JP4799995B2 - Steam reformer - Google Patents

Steam reformer Download PDF

Info

Publication number
JP4799995B2
JP4799995B2 JP2005306414A JP2005306414A JP4799995B2 JP 4799995 B2 JP4799995 B2 JP 4799995B2 JP 2005306414 A JP2005306414 A JP 2005306414A JP 2005306414 A JP2005306414 A JP 2005306414A JP 4799995 B2 JP4799995 B2 JP 4799995B2
Authority
JP
Japan
Prior art keywords
reforming
catalyst
reforming catalyst
guard
hydrocarbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005306414A
Other languages
Japanese (ja)
Other versions
JP2007112667A (en
Inventor
久幸 斎宮
純 小宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2005306414A priority Critical patent/JP4799995B2/en
Publication of JP2007112667A publication Critical patent/JP2007112667A/en
Application granted granted Critical
Publication of JP4799995B2 publication Critical patent/JP4799995B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、炭化水素系原料の水蒸気改質器に関し、より詳しくは外管及び内管により構成した二重筒の隙間または一重筒の内部に改質触媒部を配置した炭化水素系原料の水蒸気改質器に関する。   TECHNICAL FIELD The present invention relates to a hydrocarbon-based raw material steam reformer, and more specifically, a hydrocarbon-based raw material steam having a reforming catalyst portion disposed in a double-cylinder gap formed by an outer tube and an inner tube or inside a single tube. It relates to a reformer.

例えば固体高分子形燃料電池(以下適宜“PEFC”と略称する)に水素を供給する水蒸気改質器においては、改質触媒、CO変成触媒、CO除去触媒などの複数の触媒が用いられる。改質触媒は600℃以上、例えば700℃という高温で使用されることから、それらの触媒をそれぞれ配置した反応器を別体として配置した場合、各反応器間を接続する配管や断熱材などが必要となり、機器構成が煩雑になる。そのため、それらの簡素化や小型化を目指し、それぞれの反応器を一体化した水蒸気改質器が考えられている。本発明者らは、そのように一体化した水蒸気改質器(以下、適宜“一体型水蒸気改質器”と言う)を開発し、実用化に向けて改善、改良を続けている(特許文献1〜5)。   For example, in a steam reformer that supplies hydrogen to a polymer electrolyte fuel cell (hereinafter abbreviated as “PEFC” where appropriate), a plurality of catalysts such as a reforming catalyst, a CO shift catalyst, and a CO removal catalyst are used. Since the reforming catalyst is used at a high temperature of 600 ° C. or higher, for example, 700 ° C., when the reactors in which the catalysts are respectively arranged are arranged as separate bodies, piping, heat insulating materials, etc. for connecting the reactors are provided. It becomes necessary and the equipment configuration becomes complicated. Therefore, with the aim of simplifying and downsizing them, a steam reformer in which the respective reactors are integrated has been considered. The present inventors have developed such an integrated steam reformer (hereinafter referred to as “integrated steam reformer” as appropriate), and have continued to improve and improve it for practical use (Patent Documents) 1-5).

WO 00/63114A1WO 00 / 63114A1 WO 02/098790A1WO 02 / 098790A1 特開2002−187705号公報JP 2002-187705 A 特願2005−1515(平成17年1月6日出願)Japanese Patent Application No. 2005-1515 (filed on January 6, 2005) 特願2005−49328(平成17年2月24日出願)Japanese Patent Application No. 2005-49328 (filed on February 24, 2005)

図1はその一例を縦断面図として示している(WO 02/098790A1)。図1のとおり、直径を順次大きくした、第1円筒体1、第2円筒体2及び第3円筒体3が中心軸を同一にして間隔を置いて配置され、第3円筒体3の上部には第3円筒体3より直径を大きくした第4円筒体4が配置されている。図1中、一点鎖線はその中心軸を示し、矢印はその中心軸の方向、すなわち軸方向を示している。第1円筒体1の内側には中心軸を同じくして、第1円筒体1より直径の小さい円筒状の伝熱隔壁すなわち輻射筒5が配置され、輻射筒5内にはバーナー6が配置されている。バーナー6は、中心軸部に配置され、輻射筒5の内側に上蓋兼バーナー取付台7を介して取り付けられている。   FIG. 1 shows an example of this as a longitudinal sectional view (WO 02/098790 A1). As shown in FIG. 1, the first cylindrical body 1, the second cylindrical body 2, and the third cylindrical body 3, whose diameters are sequentially increased, are arranged at the same center axis and spaced apart from each other. The fourth cylinder 4 having a diameter larger than that of the third cylinder 3 is arranged. In FIG. 1, the alternate long and short dash line indicates the central axis, and the arrow indicates the direction of the central axis, that is, the axial direction. A cylindrical heat transfer partition wall, that is, a radiation cylinder 5 having a diameter smaller than that of the first cylinder 1 is arranged inside the first cylinder 1, and a burner 6 is arranged in the radiation cylinder 5. ing. The burner 6 is disposed at the central shaft portion and is attached to the inside of the radiation tube 5 via an upper lid / burner mounting base 7.

輻射筒5は、その下端と第1円筒体1の底板8の間に間隔を設けて配置してあり、この間隙と、これに連なる輻射筒5と第1円筒体1の間の空隙とがバーナー6からの燃焼排ガスの排気通路9を形成している。底板8は第1円筒体1の直径に対応した直径で円盤状に構成されている。排気通路9は、その上部で排気通路9の上蓋(上蓋兼バーナー取付台7の下面)と隔壁10(後述予熱層14の上蓋)の間の間隙を経て燃焼排ガスの排出口11に連なり、燃焼排ガスはここから排出される。   The radiation cylinder 5 is disposed with a gap between the lower end thereof and the bottom plate 8 of the first cylindrical body 1, and this gap and the gap between the radiation cylinder 5 and the first cylindrical body 1 connected to the gap are provided. An exhaust passage 9 for combustion exhaust gas from the burner 6 is formed. The bottom plate 8 is formed in a disc shape with a diameter corresponding to the diameter of the first cylindrical body 1. The exhaust passage 9 is connected to the exhaust port 11 of the combustion exhaust gas through the gap between the upper cover of the exhaust passage 9 (the upper cover and the lower surface of the burner mounting base 7) and the partition wall 10 (the upper cover of the preheating layer 14 to be described later). Exhaust gas is discharged from here.

12は炭化水素系原料すなわち原料ガスの供給管であり、第1円筒体1と第2円筒体2の間の空間内には、その上部に予熱層14、予熱層14に続く下部に改質触媒層16が設けられている。予熱層14の内部に一本の丸棒15が螺旋状に配置され、これにより予熱層14の内部に一つの連続した螺旋状のガス通路が形成されている。改質触媒層16の改質触媒は、その下端部で多孔板、網目体等の支持体17で支持されている。   12 is a supply pipe for hydrocarbon-based raw material, that is, a raw material gas. In the space between the first cylindrical body 1 and the second cylindrical body 2, a preheating layer 14 is formed in the upper part, and a reforming is performed in the lower part following the preheating layer 14. A catalyst layer 16 is provided. A single round bar 15 is spirally arranged inside the preheating layer 14, thereby forming one continuous spiral gas passage inside the preheating layer 14. The reforming catalyst of the reforming catalyst layer 16 is supported at its lower end by a support 17 such as a perforated plate or a mesh body.

供給管12から供給された原料ガスは、混合部13で水(水蒸気)が混合された後、予熱層14を経て、改質触媒層16に導入され、混合ガス中の炭化水素系原料が下降しながら水蒸気により改質される。改質触媒層16における改質反応は吸熱反応であり、バーナー6で発生する燃焼熱を吸収して改質反応が進行する。すなわち、バーナー6での燃焼ガスが輻射筒5と第1円筒体1の間の排気通路9を流通して通過するときに、燃焼ガスの熱が改質触媒層16に吸収され、改質反応が進行する。   The raw material gas supplied from the supply pipe 12 is mixed with water (water vapor) in the mixing unit 13 and then introduced into the reforming catalyst layer 16 through the preheating layer 14, and the hydrocarbon-based raw material in the mixed gas is lowered. While being reformed by steam. The reforming reaction in the reforming catalyst layer 16 is an endothermic reaction, and the reforming reaction proceeds by absorbing the combustion heat generated by the burner 6. That is, when the combustion gas in the burner 6 flows and passes through the exhaust passage 9 between the radiation cylinder 5 and the first cylindrical body 1, the heat of the combustion gas is absorbed by the reforming catalyst layer 16 and the reforming reaction is performed. Progresses.

第2円筒体2の下端は第3円筒体3の底板18の間に間隔を置いて配置してあり、第2円筒体2と第3円筒体3の間は、改質ガスの流路19を構成している。底板18は第3円筒体3の直径に対応した直径で円盤状に構成されている。改質ガスは、第2円筒体2の下端と第3円筒体3の底板18の間で折り返して第2円筒体2と第3円筒体3の間で形成された流路19を流通する。第3円筒体3の上部には第3円筒体3より直径を大きくした第4円筒体4が配置され、第2円筒体2と第4円筒体4の間にCO変成触媒層22が設けられている。   The lower end of the second cylinder 2 is disposed with a gap between the bottom plate 18 of the third cylinder 3, and a reformed gas flow path 19 is provided between the second cylinder 2 and the third cylinder 3. Is configured. The bottom plate 18 is formed in a disc shape with a diameter corresponding to the diameter of the third cylindrical body 3. The reformed gas is folded between the lower end of the second cylindrical body 2 and the bottom plate 18 of the third cylindrical body 3 and flows through the flow path 19 formed between the second cylindrical body 2 and the third cylindrical body 3. A fourth cylindrical body 4 having a diameter larger than that of the third cylindrical body 3 is disposed above the third cylindrical body 3, and a CO shift catalyst layer 22 is provided between the second cylindrical body 2 and the fourth cylindrical body 4. ing.

第3円筒体3の上端部と第4円筒体4の下端部には板体20(第3円筒体3の直径に相当する部分は第3円筒体3で占められるので、ドーナツ状の板体)が配置され、板体19の上に、間隔を置いてガス流通用の複数の孔を有する支持板21(第2円筒体2の直径に相当する部分は第2円筒体2で占められるので、ドーナツ状の支持板)が配置されている。CO変成触媒層22は、支持板21とガス流通用の複数の孔を有する支持板23(第2円筒体2の直径に相当する部分は第2円筒体2で占められるのでドーナツ状の支持板、CO変成触媒層22の上蓋)の間に設けられている。支持板21、23は金属製等の網目体で構成してもよく、この場合には網目体の網目がガス流通孔となる。流路19を流通した改質ガスは、支持板21の孔を経てCO変成触媒層22に供給される。   A plate 20 (the portion corresponding to the diameter of the third cylinder 3 is occupied by the third cylinder 3 at the upper end of the third cylinder 3 and the lower end of the fourth cylinder 4, so a donut-shaped plate ) And a support plate 21 having a plurality of holes for gas circulation at intervals on the plate body 19 (the portion corresponding to the diameter of the second cylinder body 2 is occupied by the second cylinder body 2). , A donut-shaped support plate) is disposed. The CO shift catalyst layer 22 includes a support plate 21 and a support plate 23 having a plurality of holes for gas flow (the portion corresponding to the diameter of the second cylindrical body 2 is occupied by the second cylindrical body 2, so a donut-shaped support plate , The upper cover of the CO shift catalyst layer 22). The support plates 21 and 23 may be formed of a mesh body made of metal or the like. In this case, the mesh body of the mesh body serves as a gas flow hole. The reformed gas that has flowed through the flow path 19 is supplied to the CO conversion catalyst layer 22 through the holes of the support plate 21.

上記のとおり、CO変成触媒層22は、第2円筒体2と第4円筒体4の間に設けられているが、第4円筒体4の外周には間隔を置いて円筒体25が配置され、その間に断熱材24が配置されている。円筒体25の外周には水供給管26から連なる伝熱管27が直接螺旋状に巻き付けてある。伝熱管27はCO変成触媒層22を間接的に冷却する冷却機構として作用する。CO変成触媒層22では、CO変成反応により、改質ガス中のCOが二酸化炭素に変成され、併せて水素が生成する。   As described above, the CO conversion catalyst layer 22 is provided between the second cylindrical body 2 and the fourth cylindrical body 4, and the cylindrical body 25 is disposed on the outer periphery of the fourth cylindrical body 4 with a gap therebetween. In between, the heat insulating material 24 is arrange | positioned. A heat transfer tube 27 connected to the water supply tube 26 is directly wound around the outer periphery of the cylindrical body 25 in a spiral shape. The heat transfer tube 27 functions as a cooling mechanism for indirectly cooling the CO shift catalyst layer 22. In the CO conversion catalyst layer 22, CO in the reformed gas is converted into carbon dioxide by the CO conversion reaction, and hydrogen is also generated.

断熱材24は、伝熱管27の冷却作用により、CO変成触媒層22の温度を低下させ過ぎず、適度な温度に均一に保持できる厚さに巻き付けてある。伝熱管27は、水供給管26から供給される水(=プロセス水)のボイラーとしての機能を備え、また水供給管26から続く連続した一つの通路となっているので、複数の通路では生じる部分的な滞留等が生じない。   The heat insulating material 24 is wound to a thickness that can be uniformly maintained at an appropriate temperature without excessively reducing the temperature of the CO shift catalyst layer 22 by the cooling action of the heat transfer tube 27. The heat transfer pipe 27 has a function as a boiler for water (= process water) supplied from the water supply pipe 26 and is a single continuous path that continues from the water supply pipe 26, and thus occurs in a plurality of paths. Partial stagnation does not occur.

支持板23の上方には所定の間隔を置いて一つの連通孔29を有する仕切板28が設けてあり、両板間の空間に空気の供給管30を通してCO除去用空気が供給される。仕切板28の上方には円環状の通路31が設けてある。連通孔29を、所定の孔径で、且つ、一つとすることにより、改質ガスとCO除去用空気が連通孔29を通過する際に所定の通過速度が得られ、通過時の乱流により改質ガスとCO除去用空気を良好に混合することができる。CO除去触媒層36は、第2円筒体2と、これより直径を大きくした円筒体37と、第2円筒体2と円筒体37の間の下部及び上部にそれぞれ間隔を置いて配置された、複数個の孔35を有する支持板34(第2円筒体2の直径に相当する部分は第2円筒体2で占められるので、ドーナツ状の板体)と、ガス流通用の複数個の孔39を有する支持板38(第2円筒体2の直径に相当する部分は第2円筒体2で占められるので、ドーナツ状の支持板)と、の間の空間に設けられている。   A partition plate 28 having one communication hole 29 is provided above the support plate 23 at a predetermined interval, and CO removal air is supplied to the space between both plates through an air supply pipe 30. An annular passage 31 is provided above the partition plate 28. By using one communication hole 29 with a predetermined hole diameter, a predetermined passing speed is obtained when the reformed gas and the CO removing air pass through the communication hole 29, and the reformed gas is modified by turbulent flow during the passage. The quality gas and the air for removing CO can be mixed well. The CO removal catalyst layer 36 is disposed at intervals between the second cylinder 2, the cylinder 37 having a larger diameter, and the lower part and the upper part between the second cylinder 2 and the cylinder 37, respectively. A support plate 34 having a plurality of holes 35 (a portion corresponding to the diameter of the second cylindrical body 2 is occupied by the second cylindrical body 2), and a plurality of holes 39 for gas distribution. And a support plate 38 (a portion corresponding to the diameter of the second cylindrical body 2 is occupied by the second cylindrical body 2), and is provided in a space between the support plate 38 and the support plate 38.

円筒体37の下部にはその円周方向に均等に設けられた複数個の孔33が設けられている。円環状の通路31は、円筒体25と仕切板28と仕切板32と円筒体37で形成された通路であり、それら複数個の孔33と、支持板34の複数個の孔35を介してCO除去触媒層36と連通しており、CO除去用空気が混合された改質ガスがそれら複数個の孔33、35を介してCO除去触媒層36に導入される。CO除去触媒層36は、その上蓋である複数個の孔39を有する仕切板38と隔壁10の間の間隙を介して改質ガスの取出管40に連通している。また、CO除去触媒層36は円筒体37で囲まれているが、円筒体37の外周には円筒体25の外周の伝熱管27から連なる伝熱管27が直接螺旋状に巻き付けてある。   A plurality of holes 33 provided equally in the circumferential direction are provided in the lower portion of the cylindrical body 37. The annular passage 31 is a passage formed by the cylindrical body 25, the partition plate 28, the partition plate 32, and the cylindrical body 37, through the plurality of holes 33 and the plurality of holes 35 of the support plate 34. The reformed gas, which is in communication with the CO removal catalyst layer 36 and mixed with CO removal air, is introduced into the CO removal catalyst layer 36 through the plurality of holes 33 and 35. The CO removal catalyst layer 36 communicates with a reformed gas take-out pipe 40 through a gap between a partition plate 38 having a plurality of holes 39 serving as an upper lid and the partition wall 10. In addition, the CO removal catalyst layer 36 is surrounded by a cylindrical body 37, and a heat transfer tube 27 continuous from the heat transfer tube 27 on the outer periphery of the cylindrical body 25 is directly spirally wound around the outer periphery of the cylindrical body 37.

CO除去触媒層36には、CO除去触媒(=PROX触媒)が充填してあり、PROX触媒によりCO除去反応が行われ、改質ガス中のCO含有量をppm単位にまで低減する。COを除去した改質ガスは、その上蓋である仕切板38に設けられた複数個の孔39から排出され、仕切板38と隔壁10の間の間隙を経て改質ガスの取出管40から取り出される。第3円筒体3、円筒体25及び円筒体37を含む外周部には断熱材41を配置し、外部への熱の放散を防止している。   The CO removal catalyst layer 36 is filled with a CO removal catalyst (= PROX catalyst), and a CO removal reaction is performed by the PROX catalyst to reduce the CO content in the reformed gas to the ppm unit. The reformed gas from which CO has been removed is discharged from a plurality of holes 39 provided in the partition plate 38 that is the upper lid, and is taken out from the reformed gas take-out pipe 40 through the gap between the partition plate 38 and the partition wall 10. It is. A heat insulating material 41 is disposed on the outer peripheral portion including the third cylindrical body 3, the cylindrical body 25, and the cylindrical body 37 to prevent heat from being dissipated to the outside.

ところで、例えば以上のように構成された水蒸気改質器において、改質触媒層16は第1円筒体1すなわち内管1と第2円筒体2すなわち外管2との間に改質触媒を層状に配置することで構成されている。そして、炭化水素系原料と水蒸気の混合ガスは改質触媒層16の上端もしくは下端から改質触媒層16に導入され、それぞれ、下端もしくは上端より水素混合ガスとして排出される構造となっている。   By the way, for example, in the steam reformer configured as described above, the reforming catalyst layer 16 is formed by laminating the reforming catalyst between the first cylindrical body 1, that is, the inner tube 1, and the second cylindrical body 2, that is, the outer tube 2. It is comprised by arranging in. A mixed gas of hydrocarbon-based raw material and water vapor is introduced into the reforming catalyst layer 16 from the upper end or lower end of the reforming catalyst layer 16, and discharged from the lower end or upper end as a hydrogen mixed gas, respectively.

本明細書において、内管1、外管2及び改質触媒層16(改質触媒層16は内管1と外管2との隙間に改質触媒を充填することで構成されている)を含む部分を改質部または改質触媒部と言う。また、改質触媒層16または改質部のうち、炭化水素系原料と水蒸気の混合ガスの導入側を「上流」または「上流側」と言い、その端部を上流端と言う。また、改質触媒層16または改質部のうち、水素リッチな改質ガスの導出側を「下流」または「下流側」と言う。   In this specification, the inner tube 1, the outer tube 2 and the reforming catalyst layer 16 (the reforming catalyst layer 16 is configured by filling the gap between the inner tube 1 and the outer tube 2 with the reforming catalyst). The part that contains it is called the reforming part or the reforming catalyst part. Further, in the reforming catalyst layer 16 or the reforming section, the introduction side of the mixed gas of hydrocarbon-based raw material and steam is referred to as “upstream” or “upstream side”, and the end thereof is referred to as the upstream end. In the reforming catalyst layer 16 or the reforming section, the hydrogen-rich reformed gas outlet side is referred to as “downstream” or “downstream side”.

〈実機一体型水蒸気改質器の運転、観察、問題点の発見〉
水蒸気改質器を例えば家庭用PEFCを用いた熱電併給システムで使用する場合には、起動、停止を頻繁に行う必要がある。本発明者らは、水蒸気改質器の実機を長期間にわたり起動、停止を繰り返して運転し、さらなる改良の有無について観察している。その結果、改質部の改質触媒が改質部上流側から僅かずつではあるが徐々に劣化することが分かった。また、起動−停止に伴う温度上昇−温度降下の繰り返しにより、改質触媒が沈降して改質部上流が空洞になっていることが分かった。
<Operation, observation, and discovery of problems with a steam reformer integrated with actual equipment>
When the steam reformer is used in a combined heat and power system using, for example, a household PEFC, it is necessary to start and stop frequently. The inventors of the present invention operate the steam reformer by repeatedly starting and stopping over a long period of time, and observe whether there is further improvement. As a result, it has been found that the reforming catalyst of the reforming section gradually deteriorates little by little from the upstream side of the reforming section. Further, it was found that the reforming catalyst settled down due to the repetition of the temperature rise and the temperature drop accompanying the start-stop, and the upstream of the reforming section was hollow.

〈実機一体型水蒸気改質器における問題点の原因究明〉
そして、それら問題点の原因として以下の事実があることが分かった。炭化水素系原料には硫黄成分が含まれており、例えば都市ガスや石油ガスには付臭剤としてメルカプタン類、サルファイド類、あるいはチオフェン類などの硫黄化合物が数ppmレベルで含まれている。炭化水素系原料中の硫黄化合物(硫黄分)は、改質触媒を劣化させるので、脱硫器により可及的に除去されている。しかし、硫黄化合物の除去は完全ではなく、若干リーク(ppbレベルないしそれ以下)してくる。これにより改質部の改質触媒が被毒し、改質部上流側の改質触媒は活性低下がより進行しやすくなることが分かった。
また、起動−停止に伴う温度変化により改質部上流が空洞になるのは、改質触媒の充填密度が高くなり、その分沈降することによることが分かった。
<Investigation of the cause of problems in actual steam generators>
And the following facts were found as the cause of these problems. The hydrocarbon-based raw material contains a sulfur component. For example, city gas and petroleum gas contain sulfur compounds such as mercaptans, sulfides, or thiophenes as odorants at a level of several ppm. Since the sulfur compound (sulfur content) in the hydrocarbon-based raw material deteriorates the reforming catalyst, it is removed as much as possible by the desulfurizer. However, the removal of the sulfur compound is not complete and leaks slightly (ppb level or less). As a result, it has been found that the reforming catalyst in the reforming section is poisoned, and the reforming catalyst on the upstream side of the reforming section is more likely to decrease in activity.
Further, it was found that the fact that the upstream of the reforming part becomes hollow due to the temperature change accompanying the start-stop is due to the high packing density of the reforming catalyst and the corresponding sedimentation.

このような改質部上流側の改質触媒の硫黄被毒による活性低下、また改質触媒の充填密度の増加に伴う改質部上流側の空洞化により、改質部上流側での改質反応が進まず、改質部上流側の吸熱量が低下する。これにより、温度が上昇し、改質触媒のシンタリング(sintering)、炭化水素系原料の熱分解が起こり、水蒸気改質器の熱バランスの変化による運転制御性などに問題が生じた。これを元に戻すためには、改質触媒を交換することになるが、交換のためには改質器の分解が必要であり、多大の手間がかかることになる。   Such reforming of the reforming unit upstream side due to the sulfur poisoning of the reforming catalyst and the hollowing of the reforming unit upstream side due to the increase of the reforming catalyst packing density leads to reforming of the reforming unit upstream side. The reaction does not proceed and the endothermic amount on the upstream side of the reforming section decreases. As a result, the temperature rises, the reforming catalyst is sintered, the hydrocarbon-based raw material is thermally decomposed, and problems arise in operation controllability due to the change in the heat balance of the steam reformer. In order to restore this, the reforming catalyst is replaced. However, for the replacement, the reformer needs to be disassembled, which takes much time.

ここで、運転制御性の問題については、上記改質部上流側での問題のほかに、改質部上流側近傍にCO変成触媒部がある場合、その入口での温度上昇、さらには、改質器全体の温度バランスに影響を与えることになる。上昇した温度を下げるためには、導入する水の量を増やす(S/C比を大きくする)対策が必要となる。このように、改質部上流側温度の上昇は、(a)改質器全体の寿命を低下させ、(b)S/C比の変更に応じた運転シーケンス設定の手間を増やし、(c)S/C比上昇による改質器効率の低下をも引き起こしてしまう。   Here, regarding the problem of operation controllability, in addition to the problem on the upstream side of the reforming unit, when there is a CO shift catalyst unit in the vicinity of the upstream side of the reforming unit, the temperature rises at the inlet, and further, This will affect the temperature balance of the entire instrument. In order to lower the increased temperature, it is necessary to take measures to increase the amount of water to be introduced (increase the S / C ratio). Thus, the increase in the temperature upstream of the reforming section (a) reduces the life of the entire reformer, (b) increases the time and effort for setting the operation sequence according to the change in the S / C ratio, and (c) It also causes a decrease in reformer efficiency due to an increase in the S / C ratio.

そこで、本発明は、従来の水蒸気改質器の改質触媒部における前述問題点の発見、その原因解明に基づき、その問題点を解決し、長期間にわたり安定して運転できる炭化水素系原料の水蒸気改質器を提供することを目的とするものである。   Therefore, the present invention is based on the discovery of the above-mentioned problems in the reforming catalyst part of the conventional steam reformer and the elucidation of the cause thereof, to solve the problems and to provide a hydrocarbon-based raw material that can be stably operated over a long period of time. The object is to provide a steam reformer.

本発明(1)は、外管及び内管により構成した二重筒の隙間に改質触媒部を配置し、改質触媒部の上流から炭化水素系原料と水蒸気の混合ガスが導入され、下流から水素リッチな改質ガスが排出される水蒸気改質器である。そして、改質触媒部の上流端に続き改質触媒を充填した改質ガード触媒部を配置してなり、改質ガード触媒部に充填した改質触媒の量が改質触媒部及び改質ガード触媒部の改質触媒の全量のうち7%以上であり、炭化水素系原料と水蒸気の混合ガスが改質ガード触媒部と改質触媒部に流れ、下流から水素リッチな改質ガスが排出される構造であることを特徴とする。   In the present invention (1), a reforming catalyst portion is disposed in a gap between double cylinders constituted by an outer tube and an inner tube, and a mixed gas of hydrocarbon-based raw material and steam is introduced from the upstream of the reforming catalyst portion, and downstream Is a steam reformer from which hydrogen-rich reformed gas is discharged. A reforming guard catalyst portion filled with the reforming catalyst is arranged following the upstream end of the reforming catalyst portion, and the amount of the reforming catalyst filled in the reforming guard catalyst portion is determined by the reforming catalyst portion and the reforming guard. 7% or more of the total amount of the reforming catalyst in the catalyst section, and the mixed gas of hydrocarbon-based raw material and steam flows to the reforming guard catalyst section and the reforming catalyst section, and the hydrogen-rich reformed gas is discharged from the downstream. It is characterized by having a structure.

本発明(2)は、外管により構成した一重筒の内部に改質触媒部を配置し、改質触媒部の上流から炭化水素系原料と水蒸気の混合ガスが導入され、下流から水素リッチな改質ガスが排出される水蒸気改質器である。そして、改質触媒部の上流端に続き改質触媒を充填した改質ガード触媒部を配置してなり、改質ガード触媒部に充填した改質触媒の量が改質触媒部及び改質ガード触媒部の改質触媒の全量のうち7%以上であり、炭化水素系原料と水蒸気の混合ガスが改質ガード触媒部と改質触媒部に流れ、下流から水素リッチな改質ガスが排出される構造であることを特徴とする。   In the present invention (2), the reforming catalyst part is arranged inside a single cylinder constituted by an outer pipe, and a mixed gas of hydrocarbon-based raw material and steam is introduced from the upstream of the reforming catalyst part, and the hydrogen-rich from the downstream. A steam reformer from which reformed gas is discharged. A reforming guard catalyst portion filled with the reforming catalyst is arranged following the upstream end of the reforming catalyst portion, and the amount of the reforming catalyst filled in the reforming guard catalyst portion is determined by the reforming catalyst portion and the reforming guard. 7% or more of the total amount of the reforming catalyst in the catalyst section, and the mixed gas of hydrocarbon-based raw material and steam flows to the reforming guard catalyst section and the reforming catalyst section, and the hydrogen-rich reformed gas is discharged from the downstream. It is characterized by having a structure.

本発明(3)は、外管及び内管により構成した二重筒の隙間に改質触媒部を配置し、改質触媒部の上流から炭化水素系原料と水蒸気の混合ガスが導入され、下流から水素リッチな改質ガスが排出される水蒸気改質器である。そして、改質触媒部の上流端に続き改質触媒を充填した改質ガード触媒部を配置してなり、改質ガード触媒部に充填した改質触媒の量が改質触媒部及び改質ガード触媒部の改質触媒の全量のうち7%以上であり、炭化水素系原料と水蒸気の混合ガスが、改質ガード触媒部と改質触媒部の境界から導入され、改質ガード触媒部には流れず、改質触媒部に上流側から下流側へ流通し、下流から水素リッチな改質ガスが排出される構造であることを特徴とする。   In the present invention (3), the reforming catalyst portion is disposed in the gap between the double cylinders constituted by the outer tube and the inner tube, and a mixed gas of hydrocarbon-based raw material and steam is introduced from the upstream of the reforming catalyst portion, and the downstream Is a steam reformer from which hydrogen-rich reformed gas is discharged. A reforming guard catalyst portion filled with the reforming catalyst is arranged following the upstream end of the reforming catalyst portion, and the amount of the reforming catalyst filled in the reforming guard catalyst portion is determined by the reforming catalyst portion and the reforming guard. 7% or more of the total amount of the reforming catalyst in the catalyst part, and a mixed gas of hydrocarbon raw material and steam is introduced from the boundary between the reforming guard catalyst part and the reforming catalyst part, The structure is characterized in that it does not flow but flows from the upstream side to the downstream side in the reforming catalyst part, and the hydrogen-rich reformed gas is discharged from the downstream side.

本発明(4)は、外管により構成した一重筒の内部に改質触媒部を配置し、改質触媒部の上流から炭化水素系原料と水蒸気の混合ガスが導入され、下流から水素リッチな改質ガスが排出される水蒸気改質器である。そして、改質触媒部の上流端に続き改質触媒を充填した改質ガード触媒部を配置してなり、改質ガード触媒部に充填した改質触媒の量が改質触媒部及び改質ガード触媒部の改質触媒の全量のうち7%以上であり、炭化水素系原料と水蒸気の混合ガスが、改質ガード触媒部と改質触媒部の境界から導入され、改質ガード触媒部には流れず、改質触媒部に上流側から下流側へ流通し、下流から水素リッチな改質ガスが排出される構造であることを特徴とする。   In the present invention (4), the reforming catalyst portion is arranged inside a single cylinder constituted by an outer tube, and a mixed gas of hydrocarbon-based raw material and steam is introduced from the upstream of the reforming catalyst portion, and the hydrogen-rich from the downstream. A steam reformer from which reformed gas is discharged. A reforming guard catalyst portion filled with the reforming catalyst is arranged following the upstream end of the reforming catalyst portion, and the amount of the reforming catalyst filled in the reforming guard catalyst portion is determined by the reforming catalyst portion and the reforming guard. 7% or more of the total amount of the reforming catalyst in the catalyst part, and a mixed gas of hydrocarbon raw material and steam is introduced from the boundary between the reforming guard catalyst part and the reforming catalyst part, The structure is characterized in that it does not flow but flows from the upstream side to the downstream side in the reforming catalyst part, and the hydrogen-rich reformed gas is discharged from the downstream side.

本発明の水蒸気改質器は、改質触媒部の上流側に改質触媒を充填した改質ガード触媒部を配置したことにより、メタン、エタン、プロパン、ブタン、都市ガス、石油ガス、あるいは天然ガス、その他の炭化水素系原料から水素を製造し、改質触媒のシンタリング、炭化水素系原料の熱分解、水蒸気改質器の熱バランスの変化を無くして長期間にわたり安定して運転行うことができる。本発明の水蒸気改質器は、例えばPEFC用燃料として水素を供給するのに適用される。   In the steam reformer of the present invention, the reforming guard catalyst part filled with the reforming catalyst is arranged upstream of the reforming catalyst part, so that methane, ethane, propane, butane, city gas, petroleum gas, or natural gas Production of hydrogen from gas and other hydrocarbon-based raw materials, and stable operation over a long period of time without the need to sinter the reforming catalyst, pyrolysis of hydrocarbon-based raw materials, and the heat balance of the steam reformer Can do. The steam reformer of the present invention is applied to supply hydrogen as a fuel for PEFC, for example.

改質触媒としては、金属触媒、その他各種の改質触媒があるが、それらから適宜選定して用いられる。そのうち、好ましくはNiまたはRuの金属触媒が用いられ、金属触媒は通常アルミナ等の担体に担持して用いられる。その形状は、粒状、ペレット状、錠剤状等(以下、適宜代表して“粒状改質触媒”と言う)のほか、モノリス型でもよい。モノリス型改質触媒は多数の平行貫通孔すなわちセルを持ったセラミック製またはメタル製の担体のセル内表面にNi、Ruなどの金属触媒を担持した改質触媒である。   As the reforming catalyst, there are a metal catalyst and various other reforming catalysts, which are appropriately selected and used. Of these, a Ni or Ru metal catalyst is preferably used, and the metal catalyst is usually supported on a carrier such as alumina. The shape may be a monolith type in addition to a granular shape, a pellet shape, a tablet shape or the like (hereinafter referred to as “granular reforming catalyst” as appropriate). The monolithic reforming catalyst is a reforming catalyst in which a metal catalyst such as Ni or Ru is supported on the inner surface of a ceramic or metal carrier having a number of parallel through holes, that is, cells.

改質ガード触媒部は改質触媒部の改質触媒をリーク硫黄分からガードする役割をする。これは改質ガード触媒部の第一の役割であり、改質触媒部の改質触媒として粒状改質触媒を用いる場合もモノリス型改質触媒を用いる場合も同じである。   The reforming guard catalyst part serves to guard the reforming catalyst of the reforming catalyst part from leaked sulfur. This is the first role of the reforming guard catalyst part, and is the same when a granular reforming catalyst is used as the reforming catalyst of the reforming catalyst part and when a monolithic reforming catalyst is used.

本発明を適用しない場合には、リーク硫黄分により改質触媒部の上流側の改質触媒から被毒して触媒活性が低下するが、本発明においては、改質ガード触媒部により、改質触媒部の改質触媒を硫黄被毒から保護することができる。   When the present invention is not applied, poisoning from the reforming catalyst upstream of the reforming catalyst portion due to the leaked sulfur content reduces the catalytic activity. In the present invention, however, the reforming guard catalyst portion The reforming catalyst in the catalyst part can be protected from sulfur poisoning.

また、改質触媒部の改質触媒が粒状改質触媒の場合には、改質ガード触媒部は、上記役割に加えて、改質触媒部の改質触媒を補う役割をする。これは改質ガード触媒部の第二の役割である。なお、粒状改質触媒は、極く僅かずつではあるが圧壊、粉化することがあるが、改質ガード触媒部はそれをも補うことができる。   Further, when the reforming catalyst of the reforming catalyst part is a granular reforming catalyst, the reforming guard catalyst part plays a role of supplementing the reforming catalyst of the reforming catalyst part in addition to the above role. This is the second role of the reforming guard catalyst part. Although the granular reforming catalyst may be crushed and pulverized although it is very little, the reforming guard catalyst part can compensate for it.

本発明を適用しない場合には、改質触媒部の粒状改質触媒は起動−停止の繰り返しに伴い充填密度が高くなり、その分改質触媒部のうちの上部に空洞が生じ、改質触媒部上流での吸熱量が低下して温度上昇を来すが、本発明においては、改質ガード触媒部により、改質触媒を補い、改質触媒部への入口部分の水蒸気改質反応の吸熱量低下を防いで改質部入口の温度上昇を防ぐものである。   In the case where the present invention is not applied, the granular reforming catalyst in the reforming catalyst portion has a higher packing density as the start-stop is repeated, and accordingly, a cavity is formed in the upper portion of the reforming catalyst portion. However, in the present invention, the reforming guard catalyst unit supplements the reforming catalyst and absorbs the steam reforming reaction at the inlet to the reforming catalyst unit. This prevents a decrease in the amount of heat and prevents a temperature rise at the reforming section inlet.

本発明の水蒸気改質器において、改質ガード触媒部に充填する改質触媒の量は、改質ガード触媒部の役割、すなわちその配置目的からして、改質触媒部の改質触媒量及び改質ガード触媒部の改質触媒量の全量のうち7%以上である。その上限は、特に限定はないが、60%であるのが好ましい。   In the steam reformer of the present invention, the amount of the reforming catalyst charged in the reforming guard catalyst portion is determined based on the role of the reforming guard catalyst portion, that is, the placement catalyst, It is 7% or more of the total amount of the reforming catalyst in the reforming guard catalyst part. The upper limit is not particularly limited, but is preferably 60%.

また、改質触媒層に充填する改質触媒と改質ガード触媒部に充填する改質触媒とは、同一の改質触媒でもよく、異なる改質触媒でもよい。異なる改質触媒とは、担持金属、担体または粒子径が異なる改質触媒を意味する。   Further, the reforming catalyst filled in the reforming catalyst layer and the reforming catalyst filled in the reforming guard catalyst part may be the same reforming catalyst or different reforming catalysts. Different reforming catalysts mean reforming catalysts with different supported metals, supports or particle sizes.

以下、図面を基に本発明の態様を順次説明する。以下では粒状改質触媒の場合について記載しているが、モノリス型改質触媒の場合も同様である。   Hereinafter, embodiments of the present invention will be sequentially described with reference to the drawings. In the following, the case of a granular reforming catalyst is described, but the same applies to the case of a monolith type reforming catalyst.

〈本発明の態様1〉
本発明の態様1は、炭化水素系原料の水蒸気改質器において、改質触媒部の上流端に続く外管を周方向に延ばし、すなわちその外管を中心軸〔図3(a)中一点鎖線参照〕に対して直角方向に延ばし、且つ縦方向に高さを持つ構造の改質ガード触媒部を改質触媒部の上流端に続き配置した態様である。
<Aspect 1 of the present invention>
According to the first aspect of the present invention, in the steam reformer for hydrocarbon-based raw materials, the outer tube that extends to the upstream end of the reforming catalyst section is extended in the circumferential direction, that is, the outer tube is connected to the central axis [one point in FIG. This is a mode in which a reforming guard catalyst part having a structure extending in a direction perpendicular to the chain line reference and having a height in the vertical direction is arranged following the upstream end of the reforming catalyst part.

図2〜3は本態様1を説明する図である。図3(a)は、図2中改質触媒層16、改質ガード触媒部51を含む部分の拡大図、図3(b)は改質ガード触媒部51の拡大図である。図2〜3は縦断面図として示している。この点、以下の図面についても同様である。また、図2〜3中、図1と共通する部分、部材には図1と同じ符号を付している。この点、以下の図面についても同様である。   2 to 3 are diagrams for explaining the first aspect. 3A is an enlarged view of a portion including the reforming catalyst layer 16 and the reforming guard catalyst unit 51 in FIG. 2, and FIG. 3B is an enlarged view of the reforming guard catalyst unit 51. 2 to 3 are shown as longitudinal sectional views. This also applies to the following drawings. Moreover, in FIGS. 2 to 3, the same reference numerals as those in FIG. This also applies to the following drawings.

改質触媒層16は、改質触媒を内管1と外管2の間の環状隙間に充填して構成されている。そして、態様1では、改質触媒層16の上流端に続き改質ガード触媒部51を設ける。改質ガード触媒部51は、外管2のうち、改質触媒層16の上方部分をその中心軸に対して直角方向に延ばし(つまり拡大し)、且つ縦方向に高さを持つ構造であり、当該延ばした外管2と内管1との間の空間に改質触媒を充填して構成される。   The reforming catalyst layer 16 is configured by filling the reforming catalyst in an annular gap between the inner tube 1 and the outer tube 2. In the first aspect, the reforming guard catalyst unit 51 is provided following the upstream end of the reforming catalyst layer 16. The reforming guard catalyst unit 51 has a structure in which the upper part of the reforming catalyst layer 16 in the outer tube 2 extends (that is, expands) in a direction perpendicular to the central axis and has a height in the vertical direction. The space between the extended outer tube 2 and the inner tube 1 is filled with a reforming catalyst.

より詳しくは、区画壁52と区画壁53と内管1で形成された“断面略三角形状に形成された空間”に改質触媒を充填して改質ガード触媒部51とする。当該“断面略三角形状に形成された空間”は、区画壁52と区画壁53と点線Rで形成された断面三角形状の空間と、点線Rと点線Sと内管1で形成された断面矩形状の空間とを合わせた空間からなっており、図3(b)中“h”として示すように“縦方向に高さを持つ”空間である。そして、当該“断面略三角形状に形成された空間”に改質触媒を充填することで改質ガード触媒部51が構成される。   More specifically, the reforming catalyst is filled in the “space formed in a substantially triangular cross section” formed by the partition wall 52, the partition wall 53, and the inner tube 1 to form the reforming guard catalyst unit 51. The “space formed in the shape of a substantially triangular section” includes a section-shaped space formed by the partition wall 52, the partition wall 53, and the dotted line R, and a rectangular section formed by the dotted line R, the dotted line S, and the inner tube 1. It is a space that is combined with the shape space, and is a space having a “height in the vertical direction” as indicated by “h” in FIG. Then, the reforming guard catalyst unit 51 is configured by filling the “space formed in a substantially triangular cross section” with the reforming catalyst.

運転時において、炭化水素系原料と水蒸気の混合ガスは、改質ガード触媒部51から改質触媒部に流れ、改質ガード触媒部51を通って改質触媒層16へ流れる。
なお、図3(a)〜(b)中、点線R、Sは、説明の便宜上付したもので、隔壁を示すものではない。この点、以下の図面における点線R、Sについても同じである。
During operation, the mixed gas of the hydrocarbon-based raw material and water vapor flows from the reforming guard catalyst unit 51 to the reforming catalyst unit, and then flows through the reforming guard catalyst unit 51 to the reforming catalyst layer 16.
In FIGS. 3A to 3B, dotted lines R and S are provided for convenience of description, and do not indicate partition walls. This also applies to dotted lines R and S in the following drawings.

改質ガード触媒部51は、改質触媒層16の改質触媒をリーク硫黄分からガードする役割をする。また、改質ガード触媒部51は、改質触媒層16の改質触媒が粒状改質触媒のときはそれを補う役割をする。これらの目的を達成し得る範囲で、点線Sに対する区画壁52、区画壁53の角度、また、区画壁52、区画壁53の長さは適宜選定できる。本態様1の実機として、改質触媒層16と改質ガード触媒部51に充填した全改質触媒量のうち、改質ガード触媒部51に13%充填したものを作製した。   The reforming guard catalyst unit 51 serves to guard the reforming catalyst of the reforming catalyst layer 16 from leaked sulfur. Further, the reforming guard catalyst unit 51 serves to supplement the reforming catalyst of the reforming catalyst layer 16 when the reforming catalyst is a granular reforming catalyst. As long as these objects can be achieved, the angles of the partition wall 52 and the partition wall 53 with respect to the dotted line S and the lengths of the partition wall 52 and the partition wall 53 can be selected as appropriate. As an actual machine of the first aspect, among the total amount of the reforming catalyst filled in the reforming catalyst layer 16 and the reforming guard catalyst part 51, a reforming guard catalyst part 51 filled with 13% was produced.

図3(c)は改質触媒層16の触媒支持体17を含む部分を拡大して示した図である。改質触媒層16の改質触媒は、内管1の下部外周と外管2の下部内周間に固定配置された多孔板、網目体等の支持体17で支持されている。この点、図1、図4〜9、図12〜13についても同様であり、図示は省略しているが図14〜15についても同様である。   FIG. 3C is an enlarged view of a portion including the catalyst support 17 of the reforming catalyst layer 16. The reforming catalyst of the reforming catalyst layer 16 is supported by a support 17 such as a perforated plate or a mesh body fixedly disposed between the lower outer periphery of the inner tube 1 and the lower inner periphery of the outer tube 2. In this respect, the same applies to FIGS. 1, 4 to 9, and 12 to 13, and although not shown, the same applies to FIGS. 14 to 15.

〈本発明の態様2〉
本発明の態様2は、炭化水素系原料の水蒸気改質器において、改質触媒部の上流端に続く外管を周方向及び軸方向に延ばし、すなわちその外管を中心軸〔図5(a)中一点鎖線参照〕に対して直角方向及び軸方向に延ばし、且つ縦方向に高さを持つ構造の改質ガード触媒部を改質触媒部の上流端に続き配置した態様である。態様1に対しては、改質触媒部の上流端に続く外管を軸方向にも延ばしている点が異なる。
<Aspect 2 of the present invention>
According to the second aspect of the present invention, in the steam reformer of a hydrocarbon-based raw material, the outer tube that extends to the upstream end of the reforming catalyst section extends in the circumferential direction and the axial direction, that is, the outer tube is centered on the central axis [FIG. ) Refer to middle one-dot chain line] This is a mode in which a reforming guard catalyst portion having a structure extending in a perpendicular direction and an axial direction and having a height in the vertical direction is arranged following the upstream end of the reforming catalyst portion. The aspect 1 differs from the aspect 1 in that the outer pipe that continues to the upstream end of the reforming catalyst portion is also extended in the axial direction.

図4〜5は本発明の態様2を説明する図である。図5(a)は、図4中改質触媒層16、改質ガード触媒部61を含む部分の拡大図、図5(b)は改質ガード触媒部61の拡大図である。   4-5 is a figure explaining the aspect 2 of this invention. FIG. 5A is an enlarged view of a portion including the reforming catalyst layer 16 and the reforming guard catalyst unit 61 in FIG. 4, and FIG. 5B is an enlarged view of the reforming guard catalyst unit 61.

改質触媒層16は改質触媒を内管1と外管2との間の環状隙間に充填して構成されている。そして、態様2では、改質触媒層16の上流端に続き改質ガード触媒部61を設ける。改質ガード触媒部61は、外管2のうち、改質触媒層16の上方部分をその中心軸に対して直角方向及び軸方向に延ばし(つまり拡大し)、且つ縦方向に高さを持つ構造であり、当該延ばした外管2と内管1との間の空間に改質触媒を充填して構成される。   The reforming catalyst layer 16 is configured by filling a reforming catalyst into an annular gap between the inner tube 1 and the outer tube 2. And in aspect 2, the reforming guard catalyst part 61 is provided following the upstream end of the reforming catalyst layer 16. The reforming guard catalyst unit 61 extends (that is, expands) the upper portion of the reforming catalyst layer 16 in the outer tube 2 in the direction perpendicular to the central axis and in the axial direction, and has a height in the vertical direction. The structure is configured by filling the space between the extended outer tube 2 and the inner tube 1 with a reforming catalyst.

より詳しくは、区画壁62と区画壁63と区画壁64と内管1で形成された空間に改質触媒を充填して改質ガード触媒部61とする。その空間は、区画壁62と区画壁63と区画壁63と点線Rで形成された断面台形状の空間と、点線Rと点線Sと内管1で形成された断面矩形状の空間からなっており、図5(b)中“h”として示すように“縦方向に高さを持つ”空間である。そして、当該空間に改質触媒を充填することで改質ガード触媒部61が構成される。   More specifically, the space formed by the partition wall 62, the partition wall 63, the partition wall 64, and the inner pipe 1 is filled with the reforming catalyst to form the reforming guard catalyst unit 61. The space includes a trapezoidal space formed by the partition wall 62, the partition wall 63, the partition wall 63, and the dotted line R, and a rectangular cross-sectional space formed by the dotted line R, the dotted line S, and the inner tube 1. As shown in FIG. 5B as “h”, this is a “space having a height in the vertical direction”. And the reforming guard catalyst part 61 is comprised by filling the said space with the reforming catalyst.

ここで、区画壁63は、外管2を中心軸〔図5(a)中一点鎖線参照〕と同方向すなわと軸方向に延ばした形になっていることから、区画壁62と区画壁63と区画壁64と点線Rで形成された空間は断面台形状に構成されるので、前述態様1における断面略三角形状空間に比べて、より多くの改質触媒が充填できる。本態様2の実機として、改質触媒層16と改質ガード触媒部61に充填した全改質触媒量のうち、改質ガード触媒部61に46%充填したものを作製した。   Here, the partition wall 63 has a shape in which the outer tube 2 extends in the axial direction in the same direction as the central axis (see the alternate long and short dash line in FIG. 5A). Since the space formed by 63, the partition wall 64, and the dotted line R is formed in a trapezoidal cross section, more reforming catalyst can be filled as compared with the substantially triangular space in the first aspect. As an actual machine of the present aspect 2, among the total amount of the reforming catalyst filled in the reforming catalyst layer 16 and the reforming guard catalyst unit 61, 46% of the reforming guard catalyst unit 61 was filled.

改質ガード触媒部61は、改質触媒層16の改質触媒をリーク硫黄分からガードする役割をする。また、改質ガード触媒部61は、改質触媒層16の改質触媒が粒状改質触媒のときはそれを補う役割をする。これらの目的を達成し得る範囲で、点線Sまたは区画壁63に対する区画壁62、区画壁64の角度、また、区画壁62、区画壁64、区画壁63の長さは適宜選定できる。運転時において、炭化水素系原料と水蒸気の混合ガスは、改質ガード触媒部61を通って改質触媒層16へ流れる。   The reforming guard catalyst unit 61 serves to guard the reforming catalyst of the reforming catalyst layer 16 from leaked sulfur. Further, the reforming guard catalyst unit 61 serves to compensate for the reforming catalyst of the reforming catalyst layer 16 when the reforming catalyst is a granular reforming catalyst. As long as these objects can be achieved, the angles of the partition wall 62 and the partition wall 64 with respect to the dotted line S or the partition wall 63 and the lengths of the partition wall 62, the partition wall 64, and the partition wall 63 can be selected as appropriate. During operation, the mixed gas of the hydrocarbon-based raw material and steam flows through the reforming guard catalyst unit 61 to the reforming catalyst layer 16.

〈本発明の態様3〉
本発明の態様3は、炭化水素系原料の水蒸気改質器において、改質触媒部の上流端に続く外管及び内管を周方向及び軸方向に縮め、すなわちその外管及び内管を中心軸〔図5(a)中一点鎖線参照〕に対して直角方向及び軸方向に縮め、且つ縦方向に高さを持つ構造の改質ガード触媒部を改質触媒部の上流側に配置した態様である。図6〜7は本発明の態様3を説明する図である。図7(a)は、図6中改質触媒層16、改質ガード触媒部71を含む部分の拡大図、図7(b)は改質ガード触媒部71の拡大図である。
<Aspect 3 of the present invention>
Aspect 3 of the present invention is a hydrocarbon raw material steam reformer in which the outer tube and the inner tube following the upstream end of the reforming catalyst section are contracted in the circumferential direction and the axial direction, that is, the outer tube and the inner tube are centered. A mode in which a reforming guard catalyst part having a structure which is contracted in a direction perpendicular to the axis (see the alternate long and short dash line in FIG. 5A) and in the axial direction and has a height in the vertical direction is arranged upstream of the reforming catalyst part. It is. 6-7 is a figure explaining the aspect 3 of this invention. FIG. 7A is an enlarged view of a portion including the reforming catalyst layer 16 and the reforming guard catalyst portion 71 in FIG. 6, and FIG. 7B is an enlarged view of the reforming guard catalyst portion 71.

改質触媒層16は改質触媒を内管1と外管2との間の環状隙間に充填して構成されている。これに、態様3では、改質触媒層16の上流端に続き改質ガード触媒部71を設ける。改質ガード触媒部71は、改質触媒部の上流端に続き内管1及び外管2を狭まり状に傾斜して周方向及び軸方向に縮め(つまり縮小し)、且つ縦方向に高さを持つ構造であり、その傾斜空間に改質触媒を充填することで構成される。   The reforming catalyst layer 16 is configured by filling a reforming catalyst into an annular gap between the inner tube 1 and the outer tube 2. In the third aspect, a reforming guard catalyst portion 71 is provided following the upstream end of the reforming catalyst layer 16. The reforming guard catalyst unit 71 is narrowed in the inner tube 1 and the outer tube 2 following the upstream end of the reforming catalyst unit, contracted in the circumferential direction and the axial direction (that is, contracted), and heightened in the vertical direction. It is constituted by filling the inclined space with a reforming catalyst.

より詳しくは、その傾斜空間は、傾斜部72は図7(b)中1´として示すように改質触媒層16側の内管1の上端に連なり、傾斜部73は図7(b)中2´として示すように改質触媒層16側の内管2の上端側に連なっており、1´と傾斜部72と点線Sと2´と傾斜部73との間に形成され、且つ、図7(b)中“h”として示すように縦方向に高さを持つ空間である。そして、当該“傾斜空間”に改質触媒を充填することで改質ガード触媒部71が構成される。   More specifically, the inclined space of the inclined portion 72 is connected to the upper end of the inner pipe 1 on the reforming catalyst layer 16 side as indicated by 1 ′ in FIG. 7B, and the inclined portion 73 is in FIG. 7B. As shown as 2 ', it is connected to the upper end side of the inner tube 2 on the reforming catalyst layer 16 side, formed between 1', the inclined portion 72, the dotted line S, 2 ', and the inclined portion 73, and 7 (b) is a space having a height in the vertical direction as indicated by “h”. The reforming guard catalyst unit 71 is configured by filling the “inclined space” with the reforming catalyst.

また、改質触媒層16との位置関係では、傾斜を持つ改質ガード触媒部71の幅広部に改質触媒層16が繋がることになることから、改質触媒層16を形成する内管1、外管2の直径はその分大きく構成される。なお、改質触媒を充填する“傾斜空間”について、予熱層14側から言えば、予熱層14を形成する内管1及び外管2を周方向に(つまり、その中心軸に対して直角方向に)且つ下方に広がり状に傾斜して延ばし(つまり拡大し)、且つ縦方向に高さを持つ構造と説明することができる。   Further, since the reforming catalyst layer 16 is connected to the wide portion of the reforming guard catalyst portion 71 having an inclination in the positional relationship with the reforming catalyst layer 16, the inner tube 1 that forms the reforming catalyst layer 16. The diameter of the outer tube 2 is increased accordingly. Regarding the “inclined space” filled with the reforming catalyst, from the preheating layer 14 side, the inner tube 1 and the outer tube 2 forming the preheating layer 14 are arranged in the circumferential direction (that is, in a direction perpendicular to the central axis). In addition, it can be described as a structure that extends downward (i.e., expands) and has a height in the vertical direction.

改質ガード触媒部71は、改質触媒層16の改質触媒をリーク硫黄分からガードする役割をする。また、改質ガード触媒部71は、改質触媒層16の改質触媒が粒状改質触媒のときはそれを補う役割をする。これらの目的を達成し得る範囲で、内管1の傾斜部72の傾斜の程度、外管2の傾斜部73の傾斜の程度、傾斜部72と傾斜部73との間の幅、また改質ガード触媒部71の縦方向高さは適宜選定できる。これにより、改質触媒をより多く充填できる構造となる。   The reforming guard catalyst unit 71 serves to guard the reforming catalyst of the reforming catalyst layer 16 from leaked sulfur. Further, the reforming guard catalyst portion 71 serves to compensate for the reforming catalyst of the reforming catalyst layer 16 when it is a granular reforming catalyst. To the extent that these objectives can be achieved, the degree of inclination of the inclined part 72 of the inner pipe 1, the degree of inclination of the inclined part 73 of the outer pipe 2, the width between the inclined part 72 and the inclined part 73, and modification The vertical height of the guard catalyst unit 71 can be selected as appropriate. Thereby, it becomes a structure which can be filled with more reforming catalysts.

〈本発明の態様4〉
本発明の態様4は、炭化水素系原料の水蒸気改質器において、改質触媒部の内管を周方向に縮めた構造を持つ改質ガード触媒部を改質触媒部の上流端に続き配置した態様である。図8は本態様4を説明する図である。図8(b)は図8(a)におけるガード触媒部81を含む部分を取り出し拡大して示した図である。
<Aspect 4 of the present invention>
According to Aspect 4 of the present invention, in the steam reformer for hydrocarbon-based raw material, a reforming guard catalyst part having a structure in which the inner pipe of the reforming catalyst part is shrunk in the circumferential direction is arranged following the upstream end of the reforming catalyst part. This is the embodiment. FIG. 8 is a diagram for explaining the fourth aspect. FIG. 8B is an enlarged view showing a portion including the guard catalyst portion 81 in FIG.

改質触媒部16は、改質触媒を内管1と外管2の間の環状隙間に充填して構成されている。そして、態様4では、改質触媒層16の上流端に続き改質ガード触媒部81を設ける。改質ガード触媒部81は、予熱層14から続く、内管1を周方向に縮めた構造である。   The reforming catalyst unit 16 is configured by filling a reforming catalyst into an annular gap between the inner tube 1 and the outer tube 2. And in aspect 4, the reforming guard catalyst part 81 is provided following the upstream end of the reforming catalyst layer 16. The reforming guard catalyst unit 81 has a structure in which the inner pipe 1 continuing from the preheating layer 14 is contracted in the circumferential direction.

改質触媒層16の上流端に続き改質ガード触媒部81を設ける。改質ガード触媒部81は、内管1のうちの上方部分をその中心軸に対して直角方向に縮め(つまり縮小し)、且つ縦方向に高さを持つ構造である。そして、当該縮めた内管1と、外管2との間の空間に改質触媒を充填して構成される。   A reforming guard catalyst portion 81 is provided following the upstream end of the reforming catalyst layer 16. The reforming guard catalyst unit 81 has a structure in which an upper portion of the inner tube 1 is contracted (that is, contracted) in a direction perpendicular to the central axis and has a height in the vertical direction. The space between the contracted inner tube 1 and the outer tube 2 is filled with a reforming catalyst.

区画壁82と区画壁83と外管2で形成された“断面略三角形状に形成された空間”に改質触媒を充填して改質ガード触媒部81とする。より詳しくは、“断面略三角形状に形成された空間”は、区画壁82と区画壁83と点線Rで形成された空間と、点線Rと点線Sと外管2で形成された断面矩形状の空間とを合わせた空間からなっており、この空間は、図8(b)中“h”として示すように“縦方向に高さを持つ”空間である。そして、当該“断面略三角形状に形成された空間”に改質触媒を充填することで改質ガード触媒部81が構成される。   A reforming catalyst is filled in a “space formed in a substantially triangular cross section” formed by the partition wall 82, the partition wall 83, and the outer tube 2, thereby forming a reforming guard catalyst portion 81. More specifically, the “space formed in a substantially triangular cross section” is a space formed by the partition wall 82, the partition wall 83, and the dotted line R, and a rectangular cross section formed by the dotted line R, the dotted line S, and the outer tube 2. The space is a space having a height in the vertical direction as indicated by “h” in FIG. 8B. The reforming guard catalyst unit 81 is configured by filling the “space formed in a substantially triangular cross section” with the reforming catalyst.

改質ガード触媒部81は、改質触媒層16の改質触媒をリーク硫黄分からガードする役割をする。また、改質ガード触媒部81は、改質触媒層16の改質触媒が粒状改質触媒のときはそれを補う役割をする。これらの目的を達成し得る範囲で、点線Rに対する区画壁82、区画壁83の角度、また、区画壁82、区画壁83の長さは適宜選定できる。   The reforming guard catalyst unit 81 serves to guard the reforming catalyst of the reforming catalyst layer 16 from leaked sulfur. Further, the reforming guard catalyst portion 81 serves to supplement the reforming catalyst of the reforming catalyst layer 16 when the reforming catalyst is a granular reforming catalyst. As long as these objects can be achieved, the angles of the partition wall 82 and the partition wall 83 with respect to the dotted line R, and the lengths of the partition wall 82 and the partition wall 83 can be selected as appropriate.

〈本発明の態様5〉
本発明の態様5は、態様4と同じく、炭化水素系原料の水蒸気改質器において、改質触媒部の内管を周方向に縮めた構造を持つ改質ガード触媒部を改質触媒部の上流端に続き配置した態様である。図9は本態様5を説明する図で、図9(b)は、図9(a)におけるガード触媒部91を含む部分を取り出し拡大して示した図である。
<Aspect 5 of the present invention>
In the fifth aspect of the present invention, as in the fourth aspect, in the steam reformer of the hydrocarbon-based raw material, the reforming guard catalyst portion having a structure in which the inner pipe of the reforming catalyst portion is contracted in the circumferential direction is replaced with the reforming catalyst portion. It is the aspect arrange | positioned following an upstream end. FIG. 9 is a diagram for explaining the fifth aspect, and FIG. 9B is an enlarged view of a portion including the guard catalyst portion 91 in FIG. 9A.

改質触媒部16は、改質触媒を内管1と外管2の間の環状隙間に充填して構成されている。そして、態様5では、改質触媒層16の上流端に続き改質ガード触媒部91を設ける。改質ガード触媒部91は、内管1のうちの上方部分を周方向、すなわちその中心軸に対して直角方向に縮め(つまり縮小し)、且つ縦方向に高さを持つ構造である。そして、当該縮めた内管1と、外管2との間の空間に改質触媒を充填して構成される。   The reforming catalyst unit 16 is configured by filling a reforming catalyst into an annular gap between the inner tube 1 and the outer tube 2. And in aspect 5, the reforming guard catalyst part 91 is provided following the upstream end of the reforming catalyst layer 16. The reforming guard catalyst unit 91 has a structure in which an upper portion of the inner pipe 1 is contracted (that is, contracted) in the circumferential direction, that is, in a direction perpendicular to the central axis, and has a height in the vertical direction. The space between the contracted inner tube 1 and the outer tube 2 is filled with a reforming catalyst.

区画壁92と区画壁93と外管2で形成された“空間”に改質触媒を充填して改質ガード触媒部91とする。より詳しくは、その“空間”は、区画壁92と区画壁93と点線Rで形成された空間と、点線Rと点線Sと外管2で形成された断面矩形状の空間とを合わせた空間からなっており、この空間は、図9(b)中“h”として示すように“縦方向に高さを持つ”空間である。そして、当該“空間”に改質触媒を充填することで改質ガード触媒部91が構成される。   The “space” formed by the partition wall 92, the partition wall 93, and the outer tube 2 is filled with the reforming catalyst to form the reforming guard catalyst unit 91. More specifically, the “space” is a space obtained by combining a space formed by the partition wall 92, the partition wall 93 and the dotted line R, and a space having a rectangular cross section formed by the dotted line R, the dotted line S and the outer tube 2. This space is a space “having a height in the vertical direction” as indicated by “h” in FIG. 9B. Then, the reforming guard catalyst unit 91 is configured by filling the “space” with the reforming catalyst.

改質ガード触媒部91は、改質触媒層16の改質触媒をリーク硫黄分からガードする役割をする。また、改質ガード触媒部91は、改質触媒層16の改質触媒が粒状改質触媒のときはそれを補う役割をする。これらの目的を達成し得る範囲で、点線Rに対する区画壁92、区画壁93の角度、また、区画壁92、区画壁93、区画壁94の長さは適宜選定できる。   The reforming guard catalyst unit 91 serves to guard the reforming catalyst of the reforming catalyst layer 16 from leaked sulfur. Further, the reforming guard catalyst unit 91 serves to supplement the reforming catalyst of the reforming catalyst layer 16 when the reforming catalyst is a granular reforming catalyst. As long as these objects can be achieved, the angles of the partition wall 92 and the partition wall 93 with respect to the dotted line R, and the lengths of the partition wall 92, the partition wall 93, and the partition wall 94 can be selected as appropriate.

以上で述べた態様は、水蒸気改質器を改質触媒層16または改質部の上流側を上に、その下流側を下に設置した態様であるが、本発明は、上下逆置き設置、斜め置き設置、横置き設置などの水蒸気改質器に対しても適用される。例えば、上下逆置き設置の水蒸気改質器の場合、改質ガード触媒部は、改質触媒部の上流端に続き、改質触媒部の下に配置される。   The aspect described above is an aspect in which the steam reformer is installed with the upstream side of the reforming catalyst layer 16 or the reforming unit on the upper side and the downstream side thereof with the lower side, but the present invention is installed upside down, It is also applied to steam reformers such as oblique installation and horizontal installation. For example, in the case of a steam reformer installed upside down, the reforming guard catalyst unit is arranged below the reforming catalyst unit following the upstream end of the reforming catalyst unit.

〈本発明の態様6〉
本態様6は、前記態様1の水蒸気改質器を上下逆置きに設置した水蒸気改質器に適用した態様である。図10〜11は本態様6を説明する図である。図11(a)は、図10中改質触媒層16、改質ガード触媒部101を含む部分を取り出し拡大して示した図、図11(b)は改質ガード触媒部101の拡大図である。なお、図11中、符号100として示す部材は多孔板、網目体等で構成された触媒支持体であり、内管1の下部外周と外管2の下部内周間に固定配置されている。
<Aspect 6 of the present invention>
This aspect 6 is an aspect which applied the steam reformer of the said aspect 1 to the steam reformer installed upside down. 10 to 11 are diagrams for explaining the sixth aspect. 11A is an enlarged view of a portion including the reforming catalyst layer 16 and the reforming guard catalyst unit 101 in FIG. 10, and FIG. 11B is an enlarged view of the reforming guard catalyst unit 101. is there. In FIG. 11, a member denoted by reference numeral 100 is a catalyst support composed of a perforated plate, a mesh body, and the like, and is fixedly disposed between the lower outer periphery of the inner tube 1 and the lower inner periphery of the outer tube 2.

改質触媒層16は改質触媒を内管1と外管2との間の環状隙間に充填して構成されている。これに、態様6では、改質触媒層16の上流端に続き改質ガード触媒部101を設ける。改質ガード触媒部101は、外管2の下方部分をその軸方向〔図11(a)中一点鎖線参照〕に対して直角方向に延ばし(つまり拡大し)、且つ縦方向に高さを持つ構造であり、当該延ばした外管2と内管1との間の空間に改質触媒を充填して構成される。   The reforming catalyst layer 16 is configured by filling a reforming catalyst into an annular gap between the inner tube 1 and the outer tube 2. To this end, in the aspect 6, the reforming guard catalyst unit 101 is provided following the upstream end of the reforming catalyst layer 16. The reforming guard catalyst unit 101 extends (i.e., expands) the lower portion of the outer tube 2 in a direction perpendicular to the axial direction (see the alternate long and short dash line in FIG. 11A) and has a height in the vertical direction. The structure is configured by filling the space between the extended outer tube 2 and the inner tube 1 with a reforming catalyst.

より詳しくは、区画壁102と区画壁103と内管1で形成された“断面略三角形状に形成された空間”に改質触媒を充填して改質ガード触媒部101とする。当該“断面略三角形状に形成された空間”は、区画壁102と区画壁103と点線Rで形成された断面三角形状の空間と、点線Rと触媒支持体100と内管1と点線Sで形成された断面矩形状の空間とを合わせた空間からなっており、この空間は、図11(b)中“h”として示すように“縦方向に高さを持つ”空間である。そして、当該“断面略三角形状に形成された空間”に改質触媒を充填することで改質ガード触媒部101が構成される。   More specifically, the reforming catalyst is filled in the “space formed in a substantially triangular cross section” formed by the partition wall 102, the partition wall 103, and the inner tube 1 to form the reforming guard catalyst unit 101. The “space formed in a substantially triangular cross-section” is a space having a triangular cross-section formed by the partition wall 102, the partition wall 103 and the dotted line R, the dotted line R, the catalyst support 100, the inner tube 1, and the dotted line S. The space is formed by combining the formed space having a rectangular cross section, and this space is a “having a height in the vertical direction” as indicated by “h” in FIG. The reforming guard catalyst unit 101 is configured by filling the “space formed in a substantially triangular cross section” with the reforming catalyst.

改質ガード触媒部101は、改質触媒層16の改質触媒をリーク硫黄分からガードする役割をする。この目的を達成し得る範囲で、点線Rに対する区画壁102、区画壁103の角度、また、区画壁102、区画壁103の長さは適宜選定できる。   The reforming guard catalyst unit 101 serves to guard the reforming catalyst of the reforming catalyst layer 16 from leaked sulfur. As long as this object can be achieved, the angles of the partition wall 102 and the partition wall 103 with respect to the dotted line R, and the lengths of the partition wall 102 and the partition wall 103 can be selected as appropriate.

〈本発明の態様7〉
本態様7は、外管及び内管により構成した二重筒状容器の隙間に改質触媒部を配置し、改質触媒部の上流から炭化水素系原料と水蒸気の混合ガスが導入され、下流から水素リッチな改質ガスが排出される水蒸気改質器に対して改質ガード触媒部を適用した態様である。改質触媒部の上流端に続き改質ガード触媒部を配置する。そして、炭化水素系原料と水蒸気の混合ガスが、改質ガード触媒部と改質触媒部の境界から導入され、改質触媒部の上流側から下流側へ流通し、下流から水素リッチな改質ガスが排出される構造である。
<Aspect 7 of the present invention>
In this aspect 7, the reforming catalyst part is disposed in the gap between the double cylindrical containers constituted by the outer pipe and the inner pipe, and a mixed gas of hydrocarbon-based raw material and steam is introduced from the upstream of the reforming catalyst part, and the downstream This is a mode in which the reforming guard catalyst part is applied to the steam reformer from which hydrogen-rich reformed gas is discharged. A reforming guard catalyst part is arranged following the upstream end of the reforming catalyst part. Then, a mixed gas of hydrocarbon-based raw material and steam is introduced from the boundary between the reforming guard catalyst part and the reforming catalyst part, and flows from the upstream side to the downstream side of the reforming catalyst part. It is a structure where gas is discharged.

図12〜13は本態様7を説明する図である。図13(a)は、図12中改質触媒部を含む部分を取り出し拡大して示した図、図13(b)〜(c)は、図13(a)中、改質ガード触媒部を含む部分を取り出し拡大して示した図である。   12 to 13 are diagrams for explaining the seventh aspect. FIG. 13A is an enlarged view of the portion including the reforming catalyst portion in FIG. 12, and FIGS. 13B to 13C show the reforming guard catalyst portion in FIG. It is the figure which took out and expanded and showed the part containing.

改質触媒層16は、改質触媒を内管1と外管2との間の環状隙間に充填して構成されている。これに、態様7では、例えば、内管1と外管2を軸方向〔図13(a)中一点鎖線参照〕上方に延長し、その延長内管1及び外管2間の環状隙間に改質触媒を充填して改質ガード触媒部111を設ける。外管2の上端側と内管1の外周間に、その環状隙間に対応した上蓋112が設けられる。上蓋112は、内管1の直径に相当する部分は内管1で占められるのでドーナツ状の上蓋である。   The reforming catalyst layer 16 is configured by filling a reforming catalyst in an annular gap between the inner tube 1 and the outer tube 2. In the aspect 7, for example, the inner tube 1 and the outer tube 2 are extended upward in the axial direction (see the one-dot chain line in FIG. 13A), and the annular gap between the extended inner tube 1 and the outer tube 2 is modified. The reforming guard catalyst unit 111 is provided by filling the quality catalyst. An upper lid 112 corresponding to the annular gap is provided between the upper end side of the outer tube 2 and the outer periphery of the inner tube 1. The upper lid 112 is a donut-shaped upper lid because a portion corresponding to the diameter of the inner tube 1 is occupied by the inner tube 1.

そして、外管2のうち、改質触媒層16と改質ガード触媒部111との境界部の位置に、炭化水素系原料と水蒸気の混合ガス導入用の複数個の細孔113を設ける。その境界部は円環状であるので、複数個の細孔113はその円環状境界部に好ましくは等間隔に設けられる。   In the outer pipe 2, a plurality of pores 113 for introducing a mixed gas of hydrocarbon-based raw material and water vapor are provided at the position of the boundary portion between the reforming catalyst layer 16 and the reforming guard catalyst portion 111. Since the boundary portion is annular, the plurality of pores 113 are preferably provided at equal intervals in the annular boundary portion.

このように、改質ガード触媒部111は、軸方向上方に延長した内管1及び外管2と上蓋112の間の環状隙間に改質触媒を充填して構成される。本態様7の実機として、改質触媒層16と改質ガード触媒部111に充填した全改質触媒量のうち、改質ガード触媒部111に13%充填したものを作製した。炭化水素系原料と水蒸気の混合ガスは、運転時に、図13(a)、(c)中矢印で示すように流通し、複数個の細孔113を通して改質触媒部16に導入され、改質触媒部16の上流側から下流側へ流通し、下流から水素リッチな改質ガスが排出される。本態様7においては、改質ガード触媒部111には炭化水素系原料と水蒸気の混合ガスは流れない。   As described above, the reforming guard catalyst unit 111 is configured by filling the annular gap between the inner tube 1 and the outer tube 2 and the upper lid 112 extending upward in the axial direction with the reforming catalyst. As an actual machine of the seventh aspect, among the total amount of the reforming catalyst filled in the reforming catalyst layer 16 and the reforming guard catalyst part 111, a reforming guard catalyst part 111 filled with 13% was produced. During operation, the mixed gas of the hydrocarbon-based raw material and water vapor flows as shown by arrows in FIGS. 13A and 13C and is introduced into the reforming catalyst unit 16 through the plurality of pores 113 to be reformed. From the upstream side to the downstream side of the catalyst unit 16, the reformed gas rich in hydrogen is discharged from the downstream side. In the present embodiment 7, the reformed guard catalyst unit 111 does not flow a mixed gas of hydrocarbon-based raw material and water vapor.

改質ガード触媒部111は改質触媒層16の改質触媒を補う役割をする。この目的を達成し得る範囲で、改質ガード触媒部111の長さは適宜選定できる。   The reforming guard catalyst unit 111 serves to supplement the reforming catalyst of the reforming catalyst layer 16. The length of the reforming guard catalyst unit 111 can be selected as appropriate as long as this purpose can be achieved.

〈本発明の態様1〜7における温度上昇抑制効果の要因〉
本発明によれば、改質ガード触媒部により改質部上流の温度上昇が抑制される。その理由は、以下(a)〜(c)の要因、効果によるものと解される。
(a)改質ガード触媒部により、炭化水素系原料と水蒸気の混合ガスの改質触媒部の上流端に続き改質触媒を充填し、改質触媒量を増やすことによって、硫黄による改質触媒の被毒を緩和できる。
(b)改質ガード触媒部に充填した改質触媒によって、改質部の改質触媒が沈降し、改質触媒が不足になっても補充することができ、改質触媒部上流側の空洞化を防ぐことができる。
(c)従来のもの(例えば図1に示すもの)に対して、改質触媒部の上流端に続く径を大きくすることで、炭化水素系原料と水蒸気の混合ガスの流速が遅くなり、熱移動を少なくすることができる。従って、硫黄被毒により改質触媒部の上流側の改質触媒が劣化し、吸熱が少なくなったとしても、熱が伝わり難いため、温度上昇を抑制できる。
<The factor of the temperature rise inhibitory effect in aspects 1-7 of this invention>
According to the present invention, a temperature increase upstream of the reforming unit is suppressed by the reforming guard catalyst unit. The reason is understood to be due to the following factors and effects (a) to (c).
(A) The reforming guard catalyst portion is filled with the reforming catalyst following the upstream end of the reforming catalyst portion of the mixed gas of hydrocarbon-based raw material and steam, and the amount of the reforming catalyst is increased, whereby the reforming catalyst by sulfur Can alleviate poisoning.
(B) The reforming catalyst filled in the reforming guard catalyst section allows the reforming catalyst in the reforming section to settle and be replenished even when the reforming catalyst becomes insufficient. Can be prevented.
(C) Compared with the conventional one (for example, the one shown in FIG. 1), by increasing the diameter that follows the upstream end of the reforming catalyst unit, the flow rate of the mixed gas of hydrocarbon-based raw material and steam is reduced, Movement can be reduced. Accordingly, even if the reforming catalyst on the upstream side of the reforming catalyst portion deteriorates due to sulfur poisoning and the endotherm is reduced, it is difficult for heat to be transmitted, so that the temperature rise can be suppressed.

表1は、態様1〜6のそれぞれについて、これら(a)〜(c)の要因の関与の程度を考察したものである。表1中、◎は非常に効果有り、○は効果有り、△は○より少ないが効果有り、−は従来のものと同じく効果なし、を意味する。   Table 1 considers the degree of involvement of these factors (a) to (c) for each of the aspects 1 to 6. In Table 1, ◎ means very effective, ○ means effective, Δ means less effective than ○,-means no effect as in the conventional case.

Figure 0004799995
Figure 0004799995

〈本発明の態様8〜9〉
以上の態様は、外管及び内管により構成した二重筒状容器の隙間に改質触媒部を配置し、改質触媒部の上流から炭化水素系原料と水蒸気の混合ガスを導入し、下流から水素リッチな改質ガスを排出する水蒸気改質器に適用する態様である。本発明は、一重筒状容器に改質触媒部を配置し、改質触媒部の上流から炭化水素系原料と水蒸気の混合ガスを導入し、下流から水素リッチな改質ガスを排出する水蒸気改質器に対しても適用される。
<Aspects 8 to 9 of the present invention>
In the above aspect, the reforming catalyst portion is disposed in the gap between the double cylindrical containers constituted by the outer tube and the inner tube, the mixed gas of hydrocarbon-based raw material and steam is introduced from the upstream of the reforming catalyst portion, and the downstream This is an embodiment applied to a steam reformer that discharges hydrogen-rich reformed gas from the steam generator. In the present invention, a reforming catalyst unit is disposed in a single cylindrical vessel, a mixed gas of a hydrocarbon-based material and steam is introduced from the upstream of the reforming catalyst unit, and a steam reformer that discharges a hydrogen-rich reformed gas from the downstream. It is also applied to the quality device.

〈態様8〉
図14は本態様8を説明する図である。図14(b)は、図14(a)中、改質ガード触媒部を含む部分を取り出し拡大して示した図である。図14のとおり、筒状管(外管)122により構成した一重筒状容器に改質触媒を充填した構造の改質触媒部の上流端に続き改質ガード触媒部121を設ける。すなわち、円柱状の改質触媒部の上流端に続く筒状管の直径を大きくし、そこに改質触媒を充填して改質ガード触媒部121を設ける。
<Aspect 8>
FIG. 14 is a diagram for explaining this aspect 8. FIG. 14B is an enlarged view showing a portion including the reforming guard catalyst portion in FIG. 14A. As shown in FIG. 14, a reforming guard catalyst 121 is provided following the upstream end of the reforming catalyst having a structure in which a single cylindrical container constituted by a cylindrical tube (outer tube) 122 is filled with a reforming catalyst. That is, the diameter of the cylindrical tube that follows the upstream end of the columnar reforming catalyst portion is increased and the reforming catalyst is filled therein to provide the reforming guard catalyst portion 121.

より詳しくは、図14(b)中、符号124として示すように、筒状管122の直径より大きくする。符号123で示す部分は筒状管122と筒状管124との間の傾斜部である。筒状管124と傾斜筒状管123と点線Sで形成された空間からなっており、この空間は、図14(b)中“h”として示すように“縦方向に高さを持つ”空間である。そして、当該空間に改質触媒を充填することで改質ガード触媒部121が構成される。   More specifically, the diameter is made larger than the diameter of the cylindrical tube 122 as indicated by reference numeral 124 in FIG. A portion denoted by reference numeral 123 is an inclined portion between the tubular tube 122 and the tubular tube 124. The space is formed by a cylindrical tube 124, an inclined cylindrical tube 123, and a dotted line S, and this space is a “longitudinal height” space as indicated by “h” in FIG. It is. And the reforming guard catalyst part 121 is comprised by filling the said space with the reforming catalyst.

炭化水素系原料と水蒸気の混合ガスは、改質ガード触媒部121を経て、改質触媒部に流れる。なお、態様8における上記管は、前述外管及び内管により構成した二重筒状容器の隙間に改質触媒部を配置した形式の水蒸気改質器との関係では、その外管に相当しているので、本明細書及び特許請求の範囲中適宜“外管”と称している。   The mixed gas of the hydrocarbon-based raw material and steam flows through the reforming guard catalyst unit 121 to the reforming catalyst unit. In addition, the said pipe | tube in aspect 8 is equivalent to the outer pipe | tube in the relationship with the steam reformer of the type which has arrange | positioned the reforming catalyst part in the clearance gap between the double cylindrical containers comprised with the above-mentioned outer pipe | tube and an inner pipe | tube. Therefore, the term “outer tube” is used as appropriate in the present specification and claims.

本態様でも、改質ガード触媒部は、改質触媒部の改質触媒をリーク硫黄分からガードする役割をする。これは改質ガード触媒部の重要な役割である。また、改質ガード触媒部は、改質触媒層の改質触媒が粒状改質触媒の場合には、上記役割に加えて、改質触媒部の改質触媒を補う役割をする。なお、粒状改質触媒は、極く僅かずつではあるが圧壊、粉化することがあるが、改質ガード触媒部はそれをも補うことができる。   Also in this aspect, the reforming guard catalyst part serves to guard the reforming catalyst of the reforming catalyst part from leaked sulfur. This is an important role of the reforming guard catalyst part. Further, when the reforming catalyst of the reforming catalyst layer is a granular reforming catalyst, the reforming guard catalyst portion plays a role of supplementing the reforming catalyst of the reforming catalyst portion in addition to the above role. Although the granular reforming catalyst may be crushed and pulverized although it is very little, the reforming guard catalyst part can compensate for it.

〈態様9〉
図15は本態様9を説明する図である。図15のとおり、筒状管(外管)132により構成した一重筒状容器に改質触媒を充填した構造の改質触媒部の上流端に続き改質ガード触媒部131を設ける。すなわち、一重筒状容器を、円柱状の改質触媒部の上流端の部位から上方に延長し、その延長空間に改質触媒を充填して改質ガード触媒部131とする。そして、炭化水素系原料及び水蒸気の混合ガスが、改質ガード触媒部131と改質触媒部の境界(符号Sとして示す部位)から導入され、改質触媒部の上流側から下流側へ流通し、下流から水素リッチな改質ガスが排出される構造とする。
<Aspect 9>
FIG. 15 is a diagram for explaining the aspect 9. As shown in FIG. 15, a reforming guard catalyst 131 is provided following the upstream end of the reforming catalyst having a structure in which a single cylindrical container constituted by a cylindrical tube (outer tube) 132 is filled with a reforming catalyst. That is, the single cylindrical container is extended upward from the upstream end portion of the columnar reforming catalyst portion, and the reforming catalyst is filled in the extended space to form the reforming guard catalyst portion 131. Then, a mixed gas of the hydrocarbon-based raw material and water vapor is introduced from the boundary between the reforming guard catalyst part 131 and the reforming catalyst part (part indicated by S) and flows from the upstream side to the downstream side of the reforming catalyst part. The hydrogen-rich reformed gas is discharged from the downstream.

本態様9の改質ガード触媒部131には炭化水素系原料と水蒸気の混合ガスは流れない。なお、態様9における上記管132は、前述外管及び内管により構成した二重筒状容器の隙間に改質触媒部を配置した形式の水蒸気改質器との関係では、その外管に相当しているので、本明細書及び特許請求の範囲中適宜“外管”と称している。   The mixed gas of hydrocarbon-based raw material and water vapor does not flow through the reforming guard catalyst portion 131 of the present embodiment 9. Note that the pipe 132 in the aspect 9 corresponds to the outer pipe in the relationship with the steam reformer of the type in which the reforming catalyst portion is disposed in the gap between the double cylindrical containers constituted by the outer pipe and the inner pipe. Therefore, the term “outer tube” is used as appropriate in the present specification and claims.

本態様9においては、改質ガード触媒部は、改質触媒層の改質触媒を補う役割をする。この目的を達成し得る範囲で、改質ガード触媒部の長さは適宜選定できる。   In the present aspect 9, the reforming guard catalyst part serves to supplement the reforming catalyst of the reforming catalyst layer. The length of the reforming guard catalyst portion can be selected as appropriate as long as this object can be achieved.

〈本発明で対象とする炭化水素系原料の水蒸気改質器の態様例〉
本発明の炭化水素系原料の水蒸気改質器は、円筒状容器内に、改質触媒部、CO変成触媒部及びCO除去触媒部をそれぞれ別層に区画して配置した形式の炭化水素系原料の水蒸気改質器に対しても適用できる。その一例として、以下(1)〜(5)の構成を含む水蒸気改質器とすることができる。
(1)同心状に間隔を置いて配置した順次直径の大きい内管(=第1円筒体)、外管(=第2円筒体)及び第3円筒体と、第3円筒体の上部に第3円筒体より直径を大きくした第4円筒体を備える。
(2)内管の内部に中心軸を同軸にして配置された輻射筒を備える。
(3)輻射筒内の軸方向にバーナーを備え、内管と外管により区画された間隙に改質触媒を充填した改質触媒層を配置する。
(4)外管と第4円筒体の間に軸方向に隔壁を介して間隔を置いて順次CO変成触媒層及びCO除去触媒層を配置する。
(5)CO除去触媒層における改質ガスの流れを軸方向、あるいは中心軸側から外周に向けて放射状に流れるように構成する。
<Aspect example of steam reformer of hydrocarbon raw material targeted in the present invention>
The hydrocarbon-based raw material steam reformer of the present invention is a hydrocarbon-based raw material of a type in which a reforming catalyst portion, a CO shift catalyst portion, and a CO removal catalyst portion are divided into separate layers in a cylindrical vessel. It can also be applied to other steam reformers. As an example, a steam reformer including the following configurations (1) to (5) can be provided.
(1) Concentrically spaced apart inner pipes (= first cylinder), outer pipe (= second cylinder), third cylinder, and third cylinders, which are successively larger in diameter. A fourth cylinder having a diameter larger than that of the three cylinders is provided.
(2) A radiation cylinder is provided in the inner tube with the central axis coaxial.
(3) A reforming catalyst layer provided with a burner in the axial direction in the radiation tube and filled with the reforming catalyst in a gap defined by the inner tube and the outer tube is disposed.
(4) A CO conversion catalyst layer and a CO removal catalyst layer are sequentially arranged between the outer tube and the fourth cylindrical body with an interval in the axial direction through a partition wall.
(5) The flow of the reformed gas in the CO removal catalyst layer is configured to flow radially from the axial direction or from the central axis side to the outer periphery.

CO変成触媒層のCO変成触媒としては、Cu/Zn系触媒、Fe/Cr系触媒、白金属触媒、白金を主成分としCeO2等の金属酸化物を副成分として含む触媒、Al、Cu、Fe、Cr、Moなどの卑金属触媒、その他のCO変成触媒から適宜選定して用いられる。白金を主成分とした触媒は、酸化などによる劣化にも強く、350℃以上の高温域、特に400℃以上の高温域でも連続して使用することが可能であり、より速い速度で反応を進行させることができる。CO変成触媒は、単一のCO変成触媒を用いる場合のほか、高温CO変成触媒と低温CO変成触媒を併用してもよい。CO変成触媒は、粒状CO変成触媒のほか、モノリス型CO変成触媒が用いられる。 As the CO conversion catalyst of the CO conversion catalyst layer, a Cu / Zn-based catalyst, an Fe / Cr-based catalyst, a white metal catalyst, a catalyst containing platinum as a main component and a metal oxide such as CeO 2 as an auxiliary component, Al, Cu, It is appropriately selected from base metal catalysts such as Fe, Cr and Mo, and other CO shift catalysts. Platinum-based catalysts are resistant to deterioration due to oxidation, etc., and can be used continuously even in a high temperature range of 350 ° C or higher, particularly in a high temperature range of 400 ° C or higher, and the reaction proceeds at a faster rate. Can be made. As the CO conversion catalyst, a single CO conversion catalyst may be used, or a high temperature CO conversion catalyst and a low temperature CO conversion catalyst may be used in combination. As the CO conversion catalyst, in addition to the granular CO conversion catalyst, a monolith type CO conversion catalyst is used.

CO除去触媒としては、改質ガス中のCOを選択的に酸化し得る触媒であれば特に限定はなく、例えばRu系などの金属担持触媒が用いられる。金属担持触媒は、例えばアルミナ等の担体にRuなどの金属を担持させて構成される。   The CO removal catalyst is not particularly limited as long as it can selectively oxidize CO in the reformed gas. For example, a Ru-based metal-supported catalyst is used. The metal-supported catalyst is configured, for example, by supporting a metal such as Ru on a support such as alumina.

本発明で対象とする水蒸気改質器において、触媒を除く構成部材としては耐熱合金、好ましくはステンレス鋼が用いられる。   In the steam reformer targeted by the present invention, a heat-resistant alloy, preferably stainless steel, is used as a constituent member excluding the catalyst.

断熱材23としては好ましくはセラミックファイバーなどの加工性のよいものを用いる。断熱材40としては、例えばマイクロサーム、ケイ酸カルシウム、アルミナファイバーなどの断熱効果の高い断熱材が使用される。   As the heat insulating material 23, a material having good workability such as ceramic fiber is preferably used. As the heat insulating material 40, for example, a heat insulating material having a high heat insulating effect such as microtherm, calcium silicate, or alumina fiber is used.

炭化水素系原料としては、メタン、エタン、プロパン、ブタン、その他の炭化水素のほか、都市ガス、石油ガス、天然ガス、その他2種以上の炭化水素を含む混合ガスが用いられる。   As the hydrocarbon-based material, methane, ethane, propane, butane, other hydrocarbons, city gas, petroleum gas, natural gas, and other mixed gas containing two or more kinds of hydrocarbons are used.

以下、実施例を基に本発明をさらに詳しく説明するが、本発明がこれら実施例に限定されないことはもちろんである。   EXAMPLES Hereinafter, although this invention is demonstrated in more detail based on an Example, of course, this invention is not limited to these Examples.

〈比較例1〉
図1に示す水蒸気改質器を用いて硫黄被毒試験を実施した。本発明者らは、水蒸気改質器の実機を長期間にわたり起動、停止を繰り返して運転し、さらなる改良の有無について観察しているが、この硫黄被毒試験は、その一環として実施したものである。水蒸気改質器は、改質器全体(断熱材を含む)が高さ60cm、直径20cmの規模のもので、一時間当たり1Nm3の水素を製造できる装置である。改質触媒部、CO変成触媒層21及びCO除去触媒層54のそれぞれに各触媒を充填した。なお、改質触媒部の高さは100mmである。
<Comparative example 1>
A sulfur poisoning test was conducted using the steam reformer shown in FIG. The present inventors have repeatedly started and stopped the actual steam reformer for a long period of time, and observed whether or not further improvements have been made, but this sulfur poisoning test was conducted as part of that. is there. The steam reformer is an apparatus capable of producing 1 Nm 3 of hydrogen per hour with the whole reformer (including the heat insulating material) having a height of 60 cm and a diameter of 20 cm. Each catalyst was filled in each of the reforming catalyst portion, the CO shift catalyst layer 21 and the CO removal catalyst layer 54. The height of the reforming catalyst part is 100 mm.

改質触媒として、Ru系触媒〔アルミナにRuを担持した触媒、粒状、平均粒径(直径)≒3mm〕を用いた。CO変成触媒として、Cu/Zn系触媒〔アルミナにCu及びZnを担持して押出成形した触媒、円柱状、3mm(直径)×3mm(長さ)〕を用いた。CO除去触媒として、Ru/白金系触媒〔粒状アルミナにRuを担持した触媒、粒状、平均粒径(直径)≒3mm〕を用いた。   As the reforming catalyst, a Ru-based catalyst (a catalyst having Ru supported on alumina, granular, average particle diameter (diameter) ≈3 mm) was used. As the CO conversion catalyst, a Cu / Zn-based catalyst [a catalyst obtained by extrusion molding with Cu and Zn supported on alumina, cylindrical shape, 3 mm (diameter) × 3 mm (length)] was used. As the CO removal catalyst, a Ru / platinum-based catalyst (a catalyst in which Ru is supported on granular alumina, granular, average particle diameter (diameter) ≈3 mm) was used.

炭化水素系原料として都市ガス(13A)を、脱硫せず、そのまま使用した。都市ガスには付臭剤として数volppm程度の硫黄化合物が含まれている。原料ガスを流量4.1NL/minで供給し、水(純水)を流量10.0g/minで供給した。スチーム比(S/C比)=2.5である。また、CO除去用空気を流量:1.5NL/minで供給した。バーナー用燃料として都市ガスを使用した。図1中、T1、T2として示すように改質入口部と改質出口部に温度センサーをセットした。 City gas (13A) was used as a hydrocarbon-based raw material without desulfurization. City gas contains a sulfur compound of about several volppm as an odorant. Source gas was supplied at a flow rate of 4.1 NL / min, and water (pure water) was supplied at a flow rate of 10.0 g / min. The steam ratio (S / C ratio) = 2.5. In addition, CO removal air was supplied at a flow rate of 1.5 NL / min. City gas was used as fuel for the burner. In FIG. 1, temperature sensors were set at the reforming inlet and the reforming outlet as indicated by T 1 and T 2 .

図16に、実測された運転時間の経過に伴う改質入口部と改質出口部の温度変化をしている。図16のとおり、改質部入口が硫黄により被毒し、温度が急激に上昇している。   FIG. 16 shows the temperature changes at the reforming inlet and the reforming outlet as the measured operation time elapses. As shown in FIG. 16, the reformer inlet is poisoned by sulfur, and the temperature rises rapidly.

〈比較例2〉
炭化水素系原料として都市ガス(13A)を脱硫して使用し、起動−停止を繰り返した以外は、比較例1と同様にして、起動−停止に伴う改質入口部と改質出口部の温度変化を計測した。都市ガスには付臭剤として数volppm程度の硫黄化合物が含まれているが、脱硫済み都市ガスは、それをY型ゼオライトに銀を担持した高性能脱硫剤に通すことで脱硫し、数volppbレベルにまで脱硫されたものである。
<Comparative example 2>
The temperature of the reforming inlet and the reforming outlet accompanying the start-stop is the same as in Comparative Example 1, except that city gas (13A) is used after desulfurization as the hydrocarbon-based raw material and the start-stop is repeated. Changes were measured. City gas contains a sulfur compound of about several volppm as an odorant, but desulfurized city gas is desulfurized by passing it through a high-performance desulfurization agent in which silver is supported on Y-type zeolite, and several volppb Desulfurized to the level.

図17〜18にその結果を示している。まず、図17のとおり、起動−停止を繰り返すのに伴い(昇降温を伴う)、脱硫器よりリークした僅かな硫黄分により改質部入口が徐々に被毒し、温度が少しずつ上昇している。また、図18のとおり、改質触媒は、昇降温回数650回程度まで漸次沈降し続け、720回で沈降長さ7mm(比率7%)となり、その後も僅かではあるがさらに沈降し続けている。   The results are shown in FIGS. First, as shown in FIG. 17, as the start-stop is repeated (with increasing and decreasing temperature), the reforming unit inlet is gradually poisoned by a slight sulfur content leaked from the desulfurizer, and the temperature gradually increases. Yes. Further, as shown in FIG. 18, the reforming catalyst continues to settle gradually up to about 650 times of temperature rise and fall, reaches a settling length of 7 mm (ratio 7%) at 720 times, and continues to settle further, although slightly after that. .

〈実施例〉
図4〜5に示す水蒸気改質器を使用し、起動−停止(昇降温を伴う)を繰り返した以外は、比較例2と同様にして、起動−停止に伴う改質入口部と改質出口部の温度変化を計測した。水蒸気改質器は、改質触媒層16及び改質ガード触媒部61に充填した全改質触媒量のうち、改質ガード触媒部61に46%を充填した以外は、図1の水蒸気改質器と同様である。図4〜5中、T1、T2として示すように改質入口部と改質出口部に温度センサーをセットした。
<Example>
The reforming inlet part and the reforming outlet accompanying the start-stop are the same as in the comparative example 2, except that the steam reformer shown in FIGS. 4 to 5 is used and the start-stop (with increasing temperature) is repeated. The temperature change of the part was measured. The steam reformer of FIG. 1 except that the reforming guard catalyst portion 61 is filled with 46% of the total reforming catalyst amount charged in the reforming catalyst layer 16 and the reforming guard catalyst portion 61. It is the same as the vessel. 4 to 5, temperature sensors were set at the reforming inlet and the reforming outlet as indicated by T 1 and T 2 .

図19にその結果を示している。図19のとおり、脱硫器よりリークした僅かな硫黄が改質部に到達しているはずであるが、十分な改質触媒量を充填しているガード触媒により、硫黄の被毒は緩和され、温度上昇は殆ど見られない。また、ガード触媒により、改質触媒粒の沈降が抑制され、起動停止回数1000回でも沈降は殆ど認められなかった。このように、本発明によれば、硫黄に対するガード効果に加え、沈降防止の効果が達成されている。   FIG. 19 shows the result. As shown in FIG. 19, slight sulfur leaked from the desulfurizer should have reached the reforming section, but the poisoning of sulfur is mitigated by the guard catalyst filled with a sufficient amount of reforming catalyst, There is almost no increase in temperature. In addition, the guard catalyst suppressed the settling of the reformed catalyst particles, and no settling was observed even when the number of start / stop operations was 1000 times. Thus, according to the present invention, in addition to the guard effect against sulfur, the effect of preventing sedimentation is achieved.

一体型水蒸気改質器の一例を示す図(先行技術)Diagram showing an example of an integrated steam reformer (prior art) 本発明の態様1を説明する図The figure explaining the aspect 1 of this invention 本発明の態様1を説明する図The figure explaining the aspect 1 of this invention 本発明の態様2を説明する図The figure explaining aspect 2 of this invention 本発明の態様2を説明する図The figure explaining aspect 2 of this invention 本発明の態様3を説明する図The figure explaining aspect 3 of this invention 本発明の態様3を説明する図The figure explaining aspect 3 of this invention 本発明の態様4を説明する図The figure explaining aspect 4 of this invention 本発明の態様5を説明する図The figure explaining aspect 5 of the present invention 本発明の態様6を説明する図The figure explaining aspect 6 of this invention 本発明の態様6を説明する図The figure explaining aspect 6 of this invention 本発明の態様7を説明する図The figure explaining aspect 7 of this invention 本発明の態様7を説明する図The figure explaining aspect 7 of this invention 本発明の態様8を説明する図The figure explaining aspect 8 of this invention 本発明の態様9を説明する図The figure explaining aspect 9 of this invention 比較例1の結果を示す図The figure which shows the result of the comparative example 1 比較例2の結果を示す図The figure which shows the result of the comparative example 2 比較例2の結果を示す図The figure which shows the result of the comparative example 2 本発明の実施例の結果を示す図The figure which shows the result of the Example of this invention

符号の説明Explanation of symbols

1 第1円筒体(内管)
2 第2円筒体(外管)
3 第3円筒体
4 第4円筒体
5 輻射筒
6 バーナー
7 上蓋兼バーナー取付台
8 底板
9 燃焼排ガスの排気通路
10 隔壁
16 改質触媒層
17 改質触媒層16の改質触媒の支持体
36 CO除去触媒層
51、61、71、81、91、101、111 121 131 改質ガード触媒部
52〜53、62〜64、72〜73、82〜83、92〜94、102〜103 区画壁
h 縦方向高さ
R、S 説明の便宜上付した点線
1、T2 温度センサー
1 1st cylinder (inner tube)
2 Second cylinder (outer tube)
DESCRIPTION OF SYMBOLS 3 3rd cylinder 4th 4th cylinder 5 radiation cylinder 6 burner 7 top cover and burner mounting base 8 bottom plate 9 flue gas exhaust passage 10 partition 16 reforming catalyst layer 17 reforming catalyst support body 36 of reforming catalyst layer 16 CO removal catalyst layer 51, 61, 71, 81, 91, 101, 111 121 131 Reforming guard catalyst part 52 to 53, 62 to 64, 72 to 73, 82 to 83, 92 to 94, 102 to 103 Partition wall h Vertical height R, S Dotted lines for convenience of explanation T 1 , T 2 Temperature sensor

Claims (16)

外管及び内管により構成した二重筒の隙間に改質触媒部を配置し、改質触媒部の上流から脱硫済みの炭化水素系原料と水蒸気の混合ガスが導入され、下流から水素リッチな改質ガスが排出される水蒸気改質器において、改質触媒部の上流端に続きリーク硫黄分による硫黄被毒から改質触媒部の改質触媒を保護する役割をする改質触媒を充填した改質ガード触媒部を配置してなり、改質ガード触媒部に充填した改質触媒の量が改質触媒部及び改質ガード触媒部の改質触媒の全量のうち7%以上であり、炭化水素系原料と水蒸気の混合ガスが改質ガード触媒部と改質触媒部に流れ、下流から水素リッチな改質ガスが排出される構造であることを特徴とする炭化水素系原料の水蒸気改質器。 A reforming catalyst part is arranged in the gap between the double cylinders constituted by the outer pipe and the inner pipe, and a mixed gas of desulfurized hydrocarbon-based raw material and steam is introduced from the upstream of the reforming catalyst part, and the hydrogen-rich gas is introduced from the downstream. In the steam reformer from which the reformed gas is discharged , the reforming catalyst is charged after the upstream end of the reforming catalyst unit to protect the reforming catalyst in the reforming catalyst unit from sulfur poisoning due to leaked sulfur . The reforming guard catalyst portion is arranged, and the amount of the reforming catalyst filled in the reforming guard catalyst portion is 7% or more of the total amount of the reforming catalyst in the reforming catalyst portion and the reforming guard catalyst portion. Steam reforming of hydrocarbon feedstock, characterized in that a mixed gas of hydrogen feedstock and steam flows to the reforming guard catalyst section and reforming catalyst section, and hydrogen-rich reformed gas is discharged from downstream vessel. 外管により構成した一重筒の内部に改質触媒部を配置し、改質触媒部の上流から脱硫済みの炭化水素系原料と水蒸気の混合ガスが導入され、下流から水素リッチな改質ガスが排出される水蒸気改質器において、改質触媒部の上流端に続きリーク硫黄分による硫黄被毒から改質触媒部の改質触媒を保護する役割をする改質触媒を充填した改質ガード触媒部を配置してなり、改質ガード触媒部に充填した改質触媒の量が改質触媒部及び改質ガード触媒部の改質触媒の全量のうち7%以上であり、炭化水素系原料と水蒸気の混合ガスが改質ガード触媒部と改質触媒部に流れ、下流から水素リッチな改質ガスが排出される構造であることを特徴とする炭化水素系原料の水蒸気改質器。 A reforming catalyst part is arranged inside a single cylinder constituted by an outer pipe, a mixed gas of desulfurized hydrocarbon-based raw material and steam is introduced from the upstream of the reforming catalyst part, and a hydrogen-rich reformed gas is introduced from the downstream. In the discharged steam reformer, a reforming guard catalyst filled with a reforming catalyst that serves to protect the reforming catalyst of the reforming catalyst portion from sulfur poisoning due to leaked sulfur components following the upstream end of the reforming catalyst portion The amount of the reforming catalyst filled in the reforming guard catalyst portion is 7% or more of the total amount of the reforming catalyst in the reforming catalyst portion and the reforming guard catalyst portion. A hydrocarbon-based raw material steam reformer characterized in that a mixed gas of steam flows into the reforming guard catalyst section and the reforming catalyst section, and a hydrogen-rich reformed gas is discharged from the downstream. 外管及び内管により構成した二重筒の隙間に改質触媒部を配置し、改質触媒部の上流から脱硫済みの炭化水素系原料と水蒸気の混合ガスが導入され、下流から水素リッチな改質ガスが排出される水蒸気改質器において、改質触媒部の上流端に続きリーク硫黄分による硫黄被毒から改質触媒部の改質触媒を保護する役割をする改質触媒を充填した改質ガード触媒部を配置してなり、改質ガード触媒部に充填した改質触媒の量が改質触媒部及び改質ガード触媒部の改質触媒の全量のうち7%以上であり、炭化水素系原料と水蒸気の混合ガスが、改質ガード触媒部と改質触媒部の境界から導入され、改質ガード触媒部には流れず、改質触媒部に上流側から下流側へ流通し、下流から水素リッチな改質ガスが排出される構造であることを特徴とする炭化水素系原料の水蒸気改質器。 A reforming catalyst part is arranged in the gap between the double cylinders constituted by the outer pipe and the inner pipe, and a mixed gas of desulfurized hydrocarbon-based raw material and steam is introduced from the upstream of the reforming catalyst part, and the hydrogen-rich gas is introduced from the downstream. In the steam reformer from which the reformed gas is discharged , the reforming catalyst is charged after the upstream end of the reforming catalyst unit to protect the reforming catalyst in the reforming catalyst unit from sulfur poisoning due to leaked sulfur . The reforming guard catalyst portion is arranged, and the amount of the reforming catalyst filled in the reforming guard catalyst portion is 7% or more of the total amount of the reforming catalyst in the reforming catalyst portion and the reforming guard catalyst portion. A mixed gas of hydrogen-based raw material and water vapor is introduced from the boundary between the reforming guard catalyst part and the reforming catalyst part, does not flow to the reforming guard catalyst part, and flows from the upstream side to the downstream side to the reforming catalyst part, Charcoal characterized in that hydrogen-rich reformed gas is discharged from downstream Steam reformer hydrogen based material. 外管により構成した一重筒の内部に改質触媒部を配置し、改質触媒部の上流から脱硫済みの炭化水素系原料と水蒸気の混合ガスが導入され、下流から水素リッチな改質ガスが排出される水蒸気改質器において、改質触媒部の上流端に続きリーク硫黄分による硫黄被毒から改質触媒部の改質触媒を保護する役割をする改質触媒を充填した改質ガード触媒部を配置してなり、改質ガード触媒部に充填した改質触媒の量が改質触媒部及び改質ガード触媒部の改質触媒の全量のうち7%以上であり、炭化水素系原料と水蒸気の混合ガスが、改質ガード触媒部と改質触媒部の境界から導入され、改質ガード触媒部には流れず、改質触媒部に上流側から下流側へ流通し、下流から水素リッチな改質ガスが排出される構造であることを特徴とする炭化水素系原料の水蒸気改質器。 A reforming catalyst part is arranged inside a single cylinder constituted by an outer pipe, a mixed gas of desulfurized hydrocarbon-based raw material and steam is introduced from the upstream of the reforming catalyst part, and a hydrogen-rich reformed gas is introduced from the downstream. In the discharged steam reformer, a reforming guard catalyst filled with a reforming catalyst that serves to protect the reforming catalyst of the reforming catalyst portion from sulfur poisoning due to leaked sulfur components following the upstream end of the reforming catalyst portion The amount of the reforming catalyst filled in the reforming guard catalyst portion is 7% or more of the total amount of the reforming catalyst in the reforming catalyst portion and the reforming guard catalyst portion. A mixed gas of water vapor is introduced from the boundary between the reforming guard catalyst part and the reforming catalyst part, does not flow to the reforming guard catalyst part, flows to the reforming catalyst part from the upstream side to the downstream side, and is rich in hydrogen from the downstream side. Hydrocarbon system characterized in that it has a structure that discharges reformed gas Steam reformer of the fee. 請求項1〜4のいずれか1項の炭化水素系原料の水蒸気改質器において、前記改質触媒部の上流端に続き配置した、リーク硫黄分による硫黄被毒から改質触媒部の改質触媒を保護する役割をする改質触媒を充填した改質ガード触媒部が、外管を周方向に延ばした構造であることを特徴とする炭化水素系原料の水蒸気改質器。 The steam reformer of the hydrocarbon-based raw material according to any one of claims 1 to 4, wherein the reforming catalyst unit is reformed from sulfur poisoning due to leaked sulfur, which is arranged subsequent to the upstream end of the reforming catalyst unit. A steam reformer for a hydrocarbon-based raw material, characterized in that a reforming guard catalyst portion filled with a reforming catalyst that serves to protect the catalyst has a structure in which an outer tube extends in the circumferential direction. 請求項1〜4のいずれか1項の炭化水素系原料の水蒸気改質器において、前記改質触媒部の上流端に続き配置した、リーク硫黄分による硫黄被毒から改質触媒部の改質触媒を保護する役割をする改質触媒を充填した改質ガード触媒部が、外管を周方向及び軸方向に延ばした構造であることを特徴とする炭化水素系原料の水蒸気改質器。 The steam reformer of the hydrocarbon-based raw material according to any one of claims 1 to 4, wherein the reforming catalyst unit is reformed from sulfur poisoning due to leaked sulfur, which is arranged subsequent to the upstream end of the reforming catalyst unit. A steam reformer for a hydrocarbon-based raw material, characterized in that a reforming guard catalyst portion filled with a reforming catalyst that serves to protect the catalyst has a structure in which an outer tube extends in a circumferential direction and an axial direction. 請求項1または3の炭化水素系原料の水蒸気改質器において、前記改質触媒部の上流端に続き配置した、リーク硫黄分による硫黄被毒から改質触媒部の改質触媒を保護する役割をする改質触媒を充填した改質ガード触媒部が、外管及び内管を周方向及び軸方向に縮めた構造であることを特徴とする炭化水素系原料の水蒸気改質器。 The steam reformer for hydrocarbon raw material according to claim 1 or 3, wherein the reforming catalyst in the reforming catalyst part is protected from sulfur poisoning due to leaked sulfur, which is arranged subsequent to the upstream end of the reforming catalyst part. A hydrocarbon-based raw material steam reformer characterized in that a reforming guard catalyst portion filled with a reforming catalyst that has a structure is formed by shrinking an outer tube and an inner tube in a circumferential direction and an axial direction. 請求項1または3の炭化水素系原料の水蒸気改質器において、前記改質触媒部の上流端に続き配置した、リーク硫黄分による硫黄被毒から改質触媒部の改質触媒を保護する役割をする改質触媒を充填した改質ガード触媒部が、内管を周方向に縮めた構造であることを特徴とする炭化水素系原料の水蒸気改質器。 The steam reformer for hydrocarbon raw material according to claim 1 or 3, wherein the reforming catalyst in the reforming catalyst part is protected from sulfur poisoning due to leaked sulfur, which is arranged subsequent to the upstream end of the reforming catalyst part. A hydrocarbon-based raw material steam reformer characterized in that the reforming guard catalyst portion filled with the reforming catalyst for reducing the inner pipe is contracted in the circumferential direction. 請求項1〜8のいずれか1項の炭化水素系原料の水蒸気改質器において、前記改質触媒部と改質ガード触媒部に同一の触媒を充填したことを特徴とする炭化水素系原料の水蒸気改質器。   9. The hydrocarbon-based raw material steam reformer according to claim 1, wherein the reforming catalyst part and the reforming guard catalyst part are filled with the same catalyst. Steam reformer. 請求項1〜8のいずれか1項の炭化水素系原料の水蒸気改質器において、前記改質触媒部と改質ガード触媒部に異なる触媒を充填したことを特徴とする炭化水素系原料の水蒸気改質器。   9. The hydrocarbon-based raw material steam reformer according to claim 1, wherein the reforming catalyst section and the reforming guard catalyst section are filled with different catalysts. Reformer. 請求項9または10の炭化水素系原料の水蒸気改質器において、前記改質ガード触媒部にNi系改質触媒を充填したことを特徴とする炭化水素系原料の水蒸気改質器。   11. The hydrocarbon-based raw material steam reformer according to claim 9 or 10, wherein the reforming guard catalyst portion is filled with a Ni-based reforming catalyst. 請求項1〜11のいずれか1項の炭化水素系原料の水蒸気改質器において、前記改質ガード触媒部に充填した改質触媒の量は改質触媒部及び改質ガード触媒部の改質触媒の全量のうち60%以下であることを特徴とする炭化水素系原料の水蒸気改質器。   The steam reformer for hydrocarbon-based raw materials according to any one of claims 1 to 11, wherein the amount of the reforming catalyst charged in the reforming guard catalyst part is the reforming of the reforming catalyst part and the reforming guard catalyst part. A steam reformer for a hydrocarbon-based raw material, characterized in that it is 60% or less of the total amount of the catalyst. 請求項1〜11のいずれか1項の炭化水素系原料の水蒸気改質器において、改質触媒部の上流に配置された改質ガード触媒部の上流側を上端とし、改質ガード触媒部の上端から炭化水素系原料と水蒸気の混合ガスが導入される構造であることを特徴とする炭化水素系原料の水蒸気改質器。   The steam reformer for a hydrocarbon-based raw material according to any one of claims 1 to 11, wherein an upstream side of the reforming guard catalyst unit disposed upstream of the reforming catalyst unit is an upper end, and the reforming guard catalyst unit A steam reformer for a hydrocarbon-based material, having a structure in which a mixed gas of a hydrocarbon-based material and steam is introduced from the upper end. 請求項1〜2、5〜12のいずれか1項の炭化水素系原料の水蒸気改質器において、改質触媒部の上流に配置された改質ガード触媒部の上流側を下端とし、改質ガード触媒部の下端から炭化水素系原料と水蒸気の混合ガスが導入される構造であることを特徴とする炭化水素系原料の水蒸気改質器。   13. The hydrocarbon-based raw material steam reformer according to claim 1, wherein the reforming guard catalyst portion disposed upstream of the reforming catalyst portion has a lower end as a lower end, A hydrocarbon-based raw material steam reformer characterized in that a mixed gas of a hydrocarbon-based raw material and steam is introduced from the lower end of the guard catalyst section. 請求項1〜14のいずれか1項の炭化水素系原料の水蒸気改質器が、固体高分子形燃料電池に水素を供給する炭化水素系原料の水蒸気改質器であることを特徴とする炭化水素系原料の水蒸気改質器。   The hydrocarbon-based raw material steam reformer according to any one of claims 1 to 14 is a hydrocarbon-based raw material steam reformer for supplying hydrogen to a polymer electrolyte fuel cell. Steam reformer for hydrogen-based raw materials. 請求項1〜14のいずれか1項の炭化水素系原料の水蒸気改質器が、容器内に、改質触媒部、CO変成触媒部及びCO除去触媒部をそれぞれ別層に区画して配置して一体化した炭化水素系原料の水蒸気改質器であることを特徴とする炭化水素系原料の水蒸気改質器。
The steam reformer for a hydrocarbon-based raw material according to any one of claims 1 to 14, wherein the reforming catalyst part, the CO shift catalyst part, and the CO removal catalyst part are arranged in separate layers in a container. A hydrocarbon raw material steam reformer characterized by being a hydrocarbon raw material steam reformer integrated.
JP2005306414A 2005-10-20 2005-10-20 Steam reformer Active JP4799995B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005306414A JP4799995B2 (en) 2005-10-20 2005-10-20 Steam reformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005306414A JP4799995B2 (en) 2005-10-20 2005-10-20 Steam reformer

Publications (2)

Publication Number Publication Date
JP2007112667A JP2007112667A (en) 2007-05-10
JP4799995B2 true JP4799995B2 (en) 2011-10-26

Family

ID=38095187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005306414A Active JP4799995B2 (en) 2005-10-20 2005-10-20 Steam reformer

Country Status (1)

Country Link
JP (1) JP4799995B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2008345826B2 (en) 2008-01-08 2013-07-18 Tokyo Gas Company Limited Cylindrical steam reformer
JP5274986B2 (en) * 2008-11-06 2013-08-28 東京瓦斯株式会社 Multi-cylinder steam reformer for fuel cells
JP2010129411A (en) * 2008-11-28 2010-06-10 Tokyo Gas Co Ltd Cylindrical steam reformer for fuel battery
JP5160389B2 (en) * 2008-12-11 2013-03-13 東京瓦斯株式会社 Multi-cylinder steam reformer for fuel cells
JP5351527B2 (en) * 2009-01-11 2013-11-27 東京瓦斯株式会社 Cylindrical steam reformer for fuel cells
JP5269679B2 (en) * 2009-04-07 2013-08-21 東京瓦斯株式会社 Raw material pretreatment system for fuel hydrogen production of fuel cells
JP5469470B2 (en) * 2010-01-22 2014-04-16 東京瓦斯株式会社 Higher-order desulfurization apparatus and higher-order desulfurization method for raw fuel supplied to a steam reformer
JP5530540B2 (en) * 2013-03-06 2014-06-25 東京瓦斯株式会社 Raw material pretreatment system for fuel hydrogen production of fuel cells
JP6701778B2 (en) * 2015-02-13 2020-05-27 日本製鉄株式会社 Method for producing hydrogen by reforming hydrocarbons, apparatus for producing hydrogen, operating method for fuel cell, and operating apparatus for fuel cell

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0431243Y2 (en) * 1989-03-02 1992-07-28
JP2998217B2 (en) * 1991-01-24 2000-01-11 富士電機株式会社 Fuel reformer
JPH0644999A (en) * 1992-07-21 1994-02-18 Mitsubishi Electric Corp Internally reformed type fuel cell
JP3322933B2 (en) * 1993-03-05 2002-09-09 株式会社東芝 Fuel reformer
JP3015662B2 (en) * 1994-04-28 2000-03-06 三洋電機株式会社 Reformer
US6258330B1 (en) * 1998-11-10 2001-07-10 International Fuel Cells, Llc Inhibition of carbon deposition on fuel gas steam reformer walls
JP2003183003A (en) * 2001-12-13 2003-07-03 Sanyo Electric Co Ltd Multi-tube reactor

Also Published As

Publication number Publication date
JP2007112667A (en) 2007-05-10

Similar Documents

Publication Publication Date Title
JP4799995B2 (en) Steam reformer
JP5191840B2 (en) Cylindrical steam reformer with integrated hydrodesulfurizer
JP4145785B2 (en) Cylindrical steam reformer
JP6606091B2 (en) Catalytic device
JP4762496B2 (en) Catalytic reactor
EP1958921A1 (en) Oxidational self thermal reforming apparatus and method of oxidational self thermal reforming therewith
JP2009078954A (en) Reforming apparatus
JP5301419B2 (en) Multi-cylinder steam reformer for fuel cells
JP5160389B2 (en) Multi-cylinder steam reformer for fuel cells
KR101353917B1 (en) Fuel reformer in which mixture and distribution of raw material have improved
JP5329944B2 (en) Steam reformer for fuel cell
JP2011181268A (en) Heating method of desulfurizer for fuel cell and fuel cell system
JP5135605B2 (en) Stationary hydrogen production reformer
US7332003B1 (en) Hydrocarbon fuel processing for hydrogen generation
JP2007204343A (en) Reformer and its manufacturing method
JP5307043B2 (en) CO reformer separate steam reformer
JP4932165B2 (en) Steam reforming system
JP5274986B2 (en) Multi-cylinder steam reformer for fuel cells
JP5307322B2 (en) Fuel reforming system for solid oxide fuel cell
JP2005343950A (en) Liquid fuel desulfurizer
JP2006232611A (en) Steam reformer for hydrocarbon fuel
JP4920311B2 (en) Oxidation autothermal reformer
JP5938580B2 (en) Hydrogen generator
JP2007227237A (en) Solid oxide fuel battery module
JP2007186389A (en) Method for starting oxidation autothermal reforming apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110803

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4799995

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250