JP3706610B2 - Hydrogen generator for fuel cell - Google Patents

Hydrogen generator for fuel cell Download PDF

Info

Publication number
JP3706610B2
JP3706610B2 JP2002335474A JP2002335474A JP3706610B2 JP 3706610 B2 JP3706610 B2 JP 3706610B2 JP 2002335474 A JP2002335474 A JP 2002335474A JP 2002335474 A JP2002335474 A JP 2002335474A JP 3706610 B2 JP3706610 B2 JP 3706610B2
Authority
JP
Japan
Prior art keywords
reforming
heat
fuel cell
fuel
hydrogen generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002335474A
Other languages
Japanese (ja)
Other versions
JP2004171892A (en
Inventor
昭 藤生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2002335474A priority Critical patent/JP3706610B2/en
Publication of JP2004171892A publication Critical patent/JP2004171892A/en
Application granted granted Critical
Publication of JP3706610B2 publication Critical patent/JP3706610B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、燃料電池用水素発生装置に関するものであり、さらに詳しくは、都市ガスなどの原料炭化水素系燃料ガスの水蒸気改質により水素リッチガスを生成して燃料電池などに供給する燃料電池用水素発生装置に関するものである。
【0002】
【従来の技術】
従来、都市ガスなどの原料炭化水素系燃料ガスを水蒸気改質して水素リッチガスを生成し、得られた水素リッチガスの化学エネルギーを燃料電池によって直接電気エネルギーに変換するシステムが知られている。
【0003】
燃料電池は、水素と酸素を燃料とするものであり、この水素の生成には、天然ガスなどの炭化水素成分、メタノールなどのアルコール、あるいはナフサなどの分子中に水素原子を有する有機化合物を原料とし、水蒸気で改質する方法が広く用いられている。このような水蒸気を用いた改質反応は吸熱反応である。このため、水蒸気改質を行う水素発生装置は、原料および水蒸気、改質反応を行う改質触媒を加熱して高温にする必要がある。水素の生成効率を考えた場合、この時消費する熱量をできるだけ少なくすることが望ましい。
【0004】
ナフサなどの有機化合物を原料とし、これを水蒸気で改質する反応は水素や二酸化炭素の生成の他に一酸化炭素を副生成する。溶融炭酸塩形などの高温タイプの燃料電池は、水蒸気改質時に副生成した一酸化炭素も燃料として利用することができる。しかし、動作温度の低い低りん酸形燃料電池では、電池電極として使用する白金系触媒が一酸化炭素により被毒されるため、十分な発電特性が得られなくなる。そこで動作温度の低い燃料電池に用いる水素発生装置は、改質後の改質ガス中に含まれる一酸化炭素と、水を反応させるためのCO変成器を設ける。また、りん酸形燃料電池よりもさらに動作温度が低い固体高分子形燃料電池では発電特性を落とさないために、さらに、一酸化炭素を選択的に酸化させ一酸化炭素を低減するCO除去器を設ける。
【0005】
以上のように、動作温度が低い固体高分子形燃料電池用の燃料としてナフサなどを原料として改質して水素を生成する時は、有機化合物の水蒸気改質反応、一酸化炭素の変成反応、一酸化炭素の選択酸化反応が必要とされる。
上記各過程における反応は、反応温度が大きく異なるため、各反応器が適正温度になるよう制御することが重要である。有機化合物の水蒸気改質反応温度を最も高くし、次いで、一酸化炭素の変成反応、一酸化炭素の選択酸化反応と順に反応温度を低くする必要がある。また、水素発生装置としての運転効率を高くするためには各反応器で余剰熱を回収し、温度制御することが望まれる。
【0006】
図4に従来の燃料電池用水素発生装置を示す(例えば、特許文献1参照)。従来の燃料電池用水素発生装置30は、原料炭化水素系燃料ガスと水を反応させて水素リッチなガスに改質する改質用触媒31を具備した改質管32と、燃料ガスを改質管32に供給する燃料供給部33と、水を改質管32に供給する水供給部34と、燃焼管35での燃焼用燃料の燃焼により改質反応に必要な熱量を与える加熱手段36と、改質管32から流出する改質ガス中に含まれる一酸化炭素を水と反応させて二酸化炭素に変成するCO変成器37と、CO変成器37から流出する変成ガス中に含まれる一酸化炭素を空気または酸素と反応させて二酸化炭素にする選択酸化触媒を具備した図示しないCO除去器とを備えている。
【0007】
原料炭化水素系燃料ガスは、水蒸気が添加された後に燃料供給部33から改質管32に送られる。水蒸気は、水蒸気発生器38によりシステム内を流れる冷却水などの水が、例えば加熱手段36で予熱され燃料電池装置の排熱と熱交換されることによって生成される。水蒸気が添加された燃料ガスは改質管32の改質用触媒31と接触して触媒反応(およそ700℃、吸熱反応)により水素に富むガス(水素リッチガス)に水蒸気改質する。生成された水素リッチガスは一酸化炭素を含んでいるため、CO変成器37にて余剰の水蒸気との反応(およそ200〜300℃、発熱反応)により一酸化炭素を二酸化炭素に変成する。CO変成器37から流出する変成ガス中に含まれる一酸化炭素を図示しないCO除去器の選択酸化触媒と接触させて空気または酸素と反応(およそ100〜200℃、発熱反応)させて二酸化炭素にして、一酸化炭素濃度の低い水素リッチガスに改質する。
上記のようにして得られた水素リッチガスは、燃料電池39の水素極39aに連続的に供給されて、空気極39bに供給される空気との間で電池反応を起こして発電する。
【0008】
燃料ガスまたは燃料電池39から排出される未反応水素ガスなどの燃焼用燃料を燃焼するバーナ40などからなる加熱手段36を燃料電池用水素発生装置30に取り付け、燃焼管35内での燃焼により改質管32における改質反応に必要な熱量を与え、改質用触媒31の温度を昇温し触媒作用を高めている。
【0009】
一方、図4に示したようにCO変成器を外付けせずに、改質器の壁面の外周に沿ってCO変成器を設け、改質器出口に熱交換器を設置してCO変成器に入る改質ガスの温度を制御するようにした燃料電池用改質システムが提案されている(例えば、特許文献2参照)。
【0010】
【特許文献1】
特開2000−281313号公報
【特許文献2】
特許第3108269号
【0011】
【発明が解決しようとする課題】
従来の燃料電池用水素発生装置は、温度レベルの異なる反応器であるCO変成器やCO除去器を個別に制御するため改質器とは別置き(外付け)にしているため、配管の取り回しが必要となりシステム構成が複雑でコストアップになる上、熱ロスが生じ効率が低いという問題があった。
また、改質器の壁面の外周に沿ってCO変成器を設け、改質器出口に熱交換器を設置してCO変成器に入る改質ガスの温度を制御するようにした従来の燃料電池用改質システムは、熱交換器が必要なため構造が大きくなるという問題があった。
本発明の目的は、都市ガスなどの原料炭化水素系燃料ガスの水蒸気改質により水素リッチガスを生成して燃料電池などに供給する燃料電池用水素発生装置に関する従来の諸問題を解決して、反応温度が大きく異なる改質器、CO変成器、CO除去器を一体化して、改質器出口に外付けの熱交換器を不要とするとともに、各反応器での余剰熱を回収して有効に使用して各反応器を最適温度に精度よくコントロールでき、熱効率が高く、構造が簡単で、小型化可能な燃料電池用水素発生装置を提供することである。
【0012】
【課題を解決するための手段】
前記課題を解決するための本発明の請求項1記載の燃料電池用水素発生装置は、水素原子を分子中に有する有機化合物を含有する燃料と水を反応させて水素リッチなガスに改質する改質用触媒を具備した改質管と、前記燃料を前記改質管に供給する燃料供給部と、前記水を前記改質管に供給する水供給部と、燃焼管での燃焼用燃料の燃焼により前記改質反応に必要な熱量を与える加熱手段と、前記改質管より放熱される熱を断熱する断熱材と、前記改質管から流出する改質ガス中に含まれる一酸化炭素を水と反応させて二酸化炭素に変成するCO変成器と、CO変成器から流出する変成ガス中に含まれる一酸化炭素を空気または酸素と反応させて二酸化炭素にする選択酸化触媒を具備したCO除去器と、前記構成材を収納する容器とからなり、内側から燃焼管、改質管、断熱材、CO変成器、第1空間部、CO除去器、第2空間部および容器の順に各々を同心円状に配置した燃料電池用水素発生装置において、前記CO除去器の変成ガス入口から出口にわたり容器外壁に勾配を設け、前記選択酸化触媒量を変成ガス入口から出口にわたり変化させたことを特徴とする。
【0013】
本発明の燃料電池用水素発生装置は、燃焼用燃料の燃焼により改質反応に必要な熱量を与える加熱手段の燃焼管を中心に設置し、その周りに改質管、その外部に断熱材を配置し、その外部にCO変成器を配置し、その外部にCO除去器を配置し、1つの容器に各々を同心円状に収納して一体化して、改質器出口の熱交換器を不要にして、簡素な構成とし、小型化可能にするとともに、各反応器での余剰熱を回収して有効に使用して、各反応器を最適温度に精度よくコントロールでき、熱効率が高い。また、例えば、CO除去器の変成ガス入口の選択酸化触媒量を少なくし、出口に行くに従って選択酸化触媒量を増加させることにより、CO除去器の変成ガス入口近傍における発熱反応による発熱量を減少させ、暴走反応の発生を防止し、CO除去器における反応温度を最適温度(およそ100〜200℃)に精度よくコントロールできる。
【0014】
本発明の請求項2記載の燃料電池用水素発生装置は、請求項1記載の燃料電池用水素発生装置において、前記断熱材の表面温度を200〜300℃に制御できるように断熱材の材質および厚みを選定したことを特徴とする。
【0015】
断熱材の表面温度を200〜300℃に制御することにより、CO変成器における反応温度をおよそ200〜300℃の最適温度に精度よくコントロールできる。
【0016】
本発明の請求項3記載の燃料電池用水素発生装置は、請求項1あるいは請求項2記載の燃料電池用水素発生装置において、前記改質器出口に伝熱促進材または蓄熱材を配置したことを特徴とする。
【0017】
本発明の燃料電池用水素発生装置の運転条件下で改質器出口近傍は温度がおよそ200〜300℃となるので、改質器出口に配置した伝熱促進材または蓄熱材(網状や粒子状などのアルミナ、ステンレススチールなど)の温度もおよそ200〜300℃となり、これらの伝熱促進材または蓄熱材と接触する改質ガスの温度もおよそ200〜300℃とすることができ、余剰熱を回収して有効に使用してCO変成器における反応温度を最適温度に精度よくコントロールできる。
【0020】
本発明の請求項記載の燃料電池用水素発生装置は、請求項1から請求項のいずれかに記載の燃料電池用水素発生装置において前記容器に送風機を配置し、前記第1空間部および第2空間部に送風して温度制御することを特徴とする。
【0021】
第1空間部および第2空間部に送風して温度制御することにより、CO変成器およびCO除去器における発熱反応による熱を冷却しCO変成器およびCO除去器を最適温度に精度よくコントロールできる。
【0022】
本発明の請求項記載の燃料電池用水素発生装置は、請求項1から請求項のいずれかに記載の燃料電池用水素発生装置において、前記容器に送風機を配置し、前記CO除去器の変成ガス入口側の前記選択酸化触媒層温度を100〜200℃に制御することを特徴とする。
【0023】
CO除去器の変成ガス入口近傍における発熱反応による発熱量を減少させ、暴走反応の発生を防止できる。
【0024】
【発明の実施の形態】
以下、図面により本発明の実施の形態を詳細に説明する。
(1)第1参考形態:
図1は、燃料電池用水素発生装置の1参考の形態を示す断面説明図である。
この燃料電池用水素発生装置1は、水素原子を分子中に有する有機化合物を含有する燃料と水を反応させて水素リッチなガスに改質する改質用触媒2を具備した改質管3と、燃料ガスを改質管3に供給する燃料供給部4と、水を改質管3に供給する水供給部5と、燃焼管6での燃焼用燃料の燃焼により改質反応に必要な熱量を与える加熱手段7と、改質管3より放熱される熱を断熱する断熱材8と、改質管3から流出する改質ガス中に含まれる一酸化炭素を水と反応させて二酸化炭素に変成するCO変成器9と、CO変成器9から流出する変成ガス中に含まれる一酸化炭素を空気または酸素と反応させて二酸化炭素にする選択酸化触媒10を具備したCO除去器11と、これらの構成材を収納する容器12とからなり、内側から燃焼管6、改質管3、断熱材8、CO変成器9、第1空間部13、CO除去器11、第2空間部14および容器12がこの順に各々を同心円状に配置されて構成されている。
【0025】
原料炭化水素系などの燃料ガスは、水蒸気が添加された後に燃料供給部4から改質管3に送られる。水蒸気は、水蒸気発生器15によりシステム内を流れる冷却水などの水が、燃焼管6での燃焼用燃料の燃焼後の排ガスの排熱と熱交換されることによって生成される。水蒸気が添加された燃料ガスは改質管3の改質用触媒2と接触して触媒反応(およそ700℃、吸熱反応)により水素に富むガス(水素リッチガス)に水蒸気改質する。生成された水素リッチガスは一酸化炭素を含んでいるため、CO変成器9にて余剰の水蒸気との反応(およそ200〜300℃、発熱反応)により一酸化炭素を二酸化炭素に変成する。CO変成器9から流出する変成ガス中に含まれる一酸化炭素をCO除去器11の選択酸化触媒と接触させて空気または酸素と反応(およそ100〜200℃、発熱反応)させて二酸化炭素に変換して、一酸化炭素濃度の低い水素リッチガスに改質する。
上記のようにして得られた水素リッチガスは、図示しない燃料電池の水素極に連続的に供給されて、空気極に供給される空気との間で電池反応を起こして発電する。
【0026】
燃料ガスまたは燃料電池から排出される未反応水素ガスなどの燃焼用燃料を燃焼するバーナ16などからなる加熱手段7を燃料電池用水素発生装置1に取り付け、燃焼管6内での燃焼用燃料の燃焼により改質管3における改質反応に必要な熱量を与え、改質用触媒2の温度を昇温し触媒作用を高めている。燃焼管6内で燃焼用燃料を燃焼後、排ガスは燃焼管6と改質管3との間を通り下方へ流れ、次いで改質管3と断熱材8の間を通って上方に流れ、水蒸気発生器15で改質水と熱交換して水蒸気を発生させた後、外部に排出される。
【0027】
断熱材8は、改質管3より放熱される熱を断熱でき熱効率の向上が図れ、望ましくは隣接するCO変成器9とほぼ同じ温度(およそ200〜300℃)にその表面温度がなるように断熱材8の材質や厚みが選定されることが好ましい。断熱材8の材質は200〜300℃に維持できる材質であればよく、セラミックファイバー、アルミナ、シリカなどのケイ素系材質、ロックウールなどを挙げることができる。これらの中でもセラミックファイバー、アルミナ、シリカなどのケイ素系材質の粉末、粒子、粉末をかためた成形物などは耐熱性が高く、また熱伝達率が適当であるため、断熱材8の厚みを薄くでき、断熱材8の厚みを薄くしてもその表面温度が200〜300℃になる材質であるので、本発明において好ましく使用できる。
断熱材8の表面温度を200〜300℃に制御することにより、CO変成器9における反応温度をおよそ200〜300℃の最適温度に精度よくコントロールできる。
また、この断熱の手段としては断熱材のみならず、表面が鏡面仕上げとなっている鏡面状断熱部材を配置するか、もしくは、CO変成器9の内側の面を鏡面仕上げすることにより、改質管3からの放射熱を反射することが可能となる。
さらに、改質管からCO変成器までの空間を真空にすることでも、断熱効果を得ることができる。
改質管3の外管21の表面温度が700℃の場合、600℃における熱伝導率が0.1(W/mK)以下のシリカ粉末、アルミナ・シリカ繊維を使用して断熱材8の厚さを変化させた時の、断熱材8の厚さと断熱材8の外表面温度との関係[外気温20℃、断熱材8の熱伝導率0.03(W/mK)]を次に示す。断熱材8の表面温度を200〜300℃に制御するためには、この場合は断熱材8の厚さを3mm程度にすればよいことが判る。

Figure 0003706610
【0028】
CO変成器9の最適温度は上記のようにおよそ200〜300℃であるが、200℃未満では改質ガス中に含まれる一酸化炭素を水と反応させて二酸化炭素に変成する平衡反応(発熱反応)が進行しないかあるいは遅く、300℃を超えると触媒が劣化し寿命が短くなる。
【0029】
CO除去器11の最適温度は上記のようにおよそ100〜200℃であるが、100℃未満では変成ガス中に含まれる一酸化炭素を酸素または空気と反応させて二酸化炭素に変成する平衡反応(発熱反応)が進行しないかあるいは遅く、200℃を超えると暴走反応がおきて水素が消費されてしまう問題が生じ、また触媒が劣化し寿命が短くなる恐れがある。
CO+3H2 →CH4 +H2
CO2 +4H2 →CH4 +2H2
【0030】
CO変成器9とCO除去器11の間には、第1空間部13が設けてあり、そして、CO除去器11と容器12の間には第2空間部14が設けてあり、好ましくは容器14に図示しない送風機を配置し内部に冷却空気を入れ、第1空間部13および第2空間部14に送風してCO変成器9とCO除去器11を冷却してそれぞれが最適温度に維持されるように温度制御する。このように温度制御することにより、CO変成器9およびCO除去器11における発熱反応による熱を冷却し最適温度に精度よくコントロールできる。
【0031】
(2)第実施形態:
図2は、本発明の燃料電池用水素発生装置の1実施の形態を示す断面説明図である。
図2において、図1に示した符号と同じ符号のものは図1に示したものと同じものを示し、重複する説明を省略する。
図2に示したように、本発明の燃料電池用水素発生装置1AのCO除去器11は、CO除去器11の変成ガス入口から出口にわたりCO除去器11の容器外壁に勾配を設けてあり、変成ガス入口の選択酸化触媒量を少なくし、出口に行くに従って選択酸化触媒量を増加させてある。また、容器14に図示しない送風機を配置し冷却空気入口17から内部に冷却空気を入れ、第1空間部13および第2空間部14に送風してCO変成器9とCO除去器11を冷却してそれぞれが最適温度に維持されるように温度制御するようになっている、以外は図1に示した燃料電池用水素発生装置1と同様になっている。
【0032】
CO除去器11の変成ガス入口における絞り効率により変成ガス流れが均一になる効果があり、また、CO除去器11の変成ガス入口近傍における発熱反応による発熱量を減少させることができ、そして反応熱量を制御でき、変成ガス入口近傍における暴走反応の発生を防止し、CO除去器11における反応温度を最適温度(およそ100〜200℃)に精度よくコントロールできる。
第1空間部13および第2空間部14に送風して温度制御することにより、CO変成器9およびCO除去器11における発熱反応による熱を冷却し最適温度に精度よくコントロールできる。
【0033】
(3)第実施形態:
図3は、本発明の燃料電池用水素発生装置の他の実施の形態を示す断面説明図である。
図3において、図1に示した符号と同じ符号のものは図1に示したものと同じものを示し、重複する説明を省略する。
図3に示したように、本発明の燃料電池用水素発生装置1Bは、改質管3への燃料ガス入口の部分に伝熱促進材または蓄熱材18Aを配置するとともに、改質管3からの改質ガス出口の部分に伝熱促進材または蓄熱材18Bを配置した以外は図1に示した本発明の燃料電池用水素発生装置1と同様になっている。
【0034】
本発明の燃料電池用水素発生装置1Bの運転条件下で改質器3の燃料ガス入口および改質ガス出口近傍は温度がおよそ200〜300℃となるので、改質管3への燃料ガス入口の部分に伝熱促進材または蓄熱材18A(網状や粒子状などのアルミナ、ステンレススチールなど)を配置するとこれらの温度もおよそ200〜300℃となり、これらの伝熱促進材または蓄熱材18Aと接触する燃料ガスや水蒸気の温度をおよそ200〜300℃に余熱できる。また、改質器3出口に配置した伝熱促進材または蓄熱材(網状や粒子状などのアルミナ、ステンレススチールなど)18Bについても同様にこれらと接触する改質ガスの温度もおよそ200〜300℃とすることができので改質器3出口に外付けの熱交換器の設置が不要となるとともに、余剰熱を回収して有効に使用してCO変成器9における反応温度を最適温度に精度よくコントロールできる。
【0035】
上記実施の形態の説明は、本発明を説明するためのものであって、特許請求の範囲に記載の発明を限定し、或は範囲を減縮するものではない。又、本発明の各部構成は上記実施の形態に限らず、特許請求の範囲に記載の技術的範囲内で種々の変形が可能である。
【0036】
本発明の請求項1記載の燃料電池用水素発生装置は、水素原子を分子中に有する有機化合物を含有する燃料と水を反応させて水素リッチなガスに改質する改質用触媒を具備した改質管と、前記燃料を前記改質管に供給する燃料供給部と、前記水を前記改質管に供給する水供給部と、燃焼管での燃焼用燃料の燃焼により前記改質反応に必要な熱量を与える加熱手段と、前記改質管より放熱される熱を断熱する断熱材と、前記改質管から流出する改質ガス中に含まれる一酸化炭素を水と反応させて二酸化炭素に変成するCO変成器と、CO変成器から流出する変成ガス中に含まれる一酸化炭素を空気または酸素と反応させて二酸化炭素にする選択酸化触媒を具備したCO除去器と、前記構成材を収納する容器とからなり、内側から燃焼管、改質管、断熱材、CO変成器、第1空間部、CO除去器、第2空間部および容器の順に、1つの容器に各々を同心円状に収納して一体化する燃料電池用水素発生装置において、前記CO除去器の変成ガス入口から出口にわたり容器外壁に勾配を設け、前記選択酸化触媒量を変成ガス入口から出口にわたり変化させたことにより、改質器出口の熱交換器を不要にして、簡素な構成とし、小型化可能にするとともに、各反応器での余剰熱を回収して有効に使用して各反応器を最適温度に精度よくコントロールでき、熱効率が非常に高いという顕著な効果を奏する。また、例えば、CO除去器の変成ガス入口の選択酸化触媒量を少なくし、出口に行くに従って選択酸化触媒量を増加させることにより、CO除去器の変成ガス入口近傍における発熱反応による発熱量を減少させ、暴走反応の発生を防止し、CO除去器における反応温度を最適温度(100〜200℃)に精度よくコントロールできるというさらなる顕著な効果を奏する。
【0037】
本発明の請求項2記載の燃料電池用水素発生装置は、請求項1記載の燃料電池用水素発生装置において、前記断熱材の表面温度を200〜300℃に制御できるように断熱材の材質および厚みを選定したことにより、CO変成器における反応温度をおよそ200〜300℃の最適温度に精度よくコントロールできるというさらなる顕著な効果を奏する。
【0038】
本発明の請求項3記載の燃料電池用水素発生装置は、請求項1あるいは請求項2記載の燃料電池用水素発生装置において、前記改質器出口に伝熱促進材または蓄熱材を配置したので、これらの伝熱促進材または蓄熱材と接触する改質ガスの温度がおよそ200〜300℃となり、余剰熱を回収して有効に使用してCO変成器における反応温度を最適温度に精度よくコントロールできるというさらなる顕著な効果を奏する。
【0040】
本発明の請求項記載の燃料電池用水素発生装置は、請求項1から請求項のいずれかに記載の燃料電池用水素発生装置において前記容器に送風機を配置し、前記第1空間部および第2空間部に送風して温度制御することにより、CO変成器およびCO除去器における発熱反応による熱を冷却しCO変成器およびCO除去器を最適温度に精度よくコントロールできるというさらなる顕著な効果を奏する。
【0041】
本発明の請求項記載の燃料電池用水素発生装置は、請求項1から請求項のいずれかに記載の燃料電池用水素発生装置において、前記容器に送風機を配置し、前記CO除去器の変成ガス入口側の前記選択酸化触媒層温度を100〜200℃に制御するので、CO除去器の変成ガス入口近傍における発熱反応による発熱量を減少させ、暴走反応の発生を防止できるというさらなる顕著な効果を奏する。
【図面の簡単な説明】
【図1】本発明の燃料電池用水素発生装置の1実施の形態を示す断面説明図である。
【図2】本発明の燃料電池用水素発生装置の他の実施の形態を示す断面説明図である。
【図3】本発明の燃料電池用水素発生装置の他の実施の形態を示す断面説明図である。
【図4】従来の燃料電池用水素発生装置の断面説明図である。
【符号の説明】
1、1A、1B 本発明の燃料電池用水素発生装置
2 改質用触媒
3 改質管
4 燃料供給部
5 水供給部
6 燃焼管
7 加熱手段
8 断熱材
9 CO変成器
10 選択酸化触媒
11 CO除去器
12 容器
13 第1空間部
14 第2空間部
15 水蒸気発生器
16 バーナ
17 冷却空気入口
18A、18B 伝熱促進材または蓄熱材[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hydrogen generator for a fuel cell, and more specifically, a hydrogen for a fuel cell that generates a hydrogen-rich gas by steam reforming of a raw material hydrocarbon fuel gas such as city gas and supplies it to a fuel cell or the like. It relates to a generator.
[0002]
[Prior art]
Conventionally, a system is known in which raw material hydrocarbon fuel gas such as city gas is steam reformed to generate hydrogen rich gas, and chemical energy of the obtained hydrogen rich gas is directly converted into electric energy by a fuel cell.
[0003]
A fuel cell uses hydrogen and oxygen as fuel, and this hydrogen is produced using a hydrocarbon component such as natural gas, an alcohol such as methanol, or an organic compound having a hydrogen atom in a molecule such as naphtha as a raw material. The method of reforming with steam is widely used. Such a reforming reaction using water vapor is an endothermic reaction. For this reason, a hydrogen generator that performs steam reforming needs to heat the raw material, steam, and the reforming catalyst that performs the reforming reaction to raise the temperature. Considering the hydrogen generation efficiency, it is desirable to reduce the amount of heat consumed at this time as much as possible.
[0004]
A reaction in which an organic compound such as naphtha is used as a raw material and reformed with water vapor produces carbon monoxide as a by-product in addition to the generation of hydrogen and carbon dioxide. A high temperature type fuel cell such as a molten carbonate type can also use carbon monoxide by-produced during steam reforming as a fuel. However, in a low phosphoric acid fuel cell having a low operating temperature, a platinum-based catalyst used as a battery electrode is poisoned by carbon monoxide, so that sufficient power generation characteristics cannot be obtained. Therefore, a hydrogen generator used in a fuel cell having a low operating temperature is provided with a CO converter for reacting carbon monoxide contained in the reformed gas after reforming with water. In addition, a solid polymer fuel cell, which has a lower operating temperature than that of a phosphoric acid fuel cell, has a CO remover that selectively oxidizes carbon monoxide and reduces carbon monoxide in order not to deteriorate the power generation characteristics. Provide.
[0005]
As described above, when hydrogen is generated by reforming naphtha or the like as a fuel for a polymer electrolyte fuel cell having a low operating temperature, a steam reforming reaction of an organic compound, a carbon monoxide transformation reaction, A selective oxidation reaction of carbon monoxide is required.
Since the reaction temperature in each of the above processes varies greatly, it is important to control each reactor so that it has an appropriate temperature. It is necessary to make the steam reforming reaction temperature of the organic compound the highest, and then lower the reaction temperature in the order of carbon monoxide shift reaction and carbon monoxide selective oxidation reaction. In order to increase the operating efficiency of the hydrogen generator, it is desirable to recover the excess heat in each reactor and control the temperature.
[0006]
FIG. 4 shows a conventional hydrogen generator for a fuel cell (see, for example, Patent Document 1). A conventional hydrogen generator 30 for a fuel cell includes a reforming pipe 32 having a reforming catalyst 31 that reacts a raw material hydrocarbon fuel gas and water to reform the gas into a hydrogen-rich gas, and reforms the fuel gas. A fuel supply unit 33 that supplies the pipe 32, a water supply unit 34 that supplies water to the reforming pipe 32, and a heating unit 36 that gives the amount of heat necessary for the reforming reaction by the combustion of the combustion fuel in the combustion pipe 35. The carbon monoxide contained in the reformed gas flowing out from the reforming tube 32 reacts with water to convert it into carbon dioxide, and the monoxide contained in the transformed gas flowing out from the CO converter 37 And a CO remover (not shown) equipped with a selective oxidation catalyst that reacts carbon with air or oxygen to form carbon dioxide.
[0007]
The raw material hydrocarbon fuel gas is sent from the fuel supply unit 33 to the reforming pipe 32 after steam is added. The water vapor is generated when water such as cooling water flowing in the system is preheated by, for example, the heating unit 36 and heat exchanged with the exhaust heat of the fuel cell device by the water vapor generator 38. The fuel gas to which water vapor has been added comes into contact with the reforming catalyst 31 in the reforming pipe 32 and undergoes steam reforming to a gas rich in hydrogen (hydrogen-rich gas) by catalytic reaction (approximately 700 ° C., endothermic reaction). Since the produced hydrogen-rich gas contains carbon monoxide, the CO converter 37 converts carbon monoxide into carbon dioxide by reaction with excess water vapor (approximately 200 to 300 ° C., exothermic reaction). Carbon monoxide contained in the shift gas flowing out of the CO converter 37 is brought into contact with a selective oxidation catalyst (not shown) of the CO remover to react with air or oxygen (approximately 100 to 200 ° C., exothermic reaction) to form carbon dioxide. Then, reforming to a hydrogen rich gas with a low carbon monoxide concentration.
The hydrogen-rich gas obtained as described above is continuously supplied to the hydrogen electrode 39a of the fuel cell 39, and generates a battery reaction with the air supplied to the air electrode 39b to generate power.
[0008]
A heating means 36 composed of a burner 40 for burning a fuel for combustion such as fuel gas or unreacted hydrogen gas discharged from the fuel cell 39 is attached to the fuel cell hydrogen generator 30 and modified by combustion in the combustion pipe 35. The amount of heat necessary for the reforming reaction in the mass tube 32 is given, and the temperature of the reforming catalyst 31 is raised to enhance the catalytic action.
[0009]
On the other hand, as shown in FIG. 4, a CO converter is provided along the outer periphery of the wall of the reformer without an external CO converter, and a heat exchanger is installed at the outlet of the reformer. A reforming system for a fuel cell has been proposed in which the temperature of the reformed gas entering is controlled (see, for example, Patent Document 2).
[0010]
[Patent Document 1]
JP 2000-281313 A [Patent Document 2]
Patent No. 3108269 [0011]
[Problems to be solved by the invention]
Conventional hydrogen generators for fuel cells are separately installed (external) from the reformer in order to individually control the CO converter and CO remover, which are reactors with different temperature levels. The system configuration is complicated and the cost is increased, and there is a problem that heat loss occurs and efficiency is low.
Also, a conventional fuel cell in which a CO converter is provided along the outer periphery of the reformer wall, and a heat exchanger is installed at the reformer outlet to control the temperature of the reformed gas entering the CO converter. The reforming system for use has a problem that the structure becomes large because a heat exchanger is required.
The object of the present invention is to solve the conventional problems relating to a hydrogen generator for a fuel cell by generating a hydrogen rich gas by steam reforming of a raw material hydrocarbon fuel gas such as city gas and supplying it to a fuel cell, etc. Integrates reformers, CO converters, and CO removers with significantly different temperatures, eliminating the need for external heat exchangers at the reformer outlets and recovering excess heat from each reactor It is intended to provide a hydrogen generator for a fuel cell that can be used to accurately control each reactor to an optimum temperature, has high thermal efficiency, has a simple structure, and can be miniaturized.
[0012]
[Means for Solving the Problems]
A hydrogen generator for a fuel cell according to claim 1 of the present invention for solving the above-mentioned problems is reformed into a hydrogen-rich gas by reacting a fuel containing an organic compound having hydrogen atoms in the molecule with water. A reforming pipe provided with a reforming catalyst, a fuel supply section for supplying the fuel to the reforming pipe, a water supply section for supplying the water to the reforming pipe, and a combustion fuel in the combustion pipe A heating means for providing a heat quantity necessary for the reforming reaction by combustion, a heat insulating material for insulating heat radiated from the reforming pipe, and carbon monoxide contained in the reformed gas flowing out of the reforming pipe. CO removal comprising a CO converter that reacts with water to convert to carbon dioxide, and a selective oxidation catalyst that reacts carbon monoxide contained in the converted gas flowing out of the CO converter with air or oxygen to form carbon dioxide And a container for storing the components. Combustion tube from the inside, the reforming pipe, insulation, CO transformer, the first space portion, CO remover, the hydrogen generator for the fuel cell which is arranged concentrically to each order of the second space and the container, the CO A gradient is provided on the outer wall of the vessel from the shift gas inlet to the outlet of the remover, and the amount of the selective oxidation catalyst is changed from the shift gas inlet to the outlet .
[0013]
The hydrogen generator for a fuel cell according to the present invention is installed around a combustion pipe of a heating means for giving a heat amount necessary for a reforming reaction by combustion of a combustion fuel, a reforming pipe around it, and a heat insulating material outside. The CO converter is placed outside, the CO remover is placed outside it, and each container is concentrically housed and integrated, making the heat exchanger at the outlet of the reformer unnecessary. In addition, the structure is simple and can be miniaturized, and the excess heat in each reactor can be recovered and effectively used to control each reactor accurately to the optimum temperature, and the thermal efficiency is high. Also, for example, by reducing the amount of selective oxidation catalyst at the shift gas inlet of the CO remover and increasing the amount of selective oxidation catalyst toward the outlet, the amount of heat generated by the exothermic reaction near the shift gas inlet of the CO remover is reduced. Thus, the occurrence of runaway reaction can be prevented, and the reaction temperature in the CO remover can be accurately controlled to the optimum temperature (approximately 100 to 200 ° C.).
[0014]
The hydrogen generator for a fuel cell according to claim 2 of the present invention is the hydrogen generator for a fuel cell according to claim 1, wherein the material for the heat insulator and the hydrogen generator for the fuel cell according to claim 1 are controlled so that the surface temperature of the heat insulator can be controlled to 200 to 300 ° C. The thickness is selected.
[0015]
By controlling the surface temperature of the heat insulating material to 200 to 300 ° C., the reaction temperature in the CO converter can be accurately controlled to an optimum temperature of about 200 to 300 ° C.
[0016]
The fuel cell hydrogen generator according to claim 3 of the present invention is the fuel cell hydrogen generator according to claim 1 or 2, wherein a heat transfer promoting material or a heat storage material is disposed at the outlet of the reformer. It is characterized by.
[0017]
Under the operating conditions of the fuel cell hydrogen generator of the present invention, the temperature in the vicinity of the reformer outlet is approximately 200 to 300 ° C. Therefore, a heat transfer promoting material or a heat storage material (network or particulate) disposed at the reformer outlet. The temperature of the reformed gas that comes into contact with these heat transfer promoting materials or heat storage materials can also be about 200 to 300 ° C., and the excess heat can be reduced. It can be recovered and used effectively to accurately control the reaction temperature in the CO converter to the optimum temperature.
[0020]
A fuel cell hydrogen generator according to claim 4 of the present invention is the fuel cell hydrogen generator according to any one of claims 1 to 3 , wherein a blower is disposed in the container, and the first space portion and The temperature is controlled by blowing air to the second space.
[0021]
By controlling the temperature by blowing air to the first space portion and the second space portion, the heat due to the exothermic reaction in the CO converter and the CO remover can be cooled, and the CO converter and the CO remover can be accurately controlled to the optimum temperature.
[0022]
The hydrogen generator for a fuel cell according to claim 5 of the present invention is the hydrogen generator for a fuel cell according to any one of claims 1 to 4 , wherein a blower is disposed in the container, The selective oxidation catalyst layer temperature on the side of the shift gas inlet is controlled to 100 to 200 ° C.
[0023]
The amount of heat generated by the exothermic reaction in the vicinity of the modified gas inlet of the CO remover can be reduced, and the occurrence of a runaway reaction can be prevented.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
(1) First reference form:
Figure 1 is a sectional view showing the first reference in the form of fuel cell hydrogen generator.
The fuel cell hydrogen generator 1 includes a reforming pipe 3 including a reforming catalyst 2 that reacts a fuel containing an organic compound having hydrogen atoms in a molecule with water to reform the gas into a hydrogen-rich gas. The fuel supply unit 4 that supplies fuel gas to the reforming tube 3, the water supply unit 5 that supplies water to the reforming tube 3, and the amount of heat required for the reforming reaction by the combustion of combustion fuel in the combustion tube 6 A heating means 7 that gives heat, a heat insulating material 8 that insulates heat radiated from the reforming tube 3, and carbon monoxide contained in the reformed gas flowing out of the reforming tube 3 reacts with water to form carbon dioxide. A CO converter 9 that converts, a CO remover 11 that includes a selective oxidation catalyst 10 that reacts carbon monoxide contained in the shift gas flowing out of the CO converter 9 with air or oxygen to form carbon dioxide, and these And a container 12 for storing the components of the combustion tube 6 from the inside. Tube 3, the heat insulating material 8, CO transformer 9, the first space portion 13, CO remover 11, the second space portion 14 and the container 12 are configured respectively in this order are arranged concentrically.
[0025]
A fuel gas such as a raw material hydrocarbon system is sent from the fuel supply unit 4 to the reforming pipe 3 after steam is added. The water vapor is generated by heat exchange of water such as cooling water flowing in the system by the water vapor generator 15 with the exhaust heat of the exhaust gas after combustion of the combustion fuel in the combustion pipe 6. The fuel gas to which water vapor has been added comes into contact with the reforming catalyst 2 in the reforming tube 3 and undergoes steam reforming to a gas rich in hydrogen (hydrogen rich gas) by catalytic reaction (approximately 700 ° C., endothermic reaction). Since the produced hydrogen-rich gas contains carbon monoxide, the CO converter 9 converts carbon monoxide into carbon dioxide by reaction with excess water vapor (approximately 200 to 300 ° C., exothermic reaction). Carbon monoxide contained in the shift gas flowing out from the CO converter 9 is brought into contact with the selective oxidation catalyst of the CO remover 11 and reacted with air or oxygen (approximately 100 to 200 ° C., exothermic reaction) to be converted into carbon dioxide. Then, it is reformed to a hydrogen rich gas having a low carbon monoxide concentration.
The hydrogen-rich gas obtained as described above is continuously supplied to a hydrogen electrode of a fuel cell (not shown) and generates a battery reaction with air supplied to the air electrode to generate power.
[0026]
A heating means 7 comprising a burner 16 for burning a fuel for combustion such as fuel gas or unreacted hydrogen gas discharged from the fuel cell is attached to the fuel cell hydrogen generator 1, and the fuel for combustion in the combustion pipe 6 is supplied. The amount of heat necessary for the reforming reaction in the reforming tube 3 is given by combustion, and the temperature of the reforming catalyst 2 is raised to enhance the catalytic action. After burning the combustion fuel in the combustion pipe 6, the exhaust gas flows downward between the combustion pipe 6 and the reforming pipe 3, and then flows upward through the space between the reforming pipe 3 and the heat insulating material 8. The generator 15 exchanges heat with the reforming water to generate water vapor, which is then discharged to the outside.
[0027]
The heat insulating material 8 can insulate the heat dissipated from the reforming tube 3 and can improve the thermal efficiency. Preferably, the surface temperature of the heat insulating material 8 becomes approximately the same temperature (approximately 200 to 300 ° C.) as the adjacent CO transformer 9. The material and thickness of the heat insulating material 8 are preferably selected. The material of the heat insulating material 8 should just be a material which can be maintained at 200-300 degreeC, and silicon-type materials, such as ceramic fiber, an alumina, a silica, rock wool, etc. can be mentioned. Of these, powders of silicon-based materials such as ceramic fibers, alumina, and silica, molded products made of powder, etc. have high heat resistance and appropriate heat transfer coefficient, so that the thickness of the heat insulating material 8 is reduced. Even if the thickness of the heat insulating material 8 is reduced, the surface temperature thereof is 200 to 300 ° C., and therefore, it can be preferably used in the present invention.
By controlling the surface temperature of the heat insulating material 8 to 200 to 300 ° C., the reaction temperature in the CO transformer 9 can be accurately controlled to an optimum temperature of about 200 to 300 ° C.
In addition, as a means of heat insulation, not only a heat insulating material, but also a mirror-like heat insulating member whose surface is mirror-finished is arranged, or the inner surface of the CO transformer 9 is mirror-finished for modification. It becomes possible to reflect the radiant heat from the tube 3.
Furthermore, the heat insulation effect can also be obtained by evacuating the space from the reforming tube to the CO transformer.
When the surface temperature of the outer tube 21 of the reforming tube 3 is 700 ° C., the thickness of the heat insulating material 8 using silica powder and alumina / silica fiber whose thermal conductivity at 600 ° C. is 0.1 (W / mK) or less. The relationship between the thickness of the heat insulating material 8 and the outer surface temperature of the heat insulating material 8 when the thickness is changed [outside air temperature 20 ° C., thermal conductivity 0.03 (W / mK) of the heat insulating material 8] is shown below. . In order to control the surface temperature of the heat insulating material 8 to 200 to 300 ° C., it is understood that the thickness of the heat insulating material 8 may be about 3 mm in this case.
Figure 0003706610
[0028]
The optimum temperature of the CO converter 9 is approximately 200 to 300 ° C. as described above, but if it is less than 200 ° C., an equilibrium reaction (exothermic heat) in which carbon monoxide contained in the reformed gas is reacted with water and converted to carbon dioxide. The reaction does not proceed or is slow, and if it exceeds 300 ° C., the catalyst deteriorates and the life is shortened.
[0029]
The optimum temperature of the CO remover 11 is about 100 to 200 ° C. as described above, but below 100 ° C., an equilibrium reaction (in which the carbon monoxide contained in the shift gas is reacted with oxygen or air to be converted to carbon dioxide ( Exothermic reaction) does not proceed or is slow, and if it exceeds 200 ° C., there is a problem that a runaway reaction occurs and hydrogen is consumed, and the catalyst is deteriorated to shorten its life.
CO + 3H 2 → CH 4 + H 2 O
CO 2 + 4H 2 → CH 4 + 2H 2 O
[0030]
A first space portion 13 is provided between the CO transformer 9 and the CO remover 11, and a second space portion 14 is provided between the CO remover 11 and the container 12, preferably a container. A blower (not shown) is placed in 14 and cooling air is put inside, and the first space portion 13 and the second space portion 14 are blown to cool the CO transformer 9 and the CO remover 11 so that each is maintained at an optimum temperature. To control the temperature. By controlling the temperature in this way, the heat due to the exothermic reaction in the CO converter 9 and the CO remover 11 can be cooled and accurately controlled to the optimum temperature.
[0031]
(2) First Embodiment:
FIG. 2 is a cross-sectional explanatory view showing one embodiment of the hydrogen generator for a fuel cell of the present invention.
In FIG. 2, the same reference numerals as those shown in FIG. 1 denote the same parts as those shown in FIG.
As shown in FIG. 2, the CO remover 11 of the fuel cell hydrogen generator 1A of the present invention is provided with a gradient on the outer wall of the container of the CO remover 11 from the transformed gas inlet to the outlet of the CO remover 11, The amount of the selective oxidation catalyst at the shift gas inlet is reduced, and the amount of the selective oxidation catalyst is increased toward the outlet. In addition, a blower (not shown) is disposed in the container 14, cooling air is introduced into the interior from the cooling air inlet 17, and the CO transformer 9 and the CO remover 11 are cooled by sending air to the first space portion 13 and the second space portion 14. It has the same respectively as the fuel cell the hydrogen generator 1 is adapted to the temperature control, except that shown in FIG. 1 so as to maintain the optimum temperature Te.
[0032]
There is an effect that the transformation gas flow becomes uniform due to the throttling efficiency at the transformation gas inlet of the CO remover 11, the calorific value due to the exothermic reaction in the vicinity of the transformation gas inlet of the CO removal device 11 can be reduced, and the amount of reaction heat The occurrence of a runaway reaction in the vicinity of the metamorphic gas inlet can be prevented, and the reaction temperature in the CO remover 11 can be accurately controlled to the optimum temperature (approximately 100 to 200 ° C.).
By controlling the temperature by blowing air to the first space portion 13 and the second space portion 14, the heat due to the exothermic reaction in the CO transformer 9 and the CO remover 11 can be cooled and accurately controlled to the optimum temperature.
[0033]
(3) Second embodiment:
FIG. 3 is a cross-sectional explanatory view showing another embodiment of the fuel cell hydrogen generator of the present invention.
3, those having the same reference numerals as those shown in FIG. 1 are the same as those shown in FIG. 1, and redundant description is omitted.
As shown in FIG. 3, the fuel cell hydrogen generator 1 </ b> B according to the present invention arranges the heat transfer promoting material or the heat storage material 18 </ b> A at the portion of the fuel gas inlet to the reforming tube 3 and from the reforming tube 3. 1 is the same as the hydrogen generator 1 for a fuel cell of the present invention shown in FIG. 1 except that the heat transfer promoting material or the heat storage material 18B is disposed at the reformed gas outlet.
[0034]
Under the operating conditions of the hydrogen generator for fuel cell 1B of the present invention, the temperature near the fuel gas inlet and the reformed gas outlet of the reformer 3 is approximately 200 to 300 ° C. Therefore, the fuel gas inlet to the reforming pipe 3 When a heat transfer promoting material or heat storage material 18A (alumina such as nets or particles, stainless steel, etc.) is disposed in the portion of the portion, these temperatures also become approximately 200 to 300 ° C., and contact with these heat transfer promotion materials or heat storage materials 18A The temperature of the fuel gas and water vapor to be heated can be preheated to about 200 to 300 ° C. Similarly, the temperature of the reformed gas in contact with the heat transfer promoting material or heat storage material (such as alumina or stainless steel such as mesh or particulate) 18B disposed at the outlet of the reformer 3 is approximately 200 to 300 ° C. Therefore, it is not necessary to install an external heat exchanger at the outlet of the reformer 3 and the reaction temperature in the CO converter 9 is accurately adjusted to the optimum temperature by recovering excess heat and using it effectively. I can control it.
[0035]
The description of the above embodiment is for explaining the present invention, and does not limit the invention described in the claims or reduce the scope thereof. Moreover, each part structure of this invention is not restricted to the said embodiment, A various deformation | transformation is possible within the technical scope as described in a claim.
[0036]
The hydrogen generator for a fuel cell according to claim 1 of the present invention comprises a reforming catalyst that reacts a fuel containing an organic compound having a hydrogen atom in the molecule with water to reform it into a hydrogen-rich gas. A reforming pipe, a fuel supply section for supplying the fuel to the reforming pipe, a water supply section for supplying the water to the reforming pipe, and the reforming reaction by the combustion of combustion fuel in the combustion pipe A heating means for providing a necessary amount of heat, a heat insulating material for insulating heat radiated from the reforming tube, and carbon monoxide contained in the reformed gas flowing out from the reforming tube react with water to generate carbon dioxide. A CO converter that converts the carbon monoxide contained in the shift gas flowing out of the CO converter into a carbon dioxide by reacting with air or oxygen to form carbon dioxide; It consists of a container for storage, and a combustion tube and a reforming tube from the inside. Heat insulating material, CO transformer, the first space portion, CO remover, in order of the second space part and the container, in hydrogen generator for the fuel cell to be integrated by housing concentrically to each one container, the CO By providing a gradient on the outer wall of the vessel from the shift gas inlet to the outlet of the remover and changing the amount of the selective oxidation catalyst from the shift gas inlet to the outlet, a heat exchanger at the reformer outlet is not required and a simple configuration As a result, it is possible to reduce the size of the reactor, and it is possible to accurately control and recover each reactor to an optimum temperature by recovering and effectively using surplus heat in each reactor. Also, for example, by reducing the amount of selective oxidation catalyst at the shift gas inlet of the CO remover and increasing the amount of selective oxidation catalyst toward the outlet, the amount of heat generated by the exothermic reaction near the shift gas inlet of the CO remover is reduced. Thus, the occurrence of runaway reaction can be prevented, and the reaction temperature in the CO remover can be controlled to the optimum temperature (100 to 200 ° C.) with high accuracy.
[0037]
The hydrogen generator for a fuel cell according to claim 2 of the present invention is the hydrogen generator for a fuel cell according to claim 1, wherein the material for the heat insulator and the hydrogen generator for the fuel cell according to claim 1 are controlled so that the surface temperature of the heat insulator can be controlled to 200 to 300 ° C. By selecting the thickness, there is a further remarkable effect that the reaction temperature in the CO converter can be accurately controlled to an optimum temperature of about 200 to 300 ° C.
[0038]
The fuel cell hydrogen generator according to claim 3 of the present invention is the fuel cell hydrogen generator according to claim 1 or 2, wherein a heat transfer promoting material or a heat storage material is disposed at the outlet of the reformer. The temperature of the reformed gas that comes into contact with these heat transfer promoting materials or heat storage materials becomes approximately 200 to 300 ° C., and the excess heat is recovered and used effectively to accurately control the reaction temperature in the CO converter to the optimum temperature. There is a further remarkable effect of being able to.
[0040]
A fuel cell hydrogen generator according to claim 4 of the present invention is the fuel cell hydrogen generator according to any one of claims 1 to 3 , wherein a blower is disposed in the container, and the first space portion and By controlling the temperature by blowing air to the second space part, the heat generated by the exothermic reaction in the CO converter and the CO remover can be cooled and the CO converter and the CO remover can be controlled to the optimum temperature with high accuracy. Play.
[0041]
The hydrogen generator for a fuel cell according to claim 5 of the present invention is the hydrogen generator for a fuel cell according to any one of claims 1 to 4 , wherein a blower is disposed in the container, Since the temperature of the selective oxidation catalyst layer on the side of the shift gas inlet is controlled to 100 to 200 ° C., the amount of heat generated by the exothermic reaction in the vicinity of the shift gas inlet of the CO remover can be reduced, and the occurrence of a runaway reaction can be prevented. There is an effect.
[Brief description of the drawings]
FIG. 1 is an explanatory cross-sectional view showing one embodiment of a hydrogen generator for a fuel cell according to the present invention.
FIG. 2 is a cross-sectional explanatory view showing another embodiment of the fuel cell hydrogen generator of the present invention.
FIG. 3 is an explanatory sectional view showing another embodiment of the hydrogen generator for a fuel cell according to the present invention.
FIG. 4 is a cross-sectional explanatory view of a conventional hydrogen generator for a fuel cell.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1, 1A, 1B Hydrogen generator 2 for fuel cells of this invention 2 Reforming catalyst 3 Reforming pipe 4 Fuel supply part 5 Water supply part 6 Combustion pipe 7 Heating means 8 Heat insulating material 9 CO converter 10 Selective oxidation catalyst 11 CO Remover 12 Container 13 First space portion 14 Second space portion 15 Steam generator 16 Burner 17 Cooling air inlets 18A, 18B Heat transfer promoting material or heat storage material

Claims (5)

水素原子を分子中に有する有機化合物を含有する燃料と水を反応させて水素リッチなガスに改質する改質用触媒を具備した改質管と、前記燃料を前記改質管に供給する燃料供給部と、前記水を前記改質管に供給する水供給部と、燃焼管での燃焼用燃料の燃焼により前記改質反応に必要な熱量を与える加熱手段と、前記改質管より放熱される熱を断熱する断熱材と、前記改質管から流出する改質ガス中に含まれる一酸化炭素を水と反応させて二酸化炭素に変成するCO変成器と、CO変成器から流出する変成ガス中に含まれる一酸化炭素を空気または酸素と反応させて二酸化炭素にする選択酸化触媒を具備したCO除去器と、前記構成材を収納する容器とからなり、内側から燃焼管、改質管、断熱材、CO変成器、第1空間部、CO除去器、第2空間部および容器の順に各々を同心円状に配置した燃料電池用水素発生装置において、
前記CO除去器の変成ガス入口から出口にわたり容器外壁に勾配を設け、前記選択酸化触媒量を変成ガス入口から出口にわたり変化させたことを特徴とする燃料電池用水素発生装置。
A reforming pipe provided with a reforming catalyst for reforming a hydrogen-rich gas by reacting a fuel containing an organic compound having hydrogen atoms in the molecule with water, and a fuel for supplying the fuel to the reforming pipe A heat supply unit, a water supply unit that supplies the water to the reforming pipe, a heating unit that gives heat necessary for the reforming reaction by combustion of fuel for combustion in the combustion pipe, and heat radiated from the reforming pipe A heat insulating material that insulates the heat generated, a CO converter that converts carbon monoxide contained in the reformed gas flowing out of the reforming tube with water to convert it into carbon dioxide, and a modified gas that flows out of the CO converter A CO removal device equipped with a selective oxidation catalyst for reacting carbon monoxide contained therein with air or oxygen to form carbon dioxide, and a container for storing the above-mentioned constituent materials. Combustion tube, reforming tube, Insulation, CO transformer, first space, CO remover, first In the fuel cell the hydrogen generating apparatus arranged concentrically to each order of the space and the container,
A hydrogen generator for a fuel cell, characterized in that a gradient is provided on the outer wall of the vessel from the shift gas inlet to the outlet of the CO remover, and the amount of the selective oxidation catalyst is changed from the shift gas inlet to the outlet .
前記断熱材の表面温度を200〜300℃に制御できるように断熱材の材質および厚みを選定したことを特徴とする請求項1記載の燃料電池用水素発生装置。  2. The hydrogen generator for a fuel cell according to claim 1, wherein the material and thickness of the heat insulating material are selected so that the surface temperature of the heat insulating material can be controlled to 200 to 300.degree. 前記改質器出口に伝熱促進材または蓄熱材を配置したことを特徴とする請求項1あるいは請求項2記載の燃料電池用水素発生装置。  3. The hydrogen generator for a fuel cell according to claim 1, wherein a heat transfer promoting material or a heat storage material is disposed at the reformer outlet. 前記容器に送風機を配置し、前記第1空間部および第2空間部に送風して温度制御することを特徴とする請求項1から請求項3のいずれかに記載の燃料電池用水素発生装置。The hydrogen generator for a fuel cell according to any one of claims 1 to 3 , wherein a fan is disposed in the container, and the temperature is controlled by blowing air to the first space portion and the second space portion . 前記容器に送風機を配置し、前記CO除去器の変成ガス入口側の前記選択酸化触媒層温度を100〜200℃に制御することを特徴とする請求項1から請求項4のいずれかに記載の燃料電池用水素発生装置。The blower is disposed in the container, and the temperature of the selective oxidation catalyst layer on the side of the shift gas inlet of the CO remover is controlled to 100 to 200 ° C. Hydrogen generator for fuel cells.
JP2002335474A 2002-11-19 2002-11-19 Hydrogen generator for fuel cell Expired - Fee Related JP3706610B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002335474A JP3706610B2 (en) 2002-11-19 2002-11-19 Hydrogen generator for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002335474A JP3706610B2 (en) 2002-11-19 2002-11-19 Hydrogen generator for fuel cell

Publications (2)

Publication Number Publication Date
JP2004171892A JP2004171892A (en) 2004-06-17
JP3706610B2 true JP3706610B2 (en) 2005-10-12

Family

ID=32699597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002335474A Expired - Fee Related JP3706610B2 (en) 2002-11-19 2002-11-19 Hydrogen generator for fuel cell

Country Status (1)

Country Link
JP (1) JP3706610B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100599685B1 (en) * 2004-06-30 2006-07-13 삼성에스디아이 주식회사 Reformer for fuel cell system and fuel cell system having the same
JP5191104B2 (en) * 2006-06-22 2013-04-24 ナノグレイ株式会社 Radiation applied measurement method, radiation applied measurement device, and heat insulating material for radiation applied measurement device
JP5078426B2 (en) * 2007-05-10 2012-11-21 Jx日鉱日石エネルギー株式会社 Carbon monoxide remover and hydrogen production equipment
KR100905290B1 (en) 2007-07-30 2009-07-02 (주)오선텍 A catalytic reactor for formation of the hydrogen
JP4740277B2 (en) 2008-03-18 2011-08-03 アイシン精機株式会社 Reformer
JP5228739B2 (en) * 2008-09-25 2013-07-03 カシオ計算機株式会社 Reaction apparatus and electronic equipment
JP5160389B2 (en) * 2008-12-11 2013-03-13 東京瓦斯株式会社 Multi-cylinder steam reformer for fuel cells
KR102432197B1 (en) * 2017-09-01 2022-08-12 엘지전자 주식회사 Fuel reforming divice

Also Published As

Publication number Publication date
JP2004171892A (en) 2004-06-17

Similar Documents

Publication Publication Date Title
JP3706611B2 (en) Hydrogen generator for fuel cell
JP4736299B2 (en) Metamorphic equipment
US6162267A (en) Process for the generation of pure hydrogen for use with fuel cells
US6375924B1 (en) Water gas shift process for purifying hydrogen for use with fuel cells
US6436354B1 (en) Apparatus for generation of pure hydrogen for use with fuel cells
JP3706610B2 (en) Hydrogen generator for fuel cell
JP2001155756A (en) Vapor-reforming reactor for fuel cell
EP2858158B1 (en) Fuel cell system
JP3903710B2 (en) Fuel reformer and polymer electrolyte fuel cell power generator using the same
JP4210912B2 (en) Fuel reformer and fuel cell power generator
WO2005077820A1 (en) Fuel reformer
JP2005166283A (en) Hydrogen manufacturing device for fuel cell
JP2004185942A (en) Hydrogen generating device for fuel cell
JP2001089104A (en) Methanol reformer
JP2003086210A (en) Solid high-polymer type fuel cell power generator and its operation method
JP2003187849A (en) Solid polymer fuel cell power generator
JP4136624B2 (en) Liquid fuel reforming method and apparatus
US7887606B2 (en) Fuel reforming apparatus and method for starting said fuel reforming apparatus
JP4687886B2 (en) Hydrogen generator for fuel cell
JP4480486B2 (en) Fuel cell reformer
JPH02188406A (en) Carbon monoxide converter
JP3499273B2 (en) Heat transfer method in reformer
JPH0881202A (en) Methanol reformer for fuel cell
KR100632967B1 (en) A Heat exchanging device of preferential oxidation part for fuel cell system
JPH0380102A (en) Fuel reformer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050729

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080805

Year of fee payment: 3

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080805

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090805

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100805

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110805

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110805

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120805

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130805

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R314531

S804 Written request for registration of cancellation of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314805

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R314531

S804 Written request for registration of cancellation of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314805

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees