JP4588224B2 - CO converter in reforming system for fuel cell - Google Patents

CO converter in reforming system for fuel cell Download PDF

Info

Publication number
JP4588224B2
JP4588224B2 JP2001005792A JP2001005792A JP4588224B2 JP 4588224 B2 JP4588224 B2 JP 4588224B2 JP 2001005792 A JP2001005792 A JP 2001005792A JP 2001005792 A JP2001005792 A JP 2001005792A JP 4588224 B2 JP4588224 B2 JP 4588224B2
Authority
JP
Japan
Prior art keywords
converter
reformed gas
fuel cell
catalyst
reforming system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001005792A
Other languages
Japanese (ja)
Other versions
JP2002216827A (en
Inventor
純 小宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2001005792A priority Critical patent/JP4588224B2/en
Publication of JP2002216827A publication Critical patent/JP2002216827A/en
Application granted granted Critical
Publication of JP4588224B2 publication Critical patent/JP4588224B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、燃料電池用改質系におけるCO変成器、すなわち燃料電池に連結した改質器、CO変成器を含む改質系におけるCO変成器に関する。
【0002】
【従来の技術】
水素を燃料とする燃料電池として固体高分子型燃料電池(PEFC)やリン酸型燃料電池(PAFC)といったものが知られている。水素(水素ガス)は、電解法等のほか、メタン、エタン、プロパン、ブタン、都市ガス、LPガス、天然ガス、その他の炭化水素ガス(2種以上の炭化水素の混合ガスを含む)の部分酸化法(部分燃焼法)や水蒸気改質法、あるいは両者を組み合わせた方法(内燃式改質法)により得られる。このうち部分酸化法では反応:CH4+1/2O2→CO+2H2により水素を生成させるもので、その報告例はなくはないが、その多くは内燃式改質法に関するものである。
【0003】
内燃式改質法は、発熱型の部分酸化反応と吸熱型の水蒸気改質反応を組み合せたもので、原料ガスがメタンの場合の反応は下記式(1)〜(5)により表される。式(1)のような一部のメタンの完全酸化反応、式(2)のような一部のメタンの部分酸化反応を経て、(3)〜(4)の反応が後続し、(2)〜(4)の反応で生成するCOを水蒸気と反応させるシフト反応(5)を経て、最終的にH2とCO2が生成する。
【0004】
【化 1】

Figure 0004588224
【0005】
図1はこの改質器を模式的に示した図である。概略、酸化触媒を配置した部分酸化反応部と改質触媒を配置した水蒸気改質反応部とにより構成され、原料ガス(炭化水素ガス)、水、空気から水素リッチな改質ガスが得られる。ところが、改質ガス中には未反応のメタン、水蒸気〔反応(1)での生成水蒸気や別途導入添加した水蒸気〕、生成炭酸ガスのほか、一酸化炭素(CO)が副生して8〜15%(容量)程度含まれている。
【0006】
一方、水蒸気改質法は、原料ガス(炭化水素ガス)を水蒸気により改質して水素リッチな改質ガスを生成させる方法である。水蒸気改質法でも改質器が用いられ、接触反応によりそれら原料ガスが水素リッチな改質ガスへ変えられる。図2は水蒸気改質器を模式的に示す図で、概略、バーナあるいは燃焼触媒を充填した燃焼部(加熱部)と改質触媒を充填した改質部とにより構成される。改質部では原料ガスが水蒸気と反応して水素リッチな改質ガスが生成される。改質部で起こる反応は大きな吸熱を伴うので、燃焼部での燃料ガスの空気による燃焼により発生した燃焼熱(ΔH)が改質部に供給される。燃焼触媒としては例えば白金等の貴金属触媒が用いられ、改質触媒としては例えばNi系、Ru系等の触媒が用いられる。
【0007】
原料ガスがメタンである場合の水蒸気改質反応は下記式(6)で示される。しかし、内燃式改質法の場合と同じく、水蒸気改質法でも生成する改質ガス中には未反応のメタン、改質用に導入した水蒸気のうち未利用の水蒸気、生成炭酸ガスのほか、一酸化炭素(CO)が副生して8〜15%(容量)程度含まれている。
【0008】
【化 2】
Figure 0004588224
【0009】
図3は、改質器からからPEFCに至るまでの態様例を示す図である。改質器から順次、CO変成器、CO酸化器(CO選択酸化器)を経てPEFCが連結されている。原料ガスとして都市ガスやLPガスを用いる場合、これらガスにはメルカプタン類、サルファイド類、あるいはチオフェン類などの付臭剤が添加されている。改質触媒は、これら硫黄化合物により被毒し性能劣化を来してしまうので、それらの硫黄化合物を除去するために脱硫器へ導入される。次いで、改質器へ導入され、改質器中での改質反応により水素リッチな改質ガスが生成される。
【0010】
図3では、改質器として図2のような改質器を用いた場合を示しているが、図1のような改質器を用いる場合も同様である。なお、後述のとおりPAFCではCO酸化器は必要としない。このように、CO酸化器を必要としない場合もあるが、本明細書においては、改質器にCO変成器を連結する場合のほか、これにCO酸化器を連結する場合を含めて「改質器、CO変成器を含む改質系」ないし「燃料電池用改質系」と指称している。
【0011】
改質ガスは、シフト反応(=CO変成反応)、すなわち前記副生COを炭酸ガスと水素に変えるためにCO変成器にかけられる。CO変成器では例えば銅ー亜鉛系や白金触媒等の変成触媒(=シフト触媒)が用いられるが、その触媒を機能させるには200〜250℃程度の温度が必要である。CO変成器中でのシフト反応は下記反応式(7)で示される。
【0012】
【化 3】
Figure 0004588224
【0013】
この反応で必要な水蒸気としては、内燃式改質法の改質器からの改質ガスでは前記式(1)の完全酸化反応で生成した水蒸気と別途導入添加した水蒸気が利用され、水蒸気改質法の改質器からの改質ガスでは改質器で未利用の水蒸気が利用される。なお、CO変成器に使用する水蒸気として、改質器で余った水蒸気だけでは足りない場合もあるが、この場合にはCO変成器に別途水蒸気を追加導入し、CO変成反応を促進する場合もある。
【0014】
改質器で生成された改質ガス中のCOは、CO変成器中で炭酸ガスと水素に変えられ、その濃度1%(容量、以下同じ)程度以下まで低下される。ここで、水素をPAFCの燃料として使用する場合、PAFCでの水素中のCOの許容濃度(上限)は1%程度であるので、CO変成器を経た改質ガスはそのままPAFC用の燃料水素として使用することができる。
【0015】
一方、PEFCに供給する燃料水素中のCO含有量は100ppm程度(その燃料極等の構成材料の如何によっては10ppm程度)(ppmは容量、以下同じ)が限度であり、これを超えると電池性能が著しく劣化するので、燃料水素中のCO成分はPEFCへ導入する前にできる限り除去する必要がある。このため、改質ガスはCO変成器によりCO濃度を1%程度以下まで低下させた後、CO酸化器にかけられる。ここで空気等の酸化剤ガスが添加され、COの酸化反応(CO+1/2O2=CO2)により、COを100ppm程度以下、好ましくは50ppm以下、さらに好ましくは10ppm以下というように低減させる。
【0016】
以上のうち、CO変成器でのCO変成反応(7)は、化学平衡上低温ほど進行するが、発熱反応であるため、その内部に冷却配管を配置するなどをして、反応温度の上昇を回避する必要がある。図4〜6は従来における幾つかのCO変成器の例を示す図である。
【0017】
図4の例(特開平11−199202号)では、冷媒通流部Pを、冷媒通流用の複数の蛇行状の伝熱管21を処理室32内の全体に広がるように配置した蛇管式に構成されている。図5の例(特開平11−199202号)では、ケーシング31にて形成される処理室32内に、冷媒として冷却水が通流する冷媒通流部Pと変成触媒33を充填して、変成触媒33が充填された箇所を被変成ガスが通流するとともに、その被変成ガス中の一酸化炭素ガスが二酸化炭素ガスに変成処理されるように構成してある。
【0018】
図6の例は、改質器の周囲を囲んで構成された容器内に変成触媒および冷媒流通装置を配置するとともに、被処理改質ガスがその一方の端から他方の端へ流通するようにしてなるCO変成器であり、冷媒流通装置は螺旋状の冷却配管として配置されている。本例は、改質器とCO変成器が一体化されているため、冷却媒体として水を使用すれば、改質器からの伝熱で水蒸気を生成できるので、改質用の水蒸気として用いることができる。
【0019】
【発明が解決しようとする課題】
ところが、従来における、各種CO変成器を現実に作動させて詳しく観察し、追求したところ、改質ガスの入口側では発熱反応であるCO変化反応が進行して高い温度分布となる傾向があり、出口側では発熱反応であるCO変成反応が殆ど進行せず、急激に温度が下がる傾向があることが観察された。図7はその傾向例を示す図である(図7中、縦軸は、被処理改質ガス入口から出口に至る各位置における触媒の温度である)。図7中、従来例(改良前)として示すとおり、CO変成器の入口付近ではCO変成反応が急激に進行し、また冷媒として用いた空気も加熱され、改質ガスとの温度差が小さいため、入口付近から中間域まではなかなか温度が下がらない。
【0020】
一方、中間域から出口までは、CO変成反応があまり起こらず、また冷媒空気も加熱されていないことから、改質ガスとの温度差が大きいため、冷却効果が必要以上に大きくなり、一気に温度が下がってしまう。さらに、改質ガスの入口に近い高温部では反応速度が速いため、反応ガスが平衡組成に達しやすい(CO変成反応に必要な触媒が多い傾向)ことが確認された。しかし、改質ガスの出口に近い低温部では反応速度が遅いため、反応ガスが平衡組成に達しにくい(CO変成反応に必要な触媒が少ない傾向)ことが確認された。
【0021】
本発明は、以上の事実を基に、従来のCO変成器を改良し、燃料電池用改質系におけるCO変成器内の温度分布を適切に制御できるだけでなく、最小限の触媒量でCO変成器として十分に作用させることができ、さらには改質系をコンパクト化できるなど各種効果を得ることができる燃料電池用改質系におけるCO変成器を提供することを目的とする。
【0022】
【課題を解決するための手段】
本発明は、容器内に変成触媒および冷媒流通装置を配置するとともに、被処理改質ガスがその一方の端から他方の端へ流通するようにしてなるCO変成器であって、被処理改質ガスの流通方向に対し、変成触媒に接する冷媒流通装置の冷却面の面積が順次連続的に小さくなるようにしてなることを特徴とする燃料電池用改質系におけるCO変成器を提供する。
【0023】
また、本発明は、容器内に変成触媒および冷媒流通装置を配置するとともに、被処理改質ガスがその一方の端から他方の端へ流通するようにしてなるCO変成器であって、被処理改質ガスの流通方向に対し、変成触媒に接する冷媒流通装置の冷却面の面積が順次段階的に小さくなるようにしてなることを特徴とする燃料電池用改質系におけるCO変成器を提供する。
【0024】
【発明の実施の形態】
本発明は、燃料電池用改質系におけるCO変成器であって、その容器内に変成触媒を充填し且つ該変成触媒中に冷媒流通装置を配置するとともに、被処理改質ガスをその一方の端から他方の端へ流通するように構成される。そして、被処理改質ガスが流通する方向に対し、変成触媒に接する冷媒流通装置の冷却面の面積が順次連続的に小さくなるようにしてなることを特徴とする。
【0025】
また、本発明は、燃料電池用改質系におけるCO変成器であって、その容器内に変成触媒を充填し且つ該変成触媒中に冷媒流通装置を配置するとともに、被処理改質ガスをその一方の端から他方の端へ流通するように構成される。そして、被処理改質ガスが流通する方向に対し、変成触媒に接する冷媒流通装置の冷却面の面積が順次段階的に小さくなるようにしてなることを特徴とする。
【0026】
CO変成器を以上のように構成することにより、CO変成器内の温度分布を適切に制御することができる。併せて、最小限の触媒量で、低温部の触媒量を多く、高温部の触媒量を相対的に少なくし、CO変成器として十分に作用させることができる。図7に、本発明において、冷却媒体として空気を用いた場合に得られた触媒層の温度分布を示している。図7中、本発明の例(改良後)として示すとおり、CO変成触媒による被処理改質ガス入口付近の急激な温度上昇が防がれ、従来例(改良前)に比べて、その出口に至るまで改善されていることが分かる。
【0027】
変成触媒を充填したCO変成器における冷媒流通装置には各種形式があり得るが、本発明は、例えば前記図4〜6のような構造のCO変成器とは限らず、いずれの形式のCO変成器にも適用される。冷媒流通装置に通す冷媒としては、空気、水、その他適宜の冷媒が使用できるが、好ましくは改質器、CO変成器を含む改質系、あるいはそれらに加えてCO酸化器を含む改質系に用いる空気、水、水蒸気又は原料ガスを使用することができる。
【0028】
改質器に供給する原料ガスとしてはメタン、エタン、プロパン、ブタン、都市ガス、LPガス、天然ガス、その他の炭化水素ガス(2種以上の炭化水素の混合ガスを含む)が用いられる。このれら原料ガスが硫黄化合物を含む場合には、改質器の前段に脱硫器が配置される。また、燃料電池としてPEFCを用いる場合には、CO変成器を経た改質ガス中のCOをさらに減じるためCO変成器に続きCO酸化器が配置される。
【0029】
前記のとおり、内燃式改質法の改質器では原料ガス、水、空気が用いられる。
空気としては空気のほか、酸素富化空気、酸素等も使用される。一方、水蒸気改質法の改質器では、改質部へは原料ガスと水蒸気が供給され、燃焼部へは燃料ガスと空気が供給される。上記水、水蒸気発生用の水としては蒸留水やイオン交換水などが用いられる。本発明においては、これらの流体をそれら流体の各導管から分岐して冷媒流通装置の冷媒として用いることができる。この場合には、冷媒用の設備を別途配置する必要がないので、装置のコンパクト化その他各種利点が得られる。燃料電池としてはPEFC、PAFC等の水素を燃料とする燃料電池が用いられる。
【0030】
【実施例】
以下、実施例に基づき本発明をさらに詳しく説明するが、本発明がこれら実施例に限定されないことはもちろんである。
【0031】
《実施例1》
図8は本発明のCO変成器の例を示す図である。円筒状容器(ケーシング)内に、冷媒流通装置として、内管と外管との2系統の螺旋状冷媒流通配管を配置し、ケーシング内の上下の多孔板間に変成触媒(CO変成触媒:例えば銅ー亜鉛系触媒や白金触媒等)を充填する。図8での円筒状容器は、縦方向に配置しているが、横方向に配置してもよく、縦方向の上下を逆にしてもよい。また、冷媒流通配管は、CO変成器の規模(容器の内径等)、冷媒流通配管の外径その他の条件如何により1系統としてもよく、3系統以上としてもよい。さらに、螺旋状の巻き数(1回りを単位としたときのその数)は、同じくCO変成器の規模(容器の内径等)、冷媒流通配管の外径その他の条件如何により設定される。これらの点は以下の例でも同様である。
【0032】
改質器からの改質ガス、すなわちCO変成器での被処理改質ガスはケーシングの下部から多孔板を通して変成触媒層に均等に供給される。供給改質ガスは、変成触媒中を通り、ここで供給改質ガス中のCOが水蒸気によりH2とCO2に変成され、ケーシングの上部の多孔板を経て排出される。冷却媒体は上部からヘッダを介して内管と外管とに分岐して供給され、これら冷媒流通配管により変成触媒を冷却し、下部ヘッダを経て下部から排出される。
【0033】
本例においては、螺旋状に配置された内管と外管からなる冷媒流通配管について、図8のとおり、配管ピッチをその低温部から高温部にわたり連続的に疎から密になるようにしている。配管ピッチをこのようにしていることにより、CO変成器内の温度分布を適切に制御することができる。併せて、最小限の触媒量で、低温部の触媒量を多く、高温部の触媒量を相対的に少なくし、CO変成器として十分に作用させることができる。
【0034】
冷媒流通配管に通す冷媒としては、空気、水、その他適宜の冷媒が使用できるが、好ましくは改質器、CO変成器を含む改質系に用いる空気、水、水蒸気又は原料ガスが使用できる。すなわち、内燃式改質法の改質器では原料ガスと水と空気が供給される。水蒸気改質法の改質器では、その改質部へ原料ガスと水蒸気が供給され、その燃焼部へは燃料ガスと空気が供給される。そこで、これらのガスをその導管から分岐して冷媒流通配管に通す冷媒として用いることができる。この場合には、別途その冷媒用の設備の配置が必要でないので装置のコンパクト化その他各種利点が得られる。これらの点は以下の例でも同様である。
【0035】
本実施例における実測例として、CO変成器中の冷却配管のピッチを従来のように入口から出口にわたり均等にした場合には、その入口温度250℃、中間域温度250℃、出口温度170℃であったのに対して、冷却配管のピッチを本実施例のように構成したCO変成器では、その入口温度250℃、中間域温度220℃、出口温度170℃となった。このように本発明によれば触媒層の温度分布を大きく緩和することができる。
【0036】
《実施例2》
図9は本発明のCO変成器の他の例を示す図である。実施例1では配管ピッチの粗密を低温部から高温部にわたり連続的に疎から密になるようにしているが、本例では、これに代えて、冷媒流通配管ピッチの粗密を低温部、中温部、高温部の3領域(すなわち3ブロック)に分け、被処理改質ガスが流通する方向に対し、変成触媒に接する冷媒流通配管の冷却面の面積が順次段階的に小さくなるようにしている。
【0037】
すなわち、本例では内管と外管からなる冷媒流通配管について、上部から3分の1程度までの低温部(低温域)における配管ピッチを疎に配置し、下部から3分の1程度までの高温部(高温域)では配管ピッチを密に配置し、且つ、その間の3分の1程度の中央部を中温部(中温域)とし、この中温部では配管ピッチをそれら粗密の中間程度のピッチにしている。
【0038】
こうして、CO変成器内の温度分布を適切に制御することができる。併せて、最小限の触媒量で、低温部の触媒量を相対的に多く、高温部の触媒量を相対的に少なく、且つ、中間温度領域の触媒量はその中間の触媒量として、CO変成器として十分に作用させることができる。本例の変形例として、冷媒流通配管ピッチの粗密を低温部から高温部にわたり4領域以上というように分けてもよい。
【0039】
《実施例3》
図10は本発明のCO変成器の他の例を示す図である。実施例2では、低温部では配管ピッチを疎にし、高温部では配管ピッチを密にし、その間の中央部の中温部の配管ピッチをそれら粗密の間のピッチにしているが、本例では、内管と外管からなる冷媒流通配管について、上部から中央部近辺までの低温部(低温域)における配管のピッチを疎に配置し、中央部近辺から下部までの高温部(高温域)では配管のピッチを密に配置して構成している。
【0040】
こうして、被処理改質ガスが流通する方向に対し、変成触媒に接する冷媒流通配管の冷却面の面積を2段階に小さくしている。この点以外は実施例1〜2と同様である。このように低温部では冷媒流通配管ピッチを疎にし、高温部では冷却配管ピッチを密にしていることにより、CO変成器内の温度分布を適切に制御することができ、併せて、最小限の触媒量で、低温部の触媒量を多く、高温部の触媒量を相対的に少なくし、CO変成器として十分に作用させることができる。
【0041】
《実施例4》
図11は、本発明を、改質器の周囲を囲んで構成された容器内に変成触媒および螺旋状の冷却配管からなる冷媒流通装置を配置するとともに、被処理改質ガスがその一方の端から他方の端へ流通するようにしてなるCO変成器に対して適用した例である。図11のとおり、被処理改質ガスが流通する方向に対し、高温部では冷却配管ピッチを密にし、低温部では冷媒流通配管ピッチを疎にして、変成触媒に接する冷媒流通配管の冷却面の面積を2段階にしている。
【0042】
こうしてCO変成器内の温度分布を適切に制御することができ、併せて、最小限の触媒量で、低温部の触媒量を多く、高温部の触媒量を相対的に少なくし、CO変成器として十分に作用させることができる。なおこの場合、冷媒として水を用いると、気体冷媒を用いる場合に比べて冷却効果が大きくなるため、CO変成器出口温度が低くなり過ぎるが、本例のように出口側(低温部)で配管ピッチを疎にすることにより、その温度低下を防ぐこともできる。
【0043】
本例の変形例として、冷媒流通配管のピッチをその低温部から高温部にわたり連続的に疎から密になるようにしてもよく、冷媒流通配管ピッチの粗密を低温部、中温部、高温部の3領域に分けてもよく、またその変形として冷媒流通配管ピッチの粗密を低温部から高温部にわたり4領域以上というように分けて、被処理改質ガスが流通する方向に対し、変成触媒に接する冷媒流通配管の冷却面の面積が順次段階的に小さくなるようにしてもよい。
【0044】
【発明の効果】
本発明によれば、CO変成器内の温度分布を適切に制御することができ、最小限の触媒量でCO変成器として十分に作用させることができる。また、冷媒流通配管等の冷媒流通装置に通す冷却冷媒として改質器、CO変成器を含む改質系に用いる原料ガス、水、水蒸気又は空気を用いることにより、別途冷却冷媒用の設備を不要とし、装置のコンパクト化その他各種効果を得ることができる。
【図面の簡単な説明】
【図1】改質器の例として内燃式改質器を模式的に示す図
【図2】改質器の例として水蒸気改質器を模式的に示す図
【図3】改質器からからPEFCに至るまでの態様例を示す図
【図4】従来におけるCO変成器の例を示す図
【図5】従来におけるCO変成器の例を示す図
【図6】従来におけるCO変成器の例を示す図
【図7】CO変成器における触媒層の温度分布を示す図
【図8】本発明の実施例1のCO変成器を示す図
【図9】本発明の実施例2のCO変成器を示す図
【図10】本発明の実施例3のCO変成器を示す図
【図11】本発明の実施例4のCO変成器を示す図[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a CO converter in a reforming system for a fuel cell, that is, a reformer connected to a fuel cell, and a CO converter in a reforming system including a CO converter.
[0002]
[Prior art]
As a fuel cell using hydrogen as a fuel, a polymer electrolyte fuel cell (PEFC) or a phosphoric acid fuel cell (PAFC) is known. Hydrogen (hydrogen gas) is part of methane, ethane, propane, butane, city gas, LP gas, natural gas, and other hydrocarbon gases (including a mixture of two or more hydrocarbons) in addition to electrolysis It can be obtained by an oxidation method (partial combustion method), a steam reforming method, or a method combining both (internal combustion reforming method). Of these, the partial oxidation method generates hydrogen by the reaction: CH 4 + 1 / 2O 2 → CO + 2H 2 , and there are no reported examples, but most of them relate to the internal combustion reforming method.
[0003]
The internal combustion reforming method is a combination of an exothermic partial oxidation reaction and an endothermic steam reforming reaction, and reactions when the raw material gas is methane are represented by the following formulas (1) to (5). A partial oxidation reaction of a part of methane as represented by formula (1) and a partial oxidation reaction of a part of methane as represented by formula (2) are followed by reactions of (3) to (4), (2) Through the shift reaction (5) in which CO produced by the reaction (4) is reacted with water vapor, H 2 and CO 2 are finally produced.
[0004]
[Chemical 1]
Figure 0004588224
[0005]
FIG. 1 is a diagram schematically showing this reformer. Generally, it is composed of a partial oxidation reaction section in which an oxidation catalyst is disposed and a steam reforming reaction section in which a reforming catalyst is disposed, and a hydrogen-rich reformed gas can be obtained from a raw material gas (hydrocarbon gas), water, and air. However, in the reformed gas, unreacted methane, water vapor [generated water vapor in reaction (1) or water vapor introduced and added separately), generated carbon dioxide, and carbon monoxide (CO) as a by-product are produced as a by-product. About 15% (capacity) is included.
[0006]
On the other hand, the steam reforming method is a method in which a raw material gas (hydrocarbon gas) is reformed with steam to generate a hydrogen-rich reformed gas. A reformer is also used in the steam reforming method, and these raw material gases are changed to a hydrogen-rich reformed gas by a catalytic reaction. FIG. 2 is a diagram schematically showing a steam reformer, which is roughly composed of a combustion section (heating section) filled with a burner or a combustion catalyst and a reforming section filled with a reforming catalyst. In the reforming section, the raw material gas reacts with water vapor to generate a hydrogen-rich reformed gas. Since the reaction occurring in the reforming section is accompanied by a large endotherm, combustion heat (ΔH) generated by combustion of fuel gas in the combustion section with air is supplied to the reforming section. As the combustion catalyst, for example, a noble metal catalyst such as platinum is used, and as the reforming catalyst, for example, a Ni-based or Ru-based catalyst is used.
[0007]
The steam reforming reaction when the source gas is methane is represented by the following formula (6). However, as in the case of the internal combustion reforming method, in the reformed gas generated by the steam reforming method, unreacted methane, unused steam among the steam introduced for reforming, generated carbon dioxide gas, Carbon monoxide (CO) is contained as a by-product and contains about 8 to 15% (capacity).
[0008]
[Chemical 2]
Figure 0004588224
[0009]
FIG. 3 is a diagram illustrating an exemplary embodiment from the reformer to the PEFC. The PEFCs are connected sequentially from the reformer through a CO converter and a CO oxidizer (CO selective oxidizer). When city gas or LP gas is used as the source gas, odorants such as mercaptans, sulfides, or thiophenes are added to these gases. Since the reforming catalyst is poisoned by these sulfur compounds and deteriorates performance, it is introduced into a desulfurizer in order to remove these sulfur compounds. Subsequently, it introduce | transduces into a reformer and hydrogen-rich reformed gas is produced | generated by the reforming reaction in a reformer.
[0010]
FIG. 3 shows the case where the reformer as shown in FIG. 2 is used as the reformer, but the same applies to the case where the reformer as shown in FIG. 1 is used. As will be described later, PAFC does not require a CO oxidizer. As described above, a CO oxidizer may not be required. However, in this specification, in addition to the case where a CO converter is connected to the reformer, a case where a CO oxidizer is connected to the reformer is also described. It is designated as “reforming system including a quality device and CO converter” or “reforming system for fuel cell”.
[0011]
The reformed gas is subjected to a shift reaction (= CO shift reaction), that is, a CO shift converter to convert the by-product CO into carbon dioxide gas and hydrogen. In the CO converter, for example, a conversion catalyst (= shift catalyst) such as a copper-zinc system or a platinum catalyst is used, but a temperature of about 200 to 250 ° C. is required to make the catalyst function. The shift reaction in the CO converter is represented by the following reaction formula (7).
[0012]
[Chemical 3]
Figure 0004588224
[0013]
As the steam necessary for this reaction, the reformed gas from the reformer of the internal combustion reforming method uses steam generated by the complete oxidation reaction of the above formula (1) and steam introduced and added separately, and steam reforming. In the reformed gas from the reformer of the method, unused steam is used in the reformer. In some cases, the steam used in the CO converter is not sufficient in the reformer, but in this case, additional steam may be additionally introduced into the CO converter to promote the CO conversion reaction. is there.
[0014]
The CO in the reformed gas generated by the reformer is converted into carbon dioxide and hydrogen in the CO converter, and the concentration is reduced to about 1% (capacity, the same applies hereinafter) or less. Here, when hydrogen is used as a fuel for PAFC, the allowable concentration (upper limit) of CO in hydrogen in PAFC is about 1%, so the reformed gas that has passed through the CO converter is directly used as fuel hydrogen for PAFC. Can be used.
[0015]
On the other hand, the CO content in the fuel hydrogen supplied to the PEFC is about 100 ppm (about 10 ppm depending on the constituent materials such as the fuel electrode) (ppm is the capacity, the same applies hereinafter). Therefore, it is necessary to remove the CO component in the fuel hydrogen as much as possible before introducing it into the PEFC. For this reason, the reformed gas is applied to the CO oxidizer after the CO concentration is lowered to about 1% or less by the CO converter. Here, an oxidant gas such as air is added, and CO is reduced to about 100 ppm or less, preferably 50 ppm or less, more preferably 10 ppm or less by an oxidation reaction of CO (CO + 1 / 2O 2 = CO 2 ).
[0016]
Of these, the CO conversion reaction (7) in the CO converter proceeds at a lower temperature in terms of chemical equilibrium, but since it is an exothermic reaction, a cooling pipe is arranged inside it to increase the reaction temperature. It is necessary to avoid it. 4 to 6 are diagrams showing examples of some conventional CO transformers.
[0017]
In the example of FIG. 4 (Japanese Patent Laid-Open No. 11-199202), the refrigerant flow part P is configured in a serpentine type in which a plurality of meandering heat transfer tubes 21 for refrigerant flow are arranged so as to spread throughout the processing chamber 32. Has been. In the example of FIG. 5 (Japanese Patent Application Laid-Open No. 11-199202), the processing chamber 32 formed by the casing 31 is filled with the refrigerant flow portion P through which cooling water flows and the shift catalyst 33 as the coolant. The gas to be converted flows through the portion filled with the catalyst 33, and the carbon monoxide gas in the gas to be converted is converted to carbon dioxide gas.
[0018]
In the example of FIG. 6, the reforming catalyst and the refrigerant flow device are arranged in a container configured to surround the reformer, and the reformed gas to be treated flows from one end to the other end. The refrigerant converter is arranged as a helical cooling pipe. In this example, since the reformer and the CO converter are integrated, if water is used as the cooling medium, steam can be generated by heat transfer from the reformer. Can do.
[0019]
[Problems to be solved by the invention]
However, when various CO converters in the past are actually operated and closely observed and pursued, CO reforming reaction, which is an exothermic reaction, proceeds on the reformed gas inlet side and tends to have a high temperature distribution, It was observed that the CO shift reaction, which is an exothermic reaction, hardly progressed on the outlet side, and the temperature tended to drop rapidly. FIG. 7 is a diagram showing an example of the tendency (in FIG. 7, the vertical axis represents the temperature of the catalyst at each position from the treated reformed gas inlet to the outlet). As shown in FIG. 7 as a conventional example (before improvement), the CO conversion reaction proceeds rapidly near the inlet of the CO converter, and the air used as the refrigerant is also heated, and the temperature difference from the reformed gas is small. The temperature doesn't fall easily from the vicinity of the entrance to the middle zone.
[0020]
On the other hand, since the CO shift reaction does not occur so much from the intermediate zone to the outlet, and the refrigerant air is not heated, the temperature difference from the reformed gas is large, so that the cooling effect is increased more than necessary, and the temperature is rapidly increased. Will go down. Furthermore, it was confirmed that the reaction gas is likely to reach an equilibrium composition (there is a large amount of catalyst required for the CO shift reaction) because the reaction rate is high in the high temperature portion near the reformed gas inlet. However, since the reaction rate was low in the low temperature part close to the outlet of the reformed gas, it was confirmed that the reaction gas hardly reached the equilibrium composition (there is a tendency for the catalyst required for the CO shift reaction to be small).
[0021]
Based on the above fact, the present invention can improve the conventional CO converter and appropriately control the temperature distribution in the CO converter in the reforming system for the fuel cell, and can also convert the CO with a minimum amount of catalyst. It is an object of the present invention to provide a CO converter in a reforming system for a fuel cell that can be sufficiently operated as a reactor and that can obtain various effects such as a compact reforming system.
[0022]
[Means for Solving the Problems]
The present invention relates to a CO converter in which a conversion catalyst and a refrigerant flow device are arranged in a container, and a processed reformed gas flows from one end to the other end, Provided is a CO converter in a reforming system for a fuel cell, characterized in that the area of the cooling surface of the refrigerant flow device in contact with the shift catalyst becomes successively smaller with respect to the gas flow direction.
[0023]
The present invention also provides a CO converter in which a conversion catalyst and a refrigerant distribution device are arranged in a container, and a processed reformed gas is distributed from one end to the other end. Provided is a CO converter in a reforming system for a fuel cell, characterized in that the area of the cooling surface of the refrigerant flow device in contact with the shift catalyst gradually decreases in the flow direction of the reformed gas. .
[0024]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is a CO converter in a reforming system for a fuel cell, in which a container is filled with a conversion catalyst, and a refrigerant flow device is disposed in the conversion catalyst, and the reformed gas to be treated is supplied to one of them. It is comprised so that it may distribute from one end to the other end. And the area of the cooling surface of the refrigerant | coolant distribution | circulation apparatus which contact | connects a conversion catalyst with respect to the direction through which the to-be-processed reformed gas distribute | circulates becomes small sequentially.
[0025]
Further, the present invention is a CO converter in a reforming system for a fuel cell, in which a container is filled with a conversion catalyst, a refrigerant flow device is disposed in the conversion catalyst, and a reformed gas to be treated is supplied to the CO conversion device. It is comprised so that it may distribute | circulate from one end to the other end. And the area of the cooling surface of the refrigerant | coolant distribution | circulation apparatus which contact | connects a conversion catalyst becomes small in steps with respect to the direction through which the to-be-processed reformed gas distribute | circulates.
[0026]
By configuring the CO converter as described above, the temperature distribution in the CO converter can be appropriately controlled. At the same time, with a minimum amount of catalyst, the amount of catalyst in the low temperature part can be increased, the amount of catalyst in the high temperature part can be relatively reduced, and it can sufficiently function as a CO converter. FIG. 7 shows the temperature distribution of the catalyst layer obtained when air is used as the cooling medium in the present invention. In FIG. 7, as shown as an example of the present invention (after improvement), a rapid temperature rise near the reformed gas inlet to be treated by the CO conversion catalyst is prevented, and at the outlet compared to the conventional example (before improvement). It can be seen that it has been improved.
[0027]
There are various types of refrigerant distribution devices in the CO converter filled with the conversion catalyst, but the present invention is not limited to the CO converter having the structure as shown in FIGS. It also applies to vessels. As the refrigerant passed through the refrigerant distribution device, air, water, and other appropriate refrigerants can be used, but preferably a reformer, a reforming system including a CO converter, or a reforming system including a CO oxidizer in addition to them. The air, water, water vapor, or source gas used for the above can be used.
[0028]
As the raw material gas supplied to the reformer, methane, ethane, propane, butane, city gas, LP gas, natural gas, and other hydrocarbon gases (including a mixed gas of two or more hydrocarbons) are used. When these raw material gases contain a sulfur compound, a desulfurizer is disposed in front of the reformer. When PEFC is used as a fuel cell, a CO oxidizer is disposed after the CO converter to further reduce CO in the reformed gas that has passed through the CO converter.
[0029]
As described above, raw material gas, water, and air are used in the reformer of the internal combustion reforming method.
As air, oxygen-enriched air, oxygen and the like are used in addition to air. On the other hand, in the reformer of the steam reforming method, raw material gas and steam are supplied to the reforming section, and fuel gas and air are supplied to the combustion section. Distilled water, ion-exchanged water, or the like is used as the water or water for generating water vapor. In the present invention, these fluids can be branched from the respective conduits of those fluids and used as the refrigerant of the refrigerant distribution device. In this case, there is no need to separately arrange a facility for the refrigerant, so that various advantages such as a compact device can be obtained. As the fuel cell, a fuel cell using hydrogen as a fuel, such as PEFC or PAFC, is used.
[0030]
【Example】
EXAMPLES Hereinafter, although this invention is demonstrated in more detail based on an Example, of course, this invention is not limited to these Examples.
[0031]
Example 1
FIG. 8 is a diagram showing an example of the CO transformer of the present invention. In the cylindrical container (casing), two types of spiral refrigerant circulation pipes of an inner pipe and an outer pipe are arranged as a refrigerant circulation device, and a shift catalyst (CO shift catalyst: for example, between upper and lower perforated plates in the casing) Filled with copper-zinc catalyst or platinum catalyst. The cylindrical containers in FIG. 8 are arranged in the vertical direction, but may be arranged in the horizontal direction, and the vertical direction may be reversed. Further, the refrigerant circulation pipe may be one system or three or more systems depending on the scale of the CO transformer (inner diameter of the container, etc.), the outer diameter of the refrigerant circulation pipe, and other conditions. Further, the number of spiral turns (the number when one unit is used as a unit) is similarly set depending on the scale of the CO transformer (inner diameter of the container, etc.), the outer diameter of the refrigerant circulation pipe, and other conditions. These points are the same in the following examples.
[0032]
The reformed gas from the reformer, that is, the reformed gas to be treated in the CO converter, is evenly supplied from the lower part of the casing through the perforated plate to the shift catalyst layer. The supplied reformed gas passes through the shift catalyst, where CO in the supplied reformed gas is converted into H 2 and CO 2 by steam and discharged through the perforated plate at the top of the casing. The cooling medium is branched and supplied from the upper part to the inner pipe and the outer pipe through the header, cools the shift catalyst through these refrigerant circulation pipes, and is discharged from the lower part through the lower header.
[0033]
In this example, with respect to the refrigerant circulation pipe composed of the inner pipe and the outer pipe arranged in a spiral shape, the pipe pitch is continuously reduced from the low temperature portion to the high temperature portion as shown in FIG. . By making the piping pitch in this way, the temperature distribution in the CO transformer can be appropriately controlled. At the same time, with a minimum amount of catalyst, the amount of catalyst in the low temperature part can be increased, the amount of catalyst in the high temperature part can be relatively reduced, and it can sufficiently function as a CO converter.
[0034]
As the refrigerant passing through the refrigerant distribution pipe, air, water, and other appropriate refrigerants can be used. Preferably, air, water, water vapor, or source gas used in a reforming system including a reformer and a CO converter can be used. That is, the reformer of the internal combustion reforming method is supplied with raw material gas, water, and air. In the reformer of the steam reforming method, the raw material gas and steam are supplied to the reforming section, and the fuel gas and air are supplied to the combustion section. Therefore, these gases can be used as a refrigerant branched from the conduit and passed through the refrigerant circulation pipe. In this case, it is not necessary to separately arrange the equipment for the refrigerant, so that the apparatus can be made compact and other various advantages can be obtained. These points are the same in the following examples.
[0035]
As an actual measurement example in this example, when the pitch of the cooling pipes in the CO transformer is made uniform from the inlet to the outlet as in the conventional case, the inlet temperature is 250 ° C., the intermediate temperature is 250 ° C., and the outlet temperature is 170 ° C. In contrast, in the CO transformer having the cooling pipe pitch as in this example, the inlet temperature was 250 ° C., the intermediate temperature was 220 ° C., and the outlet temperature was 170 ° C. Thus, according to the present invention, the temperature distribution of the catalyst layer can be greatly relaxed.
[0036]
Example 2
FIG. 9 is a diagram showing another example of the CO transformer of the present invention. In Example 1, the density of the pipe pitch is continuously sparse to dense from the low temperature part to the high temperature part. In this example, instead of this, the density of the refrigerant circulation pipe pitch is changed to the low temperature part and the medium temperature part. In addition, the area of the cooling surface of the refrigerant flow pipe in contact with the shift catalyst is gradually reduced in steps with respect to the direction in which the to-be-processed reformed gas flows.
[0037]
That is, in this example, with respect to the refrigerant circulation pipe composed of the inner pipe and the outer pipe, the pipe pitch in the low temperature part (low temperature region) from the upper part to about one third is sparsely arranged, and from the lower part to about one third. The pipe pitch is densely arranged in the high-temperature part (high-temperature area), and the middle part between them is the middle-temperature part (medium-temperature area). I have to.
[0038]
Thus, the temperature distribution in the CO transformer can be appropriately controlled. At the same time, with a minimum amount of catalyst, the amount of catalyst in the low temperature part is relatively large, the amount of catalyst in the high temperature part is relatively small, and the amount of catalyst in the intermediate temperature range is the intermediate amount of catalyst. It can fully function as a vessel. As a modification of this example, the density of the refrigerant circulation piping pitch may be divided into four or more regions from the low temperature part to the high temperature part.
[0039]
Example 3
FIG. 10 is a diagram showing another example of the CO transformer of the present invention. In Example 2, the pipe pitch is sparse in the low-temperature part, the pipe pitch is dense in the high-temperature part, and the pipe pitch in the middle temperature part in the middle is the pitch between those coarse and dense. For refrigerant distribution piping consisting of a pipe and an outer pipe, the piping pitch in the low temperature part (low temperature region) from the upper part to the vicinity of the central part is sparsely arranged, and in the high temperature part (high temperature region) from the vicinity of the central part to the lower part, The pitch is densely arranged.
[0040]
In this way, the area of the cooling surface of the refrigerant circulation pipe in contact with the shift catalyst is reduced in two steps with respect to the direction in which the reformed gas to be treated flows. Except this point, the second embodiment is the same as the first and second embodiments. In this way, the refrigerant distribution pipe pitch is sparse in the low temperature part, and the cooling pipe pitch is dense in the high temperature part, so that the temperature distribution in the CO converter can be controlled appropriately, and at the same time, the minimum With the amount of catalyst, the amount of catalyst in the low temperature part can be increased and the amount of catalyst in the high temperature part can be relatively reduced, so that it can sufficiently function as a CO converter.
[0041]
Example 4
FIG. 11 shows the present invention in which a refrigerant flow device comprising a shift catalyst and a helical cooling pipe is disposed in a container configured to surround the reformer, and the reformed gas to be treated is at one end thereof. This is an example applied to a CO transformer configured to flow from one to the other end. As shown in FIG. 11, with respect to the direction in which the reformed gas to be treated flows, the cooling pipe pitch is made dense in the high temperature part and the refrigerant circulation pipe pitch is made sparse in the low temperature part. The area is divided into two stages.
[0042]
Thus, the temperature distribution in the CO converter can be appropriately controlled, and at the same time, the minimum amount of catalyst, the amount of catalyst in the low temperature part is increased, the amount of catalyst in the high temperature part is relatively reduced, and the CO converter Can be made to work as well. In this case, when water is used as the refrigerant, the cooling effect becomes larger than when a gas refrigerant is used, so the CO transformer outlet temperature becomes too low. However, as in this example, the piping is provided on the outlet side (low temperature part). By making the pitch sparse, the temperature drop can be prevented.
[0043]
As a modification of this example, the pitch of the refrigerant circulation pipe may be continuously sparse to dense from the low temperature part to the high temperature part, and the density of the refrigerant circulation pipe pitch is changed between the low temperature part, the medium temperature part, and the high temperature part. It may be divided into three regions, and as a modification thereof, the density of the refrigerant circulation pipe pitch is divided into four regions or more from the low temperature part to the high temperature part, and comes into contact with the shift catalyst in the direction in which the reformed gas to be treated flows. You may make it the area of the cooling surface of refrigerant | coolant circulation piping become small gradually.
[0044]
【The invention's effect】
According to the present invention, the temperature distribution in the CO converter can be appropriately controlled, and the CO converter can be sufficiently operated with a minimum amount of catalyst. In addition, by using the raw material gas, water, water vapor, or air used for the reforming system including the reformer and the CO converter as the cooling refrigerant to be passed through the refrigerant circulation device such as the refrigerant circulation pipe, no additional equipment for the cooling refrigerant is required. Thus, the device can be made compact and various other effects can be obtained.
[Brief description of the drawings]
FIG. 1 is a diagram schematically showing an internal combustion reformer as an example of a reformer. FIG. 2 is a diagram schematically showing a steam reformer as an example of a reformer. FIG. 4 shows an example of a conventional CO transformer. FIG. 5 shows an example of a conventional CO transformer. FIG. 6 shows an example of a conventional CO transformer. FIG. 7 is a diagram showing a temperature distribution of a catalyst layer in a CO converter. FIG. 8 is a diagram showing a CO converter according to Example 1 of the present invention. FIG. 9 is a diagram showing a CO converter according to Example 2 of the present invention. FIG. 10 is a diagram showing a CO transformer according to a third embodiment of the present invention. FIG. 11 is a diagram showing a CO transformer according to the fourth embodiment of the present invention.

Claims (5)

円筒状容器内の一方の端である被処理改質ガスの入口側と他方の端である被処理改質ガスの出口側の両端部位にそれぞれ配置した一方の多孔板と他方の多孔板との間に、同一種類の変成触媒および螺旋状冷媒流通配管を配置するとともに、被処理改質ガスが前記両多孔板のうちの一方の多孔板から他方の多孔板へ向けて流通するようにしてなるCO変成器であって、前記変成触媒に接する前記螺旋状冷媒流通配管の冷却面の面積が前記一方の多孔板側から前記他方の多孔板側へ向けて順次連続的に小さくなるようにしてなることを特徴とする燃料電池用改質系におけるCO変成器。One perforated plate and the other perforated plate disposed at both ends of the treated reformed gas inlet side and the other end of the treated reformed gas outlet side , respectively, in one end of the cylindrical container Between the same type of shift catalyst and spiral refrigerant circulation pipe, the reformed gas to be treated flows from one of the two porous plates to the other porous plate. In the CO converter, the area of the cooling surface of the spiral refrigerant flow pipe in contact with the shift catalyst is successively reduced from the one porous plate side to the other porous plate side. A CO converter in a reforming system for a fuel cell. 円筒状容器内の一方の端である被処理改質ガスの入口側と他方の端である被処理改質ガスの出口側の両端部位にそれぞれ配置した一方の多孔板と他方の多孔板との間に、同一種類の変成触媒および螺旋状冷媒流通配管を配置するとともに、被処理改質ガスが前記両多孔板のうちの一方の多孔板から他方の多孔板へ向けて流通するようにしてなるCO変成器であって、前記変成触媒に接する前記螺旋状冷媒流通配管の冷却面の面積が前記一方の多孔板側から前記他方の多孔板側へ向けて順次段階的に小さくなるようにしてなることを特徴とする燃料電池用改質系におけるCO変成器。One perforated plate and the other perforated plate disposed at both ends of the treated reformed gas inlet side and the other end of the treated reformed gas outlet side , respectively, in one end of the cylindrical container Between the same type of shift catalyst and spiral refrigerant circulation pipe, the reformed gas to be treated flows from one of the two porous plates to the other porous plate. In the CO converter, the area of the cooling surface of the spiral refrigerant circulation pipe in contact with the shift catalyst is gradually reduced from the one porous plate side to the other porous plate side. A CO converter in a reforming system for a fuel cell. 上記CO変成器が、改質器の周囲を囲んで構成された容器内に変成触媒および螺旋状の冷却配管からなる冷媒流通装置を配置するとともに、被処理改質ガスがその一方の端から他方の端へ流通するようにしてなるCO変成器である請求項1または2に記載の燃料電池用改質系におけるCO変成器。  The CO converter is provided with a refrigerant flow device comprising a conversion catalyst and a helical cooling pipe in a container configured to surround the reformer, and the to-be-processed reformed gas flows from one end to the other. The CO converter in the reforming system for a fuel cell according to claim 1 or 2, wherein the CO converter is configured to flow to the end of the fuel cell. 上記冷媒流通装置に通す冷媒が改質器、CO変成器を含む改質系に用いる空気、水、水蒸気または原料ガスである請求項1〜3のいずれかに記載の燃料電池用改質系におけるCO変成器。  The fuel cell reforming system according to any one of claims 1 to 3, wherein the refrigerant passed through the refrigerant circulation device is air, water, water vapor, or a raw material gas used in a reforming system including a reformer and a CO converter. CO transformer. 上記燃料電池に連結した改質器、CO変成器を含む改質系が、CO変成器の後段にCO酸化器を配置した改質系である請求項1〜4のいずれかに記載の燃料電池用改質系におけるCO変成器。  The fuel cell according to any one of claims 1 to 4, wherein the reforming system including a reformer and a CO converter connected to the fuel cell is a reforming system in which a CO oxidizer is disposed at a subsequent stage of the CO converter. CO transformer in the reforming system for industrial use.
JP2001005792A 2001-01-12 2001-01-12 CO converter in reforming system for fuel cell Expired - Lifetime JP4588224B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001005792A JP4588224B2 (en) 2001-01-12 2001-01-12 CO converter in reforming system for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001005792A JP4588224B2 (en) 2001-01-12 2001-01-12 CO converter in reforming system for fuel cell

Publications (2)

Publication Number Publication Date
JP2002216827A JP2002216827A (en) 2002-08-02
JP4588224B2 true JP4588224B2 (en) 2010-11-24

Family

ID=18873787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001005792A Expired - Lifetime JP4588224B2 (en) 2001-01-12 2001-01-12 CO converter in reforming system for fuel cell

Country Status (1)

Country Link
JP (1) JP4588224B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230040622A (en) * 2021-09-16 2023-03-23 이재종 Fuel cell metamorphism reaction system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4233315B2 (en) * 2002-12-09 2009-03-04 新日本石油株式会社 Reforming system and operation method thereof, and fuel cell system and operation method thereof
US7294157B2 (en) 2004-02-25 2007-11-13 Honda Motor Co., Ltd. Carbon monoxide converter
JP5428531B2 (en) * 2009-05-26 2014-02-26 パナソニック株式会社 Hydrogen production equipment

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05159795A (en) * 1991-12-09 1993-06-25 Toshiba Corp Fuel cell power generating device
JPH06140068A (en) * 1992-10-26 1994-05-20 Toshiba Corp Fuel cell power generating system
JPH08165103A (en) * 1994-12-09 1996-06-25 Sanyo Electric Co Ltd Converter
JPH08266885A (en) * 1995-04-04 1996-10-15 Tokyo Gas Co Ltd Fuel reforming reactor for fuel battery power generation plant
JPH09268001A (en) * 1996-04-01 1997-10-14 Osaka Gas Co Ltd Carbon monoxide modifier for fuel cell
JPH09306532A (en) * 1996-05-21 1997-11-28 Sanyo Electric Co Ltd Fuel cell reactor
JP2000105036A (en) * 1998-09-29 2000-04-11 Toyo Radiator Co Ltd Evaporator for ice heat storage type heat exchanger
JP2000323157A (en) * 1999-05-14 2000-11-24 Hitachi Ltd Fuel cell power generation system and control method thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05159795A (en) * 1991-12-09 1993-06-25 Toshiba Corp Fuel cell power generating device
JPH06140068A (en) * 1992-10-26 1994-05-20 Toshiba Corp Fuel cell power generating system
JPH08165103A (en) * 1994-12-09 1996-06-25 Sanyo Electric Co Ltd Converter
JPH08266885A (en) * 1995-04-04 1996-10-15 Tokyo Gas Co Ltd Fuel reforming reactor for fuel battery power generation plant
JPH09268001A (en) * 1996-04-01 1997-10-14 Osaka Gas Co Ltd Carbon monoxide modifier for fuel cell
JPH09306532A (en) * 1996-05-21 1997-11-28 Sanyo Electric Co Ltd Fuel cell reactor
JP2000105036A (en) * 1998-09-29 2000-04-11 Toyo Radiator Co Ltd Evaporator for ice heat storage type heat exchanger
JP2000323157A (en) * 1999-05-14 2000-11-24 Hitachi Ltd Fuel cell power generation system and control method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230040622A (en) * 2021-09-16 2023-03-23 이재종 Fuel cell metamorphism reaction system
KR102533958B1 (en) 2021-09-16 2023-05-17 이재종 Fuel cell metamorphism reaction system

Also Published As

Publication number Publication date
JP2002216827A (en) 2002-08-02

Similar Documents

Publication Publication Date Title
JP4335535B2 (en) Single chamber compact fuel processor
JP4596735B2 (en) Apparatus and method for heating a catalyst for start-up of a compact fuel processor
US7074373B1 (en) Thermally-integrated low temperature water-gas shift reactor apparatus and process
JP4285992B2 (en) Single chamber compact fuel processor
KR101118825B1 (en) Method and apparatus for rapid heating of fuel reforming reactants
JP5154001B2 (en) Method for processing reformed gas from reformer and fuel cell system
JP4504016B2 (en) Highly efficient and compact reformer unit for producing hydrogen from gaseous hydrocarbons in the low power range
JP2001155756A (en) Vapor-reforming reactor for fuel cell
KR101403699B1 (en) Reactor for selective oxidation of carbon dioxide having heat exchange device therein and fuel reforming system including the reactor
JP4933818B2 (en) Operation method of solid oxide fuel cell system
JP2002208426A (en) Reforming device for fuel cell
JP2001080904A (en) Fuel reformer
JP4464230B2 (en) Reforming apparatus and method, and fuel cell system
JP4588224B2 (en) CO converter in reforming system for fuel cell
JP5314381B2 (en) Hydrogen production equipment
JP2010138037A (en) Multi-cylindrical steam reformer for fuel cell
JP4486832B2 (en) Steam reforming system
WO2000061491A1 (en) Apparatus for selective oxidation of carbon monoxide
JP5329944B2 (en) Steam reformer for fuel cell
JP4278393B2 (en) Hydrogen production apparatus and fuel cell system
JPH06325783A (en) Internal reforming type fused carbonate type fuel cell system
JPH02188406A (en) Carbon monoxide converter
JP3545254B2 (en) Fuel cell carbon monoxide remover
JP2004196614A (en) Method for removing co, co remover and hydrogen generating apparatus
JP5274986B2 (en) Multi-cylinder steam reformer for fuel cells

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100907

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100908

R150 Certificate of patent or registration of utility model

Ref document number: 4588224

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term