranged at the lower end in the oxidation reaction tube, and hydrocarbon gas, water vapor, and air are circulated from the lower end in the oxidation reaction tube to cause an oxidation reaction, And then flow through the reforming reaction column to reform the hydrocarbon gas into a hydrogen-rich reformed gas. In the present invention, the oxidation catalyst is a partial oxidation catalyst,
Since it also functions as a combustion catalyst, in the present specification, the term “oxidation catalyst” includes a partial oxidation catalyst and a combustion catalyst, and the term “oxidation reaction tube” includes a meaning of a partial oxidation reaction tube.

【0020】また、本発明の改質装置は、内管内に酸化
触媒を充填せず、中空の酸化反応筒として構成すること
もできる。この場合、酸化反応筒の上端に、予混合方式
の部分酸化用バーナが配置される。このバーナに原料ガ
スと空気を予め混合した混合ガスを導入する。部分酸化
用バーナでは、空気を空気比0.5〜0.95程度とな
るように導入して部分燃焼させ、生成部分燃焼ガスを、
別途導入する原料ガス(+水蒸気)と混合させて、空気
比λ=0.15〜0.5程度になるように制御する。な
お、その改質装置の上下を反転して構成する場合には、
部分酸化用バーナは酸化反応筒の下端に配置される。
Further, the reformer of the present invention can be configured as a hollow oxidation reaction tube without filling the inner tube with an oxidation catalyst. In this case, a premixing type partial oxidation burner is arranged at the upper end of the oxidation reaction tube. A mixed gas in which a raw material gas and air are previously mixed is introduced into the burner. In the partial oxidation burner, air is introduced so as to have an air ratio of about 0.5 to 0.95 to partially burn, and the generated partial combustion gas is
The mixture is mixed with a separately introduced raw material gas (+ water vapor) to control so that the air ratio λ = 0.15 to about 0.5. If the reformer is configured upside down,
The burner for partial oxidation is arranged at the lower end of the oxidation reaction tube.

【0021】本発明は、これらを基本構成とすることに
よって、改質装置をコンパクト化できるだけでなく、改
質装置から外部への放熱量を低減させ、内燃式改質法に
よる改質装置全体としての熱効率を格段に向上させるこ
とができる。本発明によれば、酸化反応筒で原料ガスの
酸化反応により発生する熱により、原料ガス、水蒸気、
空気を加熱するとともに、改質反応筒が酸化反応筒を囲
んでいるので、酸化反応筒から改質反応筒への伝熱面積
が大きくなり、酸化反応筒で発生した熱を内筒壁を通し
て効率よく改質反応筒へ伝えることができる。また、内
管の構成材料としてはステンレス鋼等が使用できるの
で、コスト面でも非常に有利である。
According to the present invention, by adopting these basic structures, not only the reformer can be made more compact, but also the amount of heat released from the reformer to the outside can be reduced, and the reformer as a whole by the internal combustion type reforming method can be used. Can be significantly improved in thermal efficiency. According to the present invention, the source gas, water vapor,
As the air is heated, and the reforming reaction tube surrounds the oxidation reaction tube, the heat transfer area from the oxidation reaction tube to the reforming reaction tube increases, and the heat generated in the oxidation reaction tube passes through the inner tube wall efficiently. It can be transmitted to the reforming reaction tube well. In addition, since stainless steel or the like can be used as a constituent material of the inner tube, it is very advantageous in terms of cost.

【0022】以上のいずれの場合にも、内管の内壁(内
管の内側の壁)、内管の外壁(内管の外側の壁)のう
ち、いずれか一方または両方にフィンを設けることがで
きる。これにより、酸化反応筒で発生した熱をより効果
的に改質反応筒に伝えることができる。フィンの材料と
しては例えばステンレス鋼などの熱伝導性のよい材料が
使用される。
In any of the above cases, fins may be provided on one or both of the inner wall of the inner tube (the inner wall of the inner tube) and the outer wall of the inner tube (the outer wall of the inner tube). it can. Thereby, the heat generated in the oxidation reaction tube can be more effectively transmitted to the reforming reaction tube. As a material of the fin, for example, a material having good heat conductivity such as stainless steel is used.

【0023】酸化反応筒に充填する酸化触媒としては、
例えばパラジウム(Pd)や白金(Pt)等の貴金属触
媒やヘキサアルミネート化合物からなる触媒などが使用
され、貴金属触媒はアルミナ等の担体に担持して構成さ
れる。改質反応筒に充填する改質触媒としては、例えば
アルミナなどの担体にNi、Ruなどの金属を担持した
Ni系、Ru系等の適当な触媒が使用される。また、原
料ガスとしては、メタン、エタン、プロパン、ブタン等
の炭化水素ガス、あるいはそれら炭化水素ガスの混合ガ
ス、例えば天然ガス、都市ガス、LPガス等が使用され
る。水蒸気発生用の水としては蒸留水やイオン交換水な
どが使用される。空気としては空気のほか、酸素富化空
気、酸素等も使用でき、本明細書ではこれらを含めて空
気と指称している。
As the oxidation catalyst to be charged into the oxidation reaction tube,
For example, a noble metal catalyst such as palladium (Pd) or platinum (Pt) or a catalyst comprising a hexaaluminate compound is used. The noble metal catalyst is supported on a carrier such as alumina. As the reforming catalyst to be filled in the reforming reaction tube, for example, a suitable catalyst such as a Ni-based or Ru-based catalyst in which a metal such as Ni or Ru is supported on a carrier such as alumina is used. As the raw material gas, a hydrocarbon gas such as methane, ethane, propane, butane, or a mixed gas of these hydrocarbon gases, for example, natural gas, city gas, LP gas, or the like is used. Distilled water or ion-exchanged water is used as water for generating steam. As the air, in addition to air, oxygen-enriched air, oxygen, and the like can be used, and in the present specification, these are referred to as air.

【0024】本発明においては、酸化反応筒と改質反応
筒を一体化しているので、改質装置自体コンパクト化で
き、またその運転時における放熱量を格段に低減し得る
だけでなく、必要な補機類としては水、原料ガス及び空
気の供給手段だけであるので、補機類を含む装置全体と
してもコンパクト化することができる。また、本発明の
改質装置によれば、その起動時に、バーナ(パイロット
バーナ)によって原料ガスを部分燃焼をさせると同時に
燃焼触媒及び改質触媒を加熱し、瞬時に改質ガスの生成
を開始することができる。
In the present invention, since the oxidation reaction tube and the reforming reaction tube are integrated, the reformer itself can be made compact, and the amount of heat released during its operation can be remarkably reduced. Since the auxiliary devices are only water, raw material gas and air supply means, the entire apparatus including the auxiliary devices can be downsized. Further, according to the reforming apparatus of the present invention, at the time of startup, the combustion gas and the reforming catalyst are heated at the same time as the raw material gas is partially burned by the burner (pilot burner), and the generation of the reformed gas is started immediately. can do.

【0025】さらに、本発明の改質装置では、原料ガス
に対する空気比を例えばλ=0.15〜0.5というよ
うに低くし、また水蒸気S(Steam)と原料ガス組
成の炭素数C(Carbon)とのモル比率S/C=
0.1〜5.0という範囲で運転するので、空気と水蒸
気を混合した原料混合ガスは燃焼範囲から外れた組成に
なるため、配管内で加熱されても、原料ガスは酸化しな
い。また、空気比を低く、水蒸気を多く添加すること
で、前記従来の改質装置の部分酸化反応器で生じる高温
部分(Hot Spot)を低い温度に抑制することが
できるので、装置構成材料、触媒の寿命を延ばすことが
できる。
Further, in the reforming apparatus of the present invention, the air ratio with respect to the raw material gas is reduced to, for example, λ = 0.15 to 0.5, and the steam S (Steam) and the carbon number C ( (Carbon) molar ratio S / C =
Since the operation is performed within the range of 0.1 to 5.0, the raw material gas obtained by mixing air and water vapor has a composition out of the combustion range. Therefore, the raw material gas is not oxidized even when heated in the pipe. Also, by adding a large amount of water vapor with a low air ratio, a high temperature portion (Hot Spot) generated in the partial oxidation reactor of the conventional reformer can be suppressed to a low temperature. Life can be extended.

【0026】また、本発明の改質装置によれば、必要な
反応成分、すなわち原料ガス、空気及び水蒸気は起動時
以降全量を混合して供給できるので、従来では必要であ
った熱交換器や配管の点数を減らすことができる。得ら
れた改質ガスは高温であるのでそれらプロセスガス(原
料ガス、空気及び水蒸気)と熱交換してそれらを予熱熱
し、自らは冷却されて次工程へ供給される。
Further, according to the reforming apparatus of the present invention, the necessary reaction components, that is, the raw material gas, air and steam, can be mixed and supplied in their entirety after the start-up. The number of pipes can be reduced. Since the obtained reformed gas has a high temperature, the reformed gas exchanges heat with the process gas (raw material gas, air, and steam) to preheat them, and is cooled and supplied to the next step.

【0027】本発明の改質装置は、好ましくは水素を燃
料とする燃料電池、すなわちPEFC又はPAFCと連
結して使用される。本発明の改質装置はコンパクト化さ
れており、起動時間を短縮できることから、特に一般家
庭用などへの適用が期待されているPEFC用の水素製
造装置として好適に用いることができる。本改質装置で
得られた改質ガスをPEFCの燃料に用る場合、例えば
CO変成器に送ってCOを1%程度に低減させ、さらに
CO選択酸化器で100ppm程度以下、10ppm程
度以下というように低減させた後、その燃料極へ供給さ
れる。
The reformer of the present invention is preferably used in connection with a fuel cell using hydrogen as a fuel, ie, PEFC or PAFC. Since the reforming apparatus of the present invention is compact and can reduce the startup time, it can be suitably used as a hydrogen production apparatus for PEFC, which is expected to be applied particularly to general households. When the reformed gas obtained by the present reformer is used as a fuel for PEFC, for example, it is sent to a CO converter to reduce CO to about 1%, and is further reduced to about 100 ppm or less and about 10 ppm or less by a CO selective oxidizer. After being reduced as described above, the fuel is supplied to the fuel electrode.

【0028】以下、実施例を基に本発明をさらに詳しく
説明するが、本発明がこれら実施例に限定されないこと
はもちろんである。
Hereinafter, the present invention will be described in more detail with reference to Examples, but it goes without saying that the present invention is not limited to these Examples.

【0029】《実施例1》図3は本例の改質装置を縦断
面図として示す図である。内管と外管が間隔を置いて二
重管として構成される。内管内には酸化触媒が充填さ
れ、酸化反応筒が構成されている。充填された酸化触媒
の下部には多孔板が配置され、これにより酸化触媒は層
状に支持されている。内管と外管の間には改質触媒が充
填され、これにより改質触媒筒が構成される。充填され
た改質触媒の上下には多孔板が配置され、これにより改
質触媒は層状に支持される。それら多孔板に代えて耐熱
性の材料で構成したメッシュ等を配置してもよい。
<Embodiment 1> FIG. 3 is a diagram showing a reformer of the present embodiment in a longitudinal sectional view. The inner and outer tubes are spaced apart and configured as a double tube. The inner tube is filled with an oxidation catalyst to form an oxidation reaction tube. A perforated plate is arranged below the filled oxidation catalyst, whereby the oxidation catalyst is supported in a layered manner. The space between the inner tube and the outer tube is filled with a reforming catalyst, thereby forming a reforming catalyst tube. Perforated plates are arranged above and below the filled reforming catalyst, whereby the reforming catalyst is supported in layers. Instead of the perforated plates, a mesh or the like made of a heat-resistant material may be arranged.

【0030】内管内の上端にはバーナが配置され、ここ
に原料ガス(炭化水素ガス)、水蒸気及び空気の混合ガ
ス(原料混合ガス)の供給導管が臨ませてある。改質触
媒筒の上方には生成改質ガスの導出管が設けられてい
る。原料混合ガスは熱交換器を介して改質ガスとの熱交
換を経てバーナに供給される。二重管の上部及び下部は
蓋がされ、各管及び蓋はステンレス鋼等で構成できる。
外管の外周面及び蓋の外面には例えばアルミナやパーラ
イト等の断熱材を配置して熱の放散を防ぐようにするこ
とが望ましい。これらの点は以下の態様でも同様であ
る。
A burner is arranged at the upper end in the inner tube, and a supply conduit for a mixed gas of raw material gas (hydrocarbon gas), steam and air (raw material mixed gas) faces the burner. An outlet pipe for the produced reformed gas is provided above the reforming catalyst cylinder. The raw material mixed gas is supplied to the burner through heat exchange with the reformed gas via the heat exchanger. The upper and lower portions of the double tube are covered, and each tube and cover can be made of stainless steel or the like.
It is desirable to dispose a heat insulating material such as alumina or perlite on the outer peripheral surface of the outer tube and the outer surface of the lid to prevent heat dissipation. These points are the same in the following embodiments.

