JP2004185942A - Hydrogen generating device for fuel cell - Google Patents

Hydrogen generating device for fuel cell Download PDF

Info

Publication number
JP2004185942A
JP2004185942A JP2002350558A JP2002350558A JP2004185942A JP 2004185942 A JP2004185942 A JP 2004185942A JP 2002350558 A JP2002350558 A JP 2002350558A JP 2002350558 A JP2002350558 A JP 2002350558A JP 2004185942 A JP2004185942 A JP 2004185942A
Authority
JP
Japan
Prior art keywords
reformer
fuel cell
hydrogen generator
reaction
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002350558A
Other languages
Japanese (ja)
Inventor
Akira Hamada
陽 濱田
Hirokazu Izaki
博和 井崎
Fusao Terada
房夫 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2002350558A priority Critical patent/JP2004185942A/en
Publication of JP2004185942A publication Critical patent/JP2004185942A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compact and low-priced hydrogen generating device for a fuel cell having high heat efficiency and simple structure and capable of leveling temperature distribution by eliminating an eccentric flow of gas inside a devulcanizer, a reformer, a CO transformer and a CO eliminator, and capable of accurately controlling each of reactors at the optimal temperature by unifying each of reactors and recovering the excessive heat of each reactors to effectively use it. <P>SOLUTION: This hydrogen generating device 1 for a fuel cell is provided with the desulfurizer, a reformer 3, a heating means 6 for giving calories to be required for reform reaction with combustion of the combustion fuel, the CO transformer 9 and the CO eliminator 10. At least one of the reactors of the devulcanizer, the reformer 3, the CO transformer 9 and the CO eliminator 10 is formed into a coil shape surrounding a combustion space. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、燃料電池用水素発生装置に関するものであり、さらに詳しくは、都市ガスなどの原料炭化水素系燃料ガスの水蒸気改質により水素リッチガスを生成して燃料電池などに供給する燃料電池用水素発生装置に関するものである。
【0002】
【従来の技術】
従来、都市ガスなどの原料炭化水素系燃料ガスを水蒸気改質して水素リッチガスを生成し、得られた水素リッチガスの化学エネルギーを燃料電池によって直接電気エネルギーに変換するシステムが知られている。
【0003】
燃料電池は、水素と酸素を燃料とするものであり、この水素の生成には、天然ガスなどの炭化水素成分、メタノールなどのアルコール、あるいはナフサなどの分子中に水素原子を有する有機化合物を原料とし、水蒸気で改質する方法が広く用いられている。このような水蒸気を用いた改質反応は吸熱反応である。このため、水蒸気改質を効率よく行うためには水素発生装置は、原料、および水蒸気、改質触媒を加熱して高温にする必要があるが、反応器の熱効率を考えた場合、この時消費する熱量をできるだけ少なくすることが望ましい。
【0004】
一方、都市ガスなどの有機化合物を原燃料ガスとするとガス漏れ検知のためにターシャリーブチルサルファイドなどの有機硫黄系化合物の付臭剤が添加されている。硫黄分が原料燃料ガス中に含まれると、水素リッチガスを生成する際に、改質器、CO変成器の各触媒が被毒されて活性が低下するため、予め脱硫器にて硫黄分の除去が行なわれる。
脱硫した燃料ガスを水蒸気で改質する反応は水素や二酸化炭素の生成の他に一酸化炭素を副生成する。溶融炭酸塩形などの高温タイプの燃料電池は、水蒸気改質時に副生成した一酸化炭素も燃料として利用することができる。しかし、動作温度の低い固体高分子形燃料電池やりん酸形燃料電池では、電池電極として使用する白金系触媒が一酸化炭素により被毒されるため、十分な発電特性が得られなくなる。そこで動作温度の低い燃料電池に用いる水素発生装置は、改質後の改質ガス中に含まれる一酸化炭素と、水を反応させるためのCO変成器を設ける。また、りん酸形燃料電池よりもさらに動作温度が低い固体高分子形燃料電池では発電特性を落とさないために、さらに、一酸化炭素を数十ppm以下まで低減するCO除去器を設ける。CO除去器には一般に一酸化炭素を選択的に酸化させ一酸化炭素を低減するCO選択酸化方式が用いられる。
【0005】
以上のように、動作温度が低い固体高分子形燃料電池用の燃料としてナフサなどを原料として改質して水素を生成する時は、有機化合物の水蒸気改質反応、一酸化炭素の変成反応、一酸化炭素の選択酸化反応が必要とされる。
上記各過程における反応は、反応温度が大きく異なるため、各反応器が適正温度になるよう制御することが重要である。有機化合物の水蒸気改質反応温度を最も高くし、次いで、一酸化炭素の変成反応、一酸化炭素の選択酸化反応と順に反応温度を低くする必要がある。また、水素発生装置としての運転効率を高くするためには各反応器で余剰熱を回収し、温度制御することが望まれる。
【0006】
図3に従来の燃料電池用水素発生装置を示す(例えば、特許文献1参照)。
従来の燃料電池用水素発生装置30は、原料炭化水素系燃料ガスと水蒸気を反応させて水素リッチなガスに改質する改質用触媒31を具備した改質管32と、燃料ガスを改質管32に供給する燃料供給部33と、水蒸気を改質管32に供給する水供給部34と、燃焼管35での燃焼用燃料の燃焼により改質反応に必要な熱量を与える加熱手段36と、改質管32から流出する改質ガス中に含まれる一酸化炭素を水と反応させて二酸化炭素に変成するCO変成器37と、CO変成器37から流出する変成ガス中に含まれる一酸化炭素を空気または酸素と反応させて二酸化炭素にする選択酸化触媒を具備した図示しないCO除去器とを備えている。
【0007】
原料炭化水素系燃料ガスは、水蒸気が添加された後に燃料供給部33から改質管32に送られる。水蒸気は、水蒸気発生器38によりシステム内を流れる冷却水などの水が、例えば加熱手段36で予熱され燃料電池装置の排熱と熱交換されることによって生成される。水蒸気が添加された燃料ガスは改質管32の改質用触媒31と接触して触媒反応(およそ700℃、吸熱反応)により水素に富むガス(水素リッチガス)に水蒸気改質する。生成された水素リッチガスは一酸化炭素を含んでいるため、CO変成器37にて余剰の水蒸気との反応(およそ200〜300℃、発熱反応)により一酸化炭素を二酸化炭素に変成する。CO変成器37から流出する変成ガス中に含まれる一酸化炭素を図示しないCO除去器の選択酸化触媒と接触させて空気または酸素と反応(およそ100〜200℃、発熱反応)させて二酸化炭素にして、一酸化炭素濃度の低い水素リッチガスに改質する。
上記のようにして得られた水素リッチガスは、燃料電池39の水素極39aに連続的に供給されて、空気極39bに供給される空気との間で電池反応を起こして発電する。
【0008】
燃料ガスまたは燃料電池39から排出される未反応水素ガスなどの燃焼用燃料を燃焼するバーナ40などからなる加熱手段36を燃料電池用水素発生装置30に取り付け、燃焼管35内での燃焼により改質管32における改質反応に必要な熱量を与え、改質用触媒31の温度を昇温し触媒作用を高めている。
【0009】
一方、CO変成器を外付けせずに、改質器の壁面の外周に沿ってCO変成器を設け、改質器出口に熱交換器を設置してCO変成器に入る改質ガスの温度を制御するようにした燃料電池用改質システムが提案されている(例えば、特許文献2参照)。
【0010】
また、燃焼管内に鉛直方向に多数の独立した改質管を備えそれぞれの改質管内で改質反応を行うようにした燃料電池用改質器が提案されている(例えば、特許文献3、4参照)。
【0011】
【特許文献1】
特開2000−281313号公報
【特許文献2】
特許第3108269号
【特許文献3】
特開平7−33402号公報
【特許文献4】
特開平7−232902号公報
【0012】
【発明が解決しようとする課題】
従来の燃料電池用水素発生装置は、温度レベルの異なる反応器であるCO変成器やCO除去器を個別に制御するため改質器とは別置き(外付け)にしているため、配管の取り回しが必要となりシステム構成が複雑でコストアップになる上、熱ロスが生じ効率が低いという問題があった。
また、改質器の壁面の外周に沿ってCO変成器を設け、改質器出口に熱交換器を設置してCO変成器に入る改質ガスの温度を制御するようにした従来の燃料電池用改質システムは、熱交換器が必要なため構造が大きくなるという問題があった。
また燃焼管内に鉛直方向に多数の改質管を備えそれぞれの改質管内で改質反応を行うようにした燃料電池用改質器は、構造が複雑で高価である上、燃料ガスが偏流する恐れがあり、偏流すると温度むらができ、均一に改質反応が進行せず、性能が低下するという問題があった。
【0013】
本発明の目的は、都市ガスなどの原料炭化水素系燃料ガスの水蒸気改質により水素リッチガスを生成して燃料電池などに供給する燃料電池用水素発生装置に関する従来の諸問題を解決して、反応温度が大きく異なる脱硫器、改質器、CO変成器、CO除去器内におけるガスの偏流をなくし温度分布を均一にして各反応をスムースに行うことができるようにするとともに、各反応器を一体化して、各反応器での余剰熱を回収して有効に使用して各反応器を最適温度に精度よくコントロールでき、熱効率が高く、構造が簡単で安価で、小型化可能な燃料電池用水素発生装置を提供することである。
【0014】
【課題を解決するための手段】
前記課題を解決するための本発明の請求項1記載の燃料電池用水素発生装置は、水素原子を分子中に有する有機化合物を含有する燃料中に含まれる硫黄分を脱硫する脱硫器と、脱硫した燃料と水を反応させて水素リッチなガスに改質する改質用触媒を具備した改質器と、燃焼用燃料の燃焼により前記改質反応に必要な熱量を与える加熱手段と、前記改質器から流出する改質ガス中に含まれる一酸化炭素を水と反応させて二酸化炭素に変成するCO変成器と、CO変成器から流出する変成ガス中に含まれる一酸化炭素を空気または酸素と反応させて二酸化炭素にする選択酸化触媒を具備したCO除去器とを備えた燃料電池用水素発生装置において、
前記脱硫器、改質器、CO変成器、CO除去器の内の少なくとも1つの反応容器が前記燃焼の空間をとりまくコイル状形状を有することを特徴とする。
【0015】
脱硫器、改質器、CO変成器、CO除去器の内の少なくとも1つをコイル状形状反応容器(コイル状形状とは、螺旋状、つづら折り状などの形状を包含するものである。以下コイル、反応コイルなどと称す)であると、従来の円筒型あるいは平板型の反応器に比べてガス流路の断面積が小さくなるため内部におけるガスの偏流がなくなり、温度分布を均一にできるとともに、反応容器の外部表面積が従来の円筒型あるいは平板型の反応器に比べて大きくとれるため、燃焼ガスとの良好な熱交換を行うことができるので、各反応をスムースに高効率で行うことができる。
【0016】
本発明の請求項2記載の燃料電池用水素発生装置は、請求項1記載の燃料電池用水素発生装置において、中心部に前記加熱手段の燃焼バーナを配置し、その外側に各反応器が概同心円状になるように配置するとともに、前記改質器の反応コイルの外径が前記CO変成器およびCO除去器の内径よりも小さくしたことを特徴とする。
【0017】
中心部に加熱手段の燃焼バーナを配置し、その外側に改質器(およそ700℃、吸熱反応)、CO変成器(およそ200〜300℃、発熱反応)、CO除去器(およそ100〜200℃、発熱反応)を配置できるので、簡素な構成とし、小型化可能にするとともに、各反応器での余剰熱を回収して有効に使用して、各反応器を最適温度に精度よくコントロールでき、熱効率が高い。
【0018】
本発明の請求項3記載の燃料電池用水素発生装置は、請求項1あるいは請求項2記載の燃料電池用水素発生装置において、内側から外側に向けて前記改質器、CO変成器、CO除去器の順に配置したことを特徴とする。
【0019】
反応温度の高い順に改質器(およそ700℃、吸熱反応)、CO変成器(およそ200〜300℃、発熱反応)、CO除去器(およそ100〜200℃、発熱反応)と配置すれば、簡素な構成となり小型化が可能になるとともに、各反応器での余剰熱を回収して有効に使用して、各反応器を最適温度に精度よくコントロールでき、熱効率が高まる。
【0020】
本発明の請求項4記載の燃料電池用水素発生装置は、請求項1から請求項3のいずれかに記載の燃料電池用水素発生装置において、前記改質器とCO変成器の間に断熱手段を配置したことを特徴とする。
【0021】
反応温度の最も高い改質器(およそ700℃)は吸熱反応であるので、改質器とCO変成器の間に断熱手段を配置すれば加熱手段のエネルギーを有効に吸熱反応に使えるとともに、CO変成器の反応温度を最適温度に精度よくコントロールでき、熱効率が高い。
【0022】
本発明の請求項5記載の燃料電池用水素発生装置は、請求項1から請求項4のいずれかに記載の燃料電池用水素発生装置において、前記改質器の反応コイルのガス出口が前記加熱手段側に位置し、前記反応コイルのガス入口からガス出口に向かうガス流れ方向が、前記加熱手段の燃焼ガスの流れ方向と対向するように構成されていることを特徴とする。
【0023】
改質器の反応コイルのガス出口が加熱手段側に位置し、前記反応コイルのガス入口からガス出口に向かうガス流れ方向が、加熱手段の燃焼ガスの流れ方向と対向するように構成されていれば加熱手段のエネルギーを有効に吸熱反応に使え、熱効率が高い。
【0024】
本発明の請求項6記載の燃料電池用水素発生装置は、請求項1から請求項5のいずれかに記載の燃料電池用水素発生装置において、前記脱硫器、改質器、CO変成器、CO除去器の内の少なくとも1つの反応コイルを構成する管同士の間にクリアランスを設けたことを特徴とする。
【0025】
前記クリアランスを経て燃焼ガスが流れるので、加熱手段のエネルギーを有効に各反応に使え、熱効率が高まる。
【0026】
本発明の請求項7記載の燃料電池用水素発生装置は、請求項6記載の燃料電池用水素発生装置において、前記改質器の外側に間隔を置いて前記改質器を包囲する外壁を形成し、前記間隙を燃焼ガスが流れる経路とすることを特徴とする。
【0027】
前記間隙を経て燃焼ガスが流れるので、加熱手段のエネルギーを有効に改質反応に使え、熱効率が高まる。
【0028】
本発明の請求項8記載の燃料電池用水素発生装置は、請求項2記載の燃料電池用水素発生装置において、内側に前記改質器を配置し、その外側にCO変成器とCO除去器とを概並列に配置したことを特徴とする。
【0029】
CO変成器とCO除去器とを概並列に配置すれば、熱効率が高く、構造が簡単で安価で、一層小型化が可能となる。
【0030】
本発明の請求項9記載の燃料電池用水素発生装置は、請求項8記載の燃料電池用水素発生装置において、前記改質器と概並列に配置したCO変成器とCO除去器の間に断熱手段を配置したことを特徴とする。
【0031】
反応温度の最も高い改質器(およそ700℃)は吸熱反応であるので、改質器と概並列に配置したCO変成器とCO除去器の間に断熱手段を配置すれば加熱手段のエネルギーを有効に吸熱反応に使えるとともに、CO変成器とCO除去器の反応温度を最適温度に精度よくコントロールでき、熱効率が高まる。
【0032】
本発明の請求項10記載の燃料電池用水素発生装置は、請求項8あるいは請求項9記載の燃料電池用水素発生装置において、前記脱硫器、改質器、CO変成器、CO除去器の内の少なくとも1つの反応コイルを構成する管同士の間にクリアランスを設けたことを特徴とする。
【0033】
前記クリアランスを経て燃焼ガスが流れるので、加熱手段のエネルギーを有効に各反応に使え、熱効率が高い。
【0034】
本発明の請求項11記載の燃料電池用水素発生装置は、請求項8あるいは請求項9記載の燃料電池用水素発生装置において、前記改質器の外側に間隔を置いて前記改質器を包囲する外壁を形成し、前記間隙を燃焼ガスが流れる経路とすることを特徴とする。
【0035】
前記間隙を経て燃焼ガスが流れるので、加熱手段のエネルギーを有効に改質反応に使え、熱効率が高い。
【0036】
【発明の実施の形態】
以下、図面により本発明の実施の形態を詳細に説明する。
(1)第1実施形態:
図1は、本発明の燃料電池用水素発生装置の1実施の形態を示す断面説明図である。
本発明の燃料電池用水素発生装置1は、水素原子を分子中に有する有機化合物を含有する燃料と水を反応させて水素リッチなガスに改質する改質用触媒2を具備したコイル状形状改質器3と、図示しない燃料ガス混合部より供給される燃料ガス/水蒸気混合ガスをコイル状形状改質器3に供給する燃料供給部4と、燃焼用燃料の燃焼により燃焼空間5を形成し改質反応に必要な熱量を与える加熱手段の燃焼バーナ6と、改質器3の外側に間隔を置いて改質器3を包囲する外壁7を形成し燃焼ガスが改質器3と外壁7との間隔を流れるようにし、そして改質器3より放熱される熱を断熱する断熱材8と、改質管3から流出する改質ガス中に含まれる一酸化炭素を水と反応させて二酸化炭素に変成するコイル状形状CO変成器9と、CO変成器9から流出する変成ガス中に含まれる一酸化炭素を空気または酸素と反応させて二酸化炭素にする選択酸化触媒を具備したコイル状形状CO除去器10とを備えており、中心部に加熱手段の燃焼バーナ6が配置され、燃焼用燃料の燃焼により形成された燃焼空間5をとりまくように、コイル状形状改質管3、外壁7、断熱材8、コイル状形状CO変成器9、コイル状形状CO除去器10がこの順に各々を概同心円状に配置されて構成されている。
【0037】
11は改質管3とCO変成器9との間に配置された熱交換器であり、熱交換器11により、改質管3より排出される高温ガス(400℃以上)をCO変成器9の反応温度である200℃程度まで低減した後、CO変成器9に供給する。
12はCO変成器9とCO除去器10の間に配置された熱交換器であり、熱交換器11により、CO変成器9より排出される高温ガス(200〜300℃)をCO除去器10の反応温度である200℃以下に低減した後、CO除去器10に供給する。
【0038】
コイル状形状反応容器であると、従来の円筒型あるいは平板型の反応器に比べてガス流路の断面積が小さくなるため内部におけるガスの偏流がなくなり、温度分布を均一にできるとともに、反応容器の外部表面積が従来の円筒型あるいは平板型の反応器に比べて大きくとれるため、燃焼ガスとの良好な熱交換を行うことができるので、各反応をスムースに高効率で行うことができる。
【0039】
コイル状形状とは前記のように螺旋状、つづら折り状などの形状を包含するものであるが、反応コイルの断面形状は丸でも、楕円でもよく、また多角形でもよく特に限定されるものではない。中でも、丸のコイル状形状は取り扱い易く、安価で本発明において好ましく使用できる1つであるが、放射熱や伝導熱を受け易いように燃焼ガスに対向する面の面積が大きくなるような形態の楕円などの形状のコイル状形状のものも本発明において好ましく使用できる1つである。
【0040】
コイルを2重管にすることも好ましい。例えば、2重管の外側の管内に先ず燃料ガスを流して加熱して改質反応を行うとともに次いで2重管の内側の管内に燃料ガスを流してさらに改質反応を進めるようにすれば、熱効率を上げることができる上、小型化をさらに達成できる。
【0041】
原料炭化水素系などの燃料ガスは、水蒸気が添加された後に燃料供給部4から改質管3に送られる。水蒸気は、図示しない水蒸気発生器により燃料電池システム内を流れる冷却水などの水が、燃焼用燃料の燃焼後の排ガスの排熱と熱交換されることによって生成される。水蒸気が添加された燃料ガスは改質管3の改質用触媒2と接触して触媒反応(およそ700℃、吸熱反応)により水素に富むガス(水素リッチガス)に水蒸気改質する。生成された水素リッチガスは一酸化炭素を含んでいるため、CO変成器9にて余剰の水蒸気との反応(およそ200〜300℃、発熱反応)により一酸化炭素を二酸化炭素に変成する。CO変成器9から流出する変成ガス中に含まれる一酸化炭素をCO除去器10の選択酸化触媒と接触させて空気または酸素と反応(およそ100〜200℃、発熱反応)させて二酸化炭素に変換して、一酸化炭素濃度の低い水素リッチガスに改質する。
上記のようにして得られた水素リッチガスは、図示しない燃料電池の水素極に連続的に供給されて、空気極に供給される空気との間で電池反応を起こして発電する。
【0042】
燃料ガスまたは燃料電池から排出される未反応水素ガスなどの燃焼用燃料を燃焼するバーナ6などからなる加熱手段を燃料電池用水素発生装置1に取り付け、燃焼用燃料の燃焼により改質管3における改質反応に必要な熱量を与え、改質用触媒2の温度を昇温し触媒作用を高めている。燃焼用燃料を燃焼後、排ガスは白矢印で示したように燃焼空間5を形成し上方に向かうが、改質管3の反応コイルを構成する管同士の間に図示しないクリアランスを設ければ、前記クリアランスを経て燃焼ガスが流れるので、加熱手段のエネルギーを有効に改質反応に使え、しかも改質器3の外側に間隔を置いて改質器3を包囲する外壁7を形成してあるのでこの間隙を経て燃焼ガスが流れるので、加熱手段6のエネルギーを有効に改質反応に使え、高熱効率を得ることができる。
【0043】
断熱材8は、改質管3より放熱される熱を断熱でき熱効率の向上が図れ、望ましくは隣接するCO変成器9とほぼ同じ温度(およそ200〜300℃)にその表面温度がなるように断熱材8の材質や厚みが選定されることが好ましい。断熱材8の材質は200〜300℃に維持できる材質であればよく、セラミックファイバー、アルミナ、シリカなどのケイ素系材質、ロックウールなどを挙げることができる。これらの中でもセラミックファイバー、アルミナ、シリカなどのケイ素系材質の粉末、粒子、粉末をかためた成形物などは耐熱性が高く、また熱伝達率が適当であるため、断熱材8の厚みを薄くでき、断熱材8の厚みを薄くしてもその表面温度が200〜300℃になる材質であるので、本発明において好ましく使用できる。
また、この断熱の手段としては断熱材のみならず、表面が鏡面仕上げとなっている鏡面状断熱部材を配置するか、もしくは、CO変成器9の内側の面を鏡面仕上げすることにより、改質管3からの放射熱を反射することが可能となる。
さらに、改質管からCO変成器までの空間を真空にすることでも、断熱効果を得ることができる。
【0044】
CO変成器9の最適温度は上記のようにおよそ200〜300℃であるが、200℃未満では改質ガス中に含まれる一酸化炭素を水と反応させて二酸化炭素に変成する平衡反応(発熱反応)が進行しないかあるいは遅く、300℃を超えると触媒が劣化し寿命が短くなる。
CO除去器10の最適温度は上記のようにおよそ100〜200℃であるが、100℃未満では変成ガス中に含まれる一酸化炭素を酸素または空気と反応させて二酸化炭素に変成する平衡反応(発熱反応)が進行しないかあるいは遅く、200℃を超えると暴走反応がおきて水素が消費されてしまう問題が生じ、また触媒が劣化し寿命が短くなる恐れがある。
CO+3H →CH +H
CO +4H →CH +2H
【0045】
本発明の燃料電池用水素発生装置1は、中心部に加熱手段の燃焼バーナ6を配置し、その外側に各反応器が概同心円状になるように配置するとともに、改質器3の反応コイルの外径dがCO変成器9の内径D1およびCO除去器10の内径D2よりも小さくしてあるので、反応温度の高い順に改質器3(およそ700℃、吸熱反応)、CO変成器9(およそ200〜300℃、発熱反応)、CO除去器10(およそ100〜200℃、発熱反応)となるように配置でき、簡素な構成とし、小型化可能にするとともに、各反応器での余剰熱を回収して有効に使用して、各反応器を最適温度に精度よくコントロールでき、熱効率が高い。
本発明の燃料電池用水素発生装置1は、改質器3の反応コイル内を流れる燃料の流れは下方に向かい、加熱手段の燃焼バーナ6の燃焼ガスの流れは上方に向かい、互いに対向するように構成されているので加熱手段の燃焼バーナ6のエネルギーを有効に吸熱反応に使え、熱効率が高い。
【0046】
(2)第2実施形態:
図2は、本発明の燃料電池用水素発生装置の他の実施の形態を示す断面説明図である。
図2において、図1に示した符号と同じ符号のものは図1に示したものと同じものを示し、重複する説明を省略する。
図2に示したように、本発明の燃料電池用水素発生装置1Aは、コイル状形状改質器3の外側にCO変成器9とCO除去器10とを概並列に配置し、改質器3と概並列に配置したCO変成器9とCO除去器10の間に外壁7および断熱材8を配置した以外は図1に示した本発明の燃料電池用水素発生装置1と同様になっている。
CO変成器9とCO除去器10とを概並列に配置すれば、熱効率が高く、構造が簡単で安価で、一層小型化が可能となる。外壁7を形成してあるので外壁7と改質器3との間隙を経て燃焼ガスが流れるので、加熱手段6のエネルギーを有効に改質反応に使え、高熱効率を得ることができ、また反応温度の最も高い改質器3(およそ700℃)は吸熱反応であるので、改質器3と概並列に配置したCO変成器9とCO除去器10の間に断熱材8を配置すれば加熱手段6のエネルギーを有効に吸熱反応に使えるとともに、CO変成器9とCO除去器10の反応温度を最適温度に精度よくコントロールでき、熱効率が高い。
【0047】
上記実施の形態の説明は、本発明を説明するためのものであって、特許請求の範囲に記載の発明を限定し、或は範囲を減縮するものではない。又、本発明の各部構成は上記実施の形態に限らず、特許請求の範囲に記載の技術的範囲内で種々の変形が可能である。
【0048】
【発明の効果】
本発明の請求項1記載の燃料電池用水素発生装置は、水素原子を分子中に有する有機化合物を含有する燃料中に含まれる硫黄分を脱硫する脱硫器と、脱硫した燃料と水を反応させて水素リッチなガスに改質する改質用触媒を具備した改質器と、燃焼用燃料の燃焼により前記改質反応に必要な熱量を与える加熱手段と、前記改質器から流出する改質ガス中に含まれる一酸化炭素を水と反応させて二酸化炭素に変成するCO変成器と、CO変成器から流出する変成ガス中に含まれる一酸化炭素を空気または酸素と反応させて二酸化炭素にする選択酸化触媒を具備したCO除去器とを備えた燃料電池用水素発生装置において、
前記脱硫器、改質器、CO変成器、CO除去器の内の少なくとも1つの反応容器が前記燃焼の空間をとりまくコイル状形状を有することを特徴とするものであり、従来の円筒型あるいは平板型の反応器に比べてガス流路の断面積が小さくなるため内部におけるガスの偏流がなくなり、温度分布を均一にできるとともに、反応容器の外部表面積が従来の円筒型あるいは平板型の反応器に比べて大きくとれるため、燃焼ガスとの良好な熱交換を行うことができるので、各反応をスムースに高効率で行うことができるという顕著な効果を奏する。
本発明の燃料電池用水素発生装置は、各反応器を一体化して、各反応器での余剰熱を回収して有効に使用して各反応器を最適温度に精度よくコントロールでき、熱効率が高く、構造が簡単で安価で、小型化可能であるという顕著な効果を奏する。
【0049】
本発明の請求項2記載の燃料電池用水素発生装置は、請求項1記載の燃料電池用水素発生装置において、中心部に前記加熱手段の燃焼バーナを配置し、その外側に各反応器が概同心円状になるように配置するとともに、前記改質器の反応コイルの外径が前記CO変成器およびCO除去器の内径よりも小さくしたことを特徴とするものであり、中心部に加熱手段の燃焼バーナを配置し、その外側に改質器(およそ700℃、吸熱反応)、CO変成器(およそ200〜300℃、発熱反応)、CO除去器(およそ100〜200℃、発熱反応)を配置できるので、簡素な構成とし、小型化可能にするとともに、各反応器での余剰熱を回収して有効に使用して、各反応器を最適温度に精度よくコントロールでき、熱効率が高いというさらなる顕著な効果を奏する。
【0050】
本発明の請求項3記載の燃料電池用水素発生装置は、請求項1あるいは請求項2記載の燃料電池用水素発生装置において、内側から外側に向けて前記改質器、CO変成器、CO除去器の順に配置したことを特徴とするものであり、反応温度の高い順に改質器(およそ700℃、吸熱反応)、CO変成器(およそ200〜300℃、発熱反応)、CO除去器(およそ100〜200℃、発熱反応)と配置すれば、簡素な構成とし、小型化可能にするとともに、各反応器での余剰熱を回収して有効に使用して、各反応器を最適温度に精度よくコントロールでき、熱効率が高いというさらなる顕著な効果を奏する。
【0051】
本発明の請求項4記載の燃料電池用水素発生装置は、請求項1から請求項3のいずれかに記載の燃料電池用水素発生装置において、前記改質器とCO変成器の間に断熱手段を配置したことを特徴とするものであり、反応温度の最も高い改質器(およそ700℃)は吸熱反応であるので、改質器とCO変成器の間に断熱手段を配置すれば加熱手段のエネルギーを有効に吸熱反応に使えるとともに、CO変成器の反応温度を最適温度に精度よくコントロールでき、熱効率が高いというさらなる顕著な効果を奏する。
【0052】
本発明の請求項5記載の燃料電池用水素発生装置は、請求項1から請求項4のいずれかに記載の燃料電池用水素発生装置において、前記改質器の反応コイル内を流れる燃料の流れ方向が、前記加熱手段の燃焼ガスの流れ方向と対向するように構成されていることを特徴とするものであり、改質器の反応コイル内を流れる燃料の流れ方向が、前記加熱手段の燃焼ガスの流れ方向と対向するように構成されていば加熱手段のエネルギーを有効に吸熱反応に使え、熱効率が高いというさらなる顕著な効果を奏する。
【0053】
本発明の請求項6記載の燃料電池用水素発生装置は、請求項1から請求項5のいずれかに記載の燃料電池用水素発生装置において、前記脱硫器、改質器、CO変成器、CO除去器の内の少なくとも1つの反応コイルを構成する管同士の間にクリアランスを設けたことを特徴とするものであり、前記クリアランスを経て燃焼ガスが流れるので、加熱手段のエネルギーを有効に各反応に使え、熱効率が高いというさらなる顕著な効果を奏する。
【0054】
本発明の請求項7記載の燃料電池用水素発生装置は、請求項6記載の燃料電池用水素発生装置において、前記改質器の外側に間隔を置いて前記改質器を包囲する外壁を形成し、前記間隙を燃焼ガスが流れる経路とすることを特徴とするものであり、前記間隙を経て燃焼ガスが流れるので、加熱手段のエネルギーを有効に改質反応に使え、熱効率が高いというさらなる顕著な効果を奏する。
【0055】
本発明の請求項8記載の燃料電池用水素発生装置は、請求項2記載の燃料電池用水素発生装置において、内側に前記改質器を配置し、その外側にCO変成器とCO除去器とを概並列に配置したことを特徴とするものであり、CO変成器とCO除去器とを概並列に配置すれば、熱効率が高く、構造が簡単で安価で、一層小型化が可能となるというさらなる顕著な効果を奏する。
【0056】
本発明の請求項9記載の燃料電池用水素発生装置は、請求項8記載の燃料電池用水素発生装置において前記改質器と概並列に配置したCO変成器とCO除去器の間に断熱手段を配置したことを特徴とするものであり、反応温度の最も高い改質器(およそ700℃)は吸熱反応であるので、改質器と概並列に配置したCO変成器とCO除去器の間に断熱手段を配置すれば加熱手段のエネルギーを有効に吸熱反応に使えるとともに、CO変成器とCO除去器の反応温度を最適温度に精度よくコントロールでき、熱効率が高いというさらなる顕著な効果を奏する。
【0057】
本発明の請求項10記載の燃料電池用水素発生装置は、請求項8あるいは請求項9記載の燃料電池用水素発生装置において、前記脱硫器、改質器、CO変成器、CO除去器の内の少なくとも1つの反応コイルを構成する管同士の間にクリアランスを設けたことを特徴とするものであり、前記クリアランスを経て燃焼ガスが流れるので、加熱手段のエネルギーを有効に各反応に使え、熱効率が高いというさらなる顕著な効果を奏する。
【0058】
本発明の請求項11記載の燃料電池用水素発生装置は、請求項8あるいは請求項9記載の燃料電池用水素発生装置において、前記改質器の外側に間隔を置いて前記改質器を包囲する外壁を形成し、前記間隙を燃焼ガスが流れる経路とすることを特徴とするものであり、前記間隙を経て燃焼ガスが流れるので、加熱手段のエネルギーを有効に改質反応に使え、熱効率が高いというさらなる顕著な効果を奏する。
【図面の簡単な説明】
【図1】本発明の燃料電池用水素発生装置の1実施の形態を示す断面説明図である。
【図2】本発明の燃料電池用水素発生装置の他の実施の形態を示す断面説明図である。
【図3】従来の燃料電池用水素発生装置の断面説明図である。
【符号の説明】
1、1A 本発明の燃料電池用水素発生装置
2 改質用触媒
3 コイル状形状改質管
4 燃料供給部
5 燃焼空間
6 燃焼バーナ
7 外壁
8 断熱材
9 コイル状形状CO変成器
10 コイル状形状CO除去器
11、12 熱交換器
d 改質器の反応コイルの外径
D1 CO変成器の反応コイルの内径
D2 CO除去器の反応コイルの内径
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a hydrogen generator for a fuel cell, and more particularly, to a hydrogen generator for a fuel cell that generates a hydrogen-rich gas by steam reforming of a raw hydrocarbon fuel gas such as a city gas and supplies the gas to a fuel cell or the like. It relates to a generator.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, there is known a system in which a raw hydrocarbon fuel gas such as city gas is steam-reformed to generate a hydrogen-rich gas, and the chemical energy of the obtained hydrogen-rich gas is directly converted into electric energy by a fuel cell.
[0003]
Fuel cells use hydrogen and oxygen as fuels. Hydrogen is produced using hydrocarbon components such as natural gas, alcohols such as methanol, or organic compounds containing hydrogen atoms in molecules such as naphtha. The method of reforming with steam is widely used. Such a reforming reaction using steam is an endothermic reaction. For this reason, in order to perform steam reforming efficiently, the hydrogen generator needs to heat the raw material, steam, and the reforming catalyst to a high temperature. It is desirable to reduce the amount of heat generated as much as possible.
[0004]
On the other hand, when an organic compound such as city gas is used as a raw fuel gas, an odorant of an organic sulfur-based compound such as tertiary butyl sulfide is added to detect gas leakage. If the sulfur content is contained in the raw material fuel gas, the catalyst of the reformer and the CO converter is poisoned and the activity is reduced when generating the hydrogen-rich gas, so the sulfur content is removed in advance by the desulfurizer. Is performed.
The reaction of reforming the desulfurized fuel gas with steam produces not only hydrogen and carbon dioxide but also by-produced carbon monoxide. In a high-temperature type fuel cell such as a molten carbonate fuel cell, carbon monoxide by-produced during steam reforming can also be used as a fuel. However, in a polymer electrolyte fuel cell or a phosphoric acid fuel cell having a low operating temperature, a platinum-based catalyst used as a battery electrode is poisoned by carbon monoxide, so that sufficient power generation characteristics cannot be obtained. Therefore, a hydrogen generator used for a fuel cell having a low operating temperature is provided with a CO converter for causing water to react with carbon monoxide contained in reformed reformed gas. Further, in order to prevent the power generation characteristics from deteriorating in a polymer electrolyte fuel cell having an operating temperature lower than that of a phosphoric acid fuel cell, a CO remover for reducing carbon monoxide to several tens ppm or less is further provided. In general, a CO selective oxidization method for selectively oxidizing carbon monoxide to reduce carbon monoxide is used for the CO remover.
[0005]
As described above, when hydrogen is generated by reforming naphtha or the like as a raw material as a fuel for a polymer electrolyte fuel cell having a low operating temperature, a steam reforming reaction of an organic compound, a shift reaction of carbon monoxide, A selective oxidation reaction of carbon monoxide is required.
Since the reaction temperature in each of the above-mentioned processes differs greatly, it is important to control each reactor to an appropriate temperature. It is necessary to make the temperature of the steam reforming reaction of the organic compound the highest, and then lower the reaction temperature in the order of the carbon monoxide conversion reaction and the carbon monoxide selective oxidation reaction. In addition, in order to increase the operation efficiency of the hydrogen generator, it is desired to recover excess heat in each reactor and control the temperature.
[0006]
FIG. 3 shows a conventional hydrogen generator for a fuel cell (for example, see Patent Document 1).
A conventional fuel cell hydrogen generator 30 includes a reforming tube 32 having a reforming catalyst 31 for reacting a raw hydrocarbon fuel gas and steam to reform the gas into a hydrogen-rich gas; A fuel supply section 33 for supplying the pipe 32, a water supply section 34 for supplying water vapor to the reforming pipe 32, and a heating means 36 for providing heat required for the reforming reaction by burning the combustion fuel in the combustion pipe 35. A CO converter 37 for converting carbon monoxide contained in the reformed gas flowing out of the reforming pipe 32 with water to convert it into carbon dioxide, and a monoxide contained in the reformed gas flowing out of the CO converter 37. A CO remover (not shown) provided with a selective oxidation catalyst for reacting carbon with air or oxygen to form carbon dioxide.
[0007]
The raw hydrocarbon fuel gas is sent from the fuel supply unit 33 to the reforming pipe 32 after the steam is added. The steam is generated by water such as cooling water flowing through the system by the steam generator 38, for example, being preheated by the heating means 36 and exchanged with the exhaust heat of the fuel cell device. The fuel gas to which the steam has been added comes into contact with the reforming catalyst 31 in the reforming tube 32 and is steam reformed into a hydrogen-rich gas (hydrogen-rich gas) by a catalytic reaction (about 700 ° C., endothermic reaction). Since the generated hydrogen-rich gas contains carbon monoxide, the CO converter 37 converts carbon monoxide into carbon dioxide by a reaction with excess water vapor (about 200 to 300 ° C., exothermic reaction). The carbon monoxide contained in the shift gas flowing out of the CO shift converter 37 is brought into contact with a selective oxidation catalyst of a CO remover (not shown) to react with air or oxygen (about 100 to 200 ° C., exothermic reaction) to form carbon dioxide. To reform into a hydrogen-rich gas having a low carbon monoxide concentration.
The hydrogen-rich gas obtained as described above is continuously supplied to the hydrogen electrode 39a of the fuel cell 39, and generates a battery reaction with the air supplied to the air electrode 39b to generate power.
[0008]
A heating means 36 including a burner 40 for burning a fuel for combustion such as a fuel gas or unreacted hydrogen gas discharged from a fuel cell 39 is attached to the hydrogen generator 30 for a fuel cell. The amount of heat necessary for the reforming reaction in the quality tube 32 is given, and the temperature of the reforming catalyst 31 is raised to enhance the catalytic action.
[0009]
On the other hand, without externally installing a CO converter, a CO converter is provided along the outer periphery of the wall of the reformer, and a heat exchanger is installed at the outlet of the reformer, and the temperature of the reformed gas entering the CO converter is changed. There has been proposed a fuel cell reforming system for controlling the pressure (see, for example, Patent Document 2).
[0010]
Further, reformers for fuel cells have been proposed in which a number of independent reforming tubes are provided in a combustion tube in a vertical direction so that a reforming reaction is performed in each reforming tube (for example, Patent Documents 3 and 4). reference).
[0011]
[Patent Document 1]
JP 2000-281313 A [Patent Document 2]
Patent No. 3108269 [Patent Document 3]
Japanese Patent Application Laid-Open No. 7-33402 [Patent Document 4]
Japanese Patent Application Laid-Open No. 7-232902
[Problems to be solved by the invention]
In conventional hydrogen generators for fuel cells, the CO converter and CO remover, which are reactors with different temperature levels, are installed separately (externally) from the reformer in order to individually control them. However, there is a problem that the system configuration is complicated and the cost is increased, and a heat loss occurs and the efficiency is low.
Also, a conventional fuel cell in which a CO converter is provided along the outer periphery of the wall of the reformer, and a heat exchanger is installed at the outlet of the reformer to control the temperature of the reformed gas entering the CO converter. The heat reforming system has a problem that the structure becomes large because a heat exchanger is required.
In addition, a fuel cell reformer in which a number of reforming tubes are provided in a combustion tube in a vertical direction and a reforming reaction is performed in each of the reforming tubes is complicated and expensive, and the fuel gas is deflected. There is a problem that uneven flow may cause temperature unevenness, uneven reforming reaction does not proceed uniformly, and performance may be deteriorated.
[0013]
An object of the present invention is to solve the conventional problems related to a hydrogen generator for a fuel cell, which generates a hydrogen-rich gas by steam reforming of a raw material hydrocarbon-based fuel gas such as a city gas and supplies the gas to a fuel cell, etc. Eliminating gas drifts in desulfurizers, reformers, CO shifters, and CO removers with greatly differing temperatures to make the temperature distribution uniform and enable each reaction to be performed smoothly, and to integrate each reactor Hydrogen for fuel cells, which is capable of recovering excess heat in each reactor and effectively using it to accurately control each reactor to the optimal temperature, high thermal efficiency, simple structure, low cost, and compact size It is to provide a generator.
[0014]
[Means for Solving the Problems]
According to a first aspect of the present invention, there is provided a hydrogen generator for a fuel cell, comprising: a desulfurizer for desulfurizing a sulfur component contained in a fuel containing an organic compound having a hydrogen atom in a molecule; A reformer having a reforming catalyst for reacting the reformed fuel and water to form a hydrogen-rich gas; heating means for providing heat required for the reforming reaction by burning combustion fuel; A CO converter that converts carbon monoxide contained in the reformed gas flowing out of the reformer with water to convert it to carbon dioxide, and converts carbon monoxide contained in the reformed gas flowing out of the CO converter into air or oxygen. And a CO remover equipped with a selective oxidation catalyst that reacts with carbon dioxide to produce carbon dioxide.
At least one reaction vessel among the desulfurizer, the reformer, the CO shift converter, and the CO remover has a coil shape surrounding the combustion space.
[0015]
At least one of the desulfurizer, the reformer, the CO shift converter, and the CO remover is formed into a coiled reaction vessel (the coiled shape includes a shape such as a helical shape or a zigzag shape. , Referred to as a reaction coil, etc.), the cross-sectional area of the gas flow path is smaller than that of a conventional cylindrical or flat-type reactor, so that there is no gas drift inside and a uniform temperature distribution, Since the external surface area of the reaction vessel can be larger than that of a conventional cylindrical or flat type reactor, good heat exchange with combustion gas can be performed, so that each reaction can be performed smoothly and efficiently. .
[0016]
A hydrogen generator for a fuel cell according to a second aspect of the present invention is the hydrogen generator for a fuel cell according to the first aspect, wherein a combustion burner of the heating means is disposed at a central portion, and each reactor is generally provided outside the combustion burner. The reformer is arranged so as to be concentric, and the outer diameter of the reaction coil of the reformer is smaller than the inner diameter of the CO shift converter and the CO remover.
[0017]
A combustion burner as a heating means is arranged at the center, and a reformer (about 700 ° C., endothermic reaction), a CO converter (about 200 to 300 ° C., exothermic reaction), and a CO remover (about 100 to 200 ° C.) outside the burner. , Exothermic reaction) can be arranged, so that it can be made simpler and smaller, and the excess heat in each reactor can be recovered and used effectively to precisely control each reactor to the optimum temperature. High thermal efficiency.
[0018]
According to a third aspect of the present invention, there is provided the hydrogen generator for a fuel cell according to the first or second aspect, wherein the reformer, the CO shift converter, and the CO remover are arranged from inside to outside. It is characterized by being arranged in the order of vessels.
[0019]
Placing a reformer (approximately 700 ° C, endothermic reaction), a CO shift converter (approximately 200 to 300 ° C, exothermic reaction), and a CO remover (approximately 100 to 200 ° C, exothermic reaction) in the order of higher reaction temperature is simple. This makes it possible to reduce the size of the reactor and to efficiently use and recover the excess heat in each reactor, thereby accurately controlling each reactor to an optimum temperature and increasing thermal efficiency.
[0020]
A hydrogen generator for a fuel cell according to a fourth aspect of the present invention is the hydrogen generator for a fuel cell according to any one of the first to third aspects, wherein the heat insulating means is provided between the reformer and the CO converter. Are arranged.
[0021]
Since the reformer having the highest reaction temperature (approximately 700 ° C.) is an endothermic reaction, if heat insulating means is disposed between the reformer and the CO converter, the energy of the heating means can be used effectively for the endothermic reaction, The reaction temperature of the transformer can be controlled to the optimum temperature with high accuracy and high thermal efficiency.
[0022]
According to a fifth aspect of the present invention, there is provided the hydrogen generator for a fuel cell according to any one of the first to fourth aspects, wherein the gas outlet of the reaction coil of the reformer is heated. And a gas flow direction from the gas inlet of the reaction coil to the gas outlet is configured to be opposed to the flow direction of the combustion gas of the heating means.
[0023]
The gas outlet of the reaction coil of the reformer is located on the heating means side, and the gas flow direction from the gas inlet to the gas outlet of the reaction coil is configured to face the combustion gas flow direction of the heating means. If the energy of the heating means can be effectively used for the endothermic reaction, the thermal efficiency is high.
[0024]
The hydrogen generator for a fuel cell according to claim 6 of the present invention is the hydrogen generator for a fuel cell according to any one of claims 1 to 5, wherein the desulfurizer, the reformer, the CO shift converter, and the CO A clearance is provided between tubes constituting at least one reaction coil of the remover.
[0025]
Since the combustion gas flows through the clearance, the energy of the heating means can be effectively used for each reaction, and the thermal efficiency increases.
[0026]
A hydrogen generator for a fuel cell according to a seventh aspect of the present invention is the hydrogen generator for a fuel cell according to the sixth aspect, wherein an outer wall surrounding the reformer is formed outside the reformer at intervals. The gap is a path through which the combustion gas flows.
[0027]
Since the combustion gas flows through the gap, the energy of the heating means can be effectively used for the reforming reaction, and the thermal efficiency increases.
[0028]
The hydrogen generator for a fuel cell according to claim 8 of the present invention is the hydrogen generator for a fuel cell according to claim 2, wherein the reformer is disposed inside, and a CO converter and a CO remover are disposed outside the reformer. Are arranged substantially in parallel.
[0029]
If the CO transformer and the CO remover are arranged substantially in parallel, the thermal efficiency is high, the structure is simple and inexpensive, and the size can be further reduced.
[0030]
The hydrogen generator for a fuel cell according to the ninth aspect of the present invention is the hydrogen generator for a fuel cell according to the eighth aspect, insulated between a CO converter and a CO remover arranged substantially in parallel with the reformer. The means is arranged.
[0031]
Since the reformer with the highest reaction temperature (approximately 700 ° C.) is an endothermic reaction, the energy of the heating means can be reduced by arranging the adiabatic means between the CO converter and the CO remover which are arranged almost in parallel with the reformer. It can be used effectively for endothermic reactions, and the reaction temperature of the CO converter and CO remover can be controlled to the optimum temperature with high accuracy, increasing the thermal efficiency.
[0032]
A hydrogen generator for a fuel cell according to a tenth aspect of the present invention is the hydrogen generator for a fuel cell according to the eighth or ninth aspect, wherein the desulfurizer, the reformer, the CO converter, and the CO remover are provided. Wherein a clearance is provided between tubes constituting at least one reaction coil.
[0033]
Since the combustion gas flows through the clearance, the energy of the heating means can be effectively used for each reaction, and the thermal efficiency is high.
[0034]
A hydrogen generator for a fuel cell according to claim 11 of the present invention is the hydrogen generator for a fuel cell according to claim 8 or 9, which surrounds the reformer at an interval outside the reformer. An outer wall is formed, and the gap serves as a path through which the combustion gas flows.
[0035]
Since the combustion gas flows through the gap, the energy of the heating means can be effectively used for the reforming reaction, and the thermal efficiency is high.
[0036]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
(1) First embodiment:
FIG. 1 is an explanatory sectional view showing one embodiment of a hydrogen generator for a fuel cell according to the present invention.
A hydrogen generator 1 for a fuel cell according to the present invention has a coil-like shape provided with a reforming catalyst 2 for reacting a fuel containing an organic compound having a hydrogen atom in a molecule with water and reforming it into a hydrogen-rich gas. A reformer 3, a fuel supply unit 4 for supplying a fuel gas / steam mixed gas supplied from a fuel gas mixing unit (not shown) to the coil-shaped reformer 3, and a combustion space 5 formed by combustion of combustion fuel A combustion burner 6 serving as a heating means for providing heat required for the reforming reaction, and an outer wall 7 surrounding the reformer 3 at an interval outside the reformer 3 are formed. 7 and a heat insulating material 8 that insulates heat radiated from the reformer 3 and carbon monoxide contained in the reformed gas flowing out of the reforming pipe 3 reacts with water. A coil-shaped CO transformer 9 for transforming into carbon dioxide, and a CO transformer 9 And a coil-shaped CO remover 10 provided with a selective oxidation catalyst for converting carbon monoxide contained in the metamorphic gas flowing out from the gas with air or oxygen to form carbon dioxide. A coil-shaped reforming tube 3, an outer wall 7, a heat insulating material 8, a coil-shaped CO transformer 9, a coil-shaped CO are provided so that a burner 6 is disposed and surrounds a combustion space 5 formed by combustion of combustion fuel. The removers 10 are arranged so as to be substantially concentric in this order.
[0037]
Reference numeral 11 denotes a heat exchanger disposed between the reforming pipe 3 and the CO converter 9. The heat exchanger 11 converts the high-temperature gas (400 ° C. or more) discharged from the reforming pipe 3 into the CO converter 9. After the temperature is reduced to about 200 ° C., which is the reaction temperature of
Reference numeral 12 denotes a heat exchanger disposed between the CO converter 9 and the CO remover 10. The heat exchanger 11 removes high-temperature gas (200 to 300 ° C.) discharged from the CO converter 9 by the CO remover 10. After the temperature is reduced to 200 ° C. or less, which is the reaction temperature of
[0038]
In the case of a coil-shaped reaction vessel, the cross-sectional area of the gas flow path is smaller than that of a conventional cylindrical or flat-type reactor, so that there is no gas drift inside, and the temperature distribution can be made uniform and the reaction vessel can be made uniform. Can have a large external surface area as compared with a conventional cylindrical or flat type reactor, so that good heat exchange with the combustion gas can be performed, so that each reaction can be carried out smoothly and efficiently.
[0039]
The coil shape includes a spiral shape, a serpentine shape, and the like as described above, but the cross-sectional shape of the reaction coil may be a circle, an ellipse, or a polygon, and is not particularly limited. . Among them, the round coil shape is one that is easy to handle, inexpensive, and can be preferably used in the present invention. However, a shape in which the area of the surface facing the combustion gas is large so as to easily receive radiant heat or conductive heat is used. A coil-like shape such as an ellipse is one that can be preferably used in the present invention.
[0040]
It is also preferred that the coil be a double tube. For example, if the reforming reaction is carried out by first flowing the fuel gas into the outer pipe of the double pipe and heating it, and then the reforming reaction is further advanced by flowing the fuel gas into the pipe inside the double pipe, Thermal efficiency can be increased, and further downsizing can be achieved.
[0041]
A fuel gas such as a raw material hydrocarbon is sent from the fuel supply unit 4 to the reforming pipe 3 after steam is added. The steam is generated by exchanging water such as cooling water flowing in the fuel cell system with exhaust heat of exhaust gas after combustion of the fuel for combustion by a steam generator (not shown). The fuel gas to which steam has been added comes into contact with the reforming catalyst 2 in the reforming pipe 3 and undergoes steam reforming into a hydrogen-rich gas (hydrogen-rich gas) by a catalytic reaction (about 700 ° C., endothermic reaction). Since the generated hydrogen-rich gas contains carbon monoxide, carbon monoxide is converted to carbon dioxide by a reaction with excess steam (about 200 to 300 ° C., exothermic reaction) in the CO converter 9. The carbon monoxide contained in the shift gas flowing out of the CO shift converter 9 is brought into contact with the selective oxidation catalyst of the CO remover 10 to react with air or oxygen (about 100 to 200 ° C., exothermic reaction) to be converted into carbon dioxide. Then, the gas is reformed into a hydrogen-rich gas having a low carbon monoxide concentration.
The hydrogen-rich gas obtained as described above is continuously supplied to a hydrogen electrode of a fuel cell (not shown), and generates a cell reaction with air supplied to an air electrode to generate power.
[0042]
A heating means including a burner 6 for burning a fuel for combustion such as fuel gas or unreacted hydrogen gas discharged from the fuel cell is attached to the hydrogen generator 1 for a fuel cell. The amount of heat required for the reforming reaction is given to raise the temperature of the reforming catalyst 2 to enhance the catalytic action. After burning the fuel for combustion, the exhaust gas forms the combustion space 5 as shown by the white arrow and goes upward. However, if a clearance (not shown) is provided between the tubes constituting the reaction coil of the reforming tube 3, Since the combustion gas flows through the clearance, the energy of the heating means can be effectively used for the reforming reaction, and the outer wall 7 surrounding the reformer 3 is formed outside the reformer 3 at intervals. Since the combustion gas flows through this gap, the energy of the heating means 6 can be effectively used for the reforming reaction, and high heat efficiency can be obtained.
[0043]
The heat insulating material 8 can insulate the heat radiated from the reforming pipe 3 and improve the thermal efficiency. Desirably, the surface temperature is set to be substantially the same as that of the adjacent CO transformer 9 (about 200 to 300 ° C.). It is preferable that the material and thickness of the heat insulating material 8 be selected. The material of the heat insulating material 8 may be any material that can be maintained at 200 to 300 ° C., and examples thereof include ceramic fibers, silicon-based materials such as alumina and silica, and rock wool. Among these, ceramic fibers, powders of silicon-based materials such as alumina and silica, particles, and molded products made of the powder have high heat resistance and an appropriate heat transfer coefficient, so that the thickness of the heat insulating material 8 is reduced. Even if the thickness of the heat insulating material 8 is reduced, the heat insulating material 8 can be used in the present invention because the material has a surface temperature of 200 to 300 ° C.
As a means of this heat insulation, not only a heat insulating material but also a mirror-like heat insulating member having a mirror-finished surface or a mirror-finish inner surface of the CO transformer 9 can be used for reforming. The radiant heat from the tube 3 can be reflected.
Further, the heat insulation effect can also be obtained by evacuating the space from the reforming tube to the CO converter.
[0044]
Although the optimum temperature of the CO converter 9 is about 200 to 300 ° C. as described above, if the temperature is lower than 200 ° C., an equilibrium reaction (exothermic reaction) in which carbon monoxide contained in the reformed gas is reacted with water to be converted into carbon dioxide. (Reaction) does not proceed or is slow. If it exceeds 300 ° C., the catalyst is deteriorated and the life is shortened.
The optimum temperature of the CO remover 10 is about 100 to 200 ° C. as described above. However, if the temperature is lower than 100 ° C., an equilibrium reaction in which carbon monoxide contained in the metamorphic gas reacts with oxygen or air to convert to carbon dioxide ( Exothermic reaction) does not progress or is slow. If the temperature exceeds 200 ° C., a runaway reaction occurs and hydrogen is consumed, and the catalyst may be deteriorated and its life may be shortened.
CO + 3H 2 → CH 4 + H 2 O
CO 2 + 4H 2 → CH 4 + 2H 2 O
[0045]
In the hydrogen generator 1 for a fuel cell according to the present invention, a combustion burner 6 serving as a heating means is disposed at a center portion, and the reactors are disposed so as to be substantially concentric on the outside thereof. Is smaller than the inner diameter D1 of the CO converter 9 and the inner diameter D2 of the CO remover 10, so that the reformer 3 (approximately 700 ° C., endothermic reaction) and the CO (About 200-300 ° C., exothermic reaction) and CO remover 10 (about 100-200 ° C., exothermic reaction), can be arranged in a simple configuration, can be miniaturized, and have excess in each reactor. Heat can be recovered and used effectively, and each reactor can be controlled to the optimum temperature with high accuracy, resulting in high thermal efficiency.
In the hydrogen generator 1 for a fuel cell according to the present invention, the flow of the fuel flowing through the reaction coil of the reformer 3 is directed downward, and the flow of the combustion gas of the combustion burner 6 of the heating means is directed upward and opposed to each other. Therefore, the energy of the combustion burner 6 of the heating means can be effectively used for the endothermic reaction, and the thermal efficiency is high.
[0046]
(2) Second embodiment:
FIG. 2 is an explanatory sectional view showing another embodiment of the hydrogen generator for a fuel cell according to the present invention.
2, the same reference numerals as those shown in FIG. 1 denote the same components as those shown in FIG. 1, and a duplicate description will be omitted.
As shown in FIG. 2, a hydrogen generator 1A for a fuel cell according to the present invention includes a CO converter 9 and a CO remover 10 arranged substantially in parallel outside a coil-shaped reformer 3, and a reformer. 3 is the same as the hydrogen generator 1 for a fuel cell according to the present invention shown in FIG. 1 except that the outer wall 7 and the heat insulating material 8 are arranged between the CO converter 9 and the CO remover 10 arranged substantially in parallel with the fuel cell 3. I have.
If the CO transformer 9 and the CO remover 10 are arranged substantially in parallel, the thermal efficiency is high, the structure is simple and inexpensive, and the size can be further reduced. Since the outer wall 7 is formed, the combustion gas flows through the gap between the outer wall 7 and the reformer 3, so that the energy of the heating means 6 can be effectively used for the reforming reaction, and high heat efficiency can be obtained. Since the reformer 3 having the highest temperature (approximately 700 ° C.) is an endothermic reaction, if the heat insulating material 8 is arranged between the CO converter 9 and the CO remover 10 which are arranged almost in parallel with the reformer 3, the heating will be performed. The energy of the means 6 can be effectively used for the endothermic reaction, and the reaction temperature of the CO converter 9 and the CO remover 10 can be controlled to the optimum temperature with high accuracy, and the thermal efficiency is high.
[0047]
The description of the above embodiments is for describing the present invention, and does not limit the invention described in the claims or reduce the scope thereof. Further, the configuration of each part of the present invention is not limited to the above embodiment, and various modifications can be made within the technical scope described in the claims.
[0048]
【The invention's effect】
The hydrogen generator for a fuel cell according to claim 1 of the present invention reacts the desulfurized fuel with water with a desulfurizer for desulfurizing sulfur contained in a fuel containing an organic compound having a hydrogen atom in a molecule. Reformer provided with a reforming catalyst for reforming into a hydrogen-rich gas, heating means for providing heat required for the reforming reaction by burning combustion fuel, and reforming flowing out of the reformer A CO converter that converts carbon monoxide contained in the gas with water to convert it to carbon dioxide, and a carbon converter that is contained in the gas that is converted from the CO converter and reacts with air or oxygen to form carbon dioxide A hydrogen generator for a fuel cell comprising a CO remover equipped with a selective oxidation catalyst,
At least one reaction vessel among the desulfurizer, reformer, CO shift converter, and CO remover has a coil shape surrounding the combustion space, and is a conventional cylindrical or flat plate. Since the cross-sectional area of the gas flow path is smaller than that of a reactor of the type, there is no gas drift inside, the temperature distribution can be made uniform, and the external surface area of the reaction vessel is smaller than that of a conventional cylindrical or flat type reactor. As a result, a good heat exchange with the combustion gas can be performed, so that there is a remarkable effect that each reaction can be smoothly and efficiently performed.
The hydrogen generator for a fuel cell according to the present invention can integrate each reactor, recover excess heat in each reactor and use it effectively, accurately control each reactor to an optimum temperature, and have high thermal efficiency. It has a remarkable effect that the structure is simple, inexpensive and can be miniaturized.
[0049]
A hydrogen generator for a fuel cell according to a second aspect of the present invention is the hydrogen generator for a fuel cell according to the first aspect, wherein a combustion burner of the heating means is disposed at a central portion, and each reactor is generally provided outside the combustion burner. In addition to being arranged concentrically, the outer diameter of the reaction coil of the reformer is smaller than the inner diameter of the CO converter and the CO remover, and a heating means is provided at the center. A combustion burner is arranged, and a reformer (about 700 ° C, endothermic reaction), a CO converter (about 200-300 ° C, exothermic reaction), and a CO remover (about 100-200 ° C, exothermic reaction) are arranged outside the combustion burner. This makes it possible to reduce the size of the reactor to a simple structure, reduce the size of the reactor, and effectively use the excess heat in each reactor to accurately control each reactor to the optimum temperature and increase the thermal efficiency. What Achieve the results.
[0050]
According to a third aspect of the present invention, there is provided the hydrogen generator for a fuel cell according to the first or second aspect, wherein the reformer, the CO shift converter, and the CO remover are arranged from inside to outside. The reformer (approximately 700 ° C., endothermic reaction), the CO converter (approximately 200 to 300 ° C., exothermic reaction), the CO remover (approximately (100-200 ° C., exothermic reaction), a simple structure can be achieved, miniaturization is possible, and excess heat in each reactor is recovered and used effectively, and each reactor is accurately adjusted to an optimum temperature. It can be well controlled and has a further remarkable effect of high thermal efficiency.
[0051]
A hydrogen generator for a fuel cell according to a fourth aspect of the present invention is the hydrogen generator for a fuel cell according to any one of the first to third aspects, wherein the heat insulating means is provided between the reformer and the CO converter. Since the reformer having the highest reaction temperature (about 700 ° C.) is an endothermic reaction, if a heat insulating means is disposed between the reformer and the CO converter, the heating means is provided. Energy can be effectively used for the endothermic reaction, and the reaction temperature of the CO converter can be controlled to the optimum temperature with high accuracy, resulting in a further remarkable effect of high thermal efficiency.
[0052]
A hydrogen generator for a fuel cell according to a fifth aspect of the present invention is the hydrogen generator for a fuel cell according to any one of the first to fourth aspects, wherein a flow of the fuel flowing through a reaction coil of the reformer is provided. The direction of flow of the combustion gas of the heating means is configured to be opposite to the direction of flow of the fuel flowing through the reaction coil of the reformer. If it is configured to be opposed to the gas flow direction, the energy of the heating means can be used effectively for the endothermic reaction, and a further remarkable effect that the thermal efficiency is high is exhibited.
[0053]
The hydrogen generator for a fuel cell according to claim 6 of the present invention is the hydrogen generator for a fuel cell according to any one of claims 1 to 5, wherein the desulfurizer, the reformer, the CO shift converter, and the CO A clearance is provided between the tubes constituting at least one reaction coil of the remover, and the combustion gas flows through the clearance, so that the energy of the heating means can be effectively used for each reaction. It has a further remarkable effect of high thermal efficiency.
[0054]
A hydrogen generator for a fuel cell according to a seventh aspect of the present invention is the hydrogen generator for a fuel cell according to the sixth aspect, wherein an outer wall surrounding the reformer is formed outside the reformer at intervals. Further, the gap is used as a path through which the combustion gas flows. Since the combustion gas flows through the gap, the energy of the heating means can be effectively used for the reforming reaction, and the heat efficiency is high. Effect.
[0055]
The hydrogen generator for a fuel cell according to claim 8 of the present invention is the hydrogen generator for a fuel cell according to claim 2, wherein the reformer is disposed inside, and a CO converter and a CO remover are disposed outside the reformer. It is characterized in that the CO transformer and the CO remover are arranged substantially in parallel, so that the thermal efficiency is high, the structure is simple and inexpensive, and the size can be further reduced. It has a further remarkable effect.
[0056]
According to a ninth aspect of the present invention, there is provided a hydrogen generator for a fuel cell according to the eighth aspect, wherein a heat insulating means is provided between a CO converter and a CO remover arranged substantially in parallel with the reformer. The reformer having the highest reaction temperature (approximately 700 ° C.) is an endothermic reaction, and therefore, is provided between the CO shifter and the CO remover arranged almost in parallel with the reformer. If the heat insulating means is disposed in the heating means, the energy of the heating means can be effectively used for the endothermic reaction, and the reaction temperature of the CO converter and the CO remover can be controlled to the optimum temperature with high accuracy, thereby exhibiting a further remarkable effect that the thermal efficiency is high.
[0057]
A hydrogen generator for a fuel cell according to a tenth aspect of the present invention is the hydrogen generator for a fuel cell according to the eighth or ninth aspect, wherein the desulfurizer, the reformer, the CO converter, and the CO remover are provided. Wherein at least one reaction coil is provided with a clearance between the tubes constituting the reaction coil. Since the combustion gas flows through the clearance, the energy of the heating means can be effectively used for each reaction, and the thermal efficiency can be improved. Is more pronounced.
[0058]
A hydrogen generator for a fuel cell according to claim 11 of the present invention is the hydrogen generator for a fuel cell according to claim 8 or 9, which surrounds the reformer at an interval outside the reformer. Forming the outer wall, and using the gap as a path through which the combustion gas flows. Since the combustion gas flows through the gap, the energy of the heating means can be effectively used for the reforming reaction, and the thermal efficiency is reduced. It has a further remarkable effect of being high.
[Brief description of the drawings]
FIG. 1 is an explanatory cross-sectional view showing one embodiment of a hydrogen generator for a fuel cell of the present invention.
FIG. 2 is an explanatory sectional view showing another embodiment of the hydrogen generator for a fuel cell according to the present invention.
FIG. 3 is an explanatory sectional view of a conventional hydrogen generator for a fuel cell.
[Explanation of symbols]
1, 1A Hydrogen generator for fuel cell of the present invention 2 Reforming catalyst 3 Coil-shaped reforming tube 4 Fuel supply unit 5 Combustion space 6 Burner 7 Outer wall 8 Insulation material 9 Coiled CO transformer 10 Coiled shape CO removers 11 and 12 Heat exchanger d Outer diameter of reaction coil of reformer D1 Inner diameter of reaction coil of CO transformer D2 Inner diameter of reaction coil of CO remover

Claims (11)

水素原子を分子中に有する有機化合物を含有する燃料中に含まれる硫黄分を脱硫する脱硫器と、脱硫した燃料と水を反応させて水素リッチなガスに改質する改質用触媒を具備した改質器と、燃焼用燃料の燃焼により前記改質反応に必要な熱量を与える加熱手段と、前記改質器から流出する改質ガス中に含まれる一酸化炭素を水と反応させて二酸化炭素に変成するCO変成器と、CO変成器から流出する変成ガス中に含まれる一酸化炭素を空気または酸素と反応させて二酸化炭素にする選択酸化触媒を具備したCO除去器とを備えた燃料電池用水素発生装置において、
前記脱硫器、改質器、CO変成器、CO除去器の内の少なくとも1つの反応容器が前記燃焼の空間をとりまくコイル状形状を有することを特徴とする燃料電池用水素発生装置。
Equipped with a desulfurizer for desulfurizing sulfur contained in fuel containing an organic compound having a hydrogen atom in a molecule, and a reforming catalyst for reacting the desulfurized fuel with water to reform into a hydrogen-rich gas. A reformer, heating means for providing heat required for the reforming reaction by burning the fuel for combustion, and reacting carbon monoxide contained in the reformed gas flowing out of the reformer with water to produce carbon dioxide. A fuel cell, comprising: a CO converter that converts to CO2; and a CO remover that includes a selective oxidation catalyst that converts carbon monoxide contained in the conversion gas flowing out of the CO converter with air or oxygen to form carbon dioxide. Hydrogen generator for
A hydrogen generator for a fuel cell, wherein at least one reaction vessel among the desulfurizer, the reformer, the CO shift converter, and the CO remover has a coil-like shape surrounding the combustion space.
中心部に前記加熱手段の燃焼バーナを配置し、その外側に各反応器が概同心円状になるように配置するとともに、前記改質器の反応コイルの外径が前記CO変成器およびCO除去器の内径よりも小さくしたことを特徴とする請求項1記載の燃料電池用水素発生装置。A combustion burner of the heating means is disposed at the center, and the respective reactors are disposed so as to be substantially concentric on the outside thereof, and the outer diameter of a reaction coil of the reformer is the CO converter and the CO remover. 2. The hydrogen generator for a fuel cell according to claim 1, wherein the inner diameter is smaller than an inner diameter of the hydrogen generator. 内側から外側に向けて前記改質器、CO変成器、CO除去器の順に配置したことを特徴とする請求項1あるいは請求項2記載の燃料電池用水素発生装置。3. The hydrogen generator for a fuel cell according to claim 1, wherein the reformer, the CO shift converter, and the CO remover are arranged in this order from inside to outside. 前記改質器とCO変成器の間に断熱手段を配置したことを特徴とする請求項1から請求項3のいずれかに記載の燃料電池用水素発生装置。The hydrogen generator for a fuel cell according to any one of claims 1 to 3, wherein a heat insulating means is arranged between the reformer and the CO converter. 前記改質器の反応コイルのガス出口が前記加熱手段側に位置し、前記反応コイルのガス入口からガス出口に向かうガス流れ方向が、前記加熱手段の燃焼ガスの流れ方向と対向するように構成されていることを特徴とする請求項1から請求項4のいずれかに記載の燃料電池用水素発生装置。The gas outlet of the reaction coil of the reformer is located on the heating means side, and the gas flow direction from the gas inlet to the gas outlet of the reaction coil is opposed to the combustion gas flow direction of the heating means. The hydrogen generator for a fuel cell according to any one of claims 1 to 4, wherein: 前記脱硫器、改質器、CO変成器、CO除去器の内の少なくとも1つの反応コイルを構成する管同士の間にクリアランスを設けたことを特徴とする請求項1から請求項5のいずれかに記載の燃料電池用水素発生装置。6. A clearance is provided between tubes constituting at least one reaction coil among the desulfurizer, the reformer, the CO shift converter, and the CO remover. A hydrogen generator for a fuel cell according to item 1. 前記改質器の外側に間隔を置いて前記改質器を包囲する外壁を形成し、前記間隙を燃焼ガスが流れる経路とすることを特徴とする請求項6記載の燃料電池用水素発生装置。7. The hydrogen generator for a fuel cell according to claim 6, wherein an outer wall surrounding the reformer is formed at an interval outside the reformer, and the gap serves as a path through which a combustion gas flows. 内側に前記改質器を配置し、その外側にCO変成器とCO除去器とを概並列に配置したことを特徴とする請求項2記載の燃料電池用水素発生装置。3. The hydrogen generator for a fuel cell according to claim 2, wherein the reformer is disposed inside, and a CO shift converter and a CO remover are disposed outside in substantially parallel. 前記改質器と概並列に配置したCO変成器とCO除去器の間に断熱手段を配置したことを特徴とする請求項8記載の燃料電池用水素発生装置。9. The hydrogen generator for a fuel cell according to claim 8, wherein a heat insulating means is arranged between the CO converter and the CO remover arranged substantially in parallel with the reformer. 前記脱硫器、改質器、CO変成器、CO除去器の内の少なくとも1つの反応コイルを構成する管同士の間にクリアランスを設けたことを特徴とする請求項8あるいは請求項9記載の燃料電池用水素発生装置。10. The fuel according to claim 8, wherein a clearance is provided between tubes constituting at least one reaction coil among the desulfurizer, the reformer, the CO shift converter, and the CO remover. Hydrogen generator for batteries. 前記改質器の外側に間隔を置いて前記改質器を包囲する外壁を形成し、前記間隙を燃焼ガスが流れる経路とすることを特徴とする請求項8あるいは請求項9記載の燃料電池用水素発生装置。10. The fuel cell according to claim 8, wherein an outer wall surrounding the reformer is formed at intervals outside the reformer, and the gap serves as a path through which combustion gas flows. Hydrogen generator.
JP2002350558A 2002-12-02 2002-12-02 Hydrogen generating device for fuel cell Pending JP2004185942A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002350558A JP2004185942A (en) 2002-12-02 2002-12-02 Hydrogen generating device for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002350558A JP2004185942A (en) 2002-12-02 2002-12-02 Hydrogen generating device for fuel cell

Publications (1)

Publication Number Publication Date
JP2004185942A true JP2004185942A (en) 2004-07-02

Family

ID=32752729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002350558A Pending JP2004185942A (en) 2002-12-02 2002-12-02 Hydrogen generating device for fuel cell

Country Status (1)

Country Link
JP (1) JP2004185942A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005259584A (en) * 2004-03-12 2005-09-22 Idemitsu Kosan Co Ltd Desulfurizer and fuel cell system
WO2010103740A1 (en) * 2009-03-09 2010-09-16 パナソニック株式会社 Hydrogen generation apparatus, method for manufacturing same, and fuel cell system utilizing same
WO2013086190A1 (en) * 2011-12-06 2013-06-13 Hy9 Corporation Catalyst-containing reactor system and associated methods
WO2013095025A1 (en) * 2011-12-23 2013-06-27 포스코에너지 주식회사 Humidifying heat exchanger for fuel cell
US20140058001A1 (en) * 2012-05-16 2014-02-27 Greenway Innovative Energy, Inc. Natural Gas to Liquid Fuels
US20150118129A1 (en) * 2012-06-25 2015-04-30 Panasonic Intellectual Property Management Co., Ltd. Fuel processing device
CN112018414A (en) * 2020-07-29 2020-12-01 苏州高迈新能源有限公司 Zero-carbon-emission alcohol-hydrogen power system and vehicle

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4613022B2 (en) * 2004-03-12 2011-01-12 出光興産株式会社 Desulfurizer and fuel cell system
JP2005259584A (en) * 2004-03-12 2005-09-22 Idemitsu Kosan Co Ltd Desulfurizer and fuel cell system
WO2010103740A1 (en) * 2009-03-09 2010-09-16 パナソニック株式会社 Hydrogen generation apparatus, method for manufacturing same, and fuel cell system utilizing same
CN102348633A (en) * 2009-03-09 2012-02-08 松下电器产业株式会社 Hydrogen generation apparatus, method for manufacturing same, and fuel cell system utilizing same
JP4880086B2 (en) * 2009-03-09 2012-02-22 パナソニック株式会社 HYDROGEN GENERATOR, ITS MANUFACTURING METHOD, AND FUEL CELL SYSTEM USING THE SAME
US9556025B2 (en) 2011-12-06 2017-01-31 Hydrip, Llc Catalyst-containing reactor system with helically wound tubular assemblies
WO2013086190A1 (en) * 2011-12-06 2013-06-13 Hy9 Corporation Catalyst-containing reactor system and associated methods
WO2013095025A1 (en) * 2011-12-23 2013-06-27 포스코에너지 주식회사 Humidifying heat exchanger for fuel cell
US8795597B2 (en) * 2012-05-16 2014-08-05 Greenway Innovative Energy, Inc. Natural gas to liquid fuels
US20140058001A1 (en) * 2012-05-16 2014-02-27 Greenway Innovative Energy, Inc. Natural Gas to Liquid Fuels
US20150118129A1 (en) * 2012-06-25 2015-04-30 Panasonic Intellectual Property Management Co., Ltd. Fuel processing device
US9144781B2 (en) * 2012-06-25 2015-09-29 Panasonic International Property Management Co., Ltd. Fuel processing device
CN112018414A (en) * 2020-07-29 2020-12-01 苏州高迈新能源有限公司 Zero-carbon-emission alcohol-hydrogen power system and vehicle
CN112018414B (en) * 2020-07-29 2022-06-21 浦北高迈新能源科技有限公司 Zero-carbon-emission alcohol-hydrogen power system and vehicle

Similar Documents

Publication Publication Date Title
JP3706611B2 (en) Hydrogen generator for fuel cell
JP4714023B2 (en) Reformer
US7976592B2 (en) Plate type reformer and fuel cell system including the reformer
JP4461439B2 (en) Fuel cell system reformer
JP2004520694A (en) Fuel cell system
JP4953231B2 (en) Hydrogen generator and fuel cell power generator using the same
KR100790850B1 (en) Fuel processor having movable burner, method of operating the same and fuel cell system having the same
JP2002208426A (en) Reforming device for fuel cell
JP3903710B2 (en) Fuel reformer and polymer electrolyte fuel cell power generator using the same
JP2004185942A (en) Hydrogen generating device for fuel cell
JP3706610B2 (en) Hydrogen generator for fuel cell
WO2007077791A1 (en) Indirect internal reforming solid oxide fuel cell
JP4210912B2 (en) Fuel reformer and fuel cell power generator
WO2005077820A1 (en) Fuel reformer
JP2007200709A (en) Solid oxide fuel cell stack and its operation method
JP2008063190A (en) Reactor and electronic apparatus
JP4136624B2 (en) Liquid fuel reforming method and apparatus
JP2007031185A (en) Fuel reforming apparatus
JP4687886B2 (en) Hydrogen generator for fuel cell
JPH0380102A (en) Fuel reformer
JP2002050386A (en) Hydrogen producing device for fuel cell
JP2008204662A (en) Fuel cell power generation system
KR101360586B1 (en) Multi-tube burner for fuel reformer and fuel reformer using the same
KR20120034943A (en) Refoaming apparatus integrated with a humidifier and a heat exchanger, and refoaming method thereof
JP5369327B2 (en) Fuel reformer and its pretreatment method, fuel cell power generation system and its operation pretreatment method