JP6506932B2 - Fuel cell reforming unit and fuel cell module - Google Patents

Fuel cell reforming unit and fuel cell module Download PDF

Info

Publication number
JP6506932B2
JP6506932B2 JP2014189114A JP2014189114A JP6506932B2 JP 6506932 B2 JP6506932 B2 JP 6506932B2 JP 2014189114 A JP2014189114 A JP 2014189114A JP 2014189114 A JP2014189114 A JP 2014189114A JP 6506932 B2 JP6506932 B2 JP 6506932B2
Authority
JP
Japan
Prior art keywords
unit
fuel cell
reforming
cell stack
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014189114A
Other languages
Japanese (ja)
Other versions
JP2016062722A (en
Inventor
久人 大須賀
久人 大須賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Futaba Industrial Co Ltd
Original Assignee
Futaba Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Futaba Industrial Co Ltd filed Critical Futaba Industrial Co Ltd
Priority to JP2014189114A priority Critical patent/JP6506932B2/en
Priority to PCT/JP2015/074706 priority patent/WO2016043034A1/en
Publication of JP2016062722A publication Critical patent/JP2016062722A/en
Application granted granted Critical
Publication of JP6506932B2 publication Critical patent/JP6506932B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Fuel Cell (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

本発明は、固体酸化物形燃料電池(SOFC)を複数積層した燃料電池スタックとともに燃料電池モジュールを構成する燃料電池用改質ユニット(燃焼部、蒸発部、改質部、及び、熱交換部)、並びに、このような燃料電池スタック及び燃料電池用改質ユニットを備える燃料電池モジュールに関する。   The present invention relates to a fuel cell reforming unit (a combustion unit, an evaporation unit, a reforming unit, and a heat exchange unit) that constitutes a fuel cell module together with a fuel cell stack in which a plurality of solid oxide fuel cells (SOFCs) are stacked. And a fuel cell module including such a fuel cell stack and a fuel cell reforming unit.

固体酸化物形燃料電池(SOFC)の燃料電池モジュールは、SOFCである燃料電池スタックと、燃料電池用改質ユニット(燃焼部、蒸発部、改質部、及び、熱交換部)とを備える。   A fuel cell module of a solid oxide fuel cell (SOFC) includes a fuel cell stack, which is an SOFC, and a fuel cell reforming unit (a combustion unit, an evaporation unit, a reforming unit, and a heat exchange unit).

燃焼部は、燃料電池スタックで使われなかった改質ガスを燃焼させて、その燃焼によって生じた熱を、蒸発部、改質部、熱交換部、及び、燃料電池スタックに伝える機能部である。   The combustion unit is a functional unit that burns the reformed gas not used in the fuel cell stack and transfers the heat generated by the combustion to the evaporation unit, the reforming unit, the heat exchange unit, and the fuel cell stack. .

蒸発部は、外部から水を取り込み、その水を燃焼部から受けた熱で蒸発させて水蒸気を発生させ、その水蒸気を改質部に送る機能部である。
改質部は、改質用の触媒を燃焼部から受けた熱で温め、都市ガス等の原燃料と蒸発部から送られた水蒸気とからなる混合ガスを、その温めた触媒に通すことによって改質ガスを生成し、その改質ガスを燃料電池スタックに送る機能部である。
The evaporation unit is a functional unit that takes in water from the outside, evaporates the water with the heat received from the combustion unit, generates water vapor, and sends the water vapor to the reforming unit.
The reforming unit warms the reforming catalyst with the heat received from the combustion unit, and reforms the mixed gas consisting of the raw fuel such as city gas and the steam sent from the evaporation unit through the warmed catalyst. It is a functional unit that generates a quality gas and sends the reformed gas to the fuel cell stack.

熱交換部は、燃焼部から受けた熱で酸化剤ガスを昇温させ、この昇温した酸化剤ガスを燃料電池スタックに送る機能部である。
燃料電池スタックは、改質部から供給された改質ガスと、熱交換部から供給された酸化剤ガスとを電気化学反応させて発電を行う。このとき、燃料電池スタックは高温に保たれている必要があり、供給されるガスによって温度が下がると発電に支障が生じる。そのため、燃料電池モジュールには燃焼部が設けられ、燃料電池スタックに入る改質ガス及び酸化剤ガスが温められるとともに、燃料電池スタックも温められるように構成されている。
The heat exchange unit is a functional unit that raises the temperature of the oxidant gas by the heat received from the combustion unit and sends the heated oxidant gas to the fuel cell stack.
The fuel cell stack performs an electrochemical reaction between the reformed gas supplied from the reforming unit and the oxidant gas supplied from the heat exchange unit to generate power. At this time, the fuel cell stack needs to be kept at a high temperature, and if the temperature is lowered by the supplied gas, the power generation will be disturbed. Therefore, the fuel cell module is provided with a combustion unit, and the reformed gas and the oxidant gas entering the fuel cell stack are warmed, and the fuel cell stack is also warmed.

この種の燃料電池モジュールは、例えば特許文献1に示されている。この特許文献1に示された燃料電池モジュールは、燃焼部の周囲に蒸発部及び改質部が配置され、これら蒸発部及び改質部のさらに外側に熱交換部が配置されているものである。   A fuel cell module of this type is shown, for example, in Patent Document 1. In the fuel cell module disclosed in Patent Document 1, an evaporation unit and a reforming unit are disposed around the combustion unit, and a heat exchange unit is disposed outside the evaporation unit and the reforming unit. .

特開2014−78344号公報JP, 2014-78344, A

しかし、特許文献1に示された燃料電池モジュールでは、燃焼部から見て熱交換部が蒸発部及び改質部の外側に位置している。そして、熱交換部は、燃焼部から直接熱を受けるのではなく、燃焼部から排出された排ガスを介して間接的に熱を受けている。具体的には、熱交換部は、燃焼部との間に位置する蒸発部及び改質部で熱が奪われた排ガスから熱を受けている。   However, in the fuel cell module disclosed in Patent Document 1, the heat exchange unit is located outside the evaporation unit and the reforming unit when viewed from the combustion unit. The heat exchange unit does not directly receive heat from the combustion unit, but indirectly receives heat via the exhaust gas discharged from the combustion unit. Specifically, the heat exchange unit receives heat from the exhaust gas whose heat has been removed by the evaporation unit and the reforming unit located between the heat exchange unit and the combustion unit.

そのため、熱交換部が燃焼部から受ける熱の温度は、燃焼部から直接的に熱を受ける場合に比べて相当に低いものであった。この結果、燃料電池スタックは温度が低い酸化剤ガスの供給を熱交換部から受けることになるので、その温度が低い分だけ、燃料電池スタックの発電効率が低くなってしまっていた。   Therefore, the temperature of the heat received by the heat exchange unit from the combustion unit is considerably lower than that when heat is directly received from the combustion unit. As a result, since the fuel cell stack receives the supply of oxidant gas at a low temperature from the heat exchange unit, the power generation efficiency of the fuel cell stack is lowered by the amount of the low temperature.

本発明は、燃料電池スタックの発電効率を向上させることを目的とする。   An object of the present invention is to improve the power generation efficiency of a fuel cell stack.

本発明の一側面は、改質ガスと酸化剤ガスとの電気化学反応により発電する燃料電池を複数積層した燃料電池スタックとともに燃料電池モジュールを構成するための燃料電池用改質ユニットであって、蒸発部と、改質部と、熱交換部と、燃焼部とを備えている。蒸発部は、水蒸気を発生させる。改質部は、原燃料と蒸発部で発生させた水蒸気との混合ガスを改質して改質ガスを生成し、改質ガスを燃料電池スタックに送る。熱交換部は、酸化剤ガスを昇温させ、昇温した酸化剤ガスを燃料電池スタックに送る。燃焼部は、燃料電池スタックから排出される未反応の改質ガスを燃焼させ、蒸発部、改質部、熱交換部、及び、燃料電池スタックに伝達する熱を発生させる。そして、蒸発部、改質部、及び、熱交換部は積み重ねられるとともに、燃焼部が、蒸発部、改質部、及び、熱交換部に隣接して配置されている。   One aspect of the present invention is a fuel cell reforming unit for forming a fuel cell module with a fuel cell stack in which a plurality of fuel cells that generate electric power by an electrochemical reaction between a reformed gas and an oxidant gas are stacked, An evaporation unit, a reforming unit, a heat exchange unit, and a combustion unit are provided. The evaporation unit generates water vapor. The reforming unit reforms the mixed gas of the raw fuel and the steam generated in the evaporating unit to generate a reformed gas, and sends the reformed gas to the fuel cell stack. The heat exchange unit raises the temperature of the oxidant gas, and sends the heated oxidant gas to the fuel cell stack. The combustion unit burns unreacted reformed gas discharged from the fuel cell stack, and generates heat to be transmitted to the evaporation unit, the reforming unit, the heat exchange unit, and the fuel cell stack. The evaporation unit, the reforming unit, and the heat exchange unit are stacked, and the combustion unit is disposed adjacent to the evaporation unit, the reforming unit, and the heat exchange unit.

このような構成によれば、燃焼部で生じた熱が、蒸発部、及び、改質部はもちろんのこと、熱交換部にも直接伝わり、燃焼部から直接的に受けた熱で酸化剤ガスが温められる。したがって、燃焼部から間接的に受けた熱で酸化剤ガスを温めていた従来の構成に比べ、燃料電池スタックの発電効率を向上させることができる。   According to such a configuration, the heat generated in the combustion unit is directly transmitted not only to the evaporation unit, the reforming unit, but also to the heat exchange unit, and the oxidant gas is the heat directly received from the combustion unit. Is warmed. Therefore, the power generation efficiency of the fuel cell stack can be improved as compared with the conventional configuration in which the oxidant gas is warmed by the heat indirectly received from the combustion unit.

また、蒸発部、改質部、及び、熱交換部は、燃焼部の周囲を環状に囲う形状に形成されていてもよい。
このような構成によれば、燃焼部から逃げる熱量の偏りが抑えられるため、燃料電池用改質ユニットのひずみによる破損を生じにくくすることができる。
In addition, the evaporation portion, the reforming portion, and the heat exchange portion may be formed in a shape that annularly surrounds the periphery of the combustion portion.
According to such a configuration, it is possible to suppress the deviation of the amount of heat that escapes from the combustion section, and thus it is possible to make it difficult to cause damage due to distortion of the fuel cell reforming unit.

また、蒸発部は、最下段に配置されていてもよい。
蒸発部では、少なくとも水を蒸発させることが可能な温度で熱を受ければよいが、改質部では、改質反応のために高い温度(例えば800度)が必要であり、改質部及び熱交換部からは燃料電池スタックに対し高温に温められた改質ガスや酸化剤ガスを送る必要がある。燃焼部内の温度は上方ほど高いので、蒸発部が最下段に配置された構成によれば、蒸発部が最下段以外に配置された構成に比べ、燃料電池スタックの発電効率を向上させることができる。
Moreover, the evaporation part may be arrange | positioned at the lowest step.
In the evaporation section, it is sufficient to receive heat at least at a temperature at which water can be evaporated, but in the reforming section, a high temperature (for example, 800 ° C.) is required for the reforming reaction, and the reforming section and heat From the exchange unit, it is necessary to send a reformed gas or an oxidant gas warmed to a high temperature to the fuel cell stack. Since the temperature in the combustion unit is higher toward the upper side, according to the configuration in which the evaporation unit is disposed at the lowermost stage, the power generation efficiency of the fuel cell stack can be improved as compared with the configuration in which the evaporation unit is disposed other than the lowermost stage. .

また、蒸発部の底部が、燃焼部の側である内側から外側へ上方に向かって傾斜する形状に形成されていてもよい。
このような構成によれば、蒸発部に入った水は高温の燃焼部に向かって流れるため、水の蒸発性能を高めることができる。
In addition, the bottom of the evaporation portion may be formed to be inclined upward from the inside toward the outside of the combustion portion.
According to such a configuration, the water that has entered the evaporation section flows toward the high temperature combustion section, so that the evaporation performance of the water can be enhanced.

また、改質部が蒸発部の上段に配置され、改質部と蒸発部との境界をなす境界部が、燃焼部の側である内側から外側へ上方に向かって傾斜する形状に形成されていてもよい。
このような構成によれば、改質部と蒸発部との境界部が傾斜しているため、高い熱が必要な改質触媒をより多く高温側の燃焼部に接近させることができる。そのため、燃料電池用改質ユニットは、品質のよい改質ガスを燃料電池スタックに送ることができる。
In addition, the reforming section is disposed in the upper stage of the evaporation section, and the boundary that forms the boundary between the reforming section and the evaporation section is formed to be inclined upward from the inside to the outside, which is the side of the combustion section. May be
According to such a configuration, since the boundary between the reforming unit and the evaporating unit is inclined, the reforming catalyst requiring high heat can be brought closer to the combustion unit on the high temperature side. Therefore, the fuel cell reforming unit can send a reformed gas of good quality to the fuel cell stack.

また、燃焼部は、燃料電池スタックの下面下で、燃料電池スタックの下面全体に広がるように、改質ガスと酸化剤ガスとを燃焼させた排ガスを放出するようにしてもよい。
このような構成によれば、燃料電池スタックの下面全体に広がった排ガスにより、燃料電池スタック全体が温度分布の偏りが少ない状態で均等に覆われ、燃料電池スタックの保温効果が高くなる。したがって、燃料電池スタックの発電効率を向上させることができる。
Further, the combustion unit may release the exhaust gas obtained by burning the reformed gas and the oxidant gas so as to spread over the entire lower surface of the fuel cell stack below the lower surface of the fuel cell stack.
According to such a configuration, the entire fuel cell stack is uniformly covered with less deviation of the temperature distribution by the exhaust gas spread over the entire lower surface of the fuel cell stack, and the heat retaining effect of the fuel cell stack is enhanced. Therefore, the power generation efficiency of the fuel cell stack can be improved.

また、燃料電池スタック、蒸発部、改質部、熱交換部、及び、燃焼部の全体を覆う断熱体と、この断熱体との間に排ガス通気空間を形成するように断熱体を囲う筐体と、を備える構成としてもよい。そして、断熱体に設けられたガス抜孔から、排ガス通気空間を介して、筐体に設けられた排出口に向かい、排ガスを外部に排出する排出ルートが形成されていてもよい。   In addition, a casing that encloses the heat insulating body so as to form an exhaust gas venting space between the heat insulating body and the heat insulating body covering the entire fuel cell stack, the evaporation portion, the reforming portion, the heat exchange portion, and the combustion portion. And may be provided. Then, from the gas vent provided in the heat insulator to the exhaust port provided in the housing via the exhaust gas ventilating space, a discharge route may be formed for discharging the exhaust gas to the outside.

このような構成によれば、燃料電池スタックは、断熱材の中で排ガスに包まれることとなるので、発電効率の低下が抑制される。また、断熱材の周囲の排出ルートを排ガスが通ることで、断熱材全体も排ガスで包まれるので、さらに保温効果が高められる。したがって、燃料電池スタックの温度の低下を抑制し、その発電効率の低下を抑制することができる。   According to such a configuration, since the fuel cell stack is encased in the exhaust gas in the heat insulating material, a reduction in power generation efficiency is suppressed. In addition, since the exhaust gas passes through the exhaust route around the heat insulating material, the entire heat insulating material is also covered with the exhaust gas, so that the heat retaining effect is further enhanced. Therefore, it is possible to suppress the decrease in the temperature of the fuel cell stack and to suppress the decrease in the power generation efficiency.

図1(A)は、燃料電池モジュールの斜視図である。図1(B)は、燃料電池モジュールの平面図である。FIG. 1A is a perspective view of a fuel cell module. FIG. 1 (B) is a plan view of the fuel cell module. 図2は、燃料電池モジュールの筐体を取り払ったときの斜視図である。断熱材については、図3(A)のII−IIの断面で切断した様子を示している。FIG. 2 is a perspective view when the housing of the fuel cell module is removed. About a heat insulating material, a mode that it cut | disconnected in the cross section of II-II of FIG. 図3(A)は、燃料電池モジュールの断面図で、図1(B)のIIIA−IIIA断面の断面図である。図3(B)は、燃料電池モジュールの断面図で、図1(B)のIIIB−IIIB断面の断面図である。FIG. 3A is a cross-sectional view of the fuel cell module, which is a cross-sectional view taken along the line IIIA-IIIA of FIG. FIG. 3B is a cross-sectional view of the fuel cell module, which is a cross-sectional view taken along the line IIIB-IIIB of FIG.

以下、本発明の例示的な実施形態について図面を参照しながら説明する。
図2、図3(A)及び図3(B)に示すように、本実施形態の燃料電池モジュール1は、改質ガスと酸化剤ガスとの電気化学反応により発電する燃料電池を複数積層した燃料電池スタック9を内部に備える。
Hereinafter, exemplary embodiments of the present invention will be described with reference to the drawings.
As shown in FIG. 2, FIG. 3 (A) and FIG. 3 (B), the fuel cell module 1 of the present embodiment has stacked a plurality of fuel cells that generate electric power by the electrochemical reaction between the reformed gas and the oxidant gas. A fuel cell stack 9 is provided inside.

燃料電池モジュール1は、図1(A)及び図1(B)等に示すように、全体に円筒形状に形成された筐体2を備えている。そして、図3(A)等に示すように、この筐体2の側面には、燃料電池モジュール1内に水等を導入するための第1供給パイプ312及び第2供給パイプ332が貫かれており、その端部が外部に出ている。   The fuel cell module 1 includes a casing 2 formed in a cylindrical shape as a whole, as shown in FIGS. 1 (A) and 1 (B). Then, as shown in FIG. 3A and the like, a first supply pipe 312 and a second supply pipe 332 for introducing water or the like into the fuel cell module 1 are pierced on the side surface of the housing 2. And its end is outside.

また、燃料電池モジュール1は、図2等に示すように、筐体2の内部に、後述する燃焼部30等を有する本体部3を備えている。燃料電池スタック9は、この本体部3上に載置される。尚、第1供給パイプ312、第2供給パイプ332は、本体部3から延設される。   Further, as shown in FIG. 2 and the like, the fuel cell module 1 is provided with a main body portion 3 having a burning portion 30 and the like described later inside the housing 2. The fuel cell stack 9 is mounted on the main body 3. The first supply pipe 312 and the second supply pipe 332 are extended from the main body 3.

図3(A)及び図3(B)に示すように、本体部3は、板金を折り曲げたり溶接したりするなどして、燃焼部30、蒸発部31、改質部32、及び、熱交換部33の各機能部、並びに、熱排出空間34が形成されるように組み立てられたものである。   As shown in FIG. 3 (A) and FIG. 3 (B), the main body 3 folds or welds a sheet metal, etc., and thereby the combustion unit 30, the evaporation unit 31, the reforming unit 32, and the heat exchange The respective functional parts of the part 33 and the heat discharge space 34 are assembled to be formed.

燃焼部30は円筒形状に形成され、その上部側面に複数の排ガス孔302が形成されている。
蒸発部31、改質部32、熱交換部33、及び、熱排出空間34は、燃焼部30の周囲を環状に囲う形状に形成されている。そして、燃焼部30の壁面(外周面)が、蒸発部31、改質部32、熱交換部33、及び、熱排出空間34における燃焼部30側の内側壁面として用いられている。
The combustion unit 30 is formed in a cylindrical shape, and a plurality of exhaust gas holes 302 are formed on the upper side surface thereof.
The evaporation unit 31, the reforming unit 32, the heat exchange unit 33, and the heat discharge space 34 are formed in a shape that annularly surrounds the combustion unit 30. A wall surface (outer peripheral surface) of the combustion unit 30 is used as an inner wall surface of the evaporation unit 31, the reforming unit 32, the heat exchange unit 33, and the heat discharge space 34 on the combustion unit 30 side.

このうち、蒸発部31の底部319、及び、蒸発部31と改質部32との境界をなす境界部329は、燃焼部30の側である内側から、その反対側である外側へ、上方に向かって傾斜する形状に形成されている。そして、この境界部329には、水蒸気を通す複数の通過孔328が形成されている。   Among these, the bottom portion 319 of the evaporation portion 31 and the boundary portion 329 forming the boundary between the evaporation portion 31 and the reforming portion 32 are from the inside which is the combustion portion 30 side to the outside which is the opposite side. It is formed in the shape which inclines toward. The boundary portion 329 is formed with a plurality of passage holes 328 through which water vapor passes.

蒸発部31には、第1供給パイプ312が接続されている。原燃料である都市ガスと水との混合物は、第1供給パイプ312を介して外部から蒸発部31内に供給される。
この蒸発部31に混合物が供給されると、この混合物は燃焼部30から受ける熱によって温められ、水は水蒸気となる。そして、混合物のうち水が水蒸気となった混合ガスは、境界部329に設けられた通過孔328を介して改質部32に送られる。
A first supply pipe 312 is connected to the evaporation unit 31. A mixture of city gas and water, which is a raw fuel, is externally supplied into the evaporation section 31 through the first supply pipe 312.
When the mixture is supplied to the evaporation unit 31, the mixture is warmed by the heat received from the combustion unit 30, and the water turns into water vapor. Then, the mixed gas in which water is turned into water vapor among the mixture is sent to the reforming unit 32 through the passage hole 328 provided in the boundary portion 329.

改質部32には、改質用の触媒(図示せず)が充填されている。また、この改質部32には、第2パイプ321が接続されている(図3(B)参照)。この第2パイプ321は、燃料電池スタック9に改質ガスを供給するパイプである。   The reforming unit 32 is filled with a reforming catalyst (not shown). Further, a second pipe 321 is connected to the reforming unit 32 (see FIG. 3B). The second pipe 321 is a pipe for supplying the fuel cell stack 9 with the reformed gas.

この改質部32に蒸発部31から混合ガスが供給されると、燃焼部30から受けた熱で活性化した触媒によって混合ガスが改質され、改質ガスが生成される。この改質ガスも燃焼部30から受ける熱によって温められる。   When the mixed gas is supplied from the evaporation unit 31 to the reforming unit 32, the mixed gas is reformed by the catalyst activated by the heat received from the combustion unit 30, and a reformed gas is generated. The reformed gas is also warmed by the heat received from the combustion unit 30.

そして、この温められた改質ガスは、第2パイプ321を介して燃料電池スタック9に供給される。
熱交換部33には、第3パイプ331、第2供給パイプ332が接続されている(図3(A)参照)。酸化剤ガスである空気は、第2供給パイプ332を介して外部から熱交換部33内に供給される。そして、この酸化剤ガスは、燃焼部30から受ける熱によって温められて昇温し、第3パイプ331を介して燃料電池スタック9に供給される。
Then, the heated reformed gas is supplied to the fuel cell stack 9 via the second pipe 321.
The third pipe 331 and the second supply pipe 332 are connected to the heat exchange unit 33 (see FIG. 3A). Air, which is an oxidant gas, is supplied from the outside into the heat exchange unit 33 via the second supply pipe 332. Then, the oxidant gas is warmed by the heat received from the combustion unit 30 to raise its temperature, and is supplied to the fuel cell stack 9 through the third pipe 331.

燃焼部30には、第1パイプ301が接続されている(図3(B)参照)。この第1パイプ301は、発電に供しなかった(未反応の)改質ガスを、燃料電池スタック9から燃焼部30に供給するパイプであり、改質ガスを燃料電池スタック9から蒸発部31の下方まで導いている。   The first pipe 301 is connected to the combustion unit 30 (see FIG. 3B). The first pipe 301 is a pipe for supplying the (non-reacted) reformed gas which has not been used for power generation from the fuel cell stack 9 to the combustion unit 30, and the reformed gas is supplied from the fuel cell stack 9 to the evaporation unit 31. I'm leading to the bottom.

燃焼部30は、この第1パイプ301を介して燃料電池スタック9から受けた改質ガスと外部から取り入れた空気とを混合して内部で燃焼させている。そして、燃焼部30は、この燃焼によって発生した排ガスを、排ガス孔302から熱排出空間34内に排出する。この排ガス孔302は、燃焼部30の熱排出空間34に位置する部分のうち、その部分の周囲側面全体に設けられている。   The combustion unit 30 mixes the reformed gas received from the fuel cell stack 9 via the first pipe 301 with the air taken from the outside and burns the mixture internally. Then, the combustion unit 30 discharges the exhaust gas generated by the combustion from the exhaust gas holes 302 into the heat discharge space 34. The exhaust gas hole 302 is provided on the entire peripheral side surface of the portion of the portion located in the heat discharge space 34 of the combustion unit 30.

熱排出空間34は、燃料電池スタック9の下面と平行な上面を有する環状の空間を形成している。そして、この熱排出空間34は、本体部3の最上部に配置され、燃料電池スタック9はその本体部3の上部に載せられる。   The heat discharge space 34 forms an annular space having an upper surface parallel to the lower surface of the fuel cell stack 9. The heat exhaust space 34 is disposed at the top of the main body 3, and the fuel cell stack 9 is placed on the upper portion of the main body 3.

断熱体4は、本体部3及び燃料電池スタック9を組み立てた全体を覆う大きさに形成されている。この断熱体4は、本体部3及び燃料電池スタック9との間に断熱空間49を形成する。断熱体4の上面の中央にはガス抜孔40が形成されている。   The heat insulator 4 is formed in a size to cover the entire assembled body 3 and fuel cell stack 9. The heat insulator 4 forms a heat insulating space 49 between the main body 3 and the fuel cell stack 9. A gas venting hole 40 is formed at the center of the upper surface of the heat insulator 4.

筐体2は、この断熱体4との間に排ガス通気空間39を形成するように、本体部3及び燃料電池スタック9を囲っている断熱体4を覆うことが可能な大きさに形成されている。
また、筐体2の下面には、排ガス通気空間39が外部空間に対して開口する排出口42が形成されている。
The housing 2 is formed in a size capable of covering the heat insulator 4 surrounding the main body 3 and the fuel cell stack 9 so as to form an exhaust gas venting space 39 with the heat insulator 4. There is.
Further, on the lower surface of the housing 2, an exhaust port 42 is formed in which the exhaust gas ventilating space 39 is open to the external space.

この排ガス通気空間39と排出口42とにより、筐体2と断熱体4との間には、断熱空間49内の排ガスを排出する排出ルートであって、ガス抜孔40から排ガス通気空間39を介して排出口42に至る排出ルートが形成される。   A discharge route for discharging the exhaust gas in the heat insulating space 49 between the housing 2 and the heat insulating body 4 by the exhaust gas venting space 39 and the exhaust port 42, and from the gas venting hole 40 via the exhaust gas venting space 39 A discharge route leading to the discharge port 42 is formed.

燃焼部30の排ガス孔302から排ガスが排出されると、燃料電池スタック9の下面下で、燃料電池スタック9の下面全体に広がるように排ガスが放出される。
その後、この排ガス孔302から排出された排ガスは、熱排出空間34に設けられた熱排出孔341から、断熱体4で囲まれた断熱空間49内に排出される。
When the exhaust gas is discharged from the exhaust gas hole 302 of the combustion unit 30, the exhaust gas is discharged so as to spread over the entire lower surface of the fuel cell stack 9 under the lower surface of the fuel cell stack 9.
Thereafter, the exhaust gas discharged from the exhaust gas holes 302 is discharged from the heat discharge holes 341 provided in the heat discharge space 34 into the adiabatic space 49 surrounded by the heat insulator 4.

そのため、燃焼部30の排ガス孔302から排出された排ガスは、熱排出空間34内へ放出された後、断熱体4の断熱空間49内に排出されて充満し、その後、ガス抜孔40から排出ルートを経て排出口42を介して外部に排出される。   Therefore, the exhaust gas discharged from the exhaust gas hole 302 of the combustion unit 30 is discharged into the heat discharge space 34 and then discharged and filled into the heat insulation space 49 of the heat insulator 4 and thereafter the discharge route from the gas vent hole 40 Through the discharge port 42 to the outside.

以上のように構成された燃料電池モジュール1は、以下のような特徴的な作用効果を有する。
上記実施形態の燃料電池モジュール1は、蒸発部31、改質部32、及び、熱交換部33の内側の壁面として燃焼部30の周囲側面を利用して、蒸発部31、改質部32、及び、熱交換部33を構成しているので、これらは燃焼部30に隣接して配置される。
The fuel cell module 1 configured as described above has the following characteristic effects.
The fuel cell module 1 according to the embodiment uses the side surfaces around the combustion unit 30 as the inner wall surfaces of the evaporation unit 31, the reforming unit 32, and the heat exchange unit 33 to form the evaporation unit 31, the reforming unit 32, And, since they constitute the heat exchange section 33, they are disposed adjacent to the combustion section 30.

そのため、燃焼部30から蒸発部31、改質部32、及び、熱交換部33へは、途中で熱が奪われることなく、直接熱が伝達される。
そのため、この燃料電池モジュール1を用いると、燃焼部30から直接受けた熱で酸化剤ガスが温められるので、この温度よりも低い熱で酸化剤ガスを温めていた従来の構成に比べ、燃料電池スタック9の発電効率を向上させることができる。
Therefore, heat is directly transmitted from the combustion unit 30 to the evaporation unit 31, the reforming unit 32, and the heat exchange unit 33 without taking heat on the way.
Therefore, when the fuel cell module 1 is used, the oxidant gas is warmed by the heat directly received from the combustion unit 30. Therefore, compared with the conventional configuration in which the oxidant gas is warmed by the heat lower than this temperature The power generation efficiency of the stack 9 can be improved.

また、上記実施形態の燃料電池モジュール1では、蒸発部31、改質部32、及び、熱交換部33が、燃焼部30の周囲を環状に囲っている。燃焼部30から逃げる熱量に偏りがあると、燃焼部30、蒸発部31、改質部32、及び、熱交換部33を構成するユニット(燃料電池用改質ユニット)にひずみが生じ易くなるが、上記実施形態の構成によれば、燃焼部30から逃げる熱量が偏りにくくなる。そのため、ひずみによって燃料電池用改質ユニットが破損する可能性を少なくすることができる。   Further, in the fuel cell module 1 according to the above-described embodiment, the evaporator 31, the reformer 32, and the heat exchanger 33 surround the combustion unit 30 in a ring shape. If the amount of heat escaping from the combustion unit 30 is uneven, distortion easily occurs in the unit (fuel cell reforming unit) that constitutes the combustion unit 30, the evaporation unit 31, the reforming unit 32, and the heat exchange unit 33. According to the configuration of the above embodiment, the amount of heat escaping from the combustion unit 30 is less likely to be uneven. Therefore, it is possible to reduce the possibility that the fuel cell reforming unit is broken due to the strain.

また、上記実施形態の燃料電池モジュール1では、蒸発部31が最下段に配置されている。
蒸発部31では、少なくとも水を蒸発させることが可能な温度で熱を受ければよいが、改質部32では、改質反応のために高い温度(例えば800度)が必要であり、改質部32及び熱交換部33からは燃料電池スタック9に対し高温に温められた改質ガスや酸化剤ガスを送る必要がある。
Further, in the fuel cell module 1 of the above-described embodiment, the evaporation unit 31 is disposed at the lowermost stage.
The evaporator 31 may receive heat at a temperature at which the water can be evaporated at least, but the reformer 32 needs a high temperature (for example, 800 degrees) for the reforming reaction, and the reformer It is necessary to send reformed gas and oxidant gas warmed to a high temperature to the fuel cell stack 9 from the heat exchanger 32 and the heat exchanger 33.

燃焼部30内の温度は上方ほど高いので、蒸発部31が最下段に配置された構成によれば、蒸発部31が最下段以外に配置された構成に比べ、燃料電池スタック9の発電効率を向上させることができる。   Since the temperature in the combustion unit 30 is higher toward the upper side, according to the configuration in which the evaporation unit 31 is disposed in the lowermost stage, the power generation efficiency of the fuel cell stack 9 is higher than in the configuration in which the evaporation unit 31 is disposed other than the lowermost stage. It can be improved.

また、上記実施形態の燃料電池モジュール1では、蒸発部31の底部が、燃焼部30側である内側から外側に向かって上昇しながら傾斜する形状に形成されている。したがって、蒸発部31に入った水は高温の燃焼部30側に向かって流れることとなり、蒸発性能が向上する。   Further, in the fuel cell module 1 according to the above-described embodiment, the bottom of the evaporation unit 31 is formed to be inclined while rising from the inside toward the combustion unit 30 toward the outside. Therefore, the water that has entered the evaporation unit 31 flows toward the high temperature combustion unit 30 side, and the evaporation performance is improved.

また、上記実施形態の燃料電池モジュール1では、改質部32が蒸発部31の上段に配置され、蒸発部31と改質部32との境界をなす境界部329が、燃焼部30側である内側から外側に向かって上昇しながら傾斜する形状に形成されている。   Further, in the fuel cell module 1 of the above embodiment, the reforming unit 32 is disposed on the upper stage of the evaporating unit 31, and the boundary 329 forming the boundary between the evaporating unit 31 and the reforming unit 32 is on the combustion unit 30 side. It is formed in the shape which inclines, rising from inner side outward.

このように、蒸発部31と改質部32との境界部329が傾斜しているため、活性化するために高い熱が必要な改質触媒をより多く高温の燃焼部30に接近させることができる。   As described above, since the boundary 329 between the evaporation unit 31 and the reforming unit 32 is inclined, a larger amount of the reforming catalyst requiring high heat for activation can be brought closer to the high temperature combustion unit 30. it can.

そのため、この燃料電池モジュール1は、品質のよい改質ガスを燃料電池スタック9に送ることができる。
また、上記実施形態の燃料電池モジュール1は、燃料電池スタック9、蒸発部31、改質部32、熱交換部33、及び、燃焼部30の全体を覆うことが可能な筐体2を備え、燃焼部30は、燃料電池スタック9の下面下で、排ガスを放出している。
Therefore, the fuel cell module 1 can send a reformed gas of good quality to the fuel cell stack 9.
In addition, the fuel cell module 1 of the above embodiment includes the fuel cell stack 9, the evaporation unit 31, the reforming unit 32, the heat exchange unit 33, and the casing 2 capable of covering the entire combustion unit 30. The combustion unit 30 releases exhaust gas under the lower surface of the fuel cell stack 9.

燃料電池スタック9は、熱排出空間34を形成する天面(本体部3の天面)を介して燃焼部30によって熱せられる。しかし、例えば燃料電池スタック9の周囲の温度分布に偏りがあった場合、燃料電池スタック9の温度分布もその偏りに対応するように偏ってしまう可能性がある。   The fuel cell stack 9 is heated by the combustion unit 30 via the top surface (the top surface of the main body 3) forming the heat discharge space 34. However, if the temperature distribution around the fuel cell stack 9 is biased, for example, the temperature distribution of the fuel cell stack 9 may also be biased to correspond to the bias.

そのため、上記実施形態のように、燃料電池スタック9の下面下で、燃料電池スタック9の下面全体に広がるように排ガスを放出する構成によれば、その排ガスにより筐体2内で燃料電池スタック9全体が温度分布の偏りの少ない状態で均等に覆われ、燃料電池スタック9の温度が保たれる。   Therefore, according to the above-described embodiment, the exhaust gas is discharged under the lower surface of the fuel cell stack 9 so as to spread over the entire lower surface of the fuel cell stack 9. The whole is uniformly covered with less deviation of temperature distribution, and the temperature of the fuel cell stack 9 is maintained.

そのため、この燃料電池モジュール1は、燃料電池スタック9の発電効率をより一層向上することができる。
また、上記実施形態の燃料電池モジュール1は、燃料電池スタック9、蒸発部31、改質部32、熱交換部33、及び、燃焼部30の全体が断熱体4で覆われている。そして筐体2は、その断熱体4との間に排ガス通気空間39を形成するように断熱体4を囲っている。
Therefore, the fuel cell module 1 can further improve the power generation efficiency of the fuel cell stack 9.
Further, in the fuel cell module 1 of the above embodiment, the whole of the fuel cell stack 9, the evaporating unit 31, the reforming unit 32, the heat exchanging unit 33, and the burning unit 30 is covered with the heat insulator 4. The casing 2 encloses the heat insulator 4 so as to form an exhaust gas venting space 39 with the heat insulator 4.

この結果、断熱体4の頂部に設けられたガス抜孔40から排ガス通気空間39を介して筐体2の底部に設けられた排出口42に向かって、断熱体4で囲まれた断熱空間49内の排ガスを外部に排出する排出ルートが形成される。   As a result, the inside of the thermal insulation space 49 surrounded by the thermal insulator 4 is directed from the gas venting hole 40 provided at the top of the thermal insulator 4 to the exhaust port 42 provided at the bottom of the housing 2 via the exhaust gas ventilating space 39. An exhaust route for exhausting the exhaust gas of the

このような構成によれば、燃料電池スタック9が断熱体4の中で排ガスに包まれ、燃料電池スタック9の温度が保たれ、その発電効率の低下が抑制される。
また、この燃料電池モジュール1は、断熱体4の周囲に排出ルートが設けられることにより、断熱体4全体も排ガスで包まれることとなるので、さらに保温効果が高められている。
According to such a configuration, the fuel cell stack 9 is covered with the exhaust gas in the heat insulator 4, the temperature of the fuel cell stack 9 is maintained, and the reduction in the power generation efficiency is suppressed.
In addition, since the fuel cell module 1 is provided with a discharge route around the heat insulator 4, the entire heat insulator 4 is also covered with the exhaust gas, so the heat retention effect is further enhanced.

そのため、この燃料電池モジュール1によれば、燃料電池スタック9の温度をより一層確実に保ち、その発電効率の低下をより一層確実に抑制することができる。
また、本実施形態の燃料電池モジュール1を構成する本体部3は、燃焼部30が蒸発部31、改質部32、及び、熱交換部33の壁面となるように、板材を溶接して形成する、非常にシンプルな構造をしている。
Therefore, according to the fuel cell module 1, the temperature of the fuel cell stack 9 can be more reliably maintained, and the reduction in the power generation efficiency can be further reliably suppressed.
Further, the main body portion 3 constituting the fuel cell module 1 of the present embodiment is formed by welding a plate material so that the combustion portion 30 becomes a wall surface of the evaporation portion 31, the reforming portion 32, and the heat exchange portion 33. It has a very simple structure.

そのため、この燃料電池モジュール1は、安価にかつ簡単に製造することができる。
[他の実施形態]
以上、実施形態について説明したが、特許請求の範囲に記載された発明は、上記実施形態に限定されることなく、種々の形態を採り得ることは言うまでもない。
Therefore, the fuel cell module 1 can be manufactured inexpensively and easily.
[Other embodiments]
As mentioned above, although embodiment was described, it can not be overemphasized that the invention described in the claim can take various forms, without being limited to the above-mentioned embodiment.

(1)上記実施形態で説明した燃料電池モジュール1はあくまでも一例であり、これに限定されるものではない。
(2)上記実施形態では、円筒形状に形成された燃料電池モジュール1を例示したが、これに限られるものではない。
(1) The fuel cell module 1 described in the above embodiment is merely an example, and the present invention is not limited to this.
(2) In the said embodiment, although the fuel cell module 1 formed in cylindrical shape was illustrated, it is not restricted to this.

(3)上記実施形態では、原燃料として都市ガスを用いているが、原燃料はこれに限られるものではない。
(4)上記実施形態では、酸化剤ガスとして空気を用いているが、酸化剤ガスはこれに限られるものではない。
(3) In the above embodiment, city gas is used as the raw fuel, but the raw fuel is not limited to this.
(4) Although air is used as the oxidant gas in the above embodiment, the oxidant gas is not limited to this.

(5)上記実施形態では断熱体4を用いているが、この断熱体4としては、断熱材として知られている物を材料として用いてもよいが、断熱効果が見込まれる材料であればどのようなものを用いてもよく、例えば板金を用いてもよい。   (5) Although the heat insulator 4 is used in the above embodiment, as the heat insulator 4, a material known as a heat insulator may be used as a material, but any material having a heat insulation effect can be used. Such a thing may be used, for example, a sheet metal may be used.

(6)上記実施形態では、燃料電池スタック9から燃焼部30に改質ガスのみを送っているが、例えば原燃料や酸化剤ガスを送ってもよい。   (6) In the above embodiment, only the reformed gas is sent from the fuel cell stack 9 to the combustion unit 30, but for example, a raw fuel or an oxidant gas may be sent.

1… 燃料電池モジュール 2… 筐体 3… 本体部 4… 断熱体
9… 燃料電池スタック 30… 燃焼部 31… 蒸発部 32… 改質部
33… 熱交換部 34… 熱排出空間 39… 排ガス通気空間 40… ガス抜孔
42… 排出口 49… 断熱空間 301… 第1パイプ 302… 排ガス孔
312… 第1供給パイプ 319… 底部 321… 第2パイプ 328… 通過孔
329… 境界部 331… 第3パイプ 332… 第2供給パイプ
341… 熱排出孔。
DESCRIPTION OF SYMBOLS 1 ... Fuel cell module 2 ... Housing | casing 3 ... Main body part 4 ... Thermal insulation 9 ... Fuel cell stack 30 ... Combustion part 31 ... Evaporation part 32 ... Reforming part 33 ... Heat exchange part 34 ... Heat discharge space 39 ... Exhaust gas ventilation space DESCRIPTION OF SYMBOLS 40 ... Gas removal hole 42 ... Discharge port 49 ... Heat insulation space 301 ... 1st pipe 302 ... Exhaust gas hole 312 ... 1st supply pipe 319 ... Bottom part 321 ... 2nd pipe 328 ... Passage hole 329 ... Boundary part 331 ... 3rd pipe 332 ... Second supply pipe 341 ... Heat exhaust hole.

Claims (7)

改質ガスと酸化剤ガスとの電気化学反応により発電する燃料電池を複数積層した燃料電池スタックとともに燃料電池モジュールを構成するための燃料電池用改質ユニットであって、
水蒸気を発生させる蒸発部と、
原燃料と前記蒸発部で発生させた水蒸気との混合ガスを改質して前記改質ガスを生成し、前記改質ガスを前記燃料電池スタックに送る改質部と、
前記酸化剤ガスを昇温させ、昇温した前記酸化剤ガスを前記燃料電池スタックに送る熱交換部と、
前記燃料電池スタックから排出される未反応の前記改質ガスを燃焼させ、前記蒸発部、前記改質部、前記熱交換部、及び、前記燃料電池スタックに伝達する熱を発生させる燃焼部と
を備え、
前記蒸発部、前記改質部、及び、前記熱交換部が積み重ねられるとともに、前記蒸発部、前記改質部、及び、前記熱交換部に前記燃焼部が隣接して配置され
前記蒸発部、前記改質部、及び、前記熱交換部は、前記燃焼部の周囲を環状に囲う形状に形成されていることを特徴とする燃料電池用改質ユニット。
A fuel cell reforming unit for forming a fuel cell module together with a fuel cell stack in which a plurality of fuel cells that generate electric power by an electrochemical reaction between a reformed gas and an oxidant gas are stacked,
An evaporation unit that generates water vapor,
A reforming unit that reforms mixed gas of raw fuel and steam generated in the evaporation unit to generate the reformed gas, and sends the reformed gas to the fuel cell stack;
A heat exchange unit that raises the temperature of the oxidant gas and sends the temperature of the oxidant gas to the fuel cell stack;
And a combustion unit for burning the unreacted reformed gas discharged from the fuel cell stack and generating heat to be transmitted to the evaporation unit, the reforming unit, the heat exchange unit, and the fuel cell stack. Equipped
The evaporation unit, the reforming unit, and the heat exchange unit are stacked, and the combustion unit is disposed adjacent to the evaporation unit, the reforming unit, and the heat exchange unit .
A reforming unit for a fuel cell , wherein the evaporating unit, the reforming unit, and the heat exchanging unit are formed in a ring shape surrounding the periphery of the combustion unit.
請求項に記載の燃料電池用改質ユニットにおいて、
前記蒸発部は、最下段に配置されていることを特徴とする燃料電池用改質ユニット。
In the fuel cell reforming unit according to claim 1 ,
The reforming unit is disposed at the lowermost stage.
請求項1〜のいずれか一項に記載の燃料電池用改質ユニットにおいて、
前記蒸発部の底部が、前記燃焼部の側である内側から外側へ上方に向かって傾斜する形状に形成されていることを特徴とする燃料電池用改質ユニット。
The fuel cell reforming unit according to any one of claims 1 to 2 .
A reforming unit for a fuel cell, wherein a bottom portion of the evaporation portion is formed to be inclined upward from the inside toward the outside of the combustion portion.
請求項1〜のいずれか一項に記載の燃料電池用改質ユニットにおいて、
前記改質部は、前記蒸発部の上段に配置され、
前記改質部と前記蒸発部との境界をなす境界部が、前記燃焼部の側である内側から外側へ上方に向かって傾斜する形状に形成されていることを特徴とする燃料電池用改質ユニット。
The fuel cell reforming unit according to any one of claims 1 to 3 .
The reforming unit is disposed in the upper stage of the evaporation unit.
A fuel cell reforming device, wherein a boundary portion forming a boundary between the reforming portion and the evaporation portion is formed to be inclined upward from the inside toward the outside, which is the side of the combustion portion. unit.
請求項1〜のいずれか一項に記載の燃料電池用改質ユニットにおいて、
前記燃焼部は、
前記燃料電池スタックの下面下で、前記燃料電池スタックの下面全体に広がるように、前記改質ガスと前記酸化剤ガスとを燃焼させた排ガスを放出することを特徴とする燃料電池用改質ユニット。
In the fuel cell reforming unit according to any one of claims 1 to 4 ,
The combustion unit is
A reformer unit for a fuel cell, which discharges an exhaust gas obtained by burning the reformed gas and the oxidant gas under the lower surface of the fuel cell stack so as to spread over the entire lower surface of the fuel cell stack. .
請求項に記載の燃料電池用改質ユニットにおいて、
前記燃料電池スタック、前記蒸発部、前記改質部、前記熱交換部、及び、前記燃焼部の全体を覆う断熱体と、
前記断熱体との間に排ガス通気空間を形成するように前記断熱体を囲う筐体と、
を備え、
前記断熱体に設けられたガス抜孔から、前記排ガス通気空間を介して、前記筐体に設けられた排出口に向かい、前記排ガスを外部に排出する排出ルートを形成する
ことを特徴とする燃料電池用改質ユニット。
In the fuel cell reforming unit according to claim 5 ,
A heat insulator covering the entire fuel cell stack, the evaporation unit, the reforming unit, the heat exchange unit, and the combustion unit;
A housing enclosing the heat insulator to form an exhaust gas venting space between the heat insulator and the heat insulator;
Equipped with
A fuel cell is characterized in that a discharge route for discharging the exhaust gas to the outside is formed from the degassing hole provided in the heat insulator to the discharge port provided in the casing via the exhaust gas ventilating space. For reforming unit.
請求項1〜のいずれか一項に記載の燃料電池用改質ユニットと、
前記燃料電池スタックと
を備えることを特徴とする燃料電池モジュール。
A fuel cell reforming unit according to any one of claims 1 to 6 ,
A fuel cell module comprising: the fuel cell stack.
JP2014189114A 2014-09-17 2014-09-17 Fuel cell reforming unit and fuel cell module Expired - Fee Related JP6506932B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014189114A JP6506932B2 (en) 2014-09-17 2014-09-17 Fuel cell reforming unit and fuel cell module
PCT/JP2015/074706 WO2016043034A1 (en) 2014-09-17 2015-08-31 Reforming unit for fuel cell and fuel cell module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014189114A JP6506932B2 (en) 2014-09-17 2014-09-17 Fuel cell reforming unit and fuel cell module

Publications (2)

Publication Number Publication Date
JP2016062722A JP2016062722A (en) 2016-04-25
JP6506932B2 true JP6506932B2 (en) 2019-04-24

Family

ID=55533075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014189114A Expired - Fee Related JP6506932B2 (en) 2014-09-17 2014-09-17 Fuel cell reforming unit and fuel cell module

Country Status (2)

Country Link
JP (1) JP6506932B2 (en)
WO (1) WO2016043034A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10347924B2 (en) 2016-09-13 2019-07-09 General Electric Company Integrated fuel cell systems
KR102495983B1 (en) * 2018-04-26 2023-02-06 주식회사 미코파워 Fuel cell system

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4808491A (en) * 1988-02-16 1989-02-28 Westinghouse Electric Corp. Corner heating in rectangular solid oxide electrochemical cell generators
JP2002124289A (en) * 2000-10-19 2002-04-26 Hitachi Metals Ltd Solid electrolyte fuel cell system
KR100783004B1 (en) * 2005-04-22 2007-12-07 (주)오선텍 Steam reformer equipped with metal monolithic catalysts
JP2006309982A (en) * 2005-04-26 2006-11-09 Idemitsu Kosan Co Ltd Solid oxide fuel cell system
JP5021237B2 (en) * 2006-05-18 2012-09-05 本田技研工業株式会社 Fuel cell system
US8241801B2 (en) * 2006-08-14 2012-08-14 Modine Manufacturing Company Integrated solid oxide fuel cell and fuel processor
AT502131B1 (en) * 2006-10-03 2008-02-15 Avl List Gmbh Energy generation unit for use as power train support unit in automotive vehicle, has flame burner with combustion chamber connected to outgoing line at cathode side of high-temperature fuel cell
JP2008235109A (en) * 2007-03-22 2008-10-02 Honda Motor Co Ltd Fuel cell system
JP5191840B2 (en) * 2008-09-01 2013-05-08 東京瓦斯株式会社 Cylindrical steam reformer with integrated hydrodesulfurizer
JP5301419B2 (en) * 2008-12-03 2013-09-25 東京瓦斯株式会社 Multi-cylinder steam reformer for fuel cells
JP5814108B2 (en) * 2011-12-27 2015-11-17 住友精密工業株式会社 Fuel cell
JP6101781B2 (en) * 2013-02-25 2017-03-22 住友精密工業株式会社 Fuel cell module

Also Published As

Publication number Publication date
WO2016043034A1 (en) 2016-03-24
JP2016062722A (en) 2016-04-25

Similar Documents

Publication Publication Date Title
JP7154889B2 (en) Fuel cell module and fluid supply device used therefor
JP6101781B2 (en) Fuel cell module
JP2009099437A (en) Fuel cell module
JP6506932B2 (en) Fuel cell reforming unit and fuel cell module
JP2007026928A (en) Fuel cell
US11456473B2 (en) Reformer, cell stack apparatus, fuel cell module, and fuel cell apparatus
JP6596856B2 (en) Reformed water evaporator and power generator
JP6951204B2 (en) Fuel cell module and fluid supply device used for it
JP2014022230A (en) Solid oxide fuel cell device
JP6861041B2 (en) Solid oxide fuel cell system
JP2013168303A (en) Solid oxide fuel cell
JP5959222B2 (en) Solid oxide fuel cell
JP6496623B2 (en) Reforming unit and fuel cell module
JP6861042B2 (en) Solid oxide fuel cell system
WO2020129372A1 (en) Fuel cell module
JP2015115208A (en) Fuel cell
JP6229611B2 (en) Fuel cell device
JP6861040B2 (en) Solid oxide fuel cell system
JP7386057B2 (en) fuel cell module
JP2017183135A (en) Solid oxide fuel cell device
JP6175010B2 (en) Fuel cell module
JP6612166B2 (en) Fuel processing apparatus and fuel cell module
JP2017183134A (en) Solid oxide fuel cell device
JP2021036488A (en) Fuel battery module
JP6177359B2 (en) Solid oxide fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190401

R150 Certificate of patent or registration of utility model

Ref document number: 6506932

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees