JP4210912B2 - Fuel reformer and fuel cell power generator - Google Patents

Fuel reformer and fuel cell power generator Download PDF

Info

Publication number
JP4210912B2
JP4210912B2 JP2003093216A JP2003093216A JP4210912B2 JP 4210912 B2 JP4210912 B2 JP 4210912B2 JP 2003093216 A JP2003093216 A JP 2003093216A JP 2003093216 A JP2003093216 A JP 2003093216A JP 4210912 B2 JP4210912 B2 JP 4210912B2
Authority
JP
Japan
Prior art keywords
combustion
fuel
air
exhaust gas
reformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003093216A
Other languages
Japanese (ja)
Other versions
JP2004299939A (en
Inventor
仁人 千田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2003093216A priority Critical patent/JP4210912B2/en
Publication of JP2004299939A publication Critical patent/JP2004299939A/en
Application granted granted Critical
Publication of JP4210912B2 publication Critical patent/JP4210912B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Description

【0001】
【発明の属する技術分野】
この発明は、メタンガス等の炭化水素系燃料を水蒸気改質する燃料改質器、およびこの燃料改質器を備えた燃料電池発電装置に関する。
【0002】
【従来の技術】
雰囲気ガスとして水素を用いる工業用装置や燃料電池発電装置などにおいては、水素発生装置が必要で、この水素発生装置は、メタンガス,LNG,LPG,メタノールなどの原燃料ガスを水蒸気とともに触媒層を通過させることにより水素リッチな改質ガスを生成する改質器を備える。
【0003】
燃料電池発電装置は、燃料の有する化学エネルギーを、機械エネルギーや熱エネルギーを経由することなく直接電気エネルギーに変換する装置であり、高いエネルギー効率が実現可能である。良く知られた燃料電池の形態としては、電解質層を挟んで一対の電極を配置し、一方の電極(アノード側)に水素を含有する燃料ガスを供給するとともに他方の電極(カソード側)に酸素を含有する酸化剤ガスを供給するものであり、両極間で起きる電気化学反応を利用して起電力を得る。
【0004】
燃料電池は、使用する電解質の種類により分類されるが、これらの燃料電池の中で、固体高分子型燃料電池、リン酸型燃料電池、溶融炭酸塩型燃料電池等では、その電解質の性質から、二酸化炭素を含んだ酸化剤ガスや炭酸ガスを使用することが可能である。そこで通常これらの燃料電池では、空気を酸化剤ガスとして用い、天然ガス等の炭化水素系の原燃料を水蒸気改質して生成した水素リッチなガスを燃料ガスとして用いている。
【0005】
そのため、この様な燃料電池を備える燃料電池発電装置においては、改質器および一酸化炭素変成器が設けられており、この改質器および一酸化炭素変成器において原燃料の改質を行ない燃料ガスを生成している。下記の式(1)は、改質器におけるメタンの改質反応について示す。なお、メタンは天然ガスの主成分である。
【0006】
CH4+H2O→3H2+CO (+206.14 KJ/mol:吸熱反応) (1)
上記式(1)に示されるとおり、メタンの改質反応は吸熱反応であるため、メタンに水蒸気を添加したうえで、燃料電池からの燃料オフガスを燃焼させた燃焼排ガスにより、粒状改質触媒を600〜700℃に保つことにより、水素に富む改質ガスを生成する。
【0007】
改質器を出たこの改質ガスは、改質ガス中の一酸化炭素を低減するために一酸化炭素変成器に供給され、ここで一酸化炭素は1%以下に低減され、リン酸形燃料電池(PAFC)であれば、このガスを燃料電池へ導入して発電を行なうことができる。下記式(2)は、一酸化炭素変成器に於ける一酸化炭素の変成反応について示す。
【0008】
CO+H2O→H2+CO2 (-41.17 KJ/mol:発熱反応) (2)
式(2)に示されるとおり、一酸化炭素の変成反応は発熱反応であるため、変成反応温度である160〜350℃に保つためには冷却が必要となる。
【0009】
一方、固体高分子形燃料電池(PEFC)は、その動作温度が60〜80℃と低いために、改質がス中に一酸化炭素が存在すると、これが触媒毒となって性能が劣化することから、一酸化炭素をさらに低減する必要があり、そのために改質ガスは一酸化炭素除去器に供給され、ここで一酸化炭素を10ppm以下に低減する。下記の式(3)は一酸化炭素除去器に於ける一酸化炭素の選択酸化反応について示す。
【0010】
CO+1/2O2→CO2 (-257.2 KJ/mol:発熱反応) (3)
式(3)に示されるとおり、一酸化炭素の選択酸化反応は発熱反応であるため、選択酸化反応温度である160〜230℃に保つためには冷却が必要となる。
【0011】
なお、前述の通り固体高分子形燃料電池(PEFC)は、反応温度が低いため、リン酸形燃料電池(PAFC)(反応温度約180℃)と異なり、その発熱量で改質用の水蒸気を発生させることができないことから、改質系機器の中でこれを発生させる必要がある。そのため、例えば、一酸化炭素除去器の冷却水として水蒸気改質用の水を用いて、この水を100℃程度に加熱させた後に、前記熱交換器に入れるという方法が提案されている。
【0012】
図3は、従来のこの種の燃料改質装置を備えた固体高分子形燃料電池発電装置の一例の概略構成図を示す。
【0013】
図3において、脱硫器21にて硫黄分を取り除かれた原燃料は、水蒸気発生器22で作られた蒸気とともに改質器23に供給されて、式(1)に示した水蒸気改質反応によって水素リッチなガスに改質された後に、一酸化炭素変成器24に供給されて、式(2)に示した一酸化炭素変成反応によって水素濃度が高められ、さらにその後、一定量の空気とともに一酸化炭素除去器25に供給されて、式(3)に示した一酸化炭素の選択酸化反応によって、一酸化炭素を10ppm以下に低減された後、燃料電池26へと供給される。
【0014】
一酸化炭素除去器25は冷却が必要となるが、その手段として、改質用水タンク27から改質用水供給ポンプ28により供給される改質用水を、選択酸化触媒層の中に配設された冷却管29に通流して冷却している。一酸化炭素除去器25の冷却管29において加熱された改質用水は、供給水予熱ライン40から水蒸気発生器22へと供給されて蒸発される。ここで、水蒸気発生器の熱源は、改質器23のバーナ30で燃料電池からの燃料オフガスを、燃焼用の空気と共に燃焼させ、その燃焼熱を吸熱反応であるメタンの水蒸気反応のために与えた後の燃焼排ガス31である。
【0015】
なお、図3において、32,33は、供給水予熱ライン40の圧力,温度を測定するための圧力計および温度計である。また、燃料電池発電装置のシステム系統は、装置の仕様に応じて種々の構成が採用されており、図3の構成に限定されない。
【0016】
ところで、前記燃料改質器の構成に関しても、種々の形式が提案され、かつ実用化されているが、燃料改質器自体のエネルギ効率を向上する観点から、バーナに供給される燃焼用空気を、燃焼排ガスによって予熱することが有効である。空気の予熱熱量は、燃焼排ガスを経由して、結局は改質触媒の加熱に還元されることとなるので、改質触媒を適正な温度分布に維持しつつも、改質器から排出される燃焼排ガスのエネルギを有効に回収することができる。
【0017】
前述のように、燃焼用空気を燃焼排ガスによって予熱する構成を備えた燃料改質器に関しても、種々の構成が提案されている(例えば、特許文献1〜3参照)。
【0018】
図2は、特許文献1の図1に開示された燃料改質器の構成を示す。但し、図2に示す部番は、特許文献1の部番にサフィックスaを付して示す。図2に示す燃料改質器の構成は、特許文献1の記載によれば、概ね下記のとおりである。即ち、「反応管は、反応管内筒1aおよび反応管外筒2aより構成され、反応管内筒1aと反応管外筒2aの間には改質触媒3aが設けられている。燃焼器6aは燃料供給管7aを備え、改質器内容器10aと反応管外筒2aにより構成される燃焼ガス流路14a内に設置される。燃焼ガス流路14aは燃料ガス排出管13aとつながつている。反応管上部では原燃料供給管4aと反応管内筒1a反応管外筒2aで形成される空間がつながつている。反応管内筒1aの一端は、原燃料排出管5aとつながつている。
【0019】
改質器内容器10aの外側には、改質器内容器10aをかこむように改質器外容器9aが設けられており、改質器内容器10aと改質器外容器9a間には流路ガイド11aが設けられている。改質器外容器9aと流路ガイド11aで構成される空気流路15aには、空気供給管8aが取り付けられており、改質器内容器10aと流路ガイド11aで構成された空間は空気通路16aにより燃焼器6aにつながつている。改質器外容器9aと大気間には断熱層12aが設けられている。改質すべきメタン等の原燃料は、水蒸気と混合された後に原燃料供給管4aより供給され、反応管内へ導入される。
【0020】
原燃料は反応管内筒1aと反応管外筒2a内に設けられた改質触媒3aを通過すると同時に反応管外筒2aの外部を流れる燃焼ガスより熱を与えられ、吸熱反応である改質反応を生じる。改質触媒3aを通過した原燃料は、反応管内筒1aの内部を流れ原燃料排出管5aより改質器外へ排出される。燃焼器6aへは燃料供給管7aより燃焼用の燃料が供給される。一方、燃焼用の空気は空気供給管8aより、改質器外容器9aと流路ガイド11aで構成される空気流路15a内へ供給される。空気は空気流路15aを流れると同時に流路ガイド11aを冷却し、空気温度は上昇する。
【0021】
空気流路15aを出た空気は、流路ガイド11aと改質器内容器10aで構成される空間を流れ、ここでも改質器内容器10aを冷却する。これらの空気流路を設けることにより改質器内容器10a、流路ガイド11a、改質器外容器9aの順で温度は低下し、空気流路を設けない場合の改質器外容器温度、すなわち、実施例における改質器容器10aの温度に対する断熱層厚さと比較し、断熱層厚さを薄くすることができる。また、改質内容器10aを冷却し耐久性を向上することができる。
【0022】
流路ガイド11a、改質器内容器10aを通過した空気は空気通路16aを通り、燃焼器6aに導入され燃焼用空気として利用される。燃焼器6aで発生した燃焼ガスは反応管外筒2aを加熱し、燃焼ガス流路14aを流れ、燃料ガス排出管13aより改質器外へ排出される。断熱層12aは、改質器外容器9aより外気への放熱損失を防止する。」
「上記構成によれば、流路ガイドを設置したことにより、改質器内容器をおおう空気流路を二重にすることができるため、改質器外容器温度をさらに低くすることがてき、放熱損失を低減できる効果が大きいと共に、空気の予熱が可能となる。」
また、特許文献2にも、バーナの下部において、燃焼用空気供給路を上下に折り返して、この折り返し路において燃焼排ガスと熱交換を行なうように構成した、空気予熱部を備えた炭化水素の改質装置が開示されている(詳細は、特許文献2参照)。
【0023】
さらに、特許文献3にも、空気予熱部を備えた改質器が開示されている。上記特許文献1および2に開示された空気予熱部の構成は、いずれも折り返し路を備え、空気の流体圧力損失が大きくなる問題(詳細は後述)を有するが、これに対して、特許文献3に開示された改質器は、後述する別の問題を有するものの、燃焼用空気供給路がバーナの燃焼部に対して直線的に配設され、燃焼排ガスと熱交換可能に構成されている(詳細は、特許文献3参照)。
【0024】
【特許文献1】
特許第2528836号明細書(第2頁、第1図)
【特許文献2】
特開平3−199105号公報(第3−4頁、第1図)
【特許文献3】
特開平2−145401号公報(第2−4頁、第1図)
【0025】
【発明が解決しようとする課題】
ところで、前述のようにな従来の燃料改質器およびこれを用いた燃料電池発電装置においては、下記のような問題点があった。
【0026】
前述のように、特許文献1および2に開示された空気予熱部の構成は、いずれも折り返し路を備え、空気の流体圧力損失が大きくなる問題がある。また、折り返し路を有するがために装置が複雑となり、さらに、全体としてコンパクト性が劣るものとなっている。燃料電池発電装置、特に家庭用固体高分子形燃料電池発電装置では、空気の流体圧力損失を抑制して補機動力を低減すること、即ち発電効率の向上が重要課題となっており、燃料電池の仕様にもよるが、例えば燃焼用空気の搬送動力(10数W)を、さらにできる限り低減し、発電効率を向上させたい要請がある。従って、燃料改質器において、燃焼用空気の流体圧力損失を低減することは、特に燃料電池発電装置において、重要な課題となっている。
【0027】
一方、特許文献3に開示された改質器は、燃焼用空気供給路がバーナの燃焼部に対して直線的に配設され、燃焼用空気の流体圧力損失を低減するように構成されてはいるものの、改質器の構造全体として、下記のような問題がある。
【0028】
特許文献3の図1に開示された改質器は、前記燃焼用空気供給路を含む三重構造の導管(12)の周囲を取り囲むようにセラミック製の円筒(13)が、バーナ(4)のハウジング(4b)の上端に設けられている。前記構成は、各部の温度の関係で必要な構成と思われるが、前記セラミック製の円筒はヒートサイクルに弱く、特に起動時に損傷し易い問題がある。また、部品点数が多く構造が複雑であり、装置の外径寸法が大となってコンパクト性が劣る問題がある。
【0029】
この発明は、上記のような問題点を解消するためになされたもので、この発明の課題は、燃焼用空気の流体圧力損失を低減した空気予熱器を備え、全体として構成がシンプルでコンパクト性に優れた燃料改質器を提供し、もって、燃料電池発電装置のコスト低減を図ることにある。
【0030】
【課題を解決するための手段】
前述の課題を解決するために、この発明は、炭化水素系燃料を水蒸気改質する改質触媒層と、燃焼用の燃料供給路と燃焼用空気路とを有し、燃焼排ガスにより前記改質触媒を加熱するバーナと、前記燃焼用空気を前記バーナの燃焼排ガスにより予熱する空気予熱部とを備えた燃料改質器において、前記バーナは中空円筒状の燃焼筒を有し、前記燃焼筒の外側であって燃焼筒の軸心と同心円状に、前記燃焼排ガスの排出路を介して前記改質触媒層を設け、さらに、前記燃焼筒は、その一方端で前記燃焼排ガスの排出路に連通しかつバーナの燃焼部を備えた燃焼室と、燃焼筒の軸心と同心円状に形成された前記燃焼用空気路とが、燃焼筒内の軸方向に順次配設されたものとし、前記空気予熱部は、燃焼用空気が燃焼排ガスにより前記燃焼筒を介して予熱されるものとする(請求項1の発明)。
【0031】
上記構成によれば、燃焼用空気の流体圧力損失の低減を図ることができ、また、装置全体として、シンプルでかつコンパクトな燃料改質器とすることができる。
【0032】
前記請求項1の発明の実施態様としては、下記請求項2ないし4の発明が好ましい。即ち、前記請求項1に記載の燃料改質器において、前記バーナの燃焼部は前記中空円筒状の燃焼筒内の軸方向のほぼ中央部に設け、前記空気予熱部は、前記燃焼部より下方の燃焼筒内壁に沿って設けられ、前記下方の燃焼筒外壁に沿う前記燃焼排ガス排出路における燃焼排ガスは、空気予熱と改質触媒加熱とを同時に行なう構成とする(請求項2の発明)。さらに、前記請求項2に記載の燃料改質器において、前記燃焼筒の軸方向下部に、下方から、前記燃焼用空気入口,燃焼排ガス出口,改質用燃料および改質用水蒸気の入口を順次設けたものとする(請求項3の発明)。かかる構成によれば、燃焼排ガス排出路を介して、最も伝熱面積を必要とする改質触媒層の一部と背中合わせに並行して、空気予熱部が設けられるので、改質器の装置構成が簡略化でき極めてコンパクトな改質器が提供できる。
【0033】
また、各部材の位置関係や各種気体の流れ方向は、請求項4の発明のように、全て天地を逆にすることができる。即ち、請求項2または3に記載の燃料改質器において、前記各部材または各入口・出口の、前記軸方向の位置関係は、上と下とを全て逆に代えて、天地を逆に構成する。ダスト類の燃焼部への堆積防止を考慮すると、前記請求項4の発明の構成の方が好ましいが、例えば改質器本体以外の別のファクターを考慮すると、請求項4の発明とは天地が逆の方が好ましい場合があり、用途に応じて使い分けることが望ましい。
【0034】
さらに、請求項5の発明のように、燃料電池発電装置を、前記請求項1ないし4のいずれかに記載の燃料改質器を備えるものとすることにより、改質器のエネルギ効率が高まることで、発電効率の向上が可能となる。さらに、空気の流体圧力損失を抑制して補機動力を低減することができ、これも発電効率の向上に寄与することができる。また燃料改質器がコンパクトとなって燃料電池発電装置のコスト低減を図ることができる。
【0035】
【発明の実施の形態】
図面に基づき、本発明の実施例について以下にのべる。
【0036】
図1は、この発明に関わる実施例を示す燃料改質器の模式的構成図であり、図2と同じ機能を有する部材には同一の番号(サフィックスのaを除く番号)を付して詳細説明を省略する。
【0037】
図1と図2との相違点は、図1においては、バーナ6は中空円筒状の燃焼筒18を有するものとし、この燃焼筒の外側であってその軸心と同心円状に、燃焼排ガスの排出路17を介して改質触媒層3を設け、さらに、前記燃焼筒18は、その一方端で前記燃焼排ガスの排出路17に連通しかつバーナ6の燃焼部を備えた燃焼室19と、燃焼筒18の軸心と同心円状に形成された燃焼用の空気供給路16とが、燃焼筒18内の軸方向に順次配設されたものとし、空気予熱部20は、燃焼用空気が燃焼排ガスにより前記燃焼筒18を介して予熱されるものとした点である。
【0038】
さらに、具体的には、バーナ6の燃焼部を中空円筒状の燃焼筒18内の軸方向のほぼ中央部に設け、前記空気予熱部20は、燃焼筒内の軸方向下方部全体にわたって設け、前記燃焼排ガス排出路17における燃焼排ガスは、空気予熱と改質触媒加熱とを同時に行なうように構成されている。
【0039】
また、燃焼筒18の軸方向下部には、前記空気供給路16に接続される燃焼用空気入口が設けられ、その上に燃焼排ガス出口が、さらにその上に改質用燃料および改質用水蒸気の入口が順次設けられている。なお、本実施例では、改質ガス出口を上部に設けているが、改質触媒層3の外周に更に改質ガス流路を設け、改質触媒層3の上部で流路を折り返して改質ガス出口を下部に設ける構成としても良く、この場合、改質ガスの熱を内側の改質触媒に与えることができるという利点がある。
【0040】
また、図1において、7は燃焼用の燃料供給管で、燃焼用空気と共にバーナの燃焼部に接続されている。また、燃料供給管7の外周部は、断熱材12bで覆われており、改質触媒層3の外周部および改質器上面部に設けた断熱材12と共に、外部への熱放散ロスを低減するように構成されている。
【0041】
上記図1に示す燃料改質器における主要部の温度の一例を概略数値で示すと下記のとおりであり、図1の構成によれば、改質触媒層の温度分布を適正にすると共に燃焼用空気を予熱して、燃焼排ガス温度を従来より低く抑えることができる。
【0042】
・改質触媒層の下部温度:200〜250℃
・改質触媒層の上部温度:600〜700℃
・燃焼用空気の下部温度:20℃
・燃焼用空気の上部温度:200℃
・燃焼排ガスの排出路下部出口温度:150〜200℃
・燃焼排ガスの排出路上部入口温度:1000℃
【0043】
【発明の効果】
上記のとおり、この発明によれば、炭化水素系燃料を水蒸気改質する改質触媒層と、燃焼用の燃料供給路と燃焼用空気路とを有し、燃焼排ガスにより前記改質触媒を加熱するバーナと、前記燃焼用空気を前記バーナの燃焼排ガスにより予熱する空気予熱部とを備えた燃料改質器において、前記バーナは中空円筒状の燃焼筒を有し、前記燃焼筒の外側であって燃焼筒の軸心と同心円状に、前記燃焼排ガスの排出路を介して前記改質触媒層を設け、さらに、前記燃焼筒は、その一方端で前記燃焼排ガスの排出路に連通しかつバーナの燃焼部を備えた燃焼室と、燃焼筒の軸心と同心円状に形成された前記燃焼用空気路とが、燃焼筒内の軸方向に順次配設されたものとし、前記空気予熱部は、燃焼用空気が燃焼排ガスにより前記燃焼筒を介して予熱されるものとしたことにより、高い改質器のエネルギ効率が得られると共に燃焼用空気の流体圧力損失の低減を図ることができ、また、装置全体として、シンプルでかつコンパクトな燃料改質器を提供することができる。
【0044】
さらに、燃料電池発電装置を前記燃料改質器を備えるものとすることにより、空気の流体圧力損失を抑制して補機動力を低減し、高い発電効率が得られ、かつコスト低減を図った燃料電池発電装置を提供することができる。
【図面の簡単な説明】
【図1】 この発明の燃料改質器の実施例を示す模式的構成図
【図2】 特許文献1に開示された従来の燃料改質器の一例の構成図
【図3】 従来の燃料改質器を備えた燃料電池発電装置の一例の概略構成図
【符号の説明】
3:改質触媒層、6:バーナ、7:燃料供給管、16:空気供給路、17:燃焼排ガスの排出路、18:燃焼筒、20:空気予熱部、21:脱硫器、22:水蒸気発生器、23:改質器、24:一酸化炭素変成器、25:一酸化炭素除去器、26:燃料電池。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fuel reformer that performs steam reforming of a hydrocarbon-based fuel such as methane gas, and a fuel cell power generator equipped with the fuel reformer.
[0002]
[Prior art]
Industrial equipment and fuel cell power generators that use hydrogen as the atmospheric gas require a hydrogen generator. This hydrogen generator passes raw fuel gas such as methane gas, LNG, LPG, and methanol together with water vapor through the catalyst layer. A reformer that generates a hydrogen-rich reformed gas.
[0003]
A fuel cell power generation device is a device that directly converts chemical energy of fuel into electrical energy without passing through mechanical energy or thermal energy, and can achieve high energy efficiency. As a well-known form of a fuel cell, a pair of electrodes are arranged with an electrolyte layer in between, a fuel gas containing hydrogen is supplied to one electrode (anode side), and oxygen is supplied to the other electrode (cathode side). Is supplied, and an electromotive force is obtained by utilizing an electrochemical reaction occurring between the two electrodes.
[0004]
Fuel cells are classified according to the type of electrolyte used. Among these fuel cells, solid polymer fuel cells, phosphoric acid fuel cells, molten carbonate fuel cells, etc. It is possible to use an oxidant gas or carbon dioxide containing carbon dioxide. Therefore, in these fuel cells, normally, air is used as an oxidant gas, and a hydrogen-rich gas generated by steam reforming a hydrocarbon-based raw fuel such as natural gas is used as a fuel gas.
[0005]
Therefore, in a fuel cell power generation apparatus including such a fuel cell, a reformer and a carbon monoxide converter are provided, and the raw fuel is reformed by the reformer and the carbon monoxide converter. Gas is being generated. Equation (1) below shows the reforming reaction of methane in the reformer. Methane is the main component of natural gas.
[0006]
CH 4 + H 2 O → 3H 2 + CO (+206.14 KJ / mol: endothermic reaction) (1)
As shown in the above formula (1), the reforming reaction of methane is an endothermic reaction. Therefore, after adding steam to methane, the granular reforming catalyst is formed by the combustion exhaust gas obtained by burning the fuel off-gas from the fuel cell. By maintaining the temperature at 600 to 700 ° C., a reformed gas rich in hydrogen is generated.
[0007]
This reformed gas leaving the reformer is fed to a carbon monoxide converter to reduce the carbon monoxide in the reformed gas, where the carbon monoxide is reduced to less than 1% and is in phosphoric acid form. In the case of a fuel cell (PAFC), this gas can be introduced into the fuel cell to generate power. The following formula (2) shows the carbon monoxide conversion reaction in the carbon monoxide converter.
[0008]
CO + H 2 O → H 2 + CO 2 (-41.17 KJ / mol: exothermic reaction) (2)
As shown in the formula (2), since the carbon monoxide modification reaction is an exothermic reaction, cooling is required to maintain the modification reaction temperature at 160 to 350 ° C.
[0009]
On the other hand, the polymer electrolyte fuel cell (PEFC) has a low operating temperature of 60 to 80 ° C., so if carbon monoxide is present in the reforming process, it becomes a catalyst poison and the performance deteriorates. Therefore, it is necessary to further reduce the carbon monoxide, and for this purpose, the reformed gas is supplied to the carbon monoxide remover, where the carbon monoxide is reduced to 10 ppm or less. The following formula (3) shows the selective oxidation reaction of carbon monoxide in the carbon monoxide remover.
[0010]
CO + 1 / 2O 2 → CO 2 (-257.2 KJ / mol: exothermic reaction) (3)
As shown in Formula (3), since the selective oxidation reaction of carbon monoxide is an exothermic reaction, cooling is required to maintain the selective oxidation reaction temperature at 160 to 230 ° C.
[0011]
As described above, since the polymer electrolyte fuel cell (PEFC) has a low reaction temperature, unlike the phosphoric acid fuel cell (PAFC) (reaction temperature of about 180 ° C.), its calorific value generates steam for reforming. Since it cannot be generated, it is necessary to generate it in the reforming equipment. For this reason, for example, a method has been proposed in which water for steam reforming is used as cooling water for the carbon monoxide remover, and the water is heated to about 100 ° C. and then placed in the heat exchanger.
[0012]
FIG. 3 shows a schematic configuration diagram of an example of a polymer electrolyte fuel cell power generator equipped with this type of conventional fuel reformer.
[0013]
In FIG. 3, the raw fuel from which the sulfur content has been removed by the desulfurizer 21 is supplied to the reformer 23 together with the steam produced by the steam generator 22, and is subjected to the steam reforming reaction shown in the equation (1). After being reformed into a hydrogen-rich gas, the gas is supplied to the carbon monoxide converter 24, and the hydrogen concentration is increased by the carbon monoxide conversion reaction shown in the formula (2). The carbon monoxide is supplied to the carbon oxide remover 25, and the carbon monoxide is reduced to 10 ppm or less by the carbon monoxide selective oxidation reaction shown in the formula (3), and then supplied to the fuel cell 26.
[0014]
The carbon monoxide remover 25 needs to be cooled. As a means for this, the reforming water supplied from the reforming water tank 27 by the reforming water supply pump 28 is disposed in the selective oxidation catalyst layer. It cools by flowing through the cooling pipe 29. The reforming water heated in the cooling pipe 29 of the carbon monoxide remover 25 is supplied from the supply water preheating line 40 to the steam generator 22 and evaporated. Here, the heat source of the steam generator burns the fuel off-gas from the fuel cell together with the combustion air in the burner 30 of the reformer 23, and gives the combustion heat for the steam reaction of methane which is an endothermic reaction. It is the combustion exhaust gas 31 after.
[0015]
In FIG. 3, 32 and 33 are a pressure gauge and a thermometer for measuring the pressure and temperature of the feed water preheating line 40. In addition, the system system of the fuel cell power generator employs various configurations according to the specifications of the device, and is not limited to the configuration of FIG.
[0016]
By the way, regarding the configuration of the fuel reformer, various types have been proposed and put into practical use. From the viewpoint of improving the energy efficiency of the fuel reformer itself, the combustion air supplied to the burner is used. It is effective to preheat with combustion exhaust gas. Since the preheat heat quantity of air is eventually reduced to the heating of the reforming catalyst via the combustion exhaust gas, it is discharged from the reformer while maintaining the reforming catalyst in an appropriate temperature distribution. The energy of the combustion exhaust gas can be recovered effectively.
[0017]
As described above, various configurations have been proposed for a fuel reformer having a configuration for preheating combustion air with combustion exhaust gas (see, for example, Patent Documents 1 to 3).
[0018]
FIG. 2 shows the configuration of the fuel reformer disclosed in FIG. However, the part numbers shown in FIG. 2 are shown by adding suffix a to the part numbers of Patent Document 1. The configuration of the fuel reformer shown in FIG. 2 is generally as follows according to the description in Patent Document 1. That is, “the reaction tube is composed of a reaction tube inner cylinder 1a and a reaction tube outer cylinder 2a, and a reforming catalyst 3a is provided between the reaction tube inner cylinder 1a and the reaction tube outer cylinder 2a. The combustor 6a is a fuel. A supply pipe 7a is provided and installed in a combustion gas flow path 14a constituted by a reformer inner vessel 10a and a reaction tube outer cylinder 2a, which is connected to a fuel gas discharge pipe 13a. In the upper part of the pipe, a space formed by the raw fuel supply pipe 4a and the reaction pipe inner cylinder 1a and the reaction pipe outer cylinder 2a is connected, and one end of the reaction pipe inner cylinder 1a is connected to the raw fuel discharge pipe 5a.
[0019]
A reformer outer container 9a is provided outside the reformer inner container 10a so as to enclose the reformer inner container 10a, and a flow path is provided between the reformer inner container 10a and the reformer outer container 9a. A guide 11a is provided. An air supply pipe 8a is attached to the air flow path 15a formed by the reformer outer container 9a and the flow path guide 11a, and the space formed by the reformer inner container 10a and the flow path guide 11a is air. The passage 16a is connected to the combustor 6a. A heat insulating layer 12a is provided between the reformer outer container 9a and the atmosphere. Raw fuel such as methane to be reformed is mixed with water vapor and then supplied from the raw fuel supply pipe 4a and introduced into the reaction pipe.
[0020]
The raw fuel passes through the reforming catalyst 3a provided in the reaction tube inner tube 1a and the reaction tube outer tube 2a, and at the same time, is supplied with heat from the combustion gas flowing outside the reaction tube outer tube 2a, and the reforming reaction is an endothermic reaction. Produce. The raw fuel that has passed through the reforming catalyst 3a flows through the inside of the reaction tube inner cylinder 1a, and is discharged out of the reformer through the raw fuel discharge pipe 5a. Combustion fuel is supplied to the combustor 6a from the fuel supply pipe 7a. On the other hand, combustion air is supplied from an air supply pipe 8a into an air flow path 15a composed of a reformer outer container 9a and a flow path guide 11a. Air flows through the air flow path 15a and simultaneously cools the flow path guide 11a, so that the air temperature rises.
[0021]
The air that has exited the air flow path 15a flows through the space formed by the flow path guide 11a and the reformer inner container 10a, and again cools the reformer inner container 10a. By providing these air flow paths, the temperature decreases in the order of the reformer inner container 10a, the flow path guide 11a, and the reformer outer container 9a, and the reformer outer container temperature when no air flow path is provided, That is, the heat insulation layer thickness can be reduced as compared with the heat insulation layer thickness with respect to the temperature of the reformer vessel 10a in the embodiment. Further, the reforming inner container 10a can be cooled to improve durability.
[0022]
The air that has passed through the flow path guide 11a and the reformer inner container 10a passes through the air passage 16a, is introduced into the combustor 6a, and is used as combustion air. The combustion gas generated in the combustor 6a heats the reaction tube outer cylinder 2a, flows through the combustion gas passage 14a, and is discharged out of the reformer through the fuel gas discharge pipe 13a. The heat insulation layer 12a prevents heat loss from the reformer outer container 9a to the outside air. "
“According to the above configuration, since the air flow path covering the reformer inner container can be doubled by installing the flow path guide, the reformer outer container temperature can be further reduced, The effect of reducing heat dissipation loss is great, and the air can be preheated. "
Also in Patent Document 2, the combustion air supply path is folded up and down at the lower part of the burner, and the hydrocarbon is modified with the air preheating section configured to exchange heat with the combustion exhaust gas in the folding path. A quality device is disclosed (for details, see Patent Document 2).
[0023]
Furthermore, Patent Document 3 discloses a reformer including an air preheating unit. The configurations of the air preheating unit disclosed in the above Patent Documents 1 and 2 both have a problem of increasing the fluid pressure loss of air with a return path (details will be described later). Although the reformer disclosed in (1) has another problem to be described later, the combustion air supply passage is linearly arranged with respect to the combustion portion of the burner, and is configured to be able to exchange heat with the combustion exhaust gas ( For details, see Patent Document 3).
[0024]
[Patent Document 1]
Japanese Patent No. 2528836 (2nd page, Fig. 1)
[Patent Document 2]
JP-A-3-199105 (page 3-4, FIG. 1)
[Patent Document 3]
Japanese Patent Laid-Open No. 2-145401 (page 2-4, FIG. 1)
[0025]
[Problems to be solved by the invention]
However, the conventional fuel reformer and the fuel cell power generation apparatus using the same as described above have the following problems.
[0026]
As described above, the configurations of the air preheating units disclosed in Patent Documents 1 and 2 both have a return path, and there is a problem that the fluid pressure loss of air increases. In addition, the apparatus is complicated due to the return path, and the overall compactness is inferior. In a fuel cell power generation device, in particular, a polymer electrolyte fuel cell power generation device for home use, it is important to suppress auxiliary fluid power by suppressing fluid pressure loss of air, that is, to improve power generation efficiency. For example, there is a demand to further reduce the power for transporting combustion air (10 tens of watts) as much as possible to improve power generation efficiency. Therefore, in the fuel reformer, reducing the fluid pressure loss of the combustion air is an important issue particularly in the fuel cell power generator.
[0027]
On the other hand, the reformer disclosed in Patent Document 3 is configured so that the combustion air supply path is linearly disposed with respect to the combustion portion of the burner, and the fluid pressure loss of the combustion air is reduced. However, the overall structure of the reformer has the following problems.
[0028]
In the reformer disclosed in FIG. 1 of Patent Document 3, a ceramic cylinder (13) is provided in the burner (4) so as to surround the triple-structured conduit (12) including the combustion air supply passage. It is provided at the upper end of the housing (4b). The above configuration seems to be a necessary configuration in relation to the temperature of each part. However, the ceramic cylinder is vulnerable to heat cycle, and has a problem that it is easily damaged especially at the time of startup. In addition, the number of parts is large and the structure is complicated, and there is a problem that the outer diameter of the apparatus is large and the compactness is inferior.
[0029]
The present invention has been made to solve the above-described problems. An object of the present invention is to provide an air preheater with reduced fluid pressure loss of combustion air, which is simple and compact as a whole. An excellent fuel reformer is provided to reduce the cost of the fuel cell power generator.
[0030]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention includes a reforming catalyst layer for steam reforming a hydrocarbon-based fuel, a fuel supply passage for combustion, and a combustion air passage, and the reforming by combustion exhaust gas. In a fuel reformer comprising a burner for heating a catalyst and an air preheating unit for preheating the combustion air with combustion exhaust gas from the burner, the burner has a hollow cylindrical combustion cylinder, the axis and concentric ring-shaped with an outer combustion tube, via a discharge passage of the combustion exhaust gas is provided the reforming catalyst layer, further, the combustion tube is a discharge passage of the combustion exhaust gas at one end thereof and a communicating and combustion chamber having a combustion section of the burner, and that said combustion air passage formed in the axis and concentric ring-shaped combustion tube were successively axially disposed within the combustion cylinder, the air preheater section, the combustion air is the combustion cylinder Ri by the combustion exhaust gas It shall be preheated to, (the invention of claim 1).
[0031]
According to the above configuration, it is possible to reduce the fluid pressure loss of the combustion air, and it is possible to provide a simple and compact fuel reformer as the entire apparatus.
[0032]
As an embodiment of the invention of claim 1, the inventions of claims 2 to 4 below are preferable. That is, in the fuel reformer according to claim 1, the combustion portion of the burner is provided in a substantially central portion in the axial direction in the hollow cylindrical combustion cylinder, and the air preheating portion is located below the combustion portion. The combustion exhaust gas in the combustion exhaust gas discharge path along the inner wall of the combustion cylinder and along the lower combustion cylinder outer wall is configured to simultaneously perform air preheating and heating of the reforming catalyst (invention of claim 2). Further, in the fuel reformer according to claim 2, the combustion air inlet, the combustion exhaust gas outlet, the reforming fuel, and the reforming steam inlet are sequentially provided from the lower side in the axially lower portion of the combustion cylinder. It is provided (invention of claim 3). According to such a configuration, since the air preheating unit is provided in parallel with a part of the reforming catalyst layer that requires the most heat transfer area through the combustion exhaust gas discharge passage, the device configuration of the reformer. Therefore, an extremely compact reformer can be provided.
[0033]
Moreover, the positional relationship of each member and the flow directions of various gases can be reversed upside down as in the invention of claim 4. That is, in the fuel reformer according to claim 2 or 3, the axial positional relationship of each member or each inlet / outlet is configured so that the top and bottom are reversed and the top and bottom are reversed. Considering prevention of accumulation of dusts in the combustion part, the configuration of the invention of claim 4 is more preferable. However, considering other factors other than the reformer main body, for example, the invention of claim 4 has a top and bottom. The reverse may be preferable, and it is desirable to use them properly according to the application.
[0034]
Further, as in the fifth aspect of the invention, the fuel cell power generator is provided with the fuel reformer according to any one of the first to fourth aspects, so that the energy efficiency of the reformer is increased. Thus, the power generation efficiency can be improved. Furthermore, the auxiliary power can be reduced by suppressing the fluid pressure loss of air, which can also contribute to the improvement of power generation efficiency. Further, the fuel reformer can be made compact and the cost of the fuel cell power generator can be reduced.
[0035]
DETAILED DESCRIPTION OF THE INVENTION
Examples of the present invention will be described below with reference to the drawings.
[0036]
FIG. 1 is a schematic configuration diagram of a fuel reformer showing an embodiment relating to the present invention, and members having the same functions as those in FIG. 2 are given the same numbers (numbers excluding the suffix a) for details. Description is omitted.
[0037]
The difference from FIG. 1 and 2, in Figure 1, burner 6 is assumed to have a hollow cylindrical combustion cylinder 18, in its axial center concentric ring shape an outer of the combustion cylinder, the combustion exhaust gas The reforming catalyst layer 3 is provided through the exhaust passage 17, and the combustion cylinder 18 is connected to the exhaust passage 17 for the combustion exhaust gas at one end thereof and a combustion chamber 19 provided with a combustion portion of the burner 6. , and the axis and the air supply passage 16 for formed combustion concentrically ring-shaped combustion cylinder 18, and which are sequentially arranged in the axial direction of the combustion cylinder 18, the air preheater 20, the combustion air Is preheated by the combustion exhaust gas through the combustion cylinder 18 .
[0038]
Furthermore, specifically, the combustion part of the burner 6 is provided at the substantially central part in the axial direction in the hollow cylindrical combustion cylinder 18, and the air preheating part 20 is provided over the entire axial lower part in the combustion cylinder, The combustion exhaust gas in the combustion exhaust gas discharge passage 17 is configured to simultaneously perform air preheating and reforming catalyst heating.
[0039]
Further, a combustion air inlet connected to the air supply path 16 is provided at the lower portion in the axial direction of the combustion cylinder 18, a combustion exhaust gas outlet is provided thereon, and a reforming fuel and reforming steam are further provided thereon. Are sequentially provided. In this embodiment, the reformed gas outlet is provided at the upper part. However, a reformed gas flow path is further provided on the outer periphery of the reformed catalyst layer 3, and the flow path is folded at the upper part of the reformed catalyst layer 3 for modification. A configuration may be adopted in which the quality gas outlet is provided in the lower portion. In this case, there is an advantage that heat of the reformed gas can be given to the inner reforming catalyst.
[0040]
In FIG. 1, reference numeral 7 denotes a fuel supply pipe for combustion, which is connected to the combustion section of the burner together with combustion air. Further, the outer peripheral portion of the fuel supply pipe 7 is covered with a heat insulating material 12b, and together with the heat insulating material 12 provided on the outer peripheral portion of the reforming catalyst layer 3 and the reformer upper surface portion, the heat dissipation loss to the outside is reduced. Is configured to do.
[0041]
An example of the temperature of the main part in the fuel reformer shown in FIG. 1 is shown as a rough numerical value as follows. According to the configuration of FIG. 1, the temperature distribution of the reforming catalyst layer is made appropriate and combustion is performed. The air can be preheated to keep the combustion exhaust gas temperature lower than before.
[0042]
-Lower temperature of reforming catalyst layer: 200-250 ° C
-Upper temperature of reforming catalyst layer: 600-700 ° C
・ Lower temperature of combustion air: 20 ℃
-Combustion air upper temperature: 200 ° C
-Combustion exhaust gas lower outlet temperature: 150-200 ° C
-Combustion exhaust gas discharge path upper inlet temperature: 1000 ° C
[0043]
【The invention's effect】
As described above, according to the present invention, a reforming catalyst layer for steam reforming a hydrocarbon-based fuel, a combustion fuel supply path, and a combustion air path are provided, and the reforming catalyst is heated by combustion exhaust gas. In the fuel reformer comprising a burner that performs heating and an air preheating unit that preheats the combustion air with the combustion exhaust gas of the burner, the burner has a hollow cylindrical combustion cylinder that is outside the combustion cylinder. the axis and concentric ring-shaped combustion tube Te, through the discharge passage of the combustion exhaust gas is provided to the reforming catalyst layer, further, the combustion cylinder is communicated with the discharge passage of the combustion exhaust gas at one end thereof and and a combustion chamber having a combustion section of the burner, and that said combustion air passage formed in the axis and concentric ring-shaped combustion tube were successively axially disposed within the combustion cylinder, said air preheat parts are combustion air through the combustion cylinder Ri by the flue gas pre By that shall be, together with the energy efficiency of the high reformer is obtained can be reduced fluid pressure loss of the combustion air, also, the entire device, a simple and compact fuel reformer Can be provided.
[0044]
Further, by providing the fuel cell power generation device with the fuel reformer, fuel that suppresses fluid pressure loss of air and reduces auxiliary power, and can achieve high power generation efficiency and cost reduction. A battery power generation device can be provided.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing an embodiment of a fuel reformer of the present invention. FIG. 2 is a configuration diagram of an example of a conventional fuel reformer disclosed in Patent Document 1. FIG. Schematic configuration diagram of an example of a fuel cell power generator equipped with a mass device
3: reforming catalyst layer, 6: burner, 7: fuel supply pipe, 16: air supply path, 17: combustion exhaust gas discharge path, 18: combustion cylinder, 20: air preheating section, 21: desulfurizer, 22: steam Generator: 23: Reformer, 24: Carbon monoxide converter, 25: Carbon monoxide remover, 26: Fuel cell.

