WO2007077780A1 - Indirect internal reforming solid oxide fuel cell - Google Patents

Indirect internal reforming solid oxide fuel cell Download PDF

Info

Publication number
WO2007077780A1
WO2007077780A1 PCT/JP2006/325734 JP2006325734W WO2007077780A1 WO 2007077780 A1 WO2007077780 A1 WO 2007077780A1 JP 2006325734 W JP2006325734 W JP 2006325734W WO 2007077780 A1 WO2007077780 A1 WO 2007077780A1
Authority
WO
WIPO (PCT)
Prior art keywords
reforming
fuel cell
reformer
solid oxide
oxide fuel
Prior art date
Application number
PCT/JP2006/325734
Other languages
French (fr)
Japanese (ja)
Inventor
Yasushi Mizuno
Iwao Anzai
Original Assignee
Nippon Oil Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corporation filed Critical Nippon Oil Corporation
Publication of WO2007077780A1 publication Critical patent/WO2007077780A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • H01M8/04074Heat exchange unit structures specially adapted for fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a solid oxide fuel cell, and more particularly to an indirect internal reforming solid oxide fuel cell having a reformer in the vicinity of the fuel cell.
  • Patent Document 1 Japanese Patent Laid-Open No. 2002-358997
  • An object of the present invention is to operate stably in an indirect internal reforming solid oxide fuel cell using kerosene as a reforming raw material without abnormally degrading the reforming catalyst or lowering the efficiency.
  • An indirect internal reforming type solid oxide fuel cell capable of performing
  • a reformer capable of reforming kerosene, a solid oxide fuel cell using a reformed gas obtained from the reformer as a fuel, and a panner for heating the reformer
  • the reformer is disposed between the solid oxide fuel cell and the panner
  • the reformer has a first reforming section and a second reforming section communicating with each other;
  • the first reforming section is located upstream and the second reforming section is located downstream, and the second reforming section is heated by the solid oxide fuel cell power.
  • an indirect internal reforming solid oxide fuel cell that is disposed at a position that receives radiation and blocks heat radiation from the solid oxide fuel cell to the first reforming section.
  • the indirect internal reforming type solid oxide fuel cell may further include a reforming material preheater directly connected to the reformer inlet so as to be integrated with the reformer.
  • the reforming catalyst filled in the first reforming section and the second reforming section may include a reforming catalyst having kerosene oxidation activity.
  • the reforming catalyst in an indirect internal reforming solid oxide fuel cell using kerosene as a reforming raw material, the reforming catalyst can be stably operated without deteriorating abnormally or reducing efficiency.
  • An indirect internal reforming solid oxide fuel cell is provided.
  • FIG. 1 is a schematic diagram showing an example of an indirect internal reforming SOFC of the present invention.
  • FIG. 2 is a schematic view showing another example of the indirect internal reforming SOFC of the present invention.
  • a reformed gas which is a gas containing hydrogen
  • kerosene which is a reforming raw material
  • steam reforming is made dominant from the viewpoint of efficiently producing hydrogen. Therefore, in the reformer, the reaction becomes endothermic in overall.
  • the reformer has a first reforming section and a second reforming section that communicate with each other.
  • the first reforming section is located on the upstream side and the second reforming section is located on the downstream side. That is, the reforming material is supplied to the first reforming section, and the gas exiting the first reforming section flows into the second reforming section.
  • Both the first reforming section and the second reforming section are filled with a reforming catalyst capable of reforming kerosene.
  • a reforming catalyst capable of reforming kerosene.
  • a steam reforming catalyst or an autothermal reforming catalyst a catalyst having a steam reforming ability and a partial acidity reforming ability
  • the kerosene to be used can be selected and employed as appropriate with known catalytic power capable of steam reforming or autothermal reforming.
  • the reforming catalyst filled in the first reforming section and the second reforming section has kerosene oxidation activity. It is preferable to include a reforming catalyst. Kerosene oxidation activity refers to the ability of kerosene to react with oxygen and oxygen on the catalyst to generate heat. By charging the reforming section with a catalyst having oxidation activity, heat is directly generated on the catalyst, and the time until the reforming catalyst reaches a temperature suitable for reforming can be shortened.
  • the indirect internal reforming SOFC of the present invention includes a reformer and a SOFC in addition to a SOFC for heating the reformer.
  • a known burner capable of burning the burner fuel to be used can be appropriately selected and used.
  • kerosene used as a reforming raw material is preferable to use as the fuel for the PANA. This is because it is not necessary to prepare a separate fuel. However, other fuels can be used.
  • SOFC various shapes such as a flat plate shape and a cylindrical shape can be appropriately selected and employed.
  • SOFC may be a single cell! /, But for practical use, a stack in which a plurality of single cells are arranged is preferably used. In this case, there may be one or more stacks.
  • SOFC, reformer and panner can be accommodated in a container such as a can and modularized.
  • the reformer is disposed between the SOFC and the PANA. That is, both the first reforming section and the second reforming section are arranged between the SOFC and the PANA.
  • the second reforming section is disposed at a position where direct radiation heat transfer to the SOFC force second reforming section is possible.
  • the direct radiant heat transfer to the first reforming section is blocked by the second reforming section.
  • the second reforming section can receive radiant heat of SOFC force
  • the first reforming section blocks the SOFC force radiant heat by the second reforming section, so the first reforming section It is easy to make the temperature lower than that of the second reforming part. Therefore, the inlet side of the reformer can be made lower in temperature, thereby making it easier to suppress carbon deposition.
  • the reforming material preheater is directly connected to the reformer inlet so as to be integrated with the reformer.
  • the reforming raw material preheater refers to a heat exchanger that vaporizes, preheats and mixes raw materials for obtaining reformed gas containing hydrogen, that is, kerosene and water.
  • the temperature of the preheater is preferably 150 ° C or higher, more preferably 200 ° C or higher, and even more preferably 250 ° C or higher so that kerosene can be vaporized stably.
  • the temperature is preferably 500 ° C or lower, more preferably 450 ° C or lower, and further preferably 400 ° C or lower.
  • the inlet temperature of the first reforming section is preferably 300 ° C or higher, more preferably 350 ° C or higher, in order to prevent recondensation of the gasified raw material and operate the catalyst effectively.
  • the temperature is preferably 400 ° C or higher.
  • the temperature is preferably 550 ° C or lower, more preferably 500 ° C or lower, and further preferably 450 ° C or lower.
  • the interior of one container is partitioned to form two adjacent regions, and a reforming material preheater and a reformer are arranged in each region, thereby reforming at the reformer inlet.
  • the raw material preheater can be directly connected to the reformer.
  • FIG. 1 is a schematic diagram showing an internal reforming SOFC of this example.
  • the indirect internal reforming SOFC of the present embodiment includes a container 1, a reformer 2, and a SOFC stack 4 in which a plurality of cylindrical SOFCs 3 are arranged.
  • Air and kerosene can be supplied to the burner 1 for combustion, and kerosene is burned here.
  • the surface burner which can take a large combustion surface where the ratio of radiant heat is high is preferable for the panner.
  • a burner using a ceramic plate or a metal mat on the combustion surface can be used.
  • Kerosene and water are supplied to the reforming raw material preheater 5, both of which are vaporized and mixed sufficiently.
  • Kerosene and water vaporized by the reforming raw material preheater are supplied to the reformer 2 to perform steam reforming.
  • the reformer stacks two rectangular parallelepiped boxes for forming a gas flow path, and provides a gas supply port at the flow path end of the first box (on the right side in FIG. 1).
  • the two boxes communicate with each other at the end of the flow path on the opposite side (left side of the page in FIG. 1), and the flow path end opposite to the communication end of the second box (that is, the gas supply of the first box)
  • the same end as the end where the port is provided (the right side of the paper in Fig. 1) is provided with a gas discharge port, and the first and second boxes are filled with a steam reforming catalyst capable of reforming kerosene.
  • the part of the first box filled with the reforming catalyst is the first reforming part 2a
  • the part of the second box filled with the reforming catalyst is the second reforming part 2b. That is, the reformer has a structure in which the internal gas flow is turned back.
  • the reforming raw material preheater 5 and the first reforming section 2a are provided by dividing the inside of the first box.
  • a structure in which the reforming raw material preheater 5 and the first reforming part 2a are integrated and the reforming raw material preheater 5 is directly connected to the first reforming part 2a is obtained.
  • circular tubes may be arranged in a plane with substantially no gap, and folded to form a reformer having first and second reforming portions. it can.
  • the reformer is arranged between the SOFC and the burner with the first reforming section on the Pana side and the second reforming section on the SOFC side.
  • the wall force of the second reforming part can also receive the exhaust heat of SOFC by radiation, and can receive the combustion heat of the burner from the wall of the first reforming part.
  • Kerosene is reformed in a reformer to form a reformed gas containing hydrogen, which is supplied to the anode electrode 3a of the SOFC.
  • an oxygen-containing gas air here
  • the SOFC generates heat, and the heat is radiated from the SOFC to the second reforming section.
  • the SOFC exhaust heat is used for the endotherm of the reforming reaction.
  • the temperature of the first reforming section becomes lower than the temperature of the second reforming section because the second reforming section blocks the radiant heat transfer to the SO FC force first reforming section. .
  • 3b is an electrolyte that also has solid acidity. Gas exchange, etc. will be performed using piping etc. as appropriate.
  • SOFC exhaust heat such as when operating conditions fluctuate
  • kerosene is burned with oxygen-containing gas (here, air) in Pana 1, and Combustion heat can be applied to the reformer to make up for the shortage.
  • the combustion exhaust gas is further used as needed and discharged to the outside world.
  • the temperature of the reformer catalyst can be continuously monitored, and ONZOFF control can be performed so that the temperature becomes a predetermined value or more.
  • Each supply gas is appropriately preheated as necessary and then supplied to the reformer or SOFC.
  • FIG. 2 is a schematic diagram showing the internal reforming SOFC of this example.
  • the inner side of the cylindrical S OFC is an anode and the outer side is a force sword.
  • the inner side is a force sword and the outer side is an anode.
  • the arrangement of gas conduits is different from that in Example 1. Except this, it is the same as the first embodiment, and the same effect as the first embodiment is obtained.
  • the indirect internal reforming SOFC of the present invention can be used for, for example, a stationary or mobile power generation system, and a cogeneration system.

Abstract

This invention provides an indirect internal reforming solid oxide fuel cell using kerosine as a reforming raw material, which can be stably operated without an abnormal deterioration in a reforming catalyst and a deterioration in efficiency. The indirect internal reforming solid oxide fuel cell comprises a reformer capable of reforming kerosine, a solid oxide fuel cell using a reformed gas obtained from the reformer as a fuel, and a burner for heating the reformer. The reformer is disposed between the solid oxide fuel cell and the burner and comprises first and second reforming parts in communication with each other. With respect to the flow of the reformed gas, the first reforming part is located on the upstream side, and the second reforming part is located on the downstream side. The second reforming part is disposed at a position that receives thermal radiation from the solid oxide fuel cell and blocks thermal radiation from the solid oxide fuel cell to the first reforming part.

Description

明 細 書  Specification
間接内部改質型固体酸化物形燃料電池  Indirect internal reforming type solid oxide fuel cell
技術分野  Technical field
[0001] 本発明は固体酸ィ匕物形燃料電池に関し、より詳しくは、改質器を燃料電池近傍に 有する間接内部改質型固体酸化物形燃料電池に関する。  The present invention relates to a solid oxide fuel cell, and more particularly to an indirect internal reforming solid oxide fuel cell having a reformer in the vicinity of the fuel cell.
背景技術  Background art
[0002] 固体酸化物形燃料電池(Solid Oxide Fuel Cell。以下場合により SOFCという 。;)においては、灯油等の改質原料を改質して水素を含有する改質ガスとし、改質ガ スを SOFCに燃料として供給することが行われて 、る。改質反応としては吸熱を伴う 水蒸気改質反応が主に利用される。  [0002] In a solid oxide fuel cell (hereinafter referred to as SOFC in some cases), reforming raw materials such as kerosene are reformed to form a reformed gas containing hydrogen and reformed gas. Is being supplied to SOFC as fuel. As the reforming reaction, steam reforming reaction with endotherm is mainly used.
[0003] SOFCの動作温度が高く改質原料燃料の改質温度に近いため、 SOFCからの熱 輻射を受ける位置に改質器を配置し、 SOFCの熱を改質に利用する間接内部改質 型 SOFCがある (特許文献 1参照)。  [0003] Since the operating temperature of SOFC is high and close to the reforming temperature of the reforming raw material fuel, an indirect internal reforming that uses SOFC heat for reforming by placing a reformer at a position that receives heat radiation from SOFC There is a type SOFC (see Patent Document 1).
特許文献 1:特開 2002— 358997号公報  Patent Document 1: Japanese Patent Laid-Open No. 2002-358997
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] しかし、灯油のような高次炭化水素を改質原料に用いる場合、改質が進んでいない 炭化水素成分を、動作温度の高い固体酸化物形燃料電池に供給すると、炭素析出 により運転の安定性が損なわれる場合がある。よって、灯油のような高次炭化水素を [0004] However, when a higher-order hydrocarbon such as kerosene is used as a reforming raw material, if a hydrocarbon component that has not been reformed is supplied to a solid oxide fuel cell having a high operating temperature, it is operated by carbon deposition. May be impaired. Therefore, higher hydrocarbons like kerosene
C1ィ匕合物 (炭素数 1の化合物)まで完全転化させることが望まれる。 It is desirable to completely convert the compound to C1 compound (compound with 1 carbon atom).
[0005] 燃料電池排熱を十分受けることのできる定常運転時は、システム設計により改質器 に十分な受熱面積を与えておけば高い転化率を維持できるが、負荷変動や外乱等 により燃料電池排熱量が減少した場合、ある ヽは急激に改質原料の改質量を増加さ せた場合、改質に必要な熱量が不足するため改質における転ィ匕率の低下を引き起 こすことがある。この際、燃料電池の燃料利用率を低下させてアノードオフガスの熱 量を大きくし、アノードオフガスの燃焼熱によって改質器を加熱することにより、転ィ匕 率の低下を抑制することも考えられるが、この場合、いったん改質した燃料を燃焼さ せて熱供給するため効率が大幅に低下する。 [0005] During steady operation that can sufficiently receive fuel cell exhaust heat, a high conversion rate can be maintained if a sufficient heat receiving area is given to the reformer by system design. However, the fuel cell is subject to load fluctuations, disturbances, etc. When the amount of exhaust heat is reduced, if the amount of reforming of the reforming raw material is suddenly increased, the amount of heat necessary for reforming may be insufficient, causing a reduction in the conversion rate during reforming. is there. At this time, it is also possible to suppress the decrease in the conversion rate by reducing the fuel utilization rate of the fuel cell to increase the calorific value of the anode off gas and heating the reformer with the combustion heat of the anode off gas. In this case, however, the reformed fuel is burned once. Since the heat is supplied, the efficiency is greatly reduced.
[0006] また、改質器全体が固体酸化物形燃料電池からの輻射伝熱を受ける場合、固体酸 化物形燃料電池が定常に到達すると、改質器の改質原料入口付近までほぼ均等に 加熱され、温度が高いために改質原料入口付近の触媒上で炭素析出し、触媒の異 常劣化を引き起こす場合もある。  [0006] When the entire reformer receives radiant heat transfer from the solid oxide fuel cell, when the solid oxide fuel cell reaches a steady state, the reformer almost uniformly reaches the vicinity of the reforming material inlet. Since it is heated and the temperature is high, carbon may be deposited on the catalyst near the reforming raw material inlet, causing abnormal deterioration of the catalyst.
[0007] 本発明の目的は、灯油を改質原料に用いる間接内部改質型固体酸化物形燃料電 池において、改質触媒を異常劣化させたり、効率を低下させたりすることなく安定に 運転することのできる間接内部改質型固体酸化物形燃料電池を提供することである 課題を解決するための手段  [0007] An object of the present invention is to operate stably in an indirect internal reforming solid oxide fuel cell using kerosene as a reforming raw material without abnormally degrading the reforming catalyst or lowering the efficiency. An indirect internal reforming type solid oxide fuel cell capable of performing
[0008] 本発明により、灯油を改質可能な改質器と、該改質器から得られる改質ガスを燃料 とする固体酸化物形燃料電池と、該改質器を加熱するためのパーナとを有し、 該改質器が、該固体酸ィ匕物形燃料電池と該パーナとの間に配置され、  [0008] According to the present invention, a reformer capable of reforming kerosene, a solid oxide fuel cell using a reformed gas obtained from the reformer as a fuel, and a panner for heating the reformer The reformer is disposed between the solid oxide fuel cell and the panner,
該改質器が、互いに連通する第一の改質部と第二の改質部を有し、  The reformer has a first reforming section and a second reforming section communicating with each other;
改質ガスの流れについて、第一の改質部が上流に、第二の改質部が下流に位置し、 該第二の改質部が、該固体酸ィ匕物形燃料電池力 の熱輻射を受ける位置であって 、固体酸化物形燃料電池から第一の改質部への熱輻射を遮る位置に配された 間接内部改質型固体酸化物形燃料電池が提供される。  With respect to the flow of the reformed gas, the first reforming section is located upstream and the second reforming section is located downstream, and the second reforming section is heated by the solid oxide fuel cell power. There is provided an indirect internal reforming solid oxide fuel cell that is disposed at a position that receives radiation and blocks heat radiation from the solid oxide fuel cell to the first reforming section.
[0009] 上記間接内部改質型固体酸ィ匕物形燃料電池が、さらに、改質器入口に改質器と 一体になるように直結された改質原料予熱器を有することができる。  [0009] The indirect internal reforming type solid oxide fuel cell may further include a reforming material preheater directly connected to the reformer inlet so as to be integrated with the reformer.
[0010] 前記第一の改質部および第二の改質部に充填される改質触媒が灯油酸化活性を 有する改質触媒を含むことができる。  [0010] The reforming catalyst filled in the first reforming section and the second reforming section may include a reforming catalyst having kerosene oxidation activity.
発明の効果  The invention's effect
[0011] 本発明により、灯油を改質原料に用いる間接内部改質型固体酸化物形燃料電池 において、改質触媒を異常劣化させたり、効率を低下させたりすることなく安定に運 転することのできる間接内部改質型固体酸化物形燃料電池が提供される。  [0011] According to the present invention, in an indirect internal reforming solid oxide fuel cell using kerosene as a reforming raw material, the reforming catalyst can be stably operated without deteriorating abnormally or reducing efficiency. An indirect internal reforming solid oxide fuel cell is provided.
図面の簡単な説明  Brief Description of Drawings
[0012] [図 1]本発明の間接内部改質型 SOFCの一例を示す模式図である。 [図 2]本発明の間接内部改質型 SOFCの別の例を示す模式図である。 符号の説明 FIG. 1 is a schematic diagram showing an example of an indirect internal reforming SOFC of the present invention. FIG. 2 is a schematic view showing another example of the indirect internal reforming SOFC of the present invention. Explanation of symbols
[0013] 1 :パーナ [0013] 1: Pana
2 :改質器  2: Reformer
2a :第一の改質部  2a: First reforming section
2b :第二の改質部  2b: Second reforming section
3 : SOFC  3: SOFC
3a :アノード電極  3a: Anode electrode
3b :固体酸化物電解質  3b: Solid oxide electrolyte
3c :力ソード電極  3c: force sword electrode
4 : SOFCスタック  4: SOFC stack
5 :改質原料予熱器  5: Reforming raw material preheater
o :谷器  o: Valley device
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0014] 改質器では、水蒸気改質反応により、改質原料である灯油から、水素を含むガスで ある改質ガスを製造する。このとき部分酸化改質反応を伴ってもよいが、水素を効率 的に製造する観点から、水蒸気改質が支配的になるようにする。従って、改質器では オーバーオールで吸熱になる反応が進む。 [0014] In the reformer, a reformed gas, which is a gas containing hydrogen, is produced from kerosene, which is a reforming raw material, by a steam reforming reaction. Although partial oxidation reforming reaction may be accompanied at this time, steam reforming is made dominant from the viewpoint of efficiently producing hydrogen. Therefore, in the reformer, the reaction becomes endothermic in overall.
[0015] 改質器は、互いに連通する第一の改質部と第二の改質部を有する。改質ガスの流 れについて、第一の改質部が上流側に位置し第二の改質部が下流側に位置する。 つまり改質原料は第一の改質部に供給され、第一の改質部を出たガスが第二の改 質部に流入する。 [0015] The reformer has a first reforming section and a second reforming section that communicate with each other. With respect to the flow of the reformed gas, the first reforming section is located on the upstream side and the second reforming section is located on the downstream side. That is, the reforming material is supplied to the first reforming section, and the gas exiting the first reforming section flows into the second reforming section.
[0016] 第一の改質部および第二の改質部とも、灯油を改質可能な改質触媒が充填される 。改質触媒としては、水蒸気改質触媒やオートサーマルリフォーミング触媒 (水蒸気 改質能および部分酸ィ匕改質能を有する触媒)を用いることができる。使用する灯油を 水蒸気改質もしくはオートサーマルリフォーミング可能な公知の触媒力 適宜選んで 採用することができる。  [0016] Both the first reforming section and the second reforming section are filled with a reforming catalyst capable of reforming kerosene. As the reforming catalyst, a steam reforming catalyst or an autothermal reforming catalyst (a catalyst having a steam reforming ability and a partial acidity reforming ability) can be used. The kerosene to be used can be selected and employed as appropriate with known catalytic power capable of steam reforming or autothermal reforming.
[0017] 第一の改質部および第二の改質部に充填される改質触媒が灯油酸化活性を有す る改質触媒を含むことが好ましい。灯油酸化活性とは、触媒上で灯油を酸素と酸ィ匕 反応させ発熱させる能力をさす。本改質部に酸化活性を有する触媒を充填すること により、触媒上で直接発熱が得られ、改質触媒が改質に適する温度に到達するまで の時間を短縮することができる。 [0017] The reforming catalyst filled in the first reforming section and the second reforming section has kerosene oxidation activity. It is preferable to include a reforming catalyst. Kerosene oxidation activity refers to the ability of kerosene to react with oxygen and oxygen on the catalyst to generate heat. By charging the reforming section with a catalyst having oxidation activity, heat is directly generated on the catalyst, and the time until the reforming catalyst reaches a temperature suitable for reforming can be shortened.
[0018] 本発明の間接内部改質型 SOFCは、改質器、 SOFCに加えて、改質器を加熱する ためのパーナを有する。パーナは、使用するパーナ燃料を燃焼可能な公知のバー ナカ 適宜選んで用いることができる。  [0018] The indirect internal reforming SOFC of the present invention includes a reformer and a SOFC in addition to a SOFC for heating the reformer. As the burner, a known burner capable of burning the burner fuel to be used can be appropriately selected and used.
[0019] パーナの燃料としては、改質原料として用いる灯油を用いることが好ましい。別途の 燃料を用意する必要がないからである。ただし、他の燃料を用いることもできる。  [0019] It is preferable to use kerosene used as a reforming raw material as the fuel for the PANA. This is because it is not necessary to prepare a separate fuel. However, other fuels can be used.
[0020] SOFCとしては、平板型や円筒型などの各種形状を適宜選んで採用できる。また S OFCは単セルであってもよ!/、が、実用上は複数の単セルを配列させたスタックが好 ましく用いられる。この場合、スタックは 1つでも複数でもよい。 SOFC,改質器および パーナを缶体等の容器の中に収容してモジュールィ匕することができる。  [0020] As the SOFC, various shapes such as a flat plate shape and a cylindrical shape can be appropriately selected and employed. SOFC may be a single cell! /, But for practical use, a stack in which a plurality of single cells are arranged is preferably used. In this case, there may be one or more stacks. SOFC, reformer and panner can be accommodated in a container such as a can and modularized.
[0021] 改質器は SOFCとパーナとの間に配置される。つまり、第一の改質部と第二の改質 部の両者が、 SOFCとパーナとの間に配置される。  [0021] The reformer is disposed between the SOFC and the PANA. That is, both the first reforming section and the second reforming section are arranged between the SOFC and the PANA.
[0022] 第二の改質部は、 SOFC力 第二の改質部への直接の輻射伝熱が可能な位置に 配される。そして、 SOFC力 第一の改質部への直接の輻射伝熱は第二の改質部に よって遮られる。  [0022] The second reforming section is disposed at a position where direct radiation heat transfer to the SOFC force second reforming section is possible. The direct radiant heat transfer to the first reforming section is blocked by the second reforming section.
[0023] 本発明の間接内部改質型 SOFCにおいては、外乱あるいは改質量の急増等により 燃料電池排熱のみでは熱供給が不足する場合でも、パーナの燃焼熱により熱不足 を補うことができるため、効率を低下させることなく安定運転が可能である。 SOFC排 熱のみで改質に必要な熱をまかなうことができる場合には、パーナの燃焼は行わな いでよい。  [0023] In the indirect internal reforming SOFC of the present invention, even if heat supply is insufficient only by exhaust heat from the fuel cell due to disturbance or rapid increase in reforming amount, the heat shortage can be compensated by the combustion heat of the PANA. Stable operation is possible without reducing efficiency. If the heat required for reforming can be provided with only SOFC exhaust heat, the burner does not need to be burned.
[0024] さらに、第二の改質部は SOFC力もの輻射熱を受けられるのに対し、第一の改質部 は第二の改質部によって SOFC力 輻射熱が遮られるため、第一の改質部を第二の 改質部に比べて低温にすることが容易である。従って、改質器の入口側をより低温に し、これにより炭素析出を抑制することが容易となる。  [0024] Furthermore, since the second reforming section can receive radiant heat of SOFC force, the first reforming section blocks the SOFC force radiant heat by the second reforming section, so the first reforming section It is easy to make the temperature lower than that of the second reforming part. Therefore, the inlet side of the reformer can be made lower in temperature, thereby making it easier to suppress carbon deposition.
[0025] さらに、改質器入口に改質原料予熱器を改質器と一体になるように直結させること ができる。改質原料予熱器は、水素を含む改質ガスを得るための原料、すなわち灯 油と水を気化し、予熱し混合する熱交換器を指す。該予熱器を、第一の改質部と一 体になるように直結させることにより、該改質部からの伝熱により該予熱器を効率よく 暖めることができる。また、該改質部から該予熱器への伝熱により改質部入口を、改 質触媒が異常劣化しない温度に低下させることが容易となる。 [0025] Further, the reforming material preheater is directly connected to the reformer inlet so as to be integrated with the reformer. Can do. The reforming raw material preheater refers to a heat exchanger that vaporizes, preheats and mixes raw materials for obtaining reformed gas containing hydrogen, that is, kerosene and water. By directly connecting the preheater so as to be united with the first reforming section, the preheater can be efficiently warmed by heat transfer from the reforming section. In addition, it becomes easy to lower the reforming section inlet to a temperature at which the reforming catalyst does not deteriorate abnormally by heat transfer from the reforming section to the preheater.
[0026] 予熱器の温度は、灯油が安定に気化できるために好ましくは 150°C以上、より好ま しくは 200°C以上、さらに好ましくは 250°C以上とする。また、予熱器内での炭素析出 防止のため、好ましくは 500°C以下、より好ましくは 450°C以下、さらに好ましくは 400 °C以下とする。  [0026] The temperature of the preheater is preferably 150 ° C or higher, more preferably 200 ° C or higher, and even more preferably 250 ° C or higher so that kerosene can be vaporized stably. In order to prevent carbon deposition in the preheater, the temperature is preferably 500 ° C or lower, more preferably 450 ° C or lower, and further preferably 400 ° C or lower.
[0027] 第一の改質部の入口温度は、ガス化された原料の再凝縮を防止し触媒を有効に 作動させるために、好ましくは 300°C以上、より好ましくは 350°C以上、さらに好ましく は 400°C以上とする。また、触媒入口での炭素析出防止のため、好ましくは 550°C以 下、より好ましくは 500°C以下、さらに好ましくは 450°C以下とする。  [0027] The inlet temperature of the first reforming section is preferably 300 ° C or higher, more preferably 350 ° C or higher, in order to prevent recondensation of the gasified raw material and operate the catalyst effectively. The temperature is preferably 400 ° C or higher. In order to prevent carbon deposition at the catalyst inlet, the temperature is preferably 550 ° C or lower, more preferably 500 ° C or lower, and further preferably 450 ° C or lower.
[0028] 改質原料予熱器と第一の改質部は効率よく伝熱させるため、外板で一体化された 構造が望ましい。  [0028] In order to efficiently transfer heat between the reforming raw material preheater and the first reforming section, a structure in which the reforming raw material preheater and the first reforming section are integrated with each other is desirable.
[0029] 例えば、一つの容器の内部を区画して隣接する二つの領域を形成し、それぞれの 領域に改質原料予熱器と改質器とを配することにより、改質器入口に改質原料予熱 器を改質器と一体になるように直結させることができる。  [0029] For example, the interior of one container is partitioned to form two adjacent regions, and a reforming material preheater and a reformer are arranged in each region, thereby reforming at the reformer inlet. The raw material preheater can be directly connected to the reformer.
実施例  Example
[0030] 〔実施例 1〕 [Example 1]
以下、本発明を実施例に基づき更に詳細に説明するが、本発明はこれによって限 定されるものではない。図 1は、本実施例の内部改質型 SOFC示す模式図である。  Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited thereto. FIG. 1 is a schematic diagram showing an internal reforming SOFC of this example.
[0031] 本実施例の間接内部改質型 SOFCは、パーナ 1と、改質器 2と、円筒型 SOFC3が 複数配列された SOFCスタック 4とが、容器 6に収容されてなる。 [0031] The indirect internal reforming SOFC of the present embodiment includes a container 1, a reformer 2, and a SOFC stack 4 in which a plurality of cylindrical SOFCs 3 are arranged.
[0032] パーナ 1には燃焼用に空気と灯油が供給可能で、ここで灯油の燃焼を行う。パーナ には、輻射熱の比率が高ぐ燃焼面を大きく取れる表面燃焼パーナが好ましい。表 面燃焼パーナとして、例えば燃焼面にセラミックプレートあるいはメタルマットを用い たパーナを用いることができる。 [0033] 改質原料予熱器 5に灯油と水が供給され、両者とも気化し、十分に混合される。 [0032] Air and kerosene can be supplied to the burner 1 for combustion, and kerosene is burned here. The surface burner which can take a large combustion surface where the ratio of radiant heat is high is preferable for the panner. As the surface combustion burner, for example, a burner using a ceramic plate or a metal mat on the combustion surface can be used. [0033] Kerosene and water are supplied to the reforming raw material preheater 5, both of which are vaporized and mixed sufficiently.
[0034] 改質器 2には改質原料予熱器にて気化された灯油と水が供給され水蒸気改質を行 [0034] Kerosene and water vaporized by the reforming raw material preheater are supplied to the reformer 2 to perform steam reforming.
[0035] 改質器は、ガス流路を形成するための直方体の箱を二つ重ね、第一の箱の流路端 部(図 1において紙面右側)にガス供給口を設け、ガス供給口と反対側の流路端部( 図 1において紙面左側)において二つの箱を連通させ、第二の箱の上記連通端とは 反対側の流路端部(つまり、第一の箱のガス供給口が設けられる側の端部と同じ端 部。図 1において紙面右側)にガス排出口を設け、第一の箱と第二の箱の中に灯油 を改質可能な水蒸気改質触媒を充填した構造を有する。第一の箱の改質触媒が充 填された部分が第一の改質部 2aであり、第二の箱の改質触媒が充填された部分が 第二の改質部 2bである。つまり、改質器は、内部のガス流が折り返す構造を有してい る。 [0035] The reformer stacks two rectangular parallelepiped boxes for forming a gas flow path, and provides a gas supply port at the flow path end of the first box (on the right side in FIG. 1). The two boxes communicate with each other at the end of the flow path on the opposite side (left side of the page in FIG. 1), and the flow path end opposite to the communication end of the second box (that is, the gas supply of the first box) The same end as the end where the port is provided (the right side of the paper in Fig. 1) is provided with a gas discharge port, and the first and second boxes are filled with a steam reforming catalyst capable of reforming kerosene. Has the structure. The part of the first box filled with the reforming catalyst is the first reforming part 2a, and the part of the second box filled with the reforming catalyst is the second reforming part 2b. That is, the reformer has a structure in which the internal gas flow is turned back.
[0036] また、第一の箱の内部が区画されて改質原料予熱器 5と第一の改質部 2aとが設け られている。これにより、改質原料予熱器 5と第一の改質部 2aが一体化され且つ改質 原料予熱器 5が第一の改質部 2aに直結する構造が得られている。  [0036] Further, the reforming raw material preheater 5 and the first reforming section 2a are provided by dividing the inside of the first box. Thus, a structure in which the reforming raw material preheater 5 and the first reforming part 2a are integrated and the reforming raw material preheater 5 is directly connected to the first reforming part 2a is obtained.
[0037] なお、箱形以外にも、例えば、円管を実質的に隙間無く平面状に配列させ、これを 折り返して第一および第二の改質部を有する改質器を形成することもできる。  [0037] In addition to the box shape, for example, circular tubes may be arranged in a plane with substantially no gap, and folded to form a reformer having first and second reforming portions. it can.
[0038] 改質器は、 SOFCとパーナとの間に、第一の改質部をパーナ側に、第二の改質部 を SOFC側にして配される。第二の改質部の壁面力も SOFCの排熱を輻射により受 熱可能で、第一の改質部の壁面からパーナの燃焼熱を受熱可能である。  [0038] The reformer is arranged between the SOFC and the burner with the first reforming section on the Pana side and the second reforming section on the SOFC side. The wall force of the second reforming part can also receive the exhaust heat of SOFC by radiation, and can receive the combustion heat of the burner from the wall of the first reforming part.
[0039] 改質器にて灯油が改質され、水素を含む改質ガスとされ、 SOFCのアノード電極 3a に供給される。一方、酸素含有ガス (ここでは空気)が力ソード電極 3cに供給される。 発電に伴 、SOFCが発熱し、その熱が SOFCから第二の改質部へと輻射伝熱する。 こうして SOFC排熱が改質反応の吸熱に利用される。このとき、第二の改質部が SO FC力 第一の改質部への輻射伝熱を遮っているため、第一の改質部の温度は第二 の改質部の温度より低くなる。  [0039] Kerosene is reformed in a reformer to form a reformed gas containing hydrogen, which is supplied to the anode electrode 3a of the SOFC. On the other hand, an oxygen-containing gas (air here) is supplied to the force sword electrode 3c. As the power is generated, the SOFC generates heat, and the heat is radiated from the SOFC to the second reforming section. In this way, the SOFC exhaust heat is used for the endotherm of the reforming reaction. At this time, the temperature of the first reforming section becomes lower than the temperature of the second reforming section because the second reforming section blocks the radiant heat transfer to the SO FC force first reforming section. .
[0040] なお 3bは固体酸ィ匕物力もなる電解質である。ガスの取り合い等は適宜配管等を用 いて行う。 [0041] 運転条件が変動した場合など、 SOFC排熱だけでは改質反応に必要な熱がまかな えない場合、パーナ 1にて灯油を酸素含有ガス (ここでは空気)によって燃焼させ、そ の燃焼熱を改質器に与え、不足分を補うことができる。燃焼排気は、必要に応じてさ らに熱利用されて外界に排出される。 [0040] Note that 3b is an electrolyte that also has solid acidity. Gas exchange, etc. will be performed using piping etc. as appropriate. [0041] If the heat required for the reforming reaction cannot be achieved with SOFC exhaust heat alone, such as when operating conditions fluctuate, kerosene is burned with oxygen-containing gas (here, air) in Pana 1, and Combustion heat can be applied to the reformer to make up for the shortage. The combustion exhaust gas is further used as needed and discharged to the outside world.
[0042] パーナの制御は、例えば、改質触媒の温度を継続的に監視し、その温度が所定の 値以上になるように ONZOFF制御することができる。  [0042] For example, the temperature of the reformer catalyst can be continuously monitored, and ONZOFF control can be performed so that the temperature becomes a predetermined value or more.
[0043] 各供給ガスは必要に応じて適宜予熱されたうえで改質器もしくは SOFCに供給され る。  [0043] Each supply gas is appropriately preheated as necessary and then supplied to the reformer or SOFC.
[0044] 〔実施例 2〕  [Example 2]
図 2は、本実施例の内部改質型 SOFC示す模式図である。実施例 1では円筒型 S OFCの内側がアノードで外側が力ソードである力 本例では内側が力ソードで外側 がアノードである。また、これに伴い、ガスの導管の配置が実施例 1とは異なっている 。これ以外については実施例 1と同様であり、実施例 1と同様の効果が得られる。 産業上の利用可能性  FIG. 2 is a schematic diagram showing the internal reforming SOFC of this example. In Example 1, the inner side of the cylindrical S OFC is an anode and the outer side is a force sword. In this example, the inner side is a force sword and the outer side is an anode. As a result, the arrangement of gas conduits is different from that in Example 1. Except this, it is the same as the first embodiment, and the same effect as the first embodiment is obtained. Industrial applicability
[0045] 本発明の間接内部改質型 SOFCは、例えば定置用もしくは移動体用の発電システ ムに、またコージェネレーションシステムに利用できる。 [0045] The indirect internal reforming SOFC of the present invention can be used for, for example, a stationary or mobile power generation system, and a cogeneration system.

Claims

請求の範囲 The scope of the claims
[1] 灯油を改質可能な改質器と、該改質器から得られる改質ガスを燃料とする固体酸 化物形燃料電池と、該改質器を加熱するためのパーナとを有し、  [1] A reformer capable of reforming kerosene, a solid oxide fuel cell using the reformed gas obtained from the reformer as fuel, and a panner for heating the reformer ,
該改質器が、該固体酸ィ匕物形燃料電池と該パーナとの間に配置され、  The reformer is disposed between the solid oxide fuel cell and the panner;
該改質器が、互いに連通する第一の改質部と第二の改質部を有し、  The reformer has a first reforming section and a second reforming section communicating with each other;
改質ガスの流れについて、第一の改質部が上流に、第二の改質部が下流に位置し、 該第二の改質部が、該固体酸ィ匕物形燃料電池力 の熱輻射を受ける位置であって With respect to the flow of the reformed gas, the first reforming section is located upstream and the second reforming section is located downstream, and the second reforming section is heated by the solid oxide fuel cell power. Where radiation is received
、固体酸化物形燃料電池から第一の改質部への熱輻射を遮る位置に配された 間接内部改質型固体酸化物形燃料電池。 An indirect internal reforming solid oxide fuel cell that is disposed at a position that blocks heat radiation from the solid oxide fuel cell to the first reforming section.
[2] さらに、改質器入口に改質器と一体になるように直結された改質原料予熱器を有す る請求項 1記載の間接内部改質型固体酸化物形燃料電池。  2. The indirect internal reforming solid oxide fuel cell according to claim 1, further comprising a reforming material preheater directly connected to the reformer inlet so as to be integrated with the reformer.
[3] 前記第一の改質部および第二の改質部に充填される改質触媒が灯油酸化活性を 有する改質触媒を含む請求項 1または 2記載の間接内部改質型固体酸化物形燃料 電池。 [3] The indirect internal reforming solid oxide according to claim 1 or 2, wherein the reforming catalyst filled in the first reforming section and the second reforming section includes a reforming catalyst having kerosene oxidation activity. Fuel cell.
PCT/JP2006/325734 2005-12-28 2006-12-25 Indirect internal reforming solid oxide fuel cell WO2007077780A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005377238A JP5007045B2 (en) 2005-12-28 2005-12-28 Indirect internal reforming type solid oxide fuel cell
JP2005-377238 2005-12-28

Publications (1)

Publication Number Publication Date
WO2007077780A1 true WO2007077780A1 (en) 2007-07-12

Family

ID=38228135

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/325734 WO2007077780A1 (en) 2005-12-28 2006-12-25 Indirect internal reforming solid oxide fuel cell

Country Status (3)

Country Link
JP (1) JP5007045B2 (en)
TW (1) TW200740019A (en)
WO (1) WO2007077780A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009231211A (en) * 2008-03-25 2009-10-08 Toto Ltd Fuel cell module and fuel cell having the same

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5259228B2 (en) * 2008-03-31 2013-08-07 京セラ株式会社 Reactor
JP2009266541A (en) * 2008-04-24 2009-11-12 Nippon Oil Corp Method for operating indirect internal reforming solid oxide fuel cell system
JP4725866B2 (en) 2009-07-10 2011-07-13 Toto株式会社 Fuel cell
JP2011044244A (en) * 2009-08-19 2011-03-03 Toyota Motor Corp Fuel cell stack device
JP2011096433A (en) * 2009-10-28 2011-05-12 Kyocera Corp Cell stack device, fuel battery module using the same, and fuel battery device
JP5427568B2 (en) * 2009-11-25 2014-02-26 リンナイ株式会社 Power generator
JP5600283B2 (en) * 2010-10-28 2014-10-01 京セラ株式会社 Cell stack device, fuel cell module and fuel cell device
JP6169939B2 (en) * 2013-10-08 2017-07-26 京セラ株式会社 Fuel cell device
TWI506846B (en) * 2014-04-09 2015-11-01 Inst Nuclear Energy Res Atomic Energy Council Apparatus of Power Generation Using Dense Solid Oxide Fuel Cells
JP6765316B2 (en) * 2017-02-14 2020-10-07 東京瓦斯株式会社 Fuel cell system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151127A (en) * 2000-11-16 2002-05-24 Ngk Insulators Ltd Cogeneration power plant
JP2002280007A (en) * 2000-12-28 2002-09-27 Mitsubishi Materials Corp Hybrid power system
JP2003132903A (en) * 2001-10-22 2003-05-09 Nippon Steel Corp Combined system of industrial furnace and solid oxide fuel cell
JP2003317780A (en) * 2002-04-22 2003-11-07 Mitsubishi Heavy Ind Ltd Fuel cell module
JP2004335163A (en) * 2003-05-01 2004-11-25 Mitsubishi Materials Corp Solid oxide type fuel cell and its operation method
JP2005285621A (en) * 2004-03-30 2005-10-13 Kyocera Corp Operation method for fuel cell structural body

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002124289A (en) * 2000-10-19 2002-04-26 Hitachi Metals Ltd Solid electrolyte fuel cell system
JP2002289244A (en) * 2001-03-27 2002-10-04 Toto Ltd Fuel cell system
JP2004175966A (en) * 2002-11-28 2004-06-24 Nippon Oil Corp Method and apparatus for desulfurizing kerosene, fuel cell system and method for operating the same system
JP4369685B2 (en) * 2003-02-25 2009-11-25 京セラ株式会社 Operation method of fuel cell
JP4991087B2 (en) * 2003-11-26 2012-08-01 京セラ株式会社 Fuel cell assembly
JP2005293951A (en) * 2004-03-31 2005-10-20 Sumitomo Precision Prod Co Ltd Fuel cell and its operation method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151127A (en) * 2000-11-16 2002-05-24 Ngk Insulators Ltd Cogeneration power plant
JP2002280007A (en) * 2000-12-28 2002-09-27 Mitsubishi Materials Corp Hybrid power system
JP2003132903A (en) * 2001-10-22 2003-05-09 Nippon Steel Corp Combined system of industrial furnace and solid oxide fuel cell
JP2003317780A (en) * 2002-04-22 2003-11-07 Mitsubishi Heavy Ind Ltd Fuel cell module
JP2004335163A (en) * 2003-05-01 2004-11-25 Mitsubishi Materials Corp Solid oxide type fuel cell and its operation method
JP2005285621A (en) * 2004-03-30 2005-10-13 Kyocera Corp Operation method for fuel cell structural body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009231211A (en) * 2008-03-25 2009-10-08 Toto Ltd Fuel cell module and fuel cell having the same

Also Published As

Publication number Publication date
JP2007179884A (en) 2007-07-12
TW200740019A (en) 2007-10-16
JP5007045B2 (en) 2012-08-22

Similar Documents

Publication Publication Date Title
JP5007045B2 (en) Indirect internal reforming type solid oxide fuel cell
KR102254196B1 (en) Ammonia based solid oxide fuel cell system
KR100987823B1 (en) Solid Oxide Fuel Cell System
JP2008198423A (en) Fuel cell power generation system and its operation method
JP5065628B2 (en) Indirect internal reforming solid oxide fuel cell system
US9246181B2 (en) Fuel cell module
EP3336946B1 (en) Solid oxide fuel cell system
US20140242485A1 (en) Fuel cell module
JP2011113934A (en) Fuel cell system
JP6064782B2 (en) Fuel cell device
JP2006269332A (en) Solid oxide type fuel cell system
WO2007077791A1 (en) Indirect internal reforming solid oxide fuel cell
EP2858158A1 (en) Fuel cell system
JP5643711B2 (en) Fuel cell module
KR101422316B1 (en) Reformer and indirect internal reforming­type high­temperature fuel cell
JP5150068B2 (en) Reformer and indirect internal reforming type solid oxide fuel cell
JP2007200709A (en) Solid oxide fuel cell stack and its operation method
JP4805735B2 (en) Indirect internal reforming type solid oxide fuel cell
US20200168935A1 (en) Solid oxide fuel cell system configured for higher hydrocarbon fuels
JP4210912B2 (en) Fuel reformer and fuel cell power generator
JP4429032B2 (en) Method for operating hydrogen-containing gas generator and hydrogen-containing gas generator
JP2016051573A (en) Fuel cell module
JP5007077B2 (en) Reformer and indirect internal reforming type solid oxide fuel cell
JP2008186759A (en) Indirect internal reforming solid oxide fuel cell system and method for operating indirect internal reforming solid oxide fuel cell
KR100987824B1 (en) Start-up protocol of Self-sustained Solid Oxide Fuel Cell System

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06843138

Country of ref document: EP

Kind code of ref document: A1