【0031】本改質装置の起動、運転に際しては、原料
混合ガスを熱交換器を経てバーナに供給し、ここで原料
ガスを一部燃焼させ、反応熱を伴いながら酸化反応筒に
流入させる。ここで酸化触媒による接触反応により原料
ガスをさらに一部燃焼させ、反応熱を伴いながら、その
下端から折り返した後、改質反応筒に流通させる。本改
質装置では、内管と外管が間隔を置いて二重管として構
成されているので、部分酸化反応筒で発生した熱は内管
を通して改質触媒筒に伝えられる。改質触媒筒で改質触
媒による接触反応により水素リッチな改質ガスに変えら
れ、改質触媒筒の上部から導出される。改質ガスは50
0〜700℃程度という高温であるので、熱交換器に通
し、その熱を原料混合ガスの予熱に利用する。
When starting and operating the reforming apparatus, the raw material mixed gas is supplied to the burner via a heat exchanger, where the raw material gas is partially burned, and is caused to flow into the oxidation reaction column with heat of reaction. Here, the raw material gas is further partially burned by the catalytic reaction by the oxidation catalyst, and is returned from the lower end thereof with the reaction heat, and then flows through the reforming reaction tube. In this reformer, since the inner tube and the outer tube are configured as a double tube with a space therebetween, heat generated in the partial oxidation reaction tube is transmitted to the reforming catalyst tube through the inner tube. The gas is converted into a hydrogen-rich reformed gas by a contact reaction of the reforming catalyst in the reforming catalyst tube, and is led out from an upper portion of the reforming catalyst tube. The reformed gas is 50
Since the temperature is as high as about 0 to 700 ° C., the heat is passed through a heat exchanger and the heat is used for preheating the raw material mixed gas.

【0032】《実施例2》図4は本例の改質装置を縦断
面図として示す図である。図示のとおり、本改質装置は
管1〜4の四重の管で構成され、内管1内には燃焼触媒
が充填され(酸化反応筒)、内管1とそれを囲んだ管2
の間に改質触媒が充填され(改質触媒筒)、管2の外周
には間隔(間隙)を置いて管3が配置され、さらに管3
の外周には間隔(間隙)を置いて外套4が配置されてい
る。改質ガスが管2と管3の隙間を流通し、原料混合ガ
スが管3と外套4の隙間を流通することにより、原料混
合ガスを予熱する。外套4の内側には低温の原料混合ガ
スしか流通しないため、外套4の外周面は低い温度に抑
えられ、熱の放散を防ぐことができる。
<< Embodiment 2 >> FIG. 4 is a longitudinal sectional view showing a reformer of this embodiment. As shown in the figure, the present reformer is constituted by four tubes of tubes 1 to 4, in which an inner tube 1 is filled with a combustion catalyst (oxidation reaction tube), and an inner tube 1 and a tube 2 surrounding the inner tube 1.
Is filled with a reforming catalyst (a reforming catalyst tube), and a tube 3 is arranged on the outer periphery of the tube 2 with an interval (gap) therebetween.
The outer jacket 4 is arranged at an interval (gap) on the outer periphery of the casing. The reformed gas flows through the gap between the pipe 2 and the pipe 3, and the raw material mixed gas flows through the gap between the pipe 3 and the mantle 4, thereby preheating the raw material mixed gas. Since only a low-temperature raw material mixed gas flows inside the mantle 4, the outer peripheral surface of the mantle 4 is kept at a low temperature, and heat dissipation can be prevented.

【0033】内管1と管2をステンレス鋼(SUS 3
10)で構成し、管3と外套4をステンレス鋼(SUS
304)で構成した。内管1の内径は50mmφ、管
2の内径は65mmφ、管3の内径は72mmφ、外套
4の内径は79mmφ、高さは150mmである。酸化
触媒としてアルミナにパラジウムを担持させた触媒(粒
状)、改質触媒としてアルミナにニッケルを担持させた
触媒(粒状)を用いた。該酸化触媒、改質触媒の充填量
はそれぞれ50cc、300ccである。外管の外周面
及び蓋の外面には粒状アルミナを配置して断熱し、熱の
放散を防ぐようにした。原料ガスとして都市ガス(脱硫
済み)5.7NL/minを使用し、空気19NL/m
in(空気比λ=0.3)、水の添加量15cc/mi
n(水蒸気で18.7NL/min)として運転した。
この結果、原料ガスのメタンは99.3%、すなわち9
9%以上水素に転化することができた。また1000時
間、およびそれ以上の耐久試験においても順調に作動
し、何ら問題は見つからなかった。
The inner tube 1 and the inner tube 2 are made of stainless steel (SUS 3
10), and the tube 3 and the mantle 4 are made of stainless steel (SUS
304). The inner diameter of the inner tube 1 is 50 mmφ, the inner diameter of the tube 2 is 65 mmφ, the inner diameter of the tube 3 is 72 mmφ, the inner diameter of the jacket 4 is 79 mmφ, and the height is 150 mm. A catalyst in which palladium is supported on alumina (granular) was used as the oxidation catalyst, and a catalyst in which nickel was supported on alumina (granular) was used as the reforming catalyst. The filling amounts of the oxidation catalyst and the reforming catalyst are 50 cc and 300 cc, respectively. Granular alumina was arranged on the outer peripheral surface of the outer tube and the outer surface of the lid to insulate and prevent heat dissipation. Using 5.7 NL / min of city gas (desulfurized) as raw material gas, 19 NL / m of air
in (air ratio λ = 0.3), water addition amount 15 cc / mi
n (18.7 NL / min with steam).
As a result, the methane of the raw material gas was 99.3%, that is, 9%.
More than 9% could be converted to hydrogen. It also worked well in endurance tests for 1000 hours and longer, and no problems were found.

【0034】《実施例3》図5は本例の改質装置を縦断
面図として示す図である。実施例1(図3)の改質装置
を上下逆にした以外は実施例1と同様である。本改質装
置でも、内管と外管が間隔を置いて二重管として構成さ
れているので、酸化反応筒で発生した熱は内管を通して
改質触媒筒に伝えられるが、内管の内壁又は外壁、ある
いはその両方の壁にフィンを設けることにより、酸化反
応筒で発生した熱をより効果的に改質触媒筒に伝えるこ
とができる。フィンの材料としては例えばステンレス鋼
など熱伝導性のよい材料が使用される。これらフィンを
設ける点は実施例1及び実施例4の改質装置に対しても
同様に適用される。
<Embodiment 3> FIG. 5 is a view showing a reformer of this embodiment as a longitudinal sectional view. This is the same as Example 1 except that the reforming apparatus of Example 1 (FIG. 3) was turned upside down. In this reformer also, since the inner tube and the outer tube are configured as a double tube with an interval, the heat generated in the oxidation reaction tube is transmitted to the reforming catalyst tube through the inner tube, but the inner wall of the inner tube Alternatively, by providing fins on the outer wall or on both walls, heat generated in the oxidation reaction tube can be more effectively transmitted to the reforming catalyst tube. As a material of the fin, for example, a material having good heat conductivity such as stainless steel is used. The provision of these fins is similarly applied to the reformers of the first and fourth embodiments.

【0035】フィンの配置は各種仕方で行えるが、図6
はその例を示した図である。図6(a)は内管の外壁に
フィンを螺旋状に設けた場合、図5(b)は内管の外壁
にフィンを管軸に平行に設けた場合である。改質触媒は
これらフィン間に充填される。これらフィンは、同様に
して内管の内壁にも設けることができる。これらにより
酸化反応筒で発生した熱はフィンを通してより効果的に
改質触媒筒に伝えられる。
The fins can be arranged in various ways.
Is a diagram showing an example thereof. FIG. 6A shows a case where fins are spirally provided on the outer wall of the inner tube, and FIG. 5B shows a case where fins are provided parallel to the tube axis on the outer wall of the inner tube. The reforming catalyst is filled between these fins. These fins can likewise be provided on the inner wall of the inner tube. Thus, the heat generated in the oxidation reaction tube is more effectively transmitted to the reforming catalyst tube through the fins.

【0036】《実施例4》本実施例は、内管内に酸化触
媒を充填せず、中空の酸化反応筒として構成した例であ
る。図7は本改質装置の内管内の要点部分を示す図で、
その他の点は実施例1(図3)と同様である。酸化反応
筒の上端に、予混合方式のバーナ(部分酸化用バーナ)
を配置し、このバーナに原料ガスと空気を予め混合した
混合ガスを導入する。図7に示すように部分酸化用バー
ナへの空気は空気比0.5〜0.95程度で導入して部
分燃焼させ、部分燃焼ガスを別途導入する原料ガス(+
水蒸気)と混合させ、空気比λ=0.15〜0.5程度
になるように制御する。
Embodiment 4 The present embodiment is an example in which an inner tube is not filled with an oxidation catalyst and a hollow oxidation reaction tube is formed. FIG. 7 is a diagram showing a main point portion in the inner tube of the present reformer,
Other points are the same as those of the first embodiment (FIG. 3). Premixed burner (burner for partial oxidation) at the top of the oxidation reaction tube
And a mixed gas obtained by mixing a raw material gas and air in advance is introduced into the burner. As shown in FIG. 7, the air to the burner for partial oxidation is introduced at an air ratio of about 0.5 to 0.95 to partially burn, and the raw material gas (+
(Water vapor) and the air ratio λ is controlled so as to be about 0.15 to 0.5.

【0037】[0037]

【発明の効果】本発明によれば、内燃式改質法による改
質装置において、酸化反応器と水蒸気改質反応器を一体
化することにより、補機を含む装置全体をコンパクト化
するとともに、局部加熱を防止し、エネルギーロスとな
る放熱量を格段に低減させることができる。また、補機
類を少なくし、起動時間を大幅に短縮できるなど各種優
れた効果が得られる。
According to the present invention, in the reforming apparatus using the internal combustion type reforming method, by integrating the oxidation reactor and the steam reforming reactor, the entire apparatus including the auxiliary equipment can be made compact, Local heating can be prevented, and the amount of heat radiation resulting in energy loss can be significantly reduced. Also, various excellent effects can be obtained, such as reducing the number of accessories and greatly shortening the startup time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】改質器を用い、炭化水素ガス(原料ガス)から
PEFCに至るまでの態様例を示す図
FIG. 1 is a diagram showing an example of a mode from a hydrocarbon gas (raw material gas) to PEFC using a reformer.

【図2】内燃式改質法による改質器の幾つかの態様例を
示す図
FIG. 2 is a diagram showing some examples of a reformer using an internal combustion type reforming method.

【図3】本発明の実施例1を示す図(縦断面図)FIG. 3 is a view showing the first embodiment of the present invention (longitudinal sectional view).

【図4】本発明の実施例2を示す図(縦断面図)FIG. 4 shows a second embodiment of the present invention (longitudinal sectional view).

【図5】本発明の実施例3を示す図(縦断面図)FIG. 5 shows a third embodiment of the present invention (longitudinal sectional view).

【図6】本発明の改質装置において、内管の外壁にフィ
ンを設ける例を示す図
FIG. 6 is a diagram showing an example in which fins are provided on the outer wall of the inner pipe in the reforming apparatus of the present invention.

【図7】本発明の実施例4を示す図FIG. 7 is a diagram showing a fourth embodiment of the present invention.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】内燃式改質法による炭化水素ガスの改質装
置であって、同心状に間隔を置いて配置された内管と外
管で構成された二重管からなり、内管内に酸化触媒を充
填した酸化反応筒、内管と外管の間に改質触媒を充填し
た改質反応筒を設け、且つ、酸化反応筒内の上端に起動
時に改質装置内部を加熱するバーナを配置してなり、炭
化水素ガス、水蒸気、空気を酸化反応筒内の上端から流
通して酸化反応させ、下端から折り返した後、改質反応
筒に流通させて炭化水素ガスを改質ガスに改質するよう
にしてなることを特徴とする燃料電池用改質装置。
An apparatus for reforming hydrocarbon gas by an internal combustion type reforming method, comprising a double pipe composed of an inner pipe and an outer pipe which are arranged concentrically at intervals, wherein An oxidation reaction tube filled with an oxidation catalyst, a reforming reaction tube filled with a reforming catalyst between an inner tube and an outer tube are provided, and a burner that heats the inside of the reformer at the time of startup is provided at the upper end of the oxidation reaction tube. Hydrocarbon gas, water vapor, and air are circulated from the upper end of the oxidation reaction tube to cause an oxidation reaction, and after being turned back from the lower end, are passed through the reforming reaction tube to convert the hydrocarbon gas into a reformed gas. A reforming apparatus for a fuel cell, characterized in that the reforming apparatus for a fuel cell is manufactured.
【請求項2】前記酸化反応筒に充填される酸化触媒がパ
ラジウム、白金等の貴金属触媒又はヘキサアルミネート
化合物からなる酸化触媒である請求項1に記載の燃料電
池用改質装置。
2. The fuel cell reforming apparatus according to claim 1, wherein the oxidation catalyst filled in the oxidation reaction cylinder is a noble metal catalyst such as palladium or platinum or an oxidation catalyst comprising a hexaaluminate compound.
【請求項3】内燃式改質法による炭化水素ガスの改質装
置であって、同心状に間隔を置いて配置された内管と外
管で構成された二重管からなり、内管内を中空の酸化反
応筒とし、内管と外管の間に改質触媒を充填した改質反
応筒を設け、且つ、酸化反応筒内の上端に予混合方式の
バーナを配置してなり、炭化水素ガス、水蒸気、空気を
酸化反応筒内の上端から流通して酸化反応させ、下端か
ら折り返した後、改質反応筒に流通させて炭化水素ガス
を改質ガスに改質するようにしてなることを特徴とする
燃料電池用改質装置。
3. An apparatus for reforming hydrocarbon gas by an internal combustion type reforming method, comprising a double pipe comprising an inner pipe and an outer pipe which are arranged concentrically at intervals, wherein the inner pipe is It is a hollow oxidation reaction tube, a reforming reaction tube filled with a reforming catalyst is provided between the inner tube and the outer tube, and a premix burner is arranged at the upper end in the oxidation reaction tube to form a hydrocarbon. Gas, water vapor, and air are circulated from the upper end of the oxidation reaction tube to cause an oxidation reaction, and after returning from the lower end, are circulated to the reforming reaction tube to reform hydrocarbon gas into a reformed gas. A reformer for a fuel cell, comprising:
【請求項4】請求項1〜3のいずれかに記載の燃料電池
用改質装置において、上記外管の外周に同心状に間隔を
置いて管が配置され、且つ、該管の外周に同心状に間隔
を置いて外套が配置されてなり、外管と該管の間に改質
反応筒からの改質ガスを流通させ、該管と外套の間に原
料混合ガスを流通させることにより原料混合ガスを予熱
するようにしてなることを特徴とする燃料電池用改質装
置。
4. The reformer for a fuel cell according to claim 1, wherein pipes are arranged concentrically around the outer circumference of the outer pipe, and concentric with the outer circumference of the pipe. An outer jacket is arranged at an interval in a shape, and a reformed gas from a reforming reaction tube is caused to flow between the outer tube and the tube, and a raw material mixed gas is caused to flow between the outer tube and the jacket, thereby reducing the raw material. A reformer for a fuel cell, wherein a mixed gas is preheated.
【請求項5】前記燃料電池用改質装置の上下を反転させ
てなることを特徴とする請求項1〜4のいずれかに記載
の燃料電池用改質装置。
5. The fuel cell reforming apparatus according to claim 1, wherein the fuel cell reforming apparatus is turned upside down.
【請求項6】前記内管の内壁、外壁のいずれか一方また
は両方にフィンを設けてなることを特徴とする請求項1
〜5のいずれかに記載の燃料電池用改質装置。
6. A fin provided on one or both of an inner wall and an outer wall of the inner tube.
The reformer for a fuel cell according to any one of claims 1 to 5.
JP2001003805A 2001-01-11 2001-01-11 Reforming device for fuel cell Pending JP2002208426A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001003805A JP2002208426A (en) 2001-01-11 2001-01-11 Reforming device for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001003805A JP2002208426A (en) 2001-01-11 2001-01-11 Reforming device for fuel cell

Publications (1)

Publication Number Publication Date
JP2002208426A true JP2002208426A (en) 2002-07-26

Family

ID=18872092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001003805A Pending JP2002208426A (en) 2001-01-11 2001-01-11 Reforming device for fuel cell

Country Status (1)

Country Link
JP (1) JP2002208426A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003104705A (en) * 2001-09-28 2003-04-09 Nippon Oil Corp Method and apparatus for autothermal reforming, apparatus for producing hydrogen and fuel cell system
WO2004047980A1 (en) * 2002-11-26 2004-06-10 Novácke Chemické Závody, A.S. Device for conditions of chemical technologies and its application
KR100551036B1 (en) * 2004-06-30 2006-02-13 삼성에스디아이 주식회사 Reformer for fuel cell system and fuel cell system having the same
JP2006265007A (en) * 2005-03-22 2006-10-05 Toyota Motor Corp Fuel reformer
KR100639012B1 (en) 2005-03-02 2006-10-25 삼성에스디아이 주식회사 Prox reactor for fuel cell and fuel cell system having the same
KR100684771B1 (en) * 2005-09-27 2007-02-20 삼성에스디아이 주식회사 Apparatus for reforming fuel and driving method of the same
JP2007289852A (en) * 2006-04-25 2007-11-08 Sumitomo Precision Prod Co Ltd Evaporator
US7682587B2 (en) 2005-07-29 2010-03-23 Samsung Sdi Co., Ltd. Fuel cell reformer
US8017088B2 (en) 2005-09-27 2011-09-13 Samsung Sdi Co., Ltd. Fuel reformer
KR101135494B1 (en) * 2004-12-10 2012-04-13 삼성에스디아이 주식회사 Fuel cell system, reformer and burner
KR101135493B1 (en) * 2004-11-29 2012-04-13 삼성에스디아이 주식회사 Fuel cell system and reformer
KR101155924B1 (en) 2005-02-28 2012-06-20 삼성에스디아이 주식회사 Fuel cell system, reformer and burner
KR101278780B1 (en) 2010-09-01 2013-06-25 (주)알티아이엔지니어링 Separating type steam reformer
JP2014205582A (en) * 2013-04-10 2014-10-30 株式会社Ihi Reformer

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003104705A (en) * 2001-09-28 2003-04-09 Nippon Oil Corp Method and apparatus for autothermal reforming, apparatus for producing hydrogen and fuel cell system
WO2004047980A1 (en) * 2002-11-26 2004-06-10 Novácke Chemické Závody, A.S. Device for conditions of chemical technologies and its application
KR100551036B1 (en) * 2004-06-30 2006-02-13 삼성에스디아이 주식회사 Reformer for fuel cell system and fuel cell system having the same
KR101135493B1 (en) * 2004-11-29 2012-04-13 삼성에스디아이 주식회사 Fuel cell system and reformer
KR101135494B1 (en) * 2004-12-10 2012-04-13 삼성에스디아이 주식회사 Fuel cell system, reformer and burner
KR101155924B1 (en) 2005-02-28 2012-06-20 삼성에스디아이 주식회사 Fuel cell system, reformer and burner
KR100639012B1 (en) 2005-03-02 2006-10-25 삼성에스디아이 주식회사 Prox reactor for fuel cell and fuel cell system having the same
JP2006265007A (en) * 2005-03-22 2006-10-05 Toyota Motor Corp Fuel reformer
US7682587B2 (en) 2005-07-29 2010-03-23 Samsung Sdi Co., Ltd. Fuel cell reformer
US8017088B2 (en) 2005-09-27 2011-09-13 Samsung Sdi Co., Ltd. Fuel reformer
KR100684771B1 (en) * 2005-09-27 2007-02-20 삼성에스디아이 주식회사 Apparatus for reforming fuel and driving method of the same
JP2007289852A (en) * 2006-04-25 2007-11-08 Sumitomo Precision Prod Co Ltd Evaporator
KR101278780B1 (en) 2010-09-01 2013-06-25 (주)알티아이엔지니어링 Separating type steam reformer
JP2014205582A (en) * 2013-04-10 2014-10-30 株式会社Ihi Reformer

Similar Documents

Publication Publication Date Title
JP4335535B2 (en) Single chamber compact fuel processor
EP1347826B1 (en) Compact fuel processor for producing a hydrogen rich gas
JP4520100B2 (en) Hydrogen production apparatus and fuel cell system
US6824577B2 (en) Nested compact fuel processor for producing hydrogen rich gas
JP5015590B2 (en) Method and apparatus for rapid heating of fuel reforming reactants
JP4145785B2 (en) Cylindrical steam reformer
US6793698B1 (en) Fuel processor reactor with integrated pre-reforming zone
JP2003229164A (en) Solid oxide fuel cell system
WO2003067698A1 (en) Solid oxide type fuel cell system
AU2002227291A1 (en) Compact fuel processor for producing a hydrogen rich gas
JP2003327405A (en) Fuel reforming apparatus and method of starting same
JP2002208426A (en) Reforming device for fuel cell
JP2001155756A (en) Vapor-reforming reactor for fuel cell
JPS61247601A (en) Hydrocarbon fuel treating apparatus
US8551197B2 (en) Steam reforming unit
JP4464230B2 (en) Reforming apparatus and method, and fuel cell system
JP2000169102A (en) Fuel reformer
JP5314381B2 (en) Hydrogen production equipment
JP2004299939A (en) Fuel reformer, and fuel battery generator
JPS63129002A (en) Internal heating fuel reformer
JP2004185942A (en) Hydrogen generating device for fuel cell
JP4588224B2 (en) CO converter in reforming system for fuel cell
JP5274986B2 (en) Multi-cylinder steam reformer for fuel cells
JPH0450244B2 (en)
JP2004010411A (en) Method for starting and operating reforming device