Claims (5)

炭化水素系燃料を水蒸気改質する改質触媒層と、燃焼用の燃料供給路と燃焼用空気路とを有し、燃焼排ガスにより前記改質触媒を加熱するバーナと、前記燃焼用空気を前記バーナの燃焼排ガスにより予熱する空気予熱部とを備えた燃料改質器において、
前記バーナは中空円筒状の燃焼筒を有し、前記燃焼筒の外側であって燃焼筒の軸心と同心円状に、前記燃焼排ガスの排出路を介して前記改質触媒層を設け、
さらに、前記燃焼筒は、その一方端で前記燃焼排ガスの排出路に連通しかつバーナの燃焼部を備えた燃焼室と、燃焼筒の軸心と同心円状に形成された前記燃焼用空気路とが、燃焼筒内の軸方向に順次配設されたものとし、
前記空気予熱部は、燃焼用空気が燃焼排ガスにより前記燃焼筒を介して予熱されるものとしたことを特徴とする燃料改質器。
A reforming catalyst layer for steam reforming a hydrocarbon-based fuel, a fuel supply path for combustion, and a combustion air path; a burner for heating the reforming catalyst with combustion exhaust gas; and In a fuel reformer equipped with an air preheating part that is preheated by the combustion exhaust gas of the burner,
The burner has a hollow cylindrical combustion tube, outside the a and axis concentric ring-shaped combustion cylinder of the combustion cylinder, the reforming catalyst layer is provided via the discharge path of the flue gas,
Further, the combustion cylinder has one combustion chamber having a combustion portion of communicating and burners discharging path of the combustion exhaust gas at the end, the combustion air passage formed in the axis and concentric ring-shaped combustion tube Are sequentially arranged in the axial direction in the combustion cylinder,
The air preheater, a fuel reformer, wherein the combustion air is assumed to be preheated through the combustion cylinder Ri by the flue gas.
請求項1に記載の燃料改質器において、前記バーナの燃焼部は前記中空円筒状の燃焼筒内の軸方向のほぼ中央部に設け、前記空気予熱部は、前記燃焼部より下方の燃焼筒内壁に沿って設けられ、前記下方の燃焼筒外壁に沿う前記燃焼排ガス排出路における燃焼排ガスは、空気予熱と改質触媒加熱とを同時に行なう構成としたことを特徴とする燃料改質器。  2. The fuel reformer according to claim 1, wherein the combustion portion of the burner is provided at a substantially central portion in the axial direction in the hollow cylindrical combustion tube, and the air preheating portion is a combustion tube below the combustion portion. A fuel reformer characterized in that the combustion exhaust gas in the combustion exhaust gas discharge path provided along the inner wall and along the lower combustion cylinder outer wall simultaneously performs air preheating and reforming catalyst heating. 請求項2に記載の燃料改質器において、前記燃焼筒の軸方向下部に、下方から、前記燃焼用空気入口,燃焼排ガス出口,改質用燃料および改質用水蒸気の入口を順次設けたことを特徴とする燃料改質器。  3. The fuel reformer according to claim 2, wherein the combustion air inlet, the combustion exhaust gas outlet, the reforming fuel, and the reforming steam inlet are sequentially provided in the axially lower portion of the combustion cylinder from below. A fuel reformer characterized by. 請求項2または3に記載の燃料改質器において、前記各部材または各入口・出口の、前記軸方向の位置関係は、上と下とを全て逆に代えて、天地を逆に構成したことを特徴とする燃料改質器。  The fuel reformer according to claim 2 or 3, wherein the axial positional relationship of each member or each inlet / outlet is configured such that the top and bottom are reversed and the top and bottom are reversed. A fuel reformer. 請求項1ないし4のいずれかに記載の燃料改質器を備えることを特徴とする燃料電池発電装置。  A fuel cell power generator comprising the fuel reformer according to any one of claims 1 to 4.
JP2003093216A 2003-03-31 2003-03-31 Fuel reformer and fuel cell power generator Expired - Fee Related JP4210912B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003093216A JP4210912B2 (en) 2003-03-31 2003-03-31 Fuel reformer and fuel cell power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003093216A JP4210912B2 (en) 2003-03-31 2003-03-31 Fuel reformer and fuel cell power generator

Publications (2)

Publication Number Publication Date
JP2004299939A JP2004299939A (en) 2004-10-28
JP4210912B2 true JP4210912B2 (en) 2009-01-21

Family

ID=33406068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003093216A Expired - Fee Related JP4210912B2 (en) 2003-03-31 2003-03-31 Fuel reformer and fuel cell power generator

Country Status (1)

Country Link
JP (1) JP4210912B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100711893B1 (en) 2005-06-24 2007-04-25 삼성에스디아이 주식회사 Reformer for Fuel Cell
JP2007031185A (en) * 2005-07-25 2007-02-08 Fuji Electric Holdings Co Ltd Fuel reforming apparatus
JP4640052B2 (en) * 2005-09-05 2011-03-02 富士電機システムズ株式会社 Hydrogen generator and power generation system provided with the same
KR100707834B1 (en) 2005-12-22 2007-04-13 한국에너지기술연구원 Thermal efficiency improved fuel reformer using internal heat exchanging structure
JP5566572B2 (en) * 2007-11-07 2014-08-06 パナソニック株式会社 Combustion device, fuel processing device, and fuel cell power generation system
KR101093132B1 (en) 2009-06-19 2011-12-12 한국기계연구원 Reformer using off gas, fuel cell system, and driving method thereof
JP6097384B2 (en) * 2013-03-25 2017-03-15 住友精密工業株式会社 Fuel reformer and fuel cell
CN112960647B (en) * 2021-03-16 2022-10-25 哈尔滨工业大学 Reforming hydrogen production and catalytic combustion integrated device with variable catalyst particle arrangement

Also Published As

Publication number Publication date
JP2004299939A (en) 2004-10-28

Similar Documents

Publication Publication Date Title
EP2008331B1 (en) Fuel cell system
KR20110044771A (en) Improved fuel cell stack flow hood air flow using an air distribution device
KR101563455B1 (en) Method and arrangement for utilizing recirculation for high temperature fuel cell system
JP2011113934A (en) Fuel cell system
KR20080000674A (en) Fuel cell system
JP6064782B2 (en) Fuel cell device
JP2009059658A (en) Indirect interior-reformed solid oxide fuel cell
JP2006269332A (en) Solid oxide type fuel cell system
JP4953231B2 (en) Hydrogen generator and fuel cell power generator using the same
JP4210912B2 (en) Fuel reformer and fuel cell power generator
JP3903710B2 (en) Fuel reformer and polymer electrolyte fuel cell power generator using the same
WO2007077791A1 (en) Indirect internal reforming solid oxide fuel cell
JP2003187849A (en) Solid polymer fuel cell power generator
JP2007200709A (en) Solid oxide fuel cell stack and its operation method
JP2003086210A (en) Solid high-polymer type fuel cell power generator and its operation method
JP4136624B2 (en) Liquid fuel reforming method and apparatus
JP6237114B2 (en) Fuel cell device
JP4696495B2 (en) Fuel cell power generator
KR101250418B1 (en) fuel processor of fuel cell
KR101316042B1 (en) Integrated Reformer System for a Fuel Cell
JP2004185942A (en) Hydrogen generating device for fuel cell
JP5007077B2 (en) Reformer and indirect internal reforming type solid oxide fuel cell
JP2002326805A (en) Reformer and fuel cell system which is equipped with this
JP6582572B2 (en) Fuel cell system
JP4288581B2 (en) Fuel reformer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081015

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees