WO2007077791A1 - Indirect internal reforming solid oxide fuel cell - Google Patents

Indirect internal reforming solid oxide fuel cell Download PDF

Info

Publication number
WO2007077791A1
WO2007077791A1 PCT/JP2006/325772 JP2006325772W WO2007077791A1 WO 2007077791 A1 WO2007077791 A1 WO 2007077791A1 JP 2006325772 W JP2006325772 W JP 2006325772W WO 2007077791 A1 WO2007077791 A1 WO 2007077791A1
Authority
WO
WIPO (PCT)
Prior art keywords
reforming
reformer
fuel cell
solid oxide
oxide fuel
Prior art date
Application number
PCT/JP2006/325772
Other languages
French (fr)
Japanese (ja)
Inventor
Yasushi Mizuno
Susumu Hatada
Iwao Anzai
Original Assignee
Nippon Oil Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corporation filed Critical Nippon Oil Corporation
Publication of WO2007077791A1 publication Critical patent/WO2007077791A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/384Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts the catalyst being continuously externally heated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0618Reforming processes, e.g. autothermal, partial oxidation or steam reforming
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a solid oxide fuel cell, and more particularly to an indirect internal reforming solid oxide fuel cell having a reformer in the vicinity of the fuel cell.
  • Patent Document 1 Japanese Patent Laid-Open No. 2002-358997
  • An object of the present invention is to stably operate an indirect internal reforming solid oxide fuel cell using kerosene as a reforming raw material without lowering efficiency even when operating conditions fluctuate.
  • An indirect internal reforming type solid oxide fuel cell that can be manufactured is provided.
  • a reformer capable of reforming kerosene, a solid oxide fuel cell using a reformed gas obtained from the reformer as a fuel, and a panner for heating the reformer
  • the reformer has a double pipe structure consisting of an outer pipe and an inner pipe,
  • a space between the outer tube and the inner tube is filled with a reforming catalyst capable of steam reforming kerosene, and the panner is connected to one end of the inner tube,
  • the reformer is arranged at a position where the outer surface of the outer tube receives solid oxide fuel cell power thermal radiation.
  • An indirect internal reforming solid oxide fuel cell is provided.
  • the reformer may have a plurality of the double-pipe structures.
  • the reforming catalyst may include a reforming catalyst having kerosene oxidation activity.
  • an indirect internal reforming solid oxide fuel cell using kerosene as a reforming raw material can be stably operated without lowering efficiency even when operating conditions fluctuate.
  • An indirect internal reforming solid oxide fuel cell is provided.
  • FIG. 1 is a schematic diagram showing an example of an indirect internal reforming SOFC of the present invention.
  • Solid oxide fuel cell 3a Anode
  • a reformed gas that is a gas containing hydrogen is produced from kerosene that is a reforming raw material by a steam reforming reaction.
  • partial oxidation reforming reaction may be accompanied at this time, steam reforming is made dominant from the viewpoint of efficiently producing hydrogen. Therefore, in the reformer, the reaction becomes endothermic in overall.
  • the reformer has a double tube structure formed of an outer tube and an inner tube. Therefore, the reformer has two spaces, a space between the outer tube and the inner tube (hereinafter, referred to as an annular portion) and a space inside the inner tube, which are separated from each other.
  • the annular portion is filled with a reforming catalyst capable of reforming kerosene.
  • a reforming catalyst capable of reforming kerosene.
  • a water steam reforming catalyst or an autothermal reforming catalyst a catalyst having steam reforming ability and partial oxidation reforming ability
  • a known catalytic force capable of steam reforming or autothermal reforming of kerosene to be used can be appropriately selected and employed.
  • the reforming catalyst includes a reforming catalyst having kerosene oxidation activity.
  • Kerosene oxidation activity means the ability to generate heat by oxidizing kerosene with oxygen on the catalyst.
  • a panner is connected to one end of the inner tube.
  • a panner can be attached to the inner tube itself.
  • the inner pipe and the burner may be arranged apart from each other and connected between them by a conduit to guide the burner combustion gas to the inner pipe.
  • one perner may be connected to the inner pipe of each double pipe, but the combustion gas of one parner may be branched and supplied to multiple inner pipes. ,.
  • the panner is appropriately selected from known panners capable of combusting the panner fuel to be used. It can be done.
  • kerosene used as a reforming raw material is preferable to use as the fuel for the PANA. This is because it is not necessary to prepare a separate fuel. However, other fuels can be used.
  • SOFC various shapes such as a flat plate shape and a cylindrical shape can be appropriately selected and employed.
  • SOFC may be a single cell! /, But for practical use, a stack in which a plurality of single cells are arranged is preferably used. In this case, there may be one or more stacks.
  • SOFC, reformer and panner can be accommodated in a container such as a can and modularized.
  • the reformer is arranged at a position where direct heat transfer to the outer surface of the SOFC force outer tube is possible. It is preferred that substantially no shielding be placed between the reformer and the SOFC. In addition, it is preferable to shorten the distance between the reformer and the SOFC as much as possible. For example, multiple double tubes can be placed around the SOFC stack.
  • the reforming catalyst can receive the exhaust heat of SOFC from the outer pipe surface, and can receive the heat of the Pana combustion gas flowing in the inner pipe. It becomes.
  • the heat supply to the reformer is insufficient with only the exhaust heat of the fuel cell due to disturbance or a rapid increase in the reforming amount, combustion may be performed with the PANANER, and the heat shortage may be compensated by the heat of the PANANA combustion gas. Therefore, the solid oxide fuel cell can be stably operated without reducing the efficiency.
  • the heat required for reforming can be provided with only SOFC exhaust heat, the burner does not have to be burned.
  • the necessity of Pana combustion can be judged by the reforming catalyst outlet temperature.
  • the reforming catalyst outlet temperature is preferably 580 ° C or higher, more preferably 620 ° C or higher, and further preferably 650 ° C or higher.
  • the temperature is preferably 850 ° C or lower, more preferably 800 ° C or lower, and further preferably 750 ° C or lower.
  • FIG. 1 is a schematic diagram showing an embodiment of the internal reforming SOFC of the present invention.
  • the reformer 1 has an outer pipe la and an inner pipe lb, and a panner 4 is connected to the inner pipe. With outer tube A reforming catalyst 5 is filled in the annular portion between the inner pipe and the inner pipe. The reformer and SOFC3 are placed close to each other and there is a gap between them (no shield is placed).
  • the reformer and the SOFC are accommodated in a container 6.
  • the panner is provided through the wall of the container.
  • the temperature of the reformer catalyst can be continuously monitored and ONZOFF control can be performed so that the temperature becomes a predetermined value or higher.
  • Each supply gas is appropriately preheated as necessary and then supplied to the reformer or SOFC.
  • the indirect internal reforming SOFC of the present invention can be used for, for example, a stationary or mobile power generation system, and a cogeneration system.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Fuel Cell (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

This invention provides an indirect internal reforming solid oxide fuel cell using kerosine as a reforming raw material, which, even when operating conditions have been varied, can be stably operated without a deterioration in efficiency. The indirect internal reforming solid oxide fuel cell comprises a reformer capable of reforming kerosine, a solid oxide fuel cell using a reformed gas obtained from the reformer as a fuel, and a burner for heating the reformer. The reformer has a double pipe structure comprising an outer pipe and an inner pipe. A reforming catalyst, which can reform kerosine through steam reforming, is packed in a space between the outer pipe and the inner pipe. The burner is connected to one end of the inner pipe. The reformer is disposed at a position that the outer surface of the outer pipe receives thermal radiation from the solid oxide fuel cell.

Description

間接内部改質型固体酸化物形燃料電池  Indirect internal reforming type solid oxide fuel cell
技術分野  Technical field
[0001] 本発明は固体酸ィ匕物形燃料電池に関し、より詳しくは、改質器を燃料電池近傍に 有する間接内部改質型固体酸化物形燃料電池に関する。  The present invention relates to a solid oxide fuel cell, and more particularly to an indirect internal reforming solid oxide fuel cell having a reformer in the vicinity of the fuel cell.
背景技術  Background art
[0002] 固体酸化物形燃料電池(Solid Oxide Fuel Cell。以下場合により SOFCという 。;)においては、灯油等の改質原料を改質して水素を含有する改質ガスとし、改質ガ スを SOFCに燃料として供給することが行われて 、る。改質反応としては吸熱を伴う 水蒸気改質反応が主に利用される。  [0002] In a solid oxide fuel cell (hereinafter referred to as SOFC in some cases), reforming raw materials such as kerosene are reformed to form a reformed gas containing hydrogen and reformed gas. Is being supplied to SOFC as fuel. As the reforming reaction, steam reforming reaction with endotherm is mainly used.
[0003] SOFCの動作温度が高く改質原料燃料の改質温度に近いため、 SOFCからの熱 輻射を受ける位置に改質器を配置し、 SOFCの熱を改質に利用する間接内部改質 型 SOFCがある (特許文献 1参照)。  [0003] Since the operating temperature of SOFC is high and close to the reforming temperature of the reforming raw material fuel, an indirect internal reforming that uses SOFC heat for reforming by placing a reformer at a position that receives heat radiation from SOFC There is a type SOFC (see Patent Document 1).
特許文献 1:特開 2002— 358997号公報  Patent Document 1: Japanese Patent Laid-Open No. 2002-358997
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] しかし、灯油のような高次炭化水素を改質原料に用いる場合、改質が進んでいない 炭化水素成分を、動作温度の高い固体酸化物形燃料電池に供給すると、炭素析出 により運転の安定性が損なわれる場合がある。よって、灯油のような高次炭化水素を [0004] However, when a higher-order hydrocarbon such as kerosene is used as a reforming raw material, if a hydrocarbon component that has not been reformed is supplied to a solid oxide fuel cell having a high operating temperature, it is operated by carbon deposition. May be impaired. Therefore, higher hydrocarbons like kerosene
C1ィ匕合物 (炭素数 1の化合物)まで完全転化させることが望まれる。 It is desirable to completely convert the compound to C1 compound (compound with 1 carbon atom).
[0005] 燃料電池排熱を十分受けることのできる定常運転時は、システム設計により改質器 に十分な受熱面積を与えておけば高い転化率を維持できるが、負荷変動や外乱等 により燃料電池排熱量が減少した場合、ある ヽは急激に改質原料の改質量を増加さ せた場合、改質に必要な熱量が不足するため改質における転ィ匕率の低下を引き起 こすことがある。この際、燃料電池の燃料利用率を低下させてアノードオフガスの熱 量を大きくし、アノードオフガスの燃焼熱によって改質器を加熱することにより、転ィ匕 率の低下を抑制することも考えられるが、この場合、いったん改質した燃料を燃焼さ せて熱供給するため効率が大幅に低下する。 [0005] During steady operation that can sufficiently receive fuel cell exhaust heat, a high conversion rate can be maintained if a sufficient heat receiving area is given to the reformer by system design. However, the fuel cell is subject to load fluctuations, disturbances, etc. When the amount of exhaust heat is reduced, if the amount of reforming of the reforming raw material is suddenly increased, the amount of heat necessary for reforming may be insufficient, causing a reduction in the conversion rate during reforming. is there. At this time, it is also possible to suppress the decrease in the conversion rate by reducing the fuel utilization rate of the fuel cell to increase the calorific value of the anode off gas and heating the reformer with the combustion heat of the anode off gas. In this case, however, the reformed fuel is burned once. Since the heat is supplied, the efficiency is greatly reduced.
[0006] 本発明の目的は、灯油を改質原料に用いる間接内部改質型固体酸化物形燃料電 池において、運転条件が変動する際にも、効率を低下させることなく安定に運転する ことのできる間接内部改質型固体酸ィ匕物形燃料電池を提供することである。  [0006] An object of the present invention is to stably operate an indirect internal reforming solid oxide fuel cell using kerosene as a reforming raw material without lowering efficiency even when operating conditions fluctuate. An indirect internal reforming type solid oxide fuel cell that can be manufactured is provided.
課題を解決するための手段  Means for solving the problem
[0007] 本発明により、灯油を改質可能な改質器と、該改質器から得られる改質ガスを燃料 とする固体酸化物形燃料電池と、該改質器を加熱するためのパーナとを有し、 該改質器が外管と内管とからなる二重管構造を有し、 [0007] According to the present invention, a reformer capable of reforming kerosene, a solid oxide fuel cell using a reformed gas obtained from the reformer as a fuel, and a panner for heating the reformer The reformer has a double pipe structure consisting of an outer pipe and an inner pipe,
該外管と該内管との間の空間に灯油を水蒸気改質可能な改質触媒が充填され、 該内管の一端に該パーナが接続され、  A space between the outer tube and the inner tube is filled with a reforming catalyst capable of steam reforming kerosene, and the panner is connected to one end of the inner tube,
該外管の外表面が固体酸ィ匕物形燃料電池力 熱輻射を受ける位置に該改質器が 配された  The reformer is arranged at a position where the outer surface of the outer tube receives solid oxide fuel cell power thermal radiation.
間接内部改質型固体酸化物形燃料電池が提供される。  An indirect internal reforming solid oxide fuel cell is provided.
[0008] 上記間接内部改質型固体酸化物形燃料電池にお!、て、前記改質器が、前記二重 管構造を複数有することができる。 [0008] In the indirect internal reforming solid oxide fuel cell, the reformer may have a plurality of the double-pipe structures.
[0009] 前記改質触媒が灯油酸化活性を有する改質触媒を含むことができる。 [0009] The reforming catalyst may include a reforming catalyst having kerosene oxidation activity.
発明の効果  The invention's effect
[0010] 本発明により、灯油を改質原料に用いる間接内部改質型固体酸化物形燃料電池 において、運転条件が変動する際にも、効率を低下させることなく安定に運転するこ とのできる間接内部改質型固体酸化物形燃料電池が提供される。  [0010] According to the present invention, an indirect internal reforming solid oxide fuel cell using kerosene as a reforming raw material can be stably operated without lowering efficiency even when operating conditions fluctuate. An indirect internal reforming solid oxide fuel cell is provided.
図面の簡単な説明  Brief Description of Drawings
[0011] [図 1]本発明の間接内部改質型 SOFCの一例を示す模式図である。  FIG. 1 is a schematic diagram showing an example of an indirect internal reforming SOFC of the present invention.
符号の説明  Explanation of symbols
[0012] 1 :改質器  [0012] 1: reformer
la :外管  la: outer tube
lb :内管  lb: Inner pipe
3 :固体酸化物形燃料電池 3a :アノード 3: Solid oxide fuel cell 3a: Anode
3b :固体酸化物電解質  3b: Solid oxide electrolyte
3c :力ソード  3c: Power Sword
4 :パーナ  4: Pana
5 :改質触媒  5: Reforming catalyst
o :谷器  o: Valley device
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0013] 改質器では、水蒸気改質反応により、改質原料である灯油から、水素を含むガスで ある改質ガスを製造する。このとき部分酸化改質反応を伴ってもよいが、水素を効率 的に製造する観点から、水蒸気改質が支配的になるようにする。従って、改質器では オーバーオールで吸熱になる反応が進む。  In the reformer, a reformed gas that is a gas containing hydrogen is produced from kerosene that is a reforming raw material by a steam reforming reaction. Although partial oxidation reforming reaction may be accompanied at this time, steam reforming is made dominant from the viewpoint of efficiently producing hydrogen. Therefore, in the reformer, the reaction becomes endothermic in overall.
[0014] 改質器は、外管と内管とで形成される二重管構造を有する。従って、改質器は、外 管と内管との間の空間(以下場合により、環状部という。)と、内管の内側の空間との、 別個に仕切られた二つの空間を有する。  [0014] The reformer has a double tube structure formed of an outer tube and an inner tube. Therefore, the reformer has two spaces, a space between the outer tube and the inner tube (hereinafter, referred to as an annular portion) and a space inside the inner tube, which are separated from each other.
[0015] 環状部には、灯油を改質可能な改質触媒が充填される。改質触媒としては、水蒸 気改質触媒やオートサーマルリフォーミング触媒 (水蒸気改質能および部分酸化改 質能を有する触媒)を用いることができる。使用する灯油を水蒸気改質もしくはオート サーマルリフォーミング可能な公知の触媒力も適宜選んで採用することができる。  [0015] The annular portion is filled with a reforming catalyst capable of reforming kerosene. As the reforming catalyst, a water steam reforming catalyst or an autothermal reforming catalyst (a catalyst having steam reforming ability and partial oxidation reforming ability) can be used. A known catalytic force capable of steam reforming or autothermal reforming of kerosene to be used can be appropriately selected and employed.
[0016] 改質触媒が灯油酸化活性を有する改質触媒を含むことが好ま ヽ。灯油酸化活性 とは、触媒上で灯油を酸素と酸化反応させ発熱させる能力をさす。本改質部に灯油 酸化活性を有する触媒を充填することにより、触媒上で直接発熱が得られ、改質触 媒が改質に適する温度に到達するまでの時間を短縮することができる。  [0016] Preferably, the reforming catalyst includes a reforming catalyst having kerosene oxidation activity. Kerosene oxidation activity means the ability to generate heat by oxidizing kerosene with oxygen on the catalyst. By filling the reforming section with a catalyst having kerosene oxidation activity, heat is directly generated on the catalyst, and the time until the reforming catalyst reaches a temperature suitable for reforming can be shortened.
[0017] 内管の一端にはパーナが接続される。内管自体にパーナを取り付けることができる 。あるいは、内管とパーナとを離間させて配置し、これらの間を導管により接続し、バ ーナの燃焼ガスを内管に導いてもよい。二重管が複数存在する場合、それぞれの二 重管の内管に一つずつパーナを接続してもよいが、一つのパーナの燃焼ガスを分岐 して複数の内管に供給してもよ 、。  [0017] A panner is connected to one end of the inner tube. A panner can be attached to the inner tube itself. Alternatively, the inner pipe and the burner may be arranged apart from each other and connected between them by a conduit to guide the burner combustion gas to the inner pipe. When there are multiple double pipes, one perner may be connected to the inner pipe of each double pipe, but the combustion gas of one parner may be branched and supplied to multiple inner pipes. ,.
[0018] パーナは、使用するパーナ燃料を燃焼可能な公知のパーナから適宜選んで用い ることがでさる。 [0018] The panner is appropriately selected from known panners capable of combusting the panner fuel to be used. It can be done.
[0019] パーナの燃料としては、改質原料として用いる灯油を用いることが好ましい。別途の 燃料を用意する必要がないからである。ただし、他の燃料を用いることもできる。  [0019] It is preferable to use kerosene used as a reforming raw material as the fuel for the PANA. This is because it is not necessary to prepare a separate fuel. However, other fuels can be used.
[0020] SOFCとしては、平板型や円筒型などの各種形状を適宜選んで採用できる。また S OFCは単セルであってもよ!/、が、実用上は複数の単セルを配列させたスタックが好 ましく用いられる。この場合、スタックは 1つでも複数でもよい。 SOFC,改質器および パーナを缶体等の容器の中に収容してモジュールィ匕することができる。  [0020] As the SOFC, various shapes such as a flat plate shape and a cylindrical shape can be appropriately selected and employed. SOFC may be a single cell! /, But for practical use, a stack in which a plurality of single cells are arranged is preferably used. In this case, there may be one or more stacks. SOFC, reformer and panner can be accommodated in a container such as a can and modularized.
[0021] 改質器は、 SOFC力 外管の外表面へと直接輻射伝熱可能な位置に配される。改 質器と SOFCとの間には実質的に遮蔽物は配置しないことが好ましい。また、改質器 と SOFCとの距離は極力短くすることが好ましい。例えば、複数の二重管を SOFCス タックを取り囲む位置に配置することができる。  [0021] The reformer is arranged at a position where direct heat transfer to the outer surface of the SOFC force outer tube is possible. It is preferred that substantially no shielding be placed between the reformer and the SOFC. In addition, it is preferable to shorten the distance between the reformer and the SOFC as much as possible. For example, multiple double tubes can be placed around the SOFC stack.
[0022] 本発明の間接内部改質型 SOFCにおいて、改質触媒は、外管表面から SOFCの 排熱を受けることができ、また、内管に流れるパーナ燃焼ガスの熱を受けることが可 能となる。  [0022] In the indirect internal reforming SOFC of the present invention, the reforming catalyst can receive the exhaust heat of SOFC from the outer pipe surface, and can receive the heat of the Pana combustion gas flowing in the inner pipe. It becomes.
[0023] 外乱あるいは改質量の急増などの理由で燃料電池排熱のみでは改質器への熱供 給が不足する場合、パーナで燃焼を行い、パーナ燃焼ガスの熱により熱不足を補う ことができるため、効率を低下させることなく安定に固体酸ィ匕物形燃料電池を運転す ることができる。 SOFC排熱のみで改質に必要な熱をまかなうことができる場合には、 パーナの燃焼は行わないでよい。パーナ燃焼の必要性については改質触媒出口温 度で判定できる。改質触媒出口温度は、灯油の水蒸気改質反応を完結させるため、 好ましくは 580°C以上、より好ましくは 620°C以上、さらに好ましくは 650°C以上とする 。また、改質触媒の熱劣化抑制のため、好ましくは 850°C以下、より好ましくは 800°C 以下、さらに好ましくは 750°C以下とする。  [0023] If the heat supply to the reformer is insufficient with only the exhaust heat of the fuel cell due to disturbance or a rapid increase in the reforming amount, combustion may be performed with the PANANER, and the heat shortage may be compensated by the heat of the PANANA combustion gas. Therefore, the solid oxide fuel cell can be stably operated without reducing the efficiency. If the heat required for reforming can be provided with only SOFC exhaust heat, the burner does not have to be burned. The necessity of Pana combustion can be judged by the reforming catalyst outlet temperature. In order to complete the steam reforming reaction of kerosene, the reforming catalyst outlet temperature is preferably 580 ° C or higher, more preferably 620 ° C or higher, and further preferably 650 ° C or higher. In order to suppress thermal degradation of the reforming catalyst, the temperature is preferably 850 ° C or lower, more preferably 800 ° C or lower, and further preferably 750 ° C or lower.
実施例  Example
[0024] 以下、本発明を実施例に基づき更に詳細に説明するが、本発明はこれによって限 定されるものではない。図 1は、本発明の内部改質型 SOFCの一形態を示す模式図 である。  Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited thereto. FIG. 1 is a schematic diagram showing an embodiment of the internal reforming SOFC of the present invention.
[0025] 改質器 1は、外管 laおよび内管 lbを有し、内管にはパーナ 4が接続される。外管と 内管との間の環状部には改質触媒 5が充填される。改質器と SOFC3は近接して配 置され、これらの間は空隙とされる (遮蔽物は配置しない)。 [0025] The reformer 1 has an outer pipe la and an inner pipe lb, and a panner 4 is connected to the inner pipe. With outer tube A reforming catalyst 5 is filled in the annular portion between the inner pipe and the inner pipe. The reformer and SOFC3 are placed close to each other and there is a gap between them (no shield is placed).
[0026] 環状部に水蒸気および気化された灯油が供給され、灯油が水蒸気改質されて水 素を含むガス (改質ガス)となり、 SOFCのアノード (燃料極) 3aに供給される。水蒸気 改質反応は吸熱反応である。一方、 SOFCの力ソード (空気極) 3cには酸素含有ガ ス (ここでは空気)が供給される。発電に伴い SOFCが発熱し、その熱が SOFCから 外管の外表面へと輻射伝熱する。こうして SOFC排熱が改質反応の吸熱に利用され る。なお 3bは固体酸ィ匕物力 なる電解質である。  [0026] Steam and vaporized kerosene are supplied to the annular portion, and the kerosene is steam-reformed to become hydrogen-containing gas (reformed gas), which is supplied to the SOFC anode (fuel electrode) 3a. The steam reforming reaction is an endothermic reaction. On the other hand, oxygen-containing gas (air here) is supplied to the SOFC power sword (air electrode) 3c. The SOFC generates heat during power generation, and the heat is radiated from the SOFC to the outer surface of the outer tube. In this way, the SOFC exhaust heat is used to absorb the reforming reaction. Note that 3b is an electrolyte with solid acidity.
[0027] 改質器および SOFCは容器 6の中に収容される。パーナはこの容器の壁面を貫通 して設けられる。  [0027] The reformer and the SOFC are accommodated in a container 6. The panner is provided through the wall of the container.
[0028] ガスの取り合 、等は適宜配管等を用いて行う。  [0028] Gas coupling and the like are appropriately performed using piping or the like.
[0029] 運転条件が変動した場合など、 SOFC排熱だけでは改質反応に必要な熱がまかな えない場合、パーナ 4にて灯油を酸素含有ガス(ここでは空気)によって燃焼させ、そ の燃焼ガスを内管に流し、不足分を補うことができる。内管力 排出される燃焼排気 は、必要に応じてさらに熱利用されて外界に排出される。  [0029] If the heat required for the reforming reaction cannot be achieved by SOFC exhaust heat alone, such as when the operating conditions fluctuate, kerosene is burned with oxygen-containing gas (here, air) in PANA-4, and Combustion gas can be flowed through the inner pipe to make up for the shortage. The combustion exhaust discharged from the inner pipe force is further used as necessary to be discharged to the outside.
[0030] パーナの制御は、例えば、改質触媒の温度を継続的に監視し、その温度が所定の 値以上になるように ONZOFF制御することができる。  [0030] For example, the temperature of the reformer catalyst can be continuously monitored and ONZOFF control can be performed so that the temperature becomes a predetermined value or higher.
[0031] 各供給ガスは必要に応じて適宜予熱されたうえで改質器もしくは SOFCに供給され る。  [0031] Each supply gas is appropriately preheated as necessary and then supplied to the reformer or SOFC.
産業上の利用可能性  Industrial applicability
[0032] 本発明の間接内部改質型 SOFCは、例えば定置用もしくは移動体用の発電システ ムに、またコージェネレーションシステムに利用できる。 [0032] The indirect internal reforming SOFC of the present invention can be used for, for example, a stationary or mobile power generation system, and a cogeneration system.

Claims

請求の範囲 The scope of the claims
[1] 灯油を改質可能な改質器と、該改質器から得られる改質ガスを燃料とする固体酸 化物形燃料電池と、該改質器を加熱するためのパーナとを有し、  [1] A reformer capable of reforming kerosene, a solid oxide fuel cell using the reformed gas obtained from the reformer as fuel, and a panner for heating the reformer ,
該改質器が外管と内管とからなる二重管構造を有し、  The reformer has a double pipe structure consisting of an outer pipe and an inner pipe,
該外管と該内管との間の空間に灯油を水蒸気改質可能な改質触媒が充填され、 該内管の一端に該パーナが接続され、  A space between the outer tube and the inner tube is filled with a reforming catalyst capable of steam reforming kerosene, and the panner is connected to one end of the inner tube,
該外管の外表面が固体酸ィ匕物形燃料電池力 熱輻射を受ける位置に該改質器が 配された  The reformer is arranged at a position where the outer surface of the outer tube receives solid oxide fuel cell power thermal radiation.
間接内部改質型固体酸化物形燃料電池。  Indirect internal reforming type solid oxide fuel cell.
[2] 前記改質器が、前記二重管構造を複数有する請求項 1記載の間接内部改質型固 体酸化物形燃料電池。  2. The indirect internal reforming solid oxide fuel cell according to claim 1, wherein the reformer has a plurality of the double pipe structures.
[3] 前記改質触媒が灯油酸化活性を有する改質触媒を含む請求項 1または 2記載の 間接内部改質型固体酸化物形燃料電池。  3. The indirect internal reforming solid oxide fuel cell according to claim 1 or 2, wherein the reforming catalyst includes a reforming catalyst having kerosene oxidation activity.
PCT/JP2006/325772 2005-12-28 2006-12-25 Indirect internal reforming solid oxide fuel cell WO2007077791A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005377239A JP5216190B2 (en) 2005-12-28 2005-12-28 Indirect internal reforming type solid oxide fuel cell
JP2005-377239 2005-12-28

Publications (1)

Publication Number Publication Date
WO2007077791A1 true WO2007077791A1 (en) 2007-07-12

Family

ID=38228146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/325772 WO2007077791A1 (en) 2005-12-28 2006-12-25 Indirect internal reforming solid oxide fuel cell

Country Status (3)

Country Link
JP (1) JP5216190B2 (en)
TW (1) TW200746537A (en)
WO (1) WO2007077791A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010264406A (en) * 2009-05-15 2010-11-25 Japan Pionics Co Ltd Ammonia decomposition tube
JP2012238537A (en) * 2011-05-13 2012-12-06 Honda Motor Co Ltd Fuel cell module
JP2015015094A (en) * 2013-07-03 2015-01-22 株式会社デンソー Fuel cell device
US9640819B2 (en) 2011-05-13 2017-05-02 Honda Motor Co., Ltd. Fuel cell system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009266541A (en) * 2008-04-24 2009-11-12 Nippon Oil Corp Method for operating indirect internal reforming solid oxide fuel cell system
TWI506846B (en) * 2014-04-09 2015-11-01 Inst Nuclear Energy Res Atomic Energy Council Apparatus of Power Generation Using Dense Solid Oxide Fuel Cells

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003327411A (en) * 2002-05-10 2003-11-19 Yokohama Tlo Co Ltd Apparatus and method for reforming fuel for fuel cell
JP2004288434A (en) * 2003-03-20 2004-10-14 Nippon Oil Corp Hydrogen production apparatus and fuel cell system
JP2005108753A (en) * 2003-10-01 2005-04-21 Ishikawajima Harima Heavy Ind Co Ltd Device and method for vaporizing kerosene fuel for fuel cell
JP2005213133A (en) * 2004-02-02 2005-08-11 Nippon Oil Corp Reforming device and fuel cell system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07272741A (en) * 1994-03-31 1995-10-20 Mitsubishi Heavy Ind Ltd Module structure for cylindrical solid electrolytic fuel cell
JP2000247601A (en) * 1999-02-24 2000-09-12 Sanyo Electric Co Ltd Fuel reformer
JP3813391B2 (en) * 1999-09-27 2006-08-23 株式会社東芝 Solid polymer fuel cell power generator and method of operating the same
JP2002124289A (en) * 2000-10-19 2002-04-26 Hitachi Metals Ltd Solid electrolyte fuel cell system
JP2003007321A (en) * 2001-04-03 2003-01-10 Masaru Ichikawa Direct reforming combined system of hybrid fuel cell using low-grade hydrocarbon
JP3727899B2 (en) * 2002-04-22 2005-12-21 三菱重工業株式会社 Fuel cell module
JP2005263618A (en) * 2004-02-16 2005-09-29 Fuji Electric Holdings Co Ltd Fuel reformer
JP2005285593A (en) * 2004-03-30 2005-10-13 Fuji Electric Holdings Co Ltd Method for operating fuel cell generator
JP4706190B2 (en) * 2004-05-13 2011-06-22 三菱マテリアル株式会社 Solid oxide fuel cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003327411A (en) * 2002-05-10 2003-11-19 Yokohama Tlo Co Ltd Apparatus and method for reforming fuel for fuel cell
JP2004288434A (en) * 2003-03-20 2004-10-14 Nippon Oil Corp Hydrogen production apparatus and fuel cell system
JP2005108753A (en) * 2003-10-01 2005-04-21 Ishikawajima Harima Heavy Ind Co Ltd Device and method for vaporizing kerosene fuel for fuel cell
JP2005213133A (en) * 2004-02-02 2005-08-11 Nippon Oil Corp Reforming device and fuel cell system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010264406A (en) * 2009-05-15 2010-11-25 Japan Pionics Co Ltd Ammonia decomposition tube
JP2012238537A (en) * 2011-05-13 2012-12-06 Honda Motor Co Ltd Fuel cell module
US20140080021A1 (en) * 2011-05-13 2014-03-20 Honda Motor Co., Ltd. Fuel cell module
US9362575B2 (en) 2011-05-13 2016-06-07 Honda Motor Co., Ltd. Fuel cell module
US9640819B2 (en) 2011-05-13 2017-05-02 Honda Motor Co., Ltd. Fuel cell system
JP2015015094A (en) * 2013-07-03 2015-01-22 株式会社デンソー Fuel cell device

Also Published As

Publication number Publication date
TW200746537A (en) 2007-12-16
JP2007179885A (en) 2007-07-12
JP5216190B2 (en) 2013-06-19

Similar Documents

Publication Publication Date Title
US7687042B2 (en) Reformer of fuel cell system
JP5007045B2 (en) Indirect internal reforming type solid oxide fuel cell
JP5154272B2 (en) Fuel cell reformer
EP2810326B1 (en) Fuel cell module
JP2017105695A (en) Hydrogen generator and fuel cell system
WO2013114776A1 (en) Fuel cell module
WO2007077791A1 (en) Indirect internal reforming solid oxide fuel cell
JP2006269332A (en) Solid oxide type fuel cell system
US9102535B2 (en) Flameless steam reformer
KR101422316B1 (en) Reformer and indirect internal reforming­type high­temperature fuel cell
JP4210912B2 (en) Fuel reformer and fuel cell power generator
KR101237778B1 (en) Reformer having spiral reactor
JP2007200709A (en) Solid oxide fuel cell stack and its operation method
JP2008007371A (en) Reformer and indirect internal reforming type solid oxide fuel cell
US20020132147A1 (en) Chambered reactor for fuel processing
EP3022790B1 (en) Fuel cell module
KR101216456B1 (en) Reformer
KR101250418B1 (en) fuel processor of fuel cell
JP5007077B2 (en) Reformer and indirect internal reforming type solid oxide fuel cell
KR100667953B1 (en) Reformer and fuel cell system with the same
JP2009067645A (en) Hydrogen manufacturing device and fuel cell system using the same
JP2007200702A (en) Solid oxide fuel cell and its operating method
US20080171247A1 (en) Reformer of fuel cell system
KR101223236B1 (en) Flameless Steam Reformer
KR20230078858A (en) High-efficiency fuel processing device with durability that enables stable hydrogen production and carbon monoxide removal through heat exchange optimization

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06843175

Country of ref document: EP

Kind code of ref document: A1