JP5007045B2 - Indirect internal reforming type solid oxide fuel cell - Google Patents

Indirect internal reforming type solid oxide fuel cell Download PDF

Info

Publication number
JP5007045B2
JP5007045B2 JP2005377238A JP2005377238A JP5007045B2 JP 5007045 B2 JP5007045 B2 JP 5007045B2 JP 2005377238 A JP2005377238 A JP 2005377238A JP 2005377238 A JP2005377238 A JP 2005377238A JP 5007045 B2 JP5007045 B2 JP 5007045B2
Authority
JP
Japan
Prior art keywords
reforming
fuel cell
solid oxide
oxide fuel
reformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005377238A
Other languages
Japanese (ja)
Other versions
JP2007179884A (en
Inventor
康 水野
巌 安斉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
JX Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Oil and Energy Corp filed Critical JX Nippon Oil and Energy Corp
Priority to JP2005377238A priority Critical patent/JP5007045B2/en
Priority to PCT/JP2006/325734 priority patent/WO2007077780A1/en
Priority to TW095148917A priority patent/TW200740019A/en
Publication of JP2007179884A publication Critical patent/JP2007179884A/en
Application granted granted Critical
Publication of JP5007045B2 publication Critical patent/JP5007045B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • H01M8/04074Heat exchange unit structures specially adapted for fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

本発明は固体酸化物形燃料電池に関し、より詳しくは、改質器を燃料電池近傍に有する間接内部改質型固体酸化物形燃料電池に関する。   The present invention relates to a solid oxide fuel cell, and more particularly to an indirect internal reforming solid oxide fuel cell having a reformer in the vicinity of the fuel cell.

固体酸化物形燃料電池(Solid Oxide Fuel Cell。以下場合によりSOFCという。)においては、灯油等の改質原料を改質して水素を含有する改質ガスとし、改質ガスをSOFCに燃料として供給することが行われている。改質反応としては吸熱を伴う水蒸気改質反応が主に利用される。   In a solid oxide fuel cell (hereinafter sometimes referred to as SOFC), a reforming raw material such as kerosene is reformed into a reformed gas containing hydrogen, and the reformed gas is used as fuel for the SOFC. Supply is done. As the reforming reaction, a steam reforming reaction with endotherm is mainly used.

SOFCの動作温度が高く改質原料燃料の改質温度に近いため、SOFCからの熱輻射を受ける位置に改質器を配置し、SOFCの熱を改質に利用する間接内部改質型SOFCがある(特許文献1参照)。
特開2002−358997号公報
Since the operating temperature of the SOFC is high and close to the reforming temperature of the reforming raw material fuel, there is an indirect internal reforming SOFC in which a reformer is arranged at a position where it receives heat radiation from the SOFC and the heat of the SOFC is used for reforming. Yes (see Patent Document 1).
JP 2002-358997 A

しかし、灯油のような高次炭化水素を改質原料に用いる場合、改質が進んでいない炭化水素成分を、動作温度の高い固体酸化物形燃料電池に供給すると、炭素析出により運転の安定性が損なわれる場合がある。よって、灯油のような高次炭化水素をC1化合物(炭素数1の化合物)まで完全転化させることが望まれる。   However, when high-order hydrocarbons such as kerosene are used as the reforming raw material, if hydrocarbon components that have not undergone reforming are supplied to a solid oxide fuel cell having a high operating temperature, the stability of operation due to carbon deposition. May be damaged. Therefore, it is desired to completely convert higher-order hydrocarbons such as kerosene to C1 compounds (compounds having 1 carbon atom).

燃料電池排熱を十分受けることのできる定常運転時は、システム設計により改質器に十分な受熱面積を与えておけば高い転化率を維持できるが、負荷変動や外乱等により燃料電池排熱量が減少した場合、あるいは急激に改質原料の改質量を増加させた場合、改質に必要な熱量が不足するため改質における転化率の低下を引き起こすことがある。この際、燃料電池の燃料利用率を低下させてアノードオフガスの熱量を大きくし、アノードオフガスの燃焼熱によって改質器を加熱することにより、転化率の低下を抑制することも考えられるが、この場合、いったん改質した燃料を燃焼させて熱供給するため効率が大幅に低下する。   During steady operation that can sufficiently receive fuel cell exhaust heat, a high conversion rate can be maintained if a sufficient heat receiving area is given to the reformer by system design, but the amount of fuel cell exhaust heat is reduced due to load fluctuations and disturbances. When the amount is reduced or when the amount of reforming raw material is rapidly increased, the amount of heat necessary for reforming may be insufficient, which may cause a reduction in conversion rate during reforming. At this time, it is conceivable to reduce the conversion rate by reducing the fuel utilization rate of the fuel cell to increase the amount of heat of the anode offgas and heating the reformer with the combustion heat of the anode offgas. In this case, since the reformed fuel is burned and supplied with heat, the efficiency is greatly reduced.

また、改質器全体が固体酸化物形燃料電池からの輻射伝熱を受ける場合、固体酸化物形燃料電池が定常に到達すると、改質器の改質原料入口付近までほぼ均等に加熱され、温度が高いために改質原料入口付近の触媒上で炭素析出し、触媒の異常劣化を引き起こす場合もある。   Further, when the entire reformer receives radiant heat transfer from the solid oxide fuel cell, when the solid oxide fuel cell reaches a steady state, it is heated almost evenly to the vicinity of the reforming raw material inlet of the reformer, Since the temperature is high, carbon may be deposited on the catalyst in the vicinity of the reforming raw material inlet, resulting in abnormal deterioration of the catalyst.

本発明の目的は、灯油を改質原料に用いる間接内部改質型固体酸化物形燃料電池において、改質触媒を異常劣化させたり、効率を低下させたりすることなく安定に運転することのできる間接内部改質型固体酸化物形燃料電池を提供することである。   An object of the present invention is to provide an indirect internal reforming solid oxide fuel cell that uses kerosene as a reforming raw material, and can be stably operated without abnormally degrading the reforming catalyst or reducing the efficiency. An indirect internal reforming solid oxide fuel cell is provided.

本発明により、灯油を改質可能な改質器と、該改質器から得られる改質ガスを燃料とする固体酸化物形燃料電池と、該改質器を加熱するためのバーナとを有し、
該改質器が、該固体酸化物形燃料電池と該バーナとの間に配置され、
該改質器が、互いに連通する第一の改質部と第二の改質部を有し、
改質ガスの流れについて、第一の改質部が上流に、第二の改質部が下流に位置し、
該第二の改質部が、該固体酸化物形燃料電池からの熱輻射を受ける位置であって、固体酸化物形燃料電池から第一の改質部への熱輻射を遮る位置に配された
間接内部改質型固体酸化物形燃料電池であって、
さらに、改質器入口に直結された、灯油および水を気化、予熱および混合する改質原料予熱器を有する
間接内部改質型固体酸化物形燃料電池が提供される。
According to the present invention, a reformer capable of reforming kerosene, a solid oxide fuel cell using the reformed gas obtained from the reformer as a fuel, and a burner for heating the reformer are provided. And
The reformer is disposed between the solid oxide fuel cell and the burner;
The reformer has a first reforming section and a second reforming section communicating with each other;
Regarding the flow of the reformed gas, the first reforming section is located upstream and the second reforming section is located downstream,
The second reforming section is disposed at a position that receives heat radiation from the solid oxide fuel cell and blocks heat radiation from the solid oxide fuel cell to the first reforming section. Indirect internal reforming type solid oxide fuel cell ,
Further, it has a reforming material preheater directly connected to the reformer inlet for vaporizing, preheating and mixing kerosene and water.
An indirect internal reforming solid oxide fuel cell is provided.

前記第一の改質部および第二の改質部に充填される改質触媒が灯油酸化活性を有する改質触媒を含むことができる。
前記バーナが、灯油の燃焼を行うバーナであることができ、特には、燃焼面を下側にして配置された、灯油の燃焼を行う表面燃焼バーナであることができる。
The reforming catalyst filled in the first reforming unit and the second reforming unit may include a reforming catalyst having kerosene oxidation activity.
The burner may be a burner that burns kerosene, and in particular, may be a surface combustion burner that burns kerosene and is disposed with the combustion surface facing downward.

本発明により、灯油を改質原料に用いる間接内部改質型固体酸化物形燃料電池において、改質触媒を異常劣化させたり、効率を低下させたりすることなく安定に運転することのできる間接内部改質型固体酸化物形燃料電池が提供される。   According to the present invention, an indirect internal reforming solid oxide fuel cell using kerosene as a reforming raw material can be operated stably without abnormally degrading the reforming catalyst or reducing the efficiency. A reformed solid oxide fuel cell is provided.

改質器では、水蒸気改質反応により、改質原料である灯油から、水素を含むガスである改質ガスを製造する。このとき部分酸化改質反応を伴ってもよいが、水素を効率的に製造する観点から、水蒸気改質が支配的になるようにする。従って、改質器ではオーバーオールで吸熱になる反応が進む。   In the reformer, a reformed gas that is a gas containing hydrogen is produced from kerosene that is a reforming raw material by a steam reforming reaction. Although partial oxidation reforming reaction may be accompanied at this time, steam reforming is made dominant from the viewpoint of efficiently producing hydrogen. Therefore, in the reformer, the reaction that becomes endothermic by the overall proceeds.

改質器は、互いに連通する第一の改質部と第二の改質部を有する。改質ガスの流れについて、第一の改質部が上流側に位置し第二の改質部が下流側に位置する。つまり改質原料は第一の改質部に供給され、第一の改質部を出たガスが第二の改質部に流入する。   The reformer has a first reforming section and a second reforming section that communicate with each other. With respect to the flow of the reformed gas, the first reforming section is located on the upstream side and the second reforming section is located on the downstream side. That is, the reforming raw material is supplied to the first reforming section, and the gas exiting the first reforming section flows into the second reforming section.

第一の改質部および第二の改質部とも、灯油を改質可能な改質触媒が充填される。改質触媒としては、水蒸気改質触媒やオートサーマルリフォーミング触媒(水蒸気改質能および部分酸化改質能を有する触媒)を用いることができる。使用する灯油を水蒸気改質もしくはオートサーマルリフォーミング可能な公知の触媒から適宜選んで採用することができる。   Both the first reforming section and the second reforming section are filled with a reforming catalyst capable of reforming kerosene. As the reforming catalyst, a steam reforming catalyst or an autothermal reforming catalyst (a catalyst having steam reforming ability and partial oxidation reforming ability) can be used. The kerosene used can be appropriately selected from known catalysts capable of steam reforming or autothermal reforming.

第一の改質部および第二の改質部に充填される改質触媒が灯油酸化活性を有する改質触媒を含むことが好ましい。灯油酸化活性とは、触媒上で灯油を酸素と酸化反応させ発熱させる能力をさす。本改質部に酸化活性を有する触媒を充填することにより、触媒上で直接発熱が得られ、改質触媒が改質に適する温度に到達するまでの時間を短縮することができる。   It is preferable that the reforming catalyst filled in the first reforming section and the second reforming section includes a reforming catalyst having kerosene oxidation activity. Kerosene oxidation activity refers to the ability to generate heat by oxidizing kerosene with oxygen on the catalyst. By charging the reforming section with a catalyst having oxidation activity, heat is directly generated on the catalyst, and the time until the reforming catalyst reaches a temperature suitable for reforming can be shortened.

本発明の間接内部改質型SOFCは、改質器、SOFCに加えて、改質器を加熱するためのバーナを有する。バーナは、使用するバーナ燃料を燃焼可能な公知のバーナから適宜選んで用いることができる。   The indirect internal reforming SOFC of the present invention has a burner for heating the reformer in addition to the reformer and the SOFC. The burner can be appropriately selected from known burners capable of burning the burner fuel to be used.

バーナの燃料としては、改質原料として用いる灯油を用いることが好ましい。別途の燃料を用意する必要がないからである。ただし、他の燃料を用いることもできる。   As the burner fuel, it is preferable to use kerosene used as a reforming raw material. This is because it is not necessary to prepare a separate fuel. However, other fuels can be used.

SOFCとしては、平板型や円筒型などの各種形状を適宜選んで採用できる。またSOFCは単セルであってもよいが、実用上は複数の単セルを配列させたスタックが好ましく用いられる。この場合、スタックは1つでも複数でもよい。SOFC、改質器およびバーナを缶体等の容器の中に収容してモジュール化することができる。   As the SOFC, various shapes such as a flat plate type and a cylindrical type can be appropriately selected and employed. The SOFC may be a single cell, but in practice, a stack in which a plurality of single cells are arranged is preferably used. In this case, one or more stacks may be used. The SOFC, the reformer, and the burner can be accommodated in a container such as a can and modularized.

改質器はSOFCとバーナとの間に配置される。つまり、第一の改質部と第二の改質部の両者が、SOFCとバーナとの間に配置される。   The reformer is disposed between the SOFC and the burner. That is, both the first reforming unit and the second reforming unit are disposed between the SOFC and the burner.

第二の改質部は、SOFCから第二の改質部への直接の輻射伝熱が可能な位置に配される。そして、SOFCから第一の改質部への直接の輻射伝熱は第二の改質部によって遮られる。   The second reforming section is arranged at a position where direct radiation heat transfer from the SOFC to the second reforming section is possible. The direct radiant heat transfer from the SOFC to the first reforming section is blocked by the second reforming section.

本発明の間接内部改質型SOFCにおいては、外乱あるいは改質量の急増等により燃料電池排熱のみでは熱供給が不足する場合でも、バーナの燃焼熱により熱不足を補うことができるため、効率を低下させることなく安定運転が可能である。SOFC排熱のみで改質に必要な熱をまかなうことができる場合には、バーナの燃焼は行わないでよい。   In the indirect internal reforming SOFC of the present invention, even if the heat supply is insufficient with only the exhaust heat of the fuel cell due to disturbance or a rapid increase in the reforming amount, the shortage of heat can be compensated by the combustion heat of the burner. Stable operation is possible without lowering. When the heat necessary for reforming can be provided only by SOFC exhaust heat, burner combustion may not be performed.

さらに、第二の改質部はSOFCからの輻射熱を受けられるのに対し、第一の改質部は第二の改質部によってSOFCから輻射熱が遮られるため、第一の改質部を第二の改質部に比べて低温にすることが容易である。従って、改質器の入口側をより低温にし、これにより炭素析出を抑制することが容易となる。   Furthermore, since the second reforming section can receive the radiant heat from the SOFC, the first reforming section blocks the radiant heat from the SOFC by the second reforming section. Compared to the second reforming part, it is easy to lower the temperature. Accordingly, the inlet side of the reformer can be made lower in temperature, thereby making it easier to suppress carbon deposition.

さらに、改質器入口に改質原料予熱器を直結させることができる。改質原料予熱器は、水素を含む改質ガスを得るための原料、すなわち灯油と水を気化し、予熱し混合する熱交換器を指す。該予熱器を、第一の改質部と直結させることにより、該改質部からの伝熱により該予熱器を効率よく暖めることができる。また、該改質部から該予熱器への伝熱により改質部入口を、改質触媒が異常劣化しない温度に低下させることが容易となる。   Furthermore, the reforming raw material preheater can be directly connected to the reformer inlet. The reforming raw material preheater refers to a heat exchanger that vaporizes, preheats and mixes raw materials for obtaining reformed gas containing hydrogen, that is, kerosene and water. By directly connecting the preheater to the first reforming section, the preheater can be efficiently warmed by heat transfer from the reforming section. In addition, it becomes easy to lower the reforming unit inlet to a temperature at which the reforming catalyst does not deteriorate abnormally by heat transfer from the reforming unit to the preheater.

予熱器の温度は、灯油が安定に気化できるために好ましくは150℃以上、より好ましくは200℃以上、さらに好ましくは250℃以上とする。また、予熱器内での炭素析出防止のため、好ましくは500℃以下、より好ましくは450℃以下、さらに好ましくは400℃以下とする。   The temperature of the preheater is preferably 150 ° C. or higher, more preferably 200 ° C. or higher, and further preferably 250 ° C. or higher so that kerosene can be vaporized stably. In order to prevent carbon deposition in the preheater, the temperature is preferably 500 ° C. or less, more preferably 450 ° C. or less, and still more preferably 400 ° C. or less.

第一の改質部の入口温度は、ガス化された原料の再凝縮を防止し触媒を有効に作動させるために、好ましくは300℃以上、より好ましくは350℃以上、さらに好ましくは400℃以上とする。また、触媒入口での炭素析出防止のため、好ましくは550℃以下、より好ましくは500℃以下、さらに好ましくは450℃以下とする。   The inlet temperature of the first reforming section is preferably 300 ° C. or higher, more preferably 350 ° C. or higher, more preferably 400 ° C. or higher, in order to prevent recondensation of the gasified raw material and to effectively operate the catalyst. And Further, in order to prevent carbon deposition at the catalyst inlet, it is preferably 550 ° C. or lower, more preferably 500 ° C. or lower, and further preferably 450 ° C. or lower.

改質原料予熱器と第一の改質部は効率よく伝熱させるため、外板で一体化された構造が望ましい。   In order to efficiently transfer heat between the reforming raw material preheater and the first reforming section, a structure integrated with an outer plate is desirable.

〔実施例1〕
以下、本発明を実施例に基づき更に詳細に説明するが、本発明はこれによって限定されるものではない。図1は、本実施例の内部改質型SOFC示す模式図である。
[Example 1]
EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example, this invention is not limited by this. FIG. 1 is a schematic diagram showing an internal reforming SOFC of the present embodiment.

本実施例の間接内部改質型SOFCは、バーナ1と、改質器2と、円筒型SOFC3が複数配列されたSOFCスタック4とが、不図示の容器に収容されてなる。   The indirect internal reforming SOFC of the present embodiment includes a burner 1, a reformer 2, and a SOFC stack 4 in which a plurality of cylindrical SOFCs 3 are arranged in a container (not shown).

バーナ1には燃焼用に空気と灯油が供給可能で、ここで灯油の燃焼を行う。バーナには、輻射熱の比率が高く、燃焼面を大きく取れる表面燃焼バーナが好ましい。表面燃焼バーナとして、例えば燃焼面にセラミックプレートあるいはメタルマットを用いたバーナを用いることができる。   Air and kerosene can be supplied to the burner 1 for combustion, and kerosene is burned here. The burner is preferably a surface combustion burner having a high ratio of radiant heat and a large combustion surface. As the surface combustion burner, for example, a burner using a ceramic plate or a metal mat on the combustion surface can be used.

改質原料予熱器5に灯油と水が供給され、両者とも気化し、十分に混合される。   Kerosene and water are supplied to the reforming raw material preheater 5, both of which are vaporized and mixed sufficiently.

改質器2には改質原料予熱器にて気化された灯油と水が供給され水蒸気改質を行う。   The reformer 2 is supplied with kerosene and water vaporized by the reforming raw material preheater to perform steam reforming.

改質器は、ガス流路を形成するための直方体の箱を二つ重ね、第一の箱の流路端部(図1において紙面右側)にガス供給口を設け、ガス供給口と反対側の流路端部(図1において紙面左側)において二つの箱を連通させ、第二の箱の上記連通端とは反対側の流路端部(つまり、第一の箱のガス供給口が設けられる側の端部と同じ端部。図1において紙面右側)にガス排出口を設け、第一の箱と第二の箱の中に灯油を改質可能な水蒸気改質触媒を充填した構造を有する。第一の箱の改質触媒が充填された部分が第一の改質部2aであり、第二の箱の改質触媒が充填された部分が第二の改質部2bである。つまり、改質器は、内部のガス流が折り返す構造を有している。   The reformer stacks two rectangular parallelepiped boxes for forming a gas flow path, and provides a gas supply port at the end of the flow path of the first box (on the right side in FIG. 1), opposite to the gas supply port. Two boxes communicate with each other at the channel end (left side in FIG. 1), and the channel end opposite to the communication end of the second box (that is, the gas supply port of the first box is provided). The same end as the end on the right side (the right side of the drawing in FIG. 1) is provided with a gas outlet, and the first box and the second box are filled with a steam reforming catalyst capable of reforming kerosene. Have. The portion of the first box filled with the reforming catalyst is the first reforming portion 2a, and the portion of the second box filled with the reforming catalyst is the second reforming portion 2b. That is, the reformer has a structure in which the internal gas flow is turned back.

なお、箱形以外にも、例えば、円管を実質的に隙間無く平面状に配列させ、これを折り返して第一および第二の改質部を有する改質器を形成することもできる。   In addition to the box shape, for example, it is also possible to form a reformer having first and second reforming portions by arranging circular tubes in a planar shape with substantially no gap and turning them back.

改質器は、SOFCとバーナとの間に、第一の改質部をバーナ側に、第二の改質部をSOFC側にして配される。第二の改質部の壁面からSOFCの排熱を輻射により受熱可能で、第一の改質部の壁面からバーナの燃焼熱を受熱可能である。   The reformer is arranged between the SOFC and the burner with the first reforming section on the burner side and the second reforming section on the SOFC side. The exhaust heat of SOFC can be received by radiation from the wall surface of the second reforming section, and the combustion heat of the burner can be received from the wall surface of the first reforming section.

改質器にて灯油が改質され、水素を含む改質ガスとされ、SOFCのアノード電極3aに供給される。一方、酸素含有ガス(ここでは空気)がカソード電極3cに供給される。発電に伴いSOFCが発熱し、その熱がSOFCから第二の改質部へと輻射伝熱する。こうしてSOFC排熱が改質反応の吸熱に利用される。このとき、第二の改質部がSOFCから第一の改質部への輻射伝熱を遮っているため、第一の改質部の温度は第二の改質部の温度より低くなる。   Kerosene is reformed by a reformer to form a reformed gas containing hydrogen and supplied to the anode electrode 3a of the SOFC. On the other hand, an oxygen-containing gas (here, air) is supplied to the cathode electrode 3c. The SOFC generates heat with power generation, and the heat is radiated from the SOFC to the second reforming section. Thus, the SOFC exhaust heat is utilized for the endothermic reaction of the reforming reaction. At this time, since the second reforming section blocks radiation heat transfer from the SOFC to the first reforming section, the temperature of the first reforming section is lower than the temperature of the second reforming section.

なお3bは固体酸化物からなる電解質である。ガスの取り合い等は適宜配管等を用いて行う。   3b is an electrolyte made of a solid oxide. Gas exchange and the like are appropriately performed using piping or the like.

運転条件が変動した場合など、SOFC排熱だけでは改質反応に必要な熱がまかなえない場合、バーナ1にて灯油を酸素含有ガス(ここでは空気)によって燃焼させ、その燃焼熱を改質器に与え、不足分を補うことができる。燃焼排気は、必要に応じてさらに熱利用されて外界に排出される。   If the heat required for the reforming reaction cannot be provided by the SOFC exhaust heat alone, such as when the operating conditions fluctuate, the burner 1 burns kerosene with oxygen-containing gas (here, air), and the combustion heat is converted into a reformer. To make up for the shortage. The combustion exhaust is further used as necessary to be discharged to the outside.

バーナの制御は、例えば、改質触媒の温度を継続的に監視し、その温度が所定の値以上になるようにON/OFF制御することができる。   The burner can be controlled, for example, by continuously monitoring the temperature of the reforming catalyst and performing ON / OFF control so that the temperature becomes a predetermined value or more.

各供給ガスは必要に応じて適宜予熱されたうえで改質器もしくはSOFCに供給される。   Each supply gas is appropriately preheated as necessary and then supplied to the reformer or SOFC.

〔実施例2〕
図2は、本実施例の内部改質型SOFC示す模式図である。実施例1では円筒型SOFCの内側がアノードで外側がカソードであるが、本例では内側がカソードで外側がアノードである。また、これに伴い、ガスの導管の配置が実施例1とは異なっている。これ以外については実施例1と同様であり、実施例1と同様の効果が得られる。
[Example 2]
FIG. 2 is a schematic diagram showing an internal reforming SOFC of the present embodiment. In Example 1, the inside of the cylindrical SOFC is the anode and the outside is the cathode. In this example, the inside is the cathode and the outside is the anode. Accordingly, the arrangement of the gas conduits is different from that of the first embodiment. Except this, it is the same as that of Example 1, and the same effect as Example 1 is acquired.

本発明の間接内部改質型SOFCは、例えば定置用もしくは移動体用の発電システムに、またコージェネレーションシステムに利用できる。   The indirect internal reforming SOFC of the present invention can be used for, for example, a stationary or moving power generation system and a cogeneration system.

本発明の間接内部改質型SOFCの一例を示す模式図である。It is a schematic diagram which shows an example of the indirect internal reforming SOFC of the present invention. 本発明の間接内部改質型SOFCの別の例を示す模式図である。It is a schematic diagram which shows another example of the indirect internal reforming type | mold SOFC of this invention.

符号の説明Explanation of symbols

1:バーナ
2:改質器
2a:第一の改質部
2b:第二の改質部
3:SOFC
3a:アノード電極
3b:固体酸化物電解質
3c:カソード電極
4:SOFCスタック
5:改質原料予熱器
1: Burner 2: Reformer 2a: First reformer 2b: Second reformer 3: SOFC
3a: anode electrode 3b: solid oxide electrolyte 3c: cathode electrode 4: SOFC stack 5: reforming material preheater

Claims (4)

灯油を改質可能な改質器と、該改質器から得られる改質ガスを燃料とする固体酸化物形燃料電池と、該改質器を加熱するためのバーナとを有し、
該改質器が、該固体酸化物形燃料電池と該バーナとの間に配置され、
該改質器が、互いに連通する第一の改質部と第二の改質部を有し、
改質ガスの流れについて、第一の改質部が上流に、第二の改質部が下流に位置し、
該第二の改質部が、該固体酸化物形燃料電池からの熱輻射を受ける位置であって、固体酸化物形燃料電池から第一の改質部への熱輻射を遮る位置に配された
間接内部改質型固体酸化物形燃料電池であって、
さらに、改質器入口に直結された、灯油および水を気化、予熱および混合する改質原料予熱器を有する
間接内部改質型固体酸化物形燃料電池
A reformer capable of reforming kerosene, a solid oxide fuel cell fueled by a reformed gas obtained from the reformer, and a burner for heating the reformer,
The reformer is disposed between the solid oxide fuel cell and the burner;
The reformer has a first reforming section and a second reforming section communicating with each other;
Regarding the flow of the reformed gas, the first reforming section is located upstream and the second reforming section is located downstream,
The second reforming section is disposed at a position that receives heat radiation from the solid oxide fuel cell and blocks heat radiation from the solid oxide fuel cell to the first reforming section. Indirect internal reforming type solid oxide fuel cell ,
Further, it has a reforming material preheater directly connected to the reformer inlet for vaporizing, preheating and mixing kerosene and water.
Indirect internal reforming type solid oxide fuel cell .
前記第一の改質部および第二の改質部に充填される改質触媒が灯油酸化活性を有する改質触媒を含む請求項記載の間接内部改質型固体酸化物形燃料電池。 The first reformer and the second indirect internal reforming-type solid oxide fuel cell according to claim 1, wherein the reforming catalyst comprises a reforming catalyst having a kerosene oxidative activity filled in the reforming section. 前記バーナが、灯油の燃焼を行うバーナである請求項1または2記載の間接内部改質型固体酸化物形燃料電池。The indirect internal reforming solid oxide fuel cell according to claim 1 or 2, wherein the burner is a burner that burns kerosene. 前記バーナが、燃焼面を下側にして配置された、灯油の燃焼を行う表面燃焼バーナである請求項1または2記載の間接内部改質型固体酸化物形燃料電池。3. The indirect internal reforming solid oxide fuel cell according to claim 1, wherein the burner is a surface combustion burner that is disposed with a combustion surface on the lower side and burns kerosene. 4.
JP2005377238A 2005-12-28 2005-12-28 Indirect internal reforming type solid oxide fuel cell Expired - Fee Related JP5007045B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005377238A JP5007045B2 (en) 2005-12-28 2005-12-28 Indirect internal reforming type solid oxide fuel cell
PCT/JP2006/325734 WO2007077780A1 (en) 2005-12-28 2006-12-25 Indirect internal reforming solid oxide fuel cell
TW095148917A TW200740019A (en) 2005-12-28 2006-12-26 Solid oxide fuel cell with indirect internal reforming

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005377238A JP5007045B2 (en) 2005-12-28 2005-12-28 Indirect internal reforming type solid oxide fuel cell

Publications (2)

Publication Number Publication Date
JP2007179884A JP2007179884A (en) 2007-07-12
JP5007045B2 true JP5007045B2 (en) 2012-08-22

Family

ID=38228135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005377238A Expired - Fee Related JP5007045B2 (en) 2005-12-28 2005-12-28 Indirect internal reforming type solid oxide fuel cell

Country Status (3)

Country Link
JP (1) JP5007045B2 (en)
TW (1) TW200740019A (en)
WO (1) WO2007077780A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5435191B2 (en) * 2008-03-25 2014-03-05 Toto株式会社 Fuel cell module and fuel cell including the same
JP5259228B2 (en) * 2008-03-31 2013-08-07 京セラ株式会社 Reactor
JP2009266541A (en) * 2008-04-24 2009-11-12 Nippon Oil Corp Method for operating indirect internal reforming solid oxide fuel cell system
JP4725866B2 (en) 2009-07-10 2011-07-13 Toto株式会社 Fuel cell
JP2011044244A (en) * 2009-08-19 2011-03-03 Toyota Motor Corp Fuel cell stack device
JP2011096433A (en) * 2009-10-28 2011-05-12 Kyocera Corp Cell stack device, fuel battery module using the same, and fuel battery device
JP5427568B2 (en) * 2009-11-25 2014-02-26 リンナイ株式会社 Power generator
JP5600283B2 (en) * 2010-10-28 2014-10-01 京セラ株式会社 Cell stack device, fuel cell module and fuel cell device
JP6169939B2 (en) * 2013-10-08 2017-07-26 京セラ株式会社 Fuel cell device
TWI506846B (en) * 2014-04-09 2015-11-01 Inst Nuclear Energy Res Atomic Energy Council Apparatus of Power Generation Using Dense Solid Oxide Fuel Cells
JP6765316B2 (en) * 2017-02-14 2020-10-07 東京瓦斯株式会社 Fuel cell system

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002124289A (en) * 2000-10-19 2002-04-26 Hitachi Metals Ltd Solid electrolyte fuel cell system
JP2002151127A (en) * 2000-11-16 2002-05-24 Ngk Insulators Ltd Cogeneration power plant
JP3960035B2 (en) * 2000-12-28 2007-08-15 三菱マテリアル株式会社 Hybrid power system
JP2002289244A (en) * 2001-03-27 2002-10-04 Toto Ltd Fuel cell system
JP2003132903A (en) * 2001-10-22 2003-05-09 Nippon Steel Corp Combined system of industrial furnace and solid oxide fuel cell
JP3727899B2 (en) * 2002-04-22 2005-12-21 三菱重工業株式会社 Fuel cell module
JP2004175966A (en) * 2002-11-28 2004-06-24 Nippon Oil Corp Method and apparatus for desulfurizing kerosene, fuel cell system and method for operating the same system
JP4369685B2 (en) * 2003-02-25 2009-11-25 京セラ株式会社 Operation method of fuel cell
JP4654567B2 (en) * 2003-05-01 2011-03-23 三菱マテリアル株式会社 Solid oxide fuel cell and method of operating the same
JP4991087B2 (en) * 2003-11-26 2012-08-01 京セラ株式会社 Fuel cell assembly
JP4745618B2 (en) * 2004-03-30 2011-08-10 京セラ株式会社 Operation method of fuel cell structure
JP2005293951A (en) * 2004-03-31 2005-10-20 Sumitomo Precision Prod Co Ltd Fuel cell and its operation method

Also Published As

Publication number Publication date
TW200740019A (en) 2007-10-16
WO2007077780A1 (en) 2007-07-12
JP2007179884A (en) 2007-07-12

Similar Documents

Publication Publication Date Title
JP5007045B2 (en) Indirect internal reforming type solid oxide fuel cell
KR102254196B1 (en) Ammonia based solid oxide fuel cell system
TWI459625B (en) Fuel cell system and method for starting-up thereof
KR100987823B1 (en) Solid Oxide Fuel Cell System
US6124053A (en) Fuel cell with internal combustion chamber
JP5643712B2 (en) Fuel cell module
US8841039B2 (en) Indirect internal reforming solid oxide fuel cell system
US9343765B2 (en) Fuel cell module
KR101563455B1 (en) Method and arrangement for utilizing recirculation for high temperature fuel cell system
JP5216190B2 (en) Indirect internal reforming type solid oxide fuel cell
JP5643711B2 (en) Fuel cell module
KR101422316B1 (en) Reformer and indirect internal reforming­type high­temperature fuel cell
JP5150068B2 (en) Reformer and indirect internal reforming type solid oxide fuel cell
JP2005213133A (en) Reforming device and fuel cell system
JP2007200709A (en) Solid oxide fuel cell stack and its operation method
JP4805735B2 (en) Indirect internal reforming type solid oxide fuel cell
US20200168935A1 (en) Solid oxide fuel cell system configured for higher hydrocarbon fuels
JP4429032B2 (en) Method for operating hydrogen-containing gas generator and hydrogen-containing gas generator
KR100987824B1 (en) Start-up protocol of Self-sustained Solid Oxide Fuel Cell System
JP5007077B2 (en) Reformer and indirect internal reforming type solid oxide fuel cell
JP2012219008A (en) Thermal treatment system
KR20130030998A (en) Home fuel cell boiler system having combustion catalysis device
JP5818502B2 (en) Fuel cell module
WO2022215224A1 (en) Fuel cell system
JP2007200702A (en) Solid oxide fuel cell and its operating method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120528

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5007045

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees