JP2007204343A - Reformer and its manufacturing method - Google Patents

Reformer and its manufacturing method Download PDF

Info

Publication number
JP2007204343A
JP2007204343A JP2006027910A JP2006027910A JP2007204343A JP 2007204343 A JP2007204343 A JP 2007204343A JP 2006027910 A JP2006027910 A JP 2006027910A JP 2006027910 A JP2006027910 A JP 2006027910A JP 2007204343 A JP2007204343 A JP 2007204343A
Authority
JP
Japan
Prior art keywords
catalyst layer
honeycomb structure
reformer
metal honeycomb
supply pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006027910A
Other languages
Japanese (ja)
Inventor
Shunichiro Kuma
俊一郎 隈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
T Rad Co Ltd
Original Assignee
T Rad Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by T Rad Co Ltd filed Critical T Rad Co Ltd
Priority to JP2006027910A priority Critical patent/JP2007204343A/en
Publication of JP2007204343A publication Critical patent/JP2007204343A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

<P>PROBLEM TO BE SOLVED: To convert a shift catalyst layer in an autooxidation internal heating type reformer into a metal honeycomb structure. <P>SOLUTION: In the autooxidation internal heating type reformer having a mixed catalyst layer 5 wherein a reforming catalyst and an oxidation catalyst are mixed, a shift catalyst layer 6 and a supply pipe 14 for supplying an oxygen-containing gas for oxidation to the mixed catalyst layer 5 and forming a hydrogen-rich reformed gas by steam-reforming a raw material-steam mixture, the supply pipe 14 is provided while passing through the center of a spiral shape of a spiral metal honeycomb structure 20 and extending to the mixed catalyst layer 5 and the shift catalyst layer 6 is formed by carrying the shift catalyst on the spiral part of the metal honeycomb structure 20. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は原料ガスを水蒸気改質して水素リッチな改質ガスを生成する自己酸化内部加熱型の改質器およびその製造方法に関し、特に、シフト触媒層をメタルハニカム化した自己酸化内部加熱型の改質器及びその製造方法に関する。   TECHNICAL FIELD The present invention relates to a self-oxidation internal heating type reformer that generates a hydrogen-rich reformed gas by steam reforming a raw material gas, and a manufacturing method thereof, and more particularly, to a self-oxidation internal heating type in which a shift catalyst layer is made into a metal honeycomb. The present invention relates to a reformer and a manufacturing method thereof.

従来から、原料ガスと水蒸気の混合物(以下、原料一水蒸気混合物という。)を改質触媒の存在下に水蒸気改質し、水素リッチな改質ガスを生成する改質器が知られている。改質器で得られる水素リッチな改質ガスは、残留するCO(一酸化炭素)をCO低減手段で触媒の存在下に酸素含有ガスと反応させてCOへ変換し、特に低温で作動する固体高分子電解質型燃料電池用には、数ppmレベルまでCOを低減してから燃料として供給される。原料ガスには、メタン等の炭化水素、メタノール等の脂肪族アルコール類、或いはジメチルエーテル等のエーテル類、都市ガスなどが用いられる。このような改質器において、メタンを原料ガスとして使用した場合の水蒸気改質の反応式は、CH+2HO→CO+4Hで示すことができ、好ましい改質反応温度は、650〜750℃の範囲である。 2. Description of the Related Art Conventionally, there is known a reformer that generates a hydrogen-rich reformed gas by steam reforming a mixture of a source gas and steam (hereinafter referred to as a source-steam mixture) in the presence of a reforming catalyst. The hydrogen-rich reformed gas obtained in the reformer is converted to CO 2 by reacting residual CO (carbon monoxide) with an oxygen-containing gas in the presence of a catalyst by means of CO reduction, and operates at a particularly low temperature. For solid polymer electrolyte fuel cells, CO is reduced to several ppm level before being supplied as fuel. As the source gas, hydrocarbons such as methane, aliphatic alcohols such as methanol, ethers such as dimethyl ether, city gas, and the like are used. In such a reformer, the reaction formula of steam reforming when methane is used as a raw material gas can be expressed as CH 4 + 2H 2 O → CO 2 + 4H 2 , and a preferable reforming reaction temperature is 650 to The range is 750 ° C.

改質器の改質反応に必要な熱を供給する方式として外部加熱型と、内部加熱型がある。外部加熱型の改質器は、外部に加熱部を設け、その熱源で原料ガスと水蒸気を反応させて改質ガスを生成するようになっている。内部加熱型の改質器はその供給側(上流側)に部分酸化反応層を設け、該部分酸化反応層で発生した熱を用いて下流側に配備した水蒸気改質反応層を水蒸気改質反応温度まで加熱し、該加熱された水蒸気改質触媒層で水蒸気改質反応をさせて水素リッチな改質ガスを生成するようになっている。   There are an external heating type and an internal heating type as a system for supplying heat necessary for the reforming reaction of the reformer. The external heating type reformer is provided with a heating unit outside, and a reformed gas is generated by reacting a raw material gas and water vapor with a heat source. The internal heating type reformer is provided with a partial oxidation reaction layer on the supply side (upstream side), and the steam reforming reaction layer disposed on the downstream side using the heat generated in the partial oxidation reaction layer is subjected to a steam reforming reaction. Heating to a temperature is performed, and a steam reforming reaction is performed in the heated steam reforming catalyst layer to generate a hydrogen-rich reformed gas.

部分酸化反応は、CH+1/2・O→CO+2Hで示すことができ、好ましい部分酸化反応の温度は250℃以上の範囲である。内部加熱型の改質器を改良したものとして自己酸化内部加熱型の改質器が例えば特許文献1、2に記載されている.特許文献1、2の改質器は外側の予備改質室と内側の主改質室を備えた二重構造になっており、予備改質室には原料一水蒸気混合物の供給部、改質触媒層および排出部が設けられ、主改質室には前記排出部からの排出物を受け入れる供給部、酸化空気の供給管、改質触媒と酸化触媒を混合した混合触媒層、シフト触媒層および改質ガスの排出部が設けられている。 The partial oxidation reaction can be represented by CH 4 + 1/2 · O 2 → CO + 2H 2 , and the preferable partial oxidation reaction temperature is in the range of 250 ° C. or higher. For example, Patent Documents 1 and 2 describe a self-oxidation internal heating type reformer as an improvement of the internal heating type reformer. The reformers of Patent Documents 1 and 2 have a double structure including an outer preliminary reforming chamber and an inner main reforming chamber. The main reforming chamber is provided with a catalyst layer and a discharge unit, the main reforming chamber receives a discharge from the discharge unit, a supply pipe for oxidized air, a mixed catalyst layer in which the reforming catalyst and the oxidation catalyst are mixed, a shift catalyst layer, and A reformed gas discharge unit is provided.

図5(B)は自己酸化内部加熱型の改質器の模式的な断面図、図5(A)は図5(B)のB−B断面図である。改質器1は二重に配置した外側の予備改質室2と内側の主改質室3を備えており全体が薄型に形成される。予備改質室2と主改質室3はそれぞれ細長く断面が扁平状(図示の例では扁平な方形)に形成されると共に、それらの断面は互いに相似形とされる。予備改質室2は外筒2aと内筒3aの間に形成され、主改質室3は内筒3aの内側に形成される。予備改質室2に改質触媒層4が設けられ、主改質室3に改質触媒と酸化触媒を混合した混合触媒層5とシフト触媒層6が上下方向に離間して設けられ、シフト触媒層6は高温シフト触媒層7と低温シフト触媒層8により構成される。   FIG. 5B is a schematic cross-sectional view of a self-oxidation internal heating type reformer, and FIG. 5A is a cross-sectional view taken along line BB of FIG. 5B. The reformer 1 includes an outer preliminary reforming chamber 2 and an inner main reforming chamber 3 which are arranged in a double manner, and the entire reformer 1 is formed thin. Each of the preliminary reforming chamber 2 and the main reforming chamber 3 is elongated and has a flat cross section (in the illustrated example, a flat square shape), and the cross sections thereof are similar to each other. The preliminary reforming chamber 2 is formed between the outer cylinder 2a and the inner cylinder 3a, and the main reforming chamber 3 is formed inside the inner cylinder 3a. A reforming catalyst layer 4 is provided in the pre-reforming chamber 2, and a mixed catalyst layer 5 in which a reforming catalyst and an oxidation catalyst are mixed and a shift catalyst layer 6 are provided in the main reforming chamber 3 apart from each other in the vertical direction. The catalyst layer 6 includes a high temperature shift catalyst layer 7 and a low temperature shift catalyst layer 8.

改質触媒は原料ガスを水蒸気改質するものであり、例えばNiO−A1あるいはNiO−SiO・A1などのNi系改質反応触媒やWO−SiO・A1やNiO−WO・SiO・A1などが使用される。混合触媒層5を構成する改質触媒は上記と同様なものが使用され、それに均一に分散される酸化触媒は原料一水蒸気混合物中の原料ガスを酸化発熱させて水蒸気改質反応に必要な温度を得るもので、例えば白金(Pt)やロジウム(Rh)あるいはルテニウム(Ru)あるいはパラジウム(Pd)が使用される。なお改質触媒に対する酸化触媒の混合割合は、水蒸気改質すべき原料ガスの種類に応じて1〜15%程度の範囲で選択され、例えば原料ガスとしてメタンを使用する場合は5%±2%程度、メタノールの場合は2%±1%程度の混合割合とされる。このような混合触媒 Reforming catalyst are those of the raw material gas to steam reforming, for example, NiO-A1 2 O 3 or Ni-based reforming catalyst such as NiO-SiO 2 · A1 2 O 3 and WO 2 -SiO 2 · A1 2 O 3 and NiO-WO 2 · SiO 2 · A1 2 O 3 are used. The reforming catalyst constituting the mixed catalyst layer 5 is the same as described above, and the oxidation catalyst uniformly dispersed therein is the temperature required for the steam reforming reaction by oxidizing the raw material gas in the raw material-steam mixture. For example, platinum (Pt), rhodium (Rh), ruthenium (Ru), or palladium (Pd) is used. The mixing ratio of the oxidation catalyst to the reforming catalyst is selected in the range of about 1 to 15% according to the type of the raw material gas to be steam reformed. For example, when methane is used as the raw material gas, it is about 5% ± 2%. In the case of methanol, the mixing ratio is about 2% ± 1%. Such mixed catalyst

予備改質室2の下部に原料―水蒸気混合物の供給部9が設けられ、予備改質室2の上部に予備改質後の流出物が排出する排出部10が設けられる。主改質室3の上部には前記予備改質室2の排出部10に連通する供給部11が設けられ、主改質室3の中央部に酸化空気を供給する供給管14が延長され、その供給管14が混合触媒層5に延長する部分に複数のノズルからなる空気噴出部17が形成されている。さらに主改質室3の下部には改質ガスの排出部12が設けられる。   A raw material-steam mixture supply unit 9 is provided at the lower part of the preliminary reforming chamber 2, and a discharge unit 10 for discharging the effluent after the preliminary reforming is provided at the upper part of the preliminary reforming chamber 2. A supply unit 11 communicating with the discharge unit 10 of the preliminary reforming chamber 2 is provided at the upper part of the main reforming chamber 3, and a supply pipe 14 for supplying oxidized air to the central portion of the main reforming chamber 3 is extended. An air ejection portion 17 composed of a plurality of nozzles is formed at a portion where the supply pipe 14 extends to the mixed catalyst layer 5. Further, a reformed gas discharge section 12 is provided at the lower portion of the main reforming chamber 3.

主改質室3には上部から下部に順に混合触媒層5、高温シフト触媒層7および低温シフト触媒層8が設けられるが、各触媒層の境界部および排出部12を含む低温シフト触媒層8の下側には触媒粒子を支持する支持板15が配置される(なお予備改質室2にも同様な支持板15が配置される)。これら支持板15は気体流通性を有するが触媒粒子は通過させない孔径を有しており、通常、板状のパンチメタルやメッシュ等の多孔性の部材が使用される。   The main reforming chamber 3 is provided with a mixed catalyst layer 5, a high temperature shift catalyst layer 7 and a low temperature shift catalyst layer 8 in order from the top to the bottom, and the low temperature shift catalyst layer 8 including the boundary portion of each catalyst layer and the discharge portion 12. A support plate 15 for supporting the catalyst particles is disposed on the lower side (a similar support plate 15 is also disposed in the preliminary reforming chamber 2). These support plates 15 have a hole diameter that allows gas flow but does not allow catalyst particles to pass therethrough, and usually a porous member such as a plate-like punch metal or mesh is used.

排出部12には支持板15の下方空間に設けたマニホールドと、そのマニホールドが改質器1の外側に延長する端部に連接した出口用タンクが存在する。そして排出部12に流出した改質ガスは支持板15を通過してマニホールドに入り、そこから出口タンクを通って外部に排出される。   The discharge unit 12 includes a manifold provided in a space below the support plate 15 and an outlet tank connected to an end portion of the manifold extending outside the reformer 1. Then, the reformed gas that has flowed out to the discharge unit 12 passes through the support plate 15 and enters the manifold, and is discharged from there through the outlet tank.

次に図5の改質器1の作用を概略的に説明する。供給部9から供給される原料―水蒸気混合物は、予備改質室2の改質触媒4の作用でその原料ガスの一部が改質されて水素リッチな改質ガスを生成し、生成した改質ガスと残りの原料―水蒸気混合物は排出部10から主改質室3の供給部11に流入する。   Next, the operation of the reformer 1 of FIG. 5 will be schematically described. The raw material-steam mixture supplied from the supply unit 9 is partly reformed by the action of the reforming catalyst 4 in the preliminary reforming chamber 2 to generate a hydrogen-rich reformed gas. The quality gas and the remaining raw material-steam mixture flow from the discharge unit 10 to the supply unit 11 of the main reforming chamber 3.

主改質室3に流入した原料―水蒸気混合物は、混合触媒層5に含まれる酸化触媒の作用で原料ガスの一部が空気中の酸素と反応(酸化反応)し、その酸化熱で原料ガスが水蒸気と反応(改質反応)して改質ガスを生成する。生成した改質ガスは高温シフト触媒層7で残存するCO(一酸化炭素)を水素に変換し、次いで低温シフト触媒層8でさらに残存するCOを水素に変換して排出部12から外部に排出される。   The raw material-steam mixture flowing into the main reforming chamber 3 reacts with the oxygen in the air (oxidation reaction) due to the action of the oxidation catalyst contained in the mixed catalyst layer 5, and the raw material gas is generated by the oxidation heat. Reacts with water vapor (reforming reaction) to generate a reformed gas. The generated reformed gas converts CO (carbon monoxide) remaining in the high temperature shift catalyst layer 7 into hydrogen, and then further converts the remaining CO into hydrogen in the low temperature shift catalyst layer 8 to be discharged from the discharge unit 12 to the outside. Is done.

一般に改質器の触媒は担体に担持されて触媒層を形成することが多い。担体には粒子状のものもあるが、担体にハニカム構造体を用いると触媒の担持の容易性やガス通気の均一性等に優れるという利点がある。なお改質器は高温で運転されるため、ハニカム構造体の材料を金属製としたメタルハニカム構造体が使用される。このようなメタルハニカム構造体を改質器の触媒担体として用いることは、例えば特許文献3に記載されている。また自動車の排ガス浄化器の触媒担体にメタルハニカム構造体を用いたものが特許文献4に記載されている。特許文献4には渦巻中心が2つまたは3つのメタルハニカム構造体が示されている。   In general, the catalyst of the reformer is often supported on a carrier to form a catalyst layer. Although some carriers are in the form of particles, the use of a honeycomb structure for the carrier has advantages such as ease of catalyst loading and excellent uniformity of gas flow. Since the reformer is operated at a high temperature, a metal honeycomb structure in which the material of the honeycomb structure is made of metal is used. The use of such a metal honeycomb structure as a catalyst carrier for a reformer is described in Patent Document 3, for example. Further, Patent Document 4 describes a metal honeycomb structure used as a catalyst carrier of an automobile exhaust gas purifier. Patent Document 4 shows a metal honeycomb structure having two or three spiral centers.

特開2001−192201号公報JP 2001-192201 A 特開2005−149860号公報JP-A-2005-149860 特開2004−269332号公報JP 2004-269332 A 特開平9−29106号公報JP-A-9-29106

しかし前述した自己酸化内部加熱型の改質器に用いる触媒担体としてメタルハニカム構造体を用いたものは知られていない。特に混合触媒層に酸素含有気体を供給する供給管が貫通するシフト触媒層の触媒担体としてメタルハニカム構造体を採用すると、メタルハニカム構造体の一部を切断して前記供給管を貫通させなければならないので気体のスルーパス路を生成し易く、ハニカム構造体の利点である触媒の充填容易性や通気の均一性を損なうおそれがある。   However, no catalyst carrier using a metal honeycomb structure is known as a catalyst carrier used in the above-described self-oxidation internal heating type reformer. In particular, when a metal honeycomb structure is employed as a catalyst carrier of a shift catalyst layer through which a supply pipe for supplying an oxygen-containing gas to the mixed catalyst layer passes, a part of the metal honeycomb structure must be cut and not penetrated through the supply pipe Therefore, it is easy to generate a gas through-pass path, and there is a risk of impairing the ease of filling the catalyst and the uniformity of ventilation, which are advantages of the honeycomb structure.

そこで本発明は、このような従来の自己酸化内部加熱型の改質器における触媒担体方式を改良することを課題とし、そのためのメタルハニカム構造体を用いた改質器およびその製造方法を提供することを目的とする。   Accordingly, the present invention aims to improve the catalyst carrier system in such a conventional self-oxidation internal heating type reformer, and provides a reformer using a metal honeycomb structure and a method for manufacturing the reformer. For the purpose.

前記課題を解決する本発明の改質器は、改質触媒と酸化触媒を混合した混合触媒層5と、シフト触媒層6と、前記混合触媒層5に酸化用の酸素含有気体を供給する供給管14とを有し、原料―水蒸気混合物を水蒸気改質して水素リッチな改質ガスを生成する自己酸化内部加熱型の改質器において、
前記シフト触媒層6は、メタルハニカム構造体20にシフト触媒が担持されてなり、
そのメタルハニカム構造体20は、薄い帯状の金属板からなる平板状帯板と波形に曲折された波形状帯板とを重ね合わせた複合板が、中心に管状空間を残して渦巻状に形成されたものであり、
前記管状空間が前記供給管14を構成し、その供給管14が渦巻状のメタルハニカム構造体20の渦巻中心を貫通して前記混合触媒層5に延長されたことを特徴とする改質器である(請求項1)。
上記構成において、前記メタルハニカム構造体20の渦巻中心を1、または2以上存在させ、前記渦巻中心ごとに前記供給管14を貫通することができる(請求項2)。
The reformer of the present invention that solves the above problems includes a mixed catalyst layer 5 in which a reforming catalyst and an oxidation catalyst are mixed, a shift catalyst layer 6, and a supply for supplying an oxygen-containing gas for oxidation to the mixed catalyst layer 5 A self-oxidation internal heating type reformer having a pipe 14 and generating a hydrogen-rich reformed gas by steam reforming a raw material-steam mixture;
The shift catalyst layer 6 is formed by supporting a shift catalyst on the metal honeycomb structure 20,
The metal honeycomb structure 20 is formed in a spiral shape with a composite plate in which a flat strip made of a thin strip metal plate and a corrugated strip bent in a corrugated shape are overlapped, leaving a tubular space at the center. And
The reformer characterized in that the tubular space constitutes the supply pipe 14, and the supply pipe 14 extends through the spiral center of the spiral metal honeycomb structure 20 to the mixed catalyst layer 5. (Claim 1).
In the above configuration, one or more spiral centers of the metal honeycomb structure 20 may be present, and the supply pipe 14 may be penetrated for each spiral center (Claim 2).

さらには、上記いずれかの構成において、メタルハニカム構造体20を、前記複合板の一端縁に前記供給管14を配置して、その外周に複合板を渦巻き状に形成することができる(請求項3)。
また、上記構成において、
前記混合触媒層5を、夫々粒状の改質触媒と酸化触媒の混合体より形成することができる(請求項4)。
また、上記構成において、前記メタルハニカム構造体20の外周に内筒を形成し、その内筒の一端をメタルハニカム構造体20から軸線方向に延在して、その延在部分に前記混合触媒層5を設けることができる(請求項5)。
Furthermore, in any one of the configurations described above, the metal honeycomb structure 20 can be formed in a spiral shape on the outer periphery of the composite plate by disposing the supply pipe 14 at one end edge of the composite plate. 3).
In the above configuration,
The mixed catalyst layer 5 can be formed from a mixture of a granular reforming catalyst and an oxidation catalyst, respectively.
Further, in the above configuration, an inner cylinder is formed on the outer periphery of the metal honeycomb structure 20, one end of the inner cylinder extends in the axial direction from the metal honeycomb structure 20, and the mixed catalyst layer is formed in the extended portion. 5 can be provided (claim 5).

次に、請求項6に記載の本発明は、改質触媒と酸化触媒を混合した混合触媒層5、シフト触媒層6および前記混合触媒層5に酸化用の酸素含有気体を供給する供給管14を有し、原料―水蒸気混合物を水蒸気改質して水素リッチな改質ガスを生成する自己酸化内部加熱型の改質器の製造方法において、
前記供給管14の周囲に、薄い帯状の金属板からなる平板状帯板と波形に曲折された波形状帯板とが重ね合わされた複合板を渦巻状に巻き付けたメタルハニカム構造体20を構成すると共に、その渦巻部にシフト触媒を担持してシフト触媒層6を形成することを特徴とする改質器の製造方法である。
Next, the present invention according to claim 6 is a mixed catalyst layer 5 in which a reforming catalyst and an oxidation catalyst are mixed, a shift catalyst layer 6, and a supply pipe 14 for supplying an oxygen-containing gas for oxidation to the mixed catalyst layer 5. In a method for producing a self-oxidation internally heated reformer that steam-reforms a raw material-steam mixture to produce a hydrogen-rich reformed gas,
A metal honeycomb structure 20 is formed by spirally winding a composite plate in which a flat strip made of a thin strip metal plate and a corrugated strip bent into a corrugated shape are wound around the supply pipe 14. At the same time, the shift catalyst layer 6 is formed by supporting the shift catalyst in the spiral portion.

本発明の改質器は、供給管が渦巻状のメタルハニカム構造体の渦巻中心を貫通して前記混合触媒層に延長され、前記メタルハニカム構造体の渦巻部にシフト触媒が担持されてシフト触媒層を形成している。そのためメタルハニカム構造体には供給管を貫通させる切断部分がないので、メタルハニカム構造体が本来有している触媒の担持容易性や通気の均一性を十分に発揮できる改質器を提供することができる。   In the reformer of the present invention, the supply pipe extends through the spiral center of the spiral metal honeycomb structure to the mixed catalyst layer, and the shift catalyst is supported on the spiral portion of the metal honeycomb structure. Forming a layer. Therefore, since the metal honeycomb structure does not have a cut portion that penetrates the supply pipe, a reformer that can fully exhibit the ease of carrying the catalyst and the uniformity of ventilation that the metal honeycomb structure originally has is provided. Can do.

上記改質器において、メタルハニカム構造体の渦巻中心が1つであるときは、その渦巻中心に供給管を貫通させることができ、例えばシフト触媒の担持量を大きくしたい場合に好適である。またメタルハニカム構造体の渦巻中心が2以上存在するときは、その渦巻中心ごとに前記供給管を貫通させることができ、例えば酸素含有気体の供給量を多くしたい場合、または混合触媒層に酸素含有気体をより均一に分散供給したい場合などに好適である。
上記改質器において、平板状帯板と波形状帯板との複合板の一端縁に供給管14を配置して、その供給管14の外周に複合板を渦巻き状に形成した場合には、供給管14とハニカム構造とを容易に製造できる。
上記改質器において、混合触媒層の改質触媒と酸化触媒とを夫々粒状体で形成した場合には、それらに供給管14から均等かつ容易に酸素を供給できる。
上記改質器において、メタルハニカム構造体20の外周に内筒3aを配置し、その内筒をメタルハニカム構造体20から軸線方向に延長し、その延長部分に混合触媒層5を設けた場合には、部品点数が少なく構造の簡単な改質器を得る。
In the above reformer, when the metal honeycomb structure has one spiral center, the supply pipe can be penetrated through the spiral center, which is suitable, for example, when it is desired to increase the load of the shift catalyst. Further, when there are two or more spiral centers of the metal honeycomb structure, the supply pipe can be penetrated for each spiral center. For example, when it is desired to increase the supply amount of the oxygen-containing gas, or the mixed catalyst layer contains oxygen. This is suitable for the case where it is desired to supply gas more uniformly.
In the above reformer, when the supply pipe 14 is arranged at one end edge of the composite plate of the flat strip and the corrugated strip, and the composite plate is formed in a spiral shape on the outer periphery of the supply tube 14, The supply pipe 14 and the honeycomb structure can be easily manufactured.
In the above reformer, when the reforming catalyst and the oxidation catalyst of the mixed catalyst layer are each formed in a granular form, oxygen can be evenly and easily supplied to them from the supply pipe 14.
In the above reformer, when the inner cylinder 3a is disposed on the outer periphery of the metal honeycomb structure 20, the inner cylinder is extended in the axial direction from the metal honeycomb structure 20, and the mixed catalyst layer 5 is provided in the extended portion. Obtains a reformer with a small number of parts and a simple structure.

本発明の改質器の製造方法は、供給管の周囲にメタルハニカム構造体を渦巻状に巻き付けた状態で配置すると共に、その渦巻部にシフト触媒を充填してシフト触媒層を形成することを特徴とする。そのためメタルハニカム構造体の形成と供給管の貫通を一度に行うことができるので製造効率が高い。また供給管の周面がメタルハニカム構造体の渦巻中心の内壁に自動的に密着されるので、供給管の貫通部分に気体のスルーパス路が形成される恐れがない。   In the reformer manufacturing method of the present invention, the metal honeycomb structure is disposed around the supply pipe in a spiral shape, and the shift catalyst layer is formed by filling the spiral portion with the shift catalyst. Features. Therefore, the formation of the metal honeycomb structure and the penetration of the supply pipe can be performed at a time, so that the production efficiency is high. Further, since the peripheral surface of the supply pipe is automatically brought into close contact with the inner wall of the spiral center of the metal honeycomb structure, there is no possibility that a gas through-pass path is formed in the through portion of the supply pipe.

次に図面を参照して本発明を実施するための最良の形態を説明する。図1(B)は本発明の改質器における供給管部分の模式的な断面図であり、図1(A)は図1のA−A断面図である。本実施形態の改質器1は図5(A)、(B)の改質器1とその主要な原理は同じである。そこで、前記同じ部分には同一符号を付し、重複する説明は出来るだけ省略する。   Next, the best mode for carrying out the present invention will be described with reference to the drawings. FIG. 1B is a schematic cross-sectional view of a supply pipe portion in the reformer of the present invention, and FIG. 1A is a cross-sectional view taken along line AA of FIG. The reformer 1 of the present embodiment is the same in principle as the reformer 1 of FIGS. 5 (A) and 5 (B). Therefore, the same parts are denoted by the same reference numerals, and redundant description is omitted as much as possible.

なお本発明が適用できる改質器1はこのような二重構造に構成されたものに限らず、予備改質室2と主改質室3が別体として構成されるもの、あるいは予備改質室2を有さず主改質室3のみで水蒸気改質を行うように構成されたものにも適用できる。したがって本発明における供給管14が配置される「主改質室3」は、図1のような二重構造の内側に配置される主改質室3以外に、別体として配置される主改質室3または予備改質室2を有しない主改質室3(単一の改質室)なども含むことを意味する。   The reformer 1 to which the present invention can be applied is not limited to such a double structure, but the pre-reforming chamber 2 and the main reforming chamber 3 are configured as separate bodies, or the pre-reforming. The present invention can also be applied to a configuration in which steam reforming is performed only in the main reforming chamber 3 without the chamber 2. Therefore, the “main reforming chamber 3” in which the supply pipe 14 in the present invention is disposed is the main reformer disposed separately from the main reforming chamber 3 disposed inside the double structure as shown in FIG. It means that the main reforming chamber 3 (single reforming chamber) without the quality chamber 3 or the preliminary reforming chamber 2 is included.

予備改質室2と主改質室3はそれぞれ細長い円筒状とされ、外側に予備改質室2、内側に主改質室3が配置される。予備改質室2には改質触媒層4が設けられ、主改質室3には軸線方向に改質触媒と酸化触媒を混合した混合触媒層5、高温シフト触媒層7および低温シフト触媒層8が順に設けられる。そして高温シフト触媒層7と低温シフト触媒層8によりシフト触媒層6が構成される。   The preliminary reforming chamber 2 and the main reforming chamber 3 are each formed in an elongated cylindrical shape, and the preliminary reforming chamber 2 is disposed outside and the main reforming chamber 3 is disposed inside. The pre-reforming chamber 2 is provided with a reforming catalyst layer 4, and the main reforming chamber 3 has a mixed catalyst layer 5 in which a reforming catalyst and an oxidation catalyst are mixed in the axial direction, a high temperature shift catalyst layer 7, and a low temperature shift catalyst layer. 8 are provided in order. The high temperature shift catalyst layer 7 and the low temperature shift catalyst layer 8 constitute a shift catalyst layer 6.

改質触媒層4および混合触媒層5は、例えば従来と同様に粒子状のセラミック担体に触媒を担持させて構成され、シフト触媒層6は渦巻状のメタルハニカム構造体の担体にシフト触媒を担持させて構成される。本実施形態では中央部に渦巻中心が1つ存在するメタルハニカム構造体20を用いており、その渦巻中心を直管状の供給管が図示のように上下方向に貫通し、その先端部が混合触媒層5まで延長している。   The reforming catalyst layer 4 and the mixed catalyst layer 5 are configured, for example, by supporting a catalyst on a particulate ceramic support as in the conventional case, and the shift catalyst layer 6 supports a shift catalyst on a support of a spiral metal honeycomb structure. Configured. In the present embodiment, a metal honeycomb structure 20 having one spiral center at the center is used, and a straight tubular supply pipe penetrates the spiral center in the vertical direction as shown in the figure, and its tip is a mixed catalyst. Extends to layer 5.

なお外部から供給管14により供給される酸素含有気体(通常は加圧空気)は、供給管14の先端部に設けた空気噴出部17から混合触媒層5中に噴出する。酸素含有気体が混合触媒層5に供給されると、原料―水蒸気混合物の供給部9から供給される原料ガスの一部が酸化触媒の存在下で効率よく酸化し、発生する酸化熱で混合装触媒層5が700℃程度の改質温度に維持される。   Note that an oxygen-containing gas (usually pressurized air) supplied from the outside through the supply pipe 14 is jetted into the mixed catalyst layer 5 from an air jet part 17 provided at the tip of the supply pipe 14. When the oxygen-containing gas is supplied to the mixed catalyst layer 5, a part of the raw material gas supplied from the raw material-steam mixture supply unit 9 is efficiently oxidized in the presence of the oxidation catalyst, and the mixed heat is generated by the generated oxidation heat. The catalyst layer 5 is maintained at a reforming temperature of about 700 ° C.

図2は図1におけるメタルハニカム構造体部分の拡大断面図である。メタルハニカム構造体20は内筒3aの内側に密着配置され、薄肉鋼板もしくは薄肉ステンレス板等の耐熱性を有する薄肉金属板からなる平板状帯体21とその平板状帯体を波型加工した波板状帯体22を重ね合わせて複合板を形成し、その複合板を直管状の供給管14の回りに密に渦巻き状に懸回したものである。そして渦巻部における平板状帯体21と波板状帯体22の各表面にシフト触媒が付着され、平板状帯体21と波板状帯体22との間隙(空間部)が混合触媒層5から流出する改質ガスの流通部を形成する。   FIG. 2 is an enlarged cross-sectional view of the metal honeycomb structure portion in FIG. The metal honeycomb structure 20 is disposed in close contact with the inside of the inner cylinder 3a, and a flat strip 21 made of a thin metal plate having heat resistance such as a thin steel plate or a thin stainless steel plate, and a wave obtained by corrugating the flat strip. A composite plate is formed by superimposing the plate-like strips 22, and the composite plate is tightly wound around a straight tubular supply pipe 14 in a spiral shape. Then, a shift catalyst is attached to each surface of the flat plate-like band 21 and the corrugated plate-like band 22 in the spiral portion, and the gap (space part) between the flat plate-like band 21 and the corrugated plate-like band 22 is the mixed catalyst layer 5. A reformed gas flow section flowing out from the tank is formed.

図2のメタルハニカム構造体20を製造するには、先ず直管状の供給管14を巻回中心軸とし、その周囲に板状帯体21と波板状帯体22の積層体の一端縁を位置して、それらを渦巻状に巻回していく。所定の直径まで積層体を巻回した後、その巻回物を内筒3aの内側に挿入することにより図2のような供給管14が上下方向に貫通した状態のメタルハニカム構造体20が完成する。この内筒3aは図1に示す如く、メタルハニカム構造体20の軸方向長さよりも上方に長く延在し、その延在部分に混合触媒層5が配置される。   In order to manufacture the metal honeycomb structure 20 of FIG. 2, first, the straight tubular supply pipe 14 is used as the winding center axis, and one end edge of the laminated body of the plate-like band body 21 and the corrugated-band-like band body 22 is formed around it. Position them and wind them in a spiral. After the laminate is wound to a predetermined diameter, the wound product is inserted into the inner cylinder 3a to complete the metal honeycomb structure 20 with the supply pipe 14 penetrating vertically as shown in FIG. To do. As shown in FIG. 1, the inner cylinder 3 a extends longer than the axial length of the metal honeycomb structure 20, and the mixed catalyst layer 5 is disposed in the extending portion.

図3は図2のハニカム構造体部分の別の例を示す拡大断面図である。本実施形態は中心部付近に渦巻中心部が2つ存在するメタルハニカム構造体(通称S型)を用いており、各渦巻中心に直管状の供給管が図示のようにそれぞれ貫通し、それらの供給管の先端部が混合触媒層5まで延長している。このハニカム構造体20の製造方法は、2本の直管状の供給管14を各巻回中心軸とし、それらの周囲に板状帯体21と波板状帯体22の積層体からなる複合板の端縁を配置し、一対の供給管14の回りに渦巻状に巻回して形成できる。   FIG. 3 is an enlarged cross-sectional view showing another example of the honeycomb structure portion of FIG. This embodiment uses a metal honeycomb structure (commonly called S-type) in which two spiral centers exist in the vicinity of the center, and straight tube-like supply pipes penetrate through the respective spiral centers as shown in the figure. The leading end of the supply pipe extends to the mixed catalyst layer 5. The manufacturing method of the honeycomb structure 20 is a composite plate made of a laminate of a plate-like band body 21 and a corrugated band-like body 22 around each of the two straight tubular supply pipes 14 as each winding center axis. An end edge can be arrange | positioned and it winds around a pair of supply pipe | tube 14, and can form it.

図3は図2のハニカム構造体部分の更に別の例を示す拡大断面図である。本実施形態は中心部付近に渦巻中心部が3つ存在するメタルハニカム構造体(通称SM型または巴型)を用いており、各渦巻中心に直管状の供給管が図示のようにそれぞれ貫通し、それらの供給管の先端部が混合触媒層5まで延長している。このハニカム構造体20の製造方法は、3本の直管状の供給管14に板状帯体21と波板状帯体22の積層体からなる前記複合板の端部を配置して、それら供給管を互いに近接し、それらの周囲に各複合板を渦巻状に巻回していく。   FIG. 3 is an enlarged cross-sectional view showing still another example of the honeycomb structure portion of FIG. This embodiment uses a metal honeycomb structure (commonly called SM type or saddle type) having three spiral centers near the center, and a straight tubular supply pipe passes through each spiral center as shown in the figure. The tips of the supply pipes extend to the mixed catalyst layer 5. In the method for manufacturing the honeycomb structure 20, the end portions of the composite plate composed of a laminate of the plate-like band body 21 and the corrugated plate-like band body 22 are arranged on three straight tubular supply pipes 14 to supply them. The tubes are brought close to each other, and each composite plate is wound around them in a spiral shape.

本発明の改質器は原料ガスを水蒸気改質して水素リッチな改質ガスを生成する改質器に利用できる。   The reformer of the present invention can be used for a reformer that generates a hydrogen-rich reformed gas by steam reforming a raw material gas.

本発明の改質器を模式的に示す縦断面略図及びそのA−A断面略図。BRIEF DESCRIPTION OF THE DRAWINGS The longitudinal cross-sectional schematic which shows the reformer of this invention typically, and its AA cross-sectional schematic. 図1におけるメタルハニカム構造体部分の拡大断面図。The expanded sectional view of the metal honeycomb structure part in FIG. 図2のメタルハニカム構造体部分の他の例を示す拡大断面図。The expanded sectional view which shows the other example of the metal honeycomb structure part of FIG. 図2のメタルハニカム構造体部分の更に他の例を示す拡大断面図。The expanded sectional view which shows the other example of the metal honeycomb structure part of FIG. 従来の自己酸化内部加熱型の改質器を模式的に示す断面略図及びそのB−B断面略図。The cross-sectional schematic which shows the conventional self-oxidation internal heating type reformer typically, and its BB cross-sectional schematic.

符号の説明Explanation of symbols

1 改質器
2 予備改質室
2a 外筒
3 主改質室
3a 内筒
4 改質触媒層
5 混合触媒層
DESCRIPTION OF SYMBOLS 1 Reformer 2 Preliminary reforming chamber 2a Outer cylinder 3 Main reforming chamber 3a Inner cylinder 4 Reforming catalyst layer 5 Mixed catalyst layer

6 シフト触媒層
7 高温シフト触媒層
8 低温シフト触媒層
9 供給部
10 排出部
11 供給部
12 排出部
6 Shift catalyst layer 7 High temperature shift catalyst layer 8 Low temperature shift catalyst layer 9 Supply unit 10 Discharge unit 11 Supply unit 12 Discharge unit

14 供給管
15 支持板
17 空気噴出部
20 メタルハニカム構造体
21 平板状帯体
22 波板状帯体
DESCRIPTION OF SYMBOLS 14 Supply pipe 15 Support plate 17 Air ejection part 20 Metal honeycomb structure 21 Flat strip 22 Corrugated strip

Claims (6)

改質触媒と酸化触媒を混合した混合触媒層5と、シフト触媒層6と、前記混合触媒層5に酸化用の酸素含有気体を供給する供給管14とを有し、原料―水蒸気混合物を水蒸気改質して水素リッチな改質ガスを生成する自己酸化内部加熱型の改質器において、
前記シフト触媒層6は、メタルハニカム構造体20にシフト触媒が担持されてなり、
そのメタルハニカム構造体20は、薄い帯状の金属板からなる平板状帯板と波形に曲折された波形状帯板とを重ね合わせた複合板が、中心に管状空間を残して渦巻状に形成されたものであり、
前記管状空間が前記供給管14を構成し、その供給管14が渦巻状のメタルハニカム構造体20の渦巻中心を貫通して前記混合触媒層5に延長されたことを特徴とする改質器。
A mixed catalyst layer 5 in which a reforming catalyst and an oxidation catalyst are mixed, a shift catalyst layer 6, and a supply pipe 14 for supplying an oxygen-containing gas for oxidation to the mixed catalyst layer 5. In a reformer of self-oxidation internal heating type that reforms to produce hydrogen-rich reformed gas,
The shift catalyst layer 6 is formed by supporting a shift catalyst on the metal honeycomb structure 20,
The metal honeycomb structure 20 is formed in a spiral shape with a composite plate in which a flat strip made of a thin strip metal plate and a corrugated strip bent in a corrugated shape are overlapped, leaving a tubular space at the center. And
The reformer characterized in that the tubular space constitutes the supply pipe 14, and the supply pipe 14 extends through the spiral center of the spiral metal honeycomb structure 20 to the mixed catalyst layer 5.
請求項1において、前記メタルハニカム構造体20の渦巻中心は1、または2以上存在し、前記渦巻中心ごとに前記供給管14が貫通していることを特徴とする改質器。   The reformer according to claim 1, wherein the metal honeycomb structure 20 has one or more spiral centers, and the supply pipe 14 passes through each of the spiral centers. 請求項1または請求項2において、
メタルハニカム構造体20は、前記複合板の一端縁に前記供給管14を配置して、その外周に複合板を渦巻き状に形成したことを特徴とする改質器。
In claim 1 or claim 2,
The metal honeycomb structure 20 is a reformer characterized in that the supply pipe 14 is disposed at one end edge of the composite plate, and the composite plate is formed in a spiral shape on the outer periphery thereof.
請求項1〜請求項2のいずれかにおいて、
前記混合触媒層5は、夫々粒状の改質触媒と酸化触媒の混合体よりなることを特徴とする改質器。
In any one of Claims 1-2.
The mixed catalyst layer 5 comprises a mixture of a granular reforming catalyst and an oxidation catalyst, respectively.
請求項4において、
前記メタルハニカム構造体20の外周に内筒が形成され、その内筒の一端がメタルハニカム構造体20から軸線方向に延在され、その延在部分に前記混合触媒層5が設けられたことを特徴とする改質器。
In claim 4,
An inner cylinder is formed on the outer periphery of the metal honeycomb structure 20, one end of the inner cylinder extends in the axial direction from the metal honeycomb structure 20, and the mixed catalyst layer 5 is provided in the extending portion. Characteristic reformer.
改質触媒と酸化触媒を混合した混合触媒層5、シフト触媒層6および前記混合触媒層5に酸化用の酸素含有気体を供給する供給管14を有し、原料―水蒸気混合物を水蒸気改質して水素リッチな改質ガスを生成する自己酸化内部加熱型の改質器の製造方法において、
前記供給管14の周囲に、薄い帯状の金属板からなる平板状帯板と波形に曲折された波形状帯板とが重ね合わされた複合板を渦巻状に巻き付けたメタルハニカム構造体20を構成すると共に、その渦巻部にシフト触媒を担持してシフト触媒層6を形成することを特徴とする改質器の製造方法。
A mixed catalyst layer 5 in which a reforming catalyst and an oxidation catalyst are mixed, a shift catalyst layer 6, and a supply pipe 14 for supplying an oxygen-containing gas for oxidation to the mixed catalyst layer 5 are steam reformed. In the manufacturing method of the self-oxidation internal heating type reformer that generates hydrogen-rich reformed gas,
A metal honeycomb structure 20 is formed by spirally winding a composite plate in which a flat strip made of a thin strip metal plate and a corrugated strip bent into a corrugated shape are wound around the supply pipe 14. In addition, a reformer manufacturing method is characterized in that the shift catalyst layer 6 is formed by supporting the shift catalyst in the spiral portion.
JP2006027910A 2006-02-06 2006-02-06 Reformer and its manufacturing method Pending JP2007204343A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006027910A JP2007204343A (en) 2006-02-06 2006-02-06 Reformer and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006027910A JP2007204343A (en) 2006-02-06 2006-02-06 Reformer and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2007204343A true JP2007204343A (en) 2007-08-16

Family

ID=38484130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006027910A Pending JP2007204343A (en) 2006-02-06 2006-02-06 Reformer and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2007204343A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010235348A (en) * 2009-03-30 2010-10-21 Japan Energy Corp Self-heated oxidation reforming apparatus and fuel cell system
JP2010235346A (en) * 2009-03-30 2010-10-21 Japan Energy Corp Self-heated oxidation reforming apparatus and fuel cell system
JP2011201729A (en) * 2010-03-25 2011-10-13 Jx Nippon Oil & Energy Corp Reforming device and fuel cell system
JP2021169092A (en) * 2015-07-24 2021-10-28 ヌヴェラ・フュエル・セルズ,エルエルシー Method of fabricating concentric-tube catalytic reactor assembly

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0929106A (en) * 1995-07-18 1997-02-04 Usui Internatl Ind Co Ltd Metallic carrier
JP2004182493A (en) * 2002-11-29 2004-07-02 Toyo Radiator Co Ltd Inner heat type steam reforming apparatus
WO2004093226A2 (en) * 2003-04-15 2004-10-28 Nuvera Fuel Cells, Inc. Modular fuel reformer with removable carrier
JP2004345935A (en) * 2003-05-26 2004-12-09 Honda Motor Co Ltd Fuel reforming apparatus
JP2005149860A (en) * 2003-11-13 2005-06-09 Toyo Radiator Co Ltd Self-oxidation inside heating type steam reforming system
JP2005305373A (en) * 2004-04-26 2005-11-04 Mitsubishi Materials Corp Honeycomb catalyst and production method therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0929106A (en) * 1995-07-18 1997-02-04 Usui Internatl Ind Co Ltd Metallic carrier
JP2004182493A (en) * 2002-11-29 2004-07-02 Toyo Radiator Co Ltd Inner heat type steam reforming apparatus
WO2004093226A2 (en) * 2003-04-15 2004-10-28 Nuvera Fuel Cells, Inc. Modular fuel reformer with removable carrier
JP2004345935A (en) * 2003-05-26 2004-12-09 Honda Motor Co Ltd Fuel reforming apparatus
JP2005149860A (en) * 2003-11-13 2005-06-09 Toyo Radiator Co Ltd Self-oxidation inside heating type steam reforming system
JP2005305373A (en) * 2004-04-26 2005-11-04 Mitsubishi Materials Corp Honeycomb catalyst and production method therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010235348A (en) * 2009-03-30 2010-10-21 Japan Energy Corp Self-heated oxidation reforming apparatus and fuel cell system
JP2010235346A (en) * 2009-03-30 2010-10-21 Japan Energy Corp Self-heated oxidation reforming apparatus and fuel cell system
JP2011201729A (en) * 2010-03-25 2011-10-13 Jx Nippon Oil & Energy Corp Reforming device and fuel cell system
JP2021169092A (en) * 2015-07-24 2021-10-28 ヌヴェラ・フュエル・セルズ,エルエルシー Method of fabricating concentric-tube catalytic reactor assembly

Similar Documents

Publication Publication Date Title
JP5015638B2 (en) Permselective membrane reactor and hydrogen production method
US20020098129A1 (en) Apparatus and method for heating catalyst for start-up of a compact fuel processor
CA2633814A1 (en) Oxidative autothermal reformer and oxidative autothermal reforming method using the same
JP5588581B2 (en) Hydrogen production equipment
US8486367B2 (en) Method and device for generating hydrogen
JP2009292706A (en) Fuel reforming module and its operation method
JP5161763B2 (en) Hydrogen production method using selectively permeable membrane reactor
JP2007204343A (en) Reformer and its manufacturing method
JP2006199509A (en) Reformer
EP1977822B1 (en) Reaction vessel and reaction device
JP5139971B2 (en) Hydrogen production method using selectively permeable membrane reactor
US20120114537A1 (en) Reformer
JP4804925B2 (en) Reformer
JP2009256120A (en) Reforming apparatus
JP2004051428A (en) Membrane reaction apparatus
JP2004267884A (en) Membrane reaction apparatus and synthetic gas production method using the same
JP2008273764A (en) Method for producing hydrogen using permselective membrane reactor
JP2006036567A (en) Steam reforming method and mixed catalyst
JP4920311B2 (en) Oxidation autothermal reformer
JP2007227237A (en) Solid oxide fuel battery module
JP4837384B2 (en) Syngas production reactor integrated with waste heat recovery unit
JP5243839B2 (en) Oxidation autothermal reformer and solid oxide fuel cell system start-up method
JP4804883B2 (en) Reformer
JP4804900B2 (en) Oxygen supply pipe structure of reformer
JP2005219935A (en) Hydrogen separating apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120214