WO2020129372A1 - Fuel cell module - Google Patents

Fuel cell module Download PDF

Info

Publication number
WO2020129372A1
WO2020129372A1 PCT/JP2019/040070 JP2019040070W WO2020129372A1 WO 2020129372 A1 WO2020129372 A1 WO 2020129372A1 JP 2019040070 W JP2019040070 W JP 2019040070W WO 2020129372 A1 WO2020129372 A1 WO 2020129372A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
fuel
cell stack
cell module
heat insulating
Prior art date
Application number
PCT/JP2019/040070
Other languages
French (fr)
Japanese (ja)
Inventor
文雄 坪井
卓哉 松尾
肇 大村
琢也 星子
川上 晃
田中 修平
Original Assignee
森村Sofcテクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 森村Sofcテクノロジー株式会社 filed Critical 森村Sofcテクノロジー株式会社
Publication of WO2020129372A1 publication Critical patent/WO2020129372A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/2432Grouping of unit cells of planar configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • H01M8/2475Enclosures, casings or containers of fuel cell stacks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a fuel cell module, and more particularly to a fuel cell module that generates electricity by reacting a supplied fuel gas with an oxidant gas.
  • the conventional fuel cell module described in Patent Document 1 includes a fuel cell stack, a combustor, and a reformer, and these are housed in a housing.
  • the fuel cell cell stack is a stacked fuel cell cell stack in which a plurality of fuel cell cells are laminated, and each fuel cell cell is composed of an oxide ion conductor. It is configured by providing a cathode electrode and an anode electrode on both surfaces of the formed flat plate-shaped electrolyte, respectively.
  • a cathode separator and an anode separator are arranged between the fuel cells, respectively. Further, the cathode separator is provided with an oxidant gas flow passage for supplying an oxidant gas to the cathode electrode, and the anode separator is provided with a fuel gas flow passage for supplying a fuel gas to the anode electrode.
  • the fuel cells, cathode separators, and anode separators stacked in this way are sandwiched from both ends by the upper end plate and the lower end plate, and are pressed and fixed in the stacking direction.
  • the lower end plate is provided with an oxidant gas inlet for supplying an oxidant gas to each fuel cell and a fuel gas inlet for supplying a fuel gas to each fuel cell.
  • the lower end plate is further supplied to the cathode electrode of each fuel cell and is supplied to the oxidant gas outlet for discharging the oxidant gas not used for power generation and remaining, and the anode electrode of each fuel cell,
  • a fuel gas outlet is provided for discharging the remaining fuel gas that is not used for power generation.
  • Residual fuel gas flowing out from the fuel gas outlet and residual oxidant gas flowing out from the oxidant gas outlet are guided to a combustor arranged in the housing and burned there.
  • the combustion heat generated in the combustor exchanges heat with the oxidant gas flowing in the oxidant gas passages arranged on both side surfaces of the casing.
  • the oxidant gas whose temperature has been raised by heat exchange is introduced into the fuel cell stack through the oxidant gas inlet. As a result, the temperature of the fuel cell stack is raised to a temperature at which the power generation reaction is possible.
  • the residual fuel gas is burned by the residual oxidant gas, and the fuel cell stack is formed by the generated combustion gas.
  • the fuel cell stack is indirectly heated to efficiently raise the temperature of the fuel cell stack to a temperature at which the power generation reaction is possible, and the temperature is maintained.
  • a stacked fuel cell stack is housed inside an outer container member such as a housing, and electric power generated in the fuel cell is taken out.
  • the conductive bus bar penetrates the outer container member and is taken out to the outside.
  • the outer container member that accommodates the fuel cell stack is provided, and the bus bar penetrates the outer container member.
  • a structure that electrically insulates between the outer container member and the outer container member is required.
  • a structure that takes into account design error and thermal expansion difference between the two is required. Therefore, in order to secure these necessary structures, there are problems that the number of parts increases, the processing cost and the like increase, and the size and weight increase, so that the manufacturing cost increases. Further, if the number of parts is increased, there is a problem that the electric resistance may be increased accordingly.
  • the present invention has been made in order to solve the above-mentioned problems of the prior art, and an object thereof is to provide a fuel cell module capable of suppressing the manufacturing cost and suppressing the electric resistance. I am trying.
  • the present invention is a fuel cell module that generates electricity by reacting a supplied fuel gas with an oxidant gas, and the flow paths of the fuel gas and the oxidant gas are defined respectively.
  • a closed fuel cell stack a reformer that reforms raw fuel gas to generate fuel gas containing hydrogen, and supplies the fuel gas to the fuel cell stack, and a reformer used for power generation in the fuel cell stack.
  • the combustor that burns the residual fuel gas remaining without heating to heat the reformer, and a conductive bus bar that takes out the electric power generated in the fuel cell, the fuel cell module,
  • the outer peripheral container member for accommodating the fuel cell stack is not provided, and the bus bar has the base end side thereof provided in the fuel cell stack and the front end side of the fuel cell without penetrating the outer container member. It is characterized in that it protrudes directly to the outside of the module so that it can be taken out.
  • the present invention thus configured, first, since the outer container member for housing the closed type fuel cell stack is not provided, the base end side of the bus bar can be easily provided in the fuel cell stack. ..
  • a structure in which the fuel cell stack is accommodated in the outer container member in consideration of design error and thermal expansion difference between the two can be omitted by eliminating the outer container member.
  • the tip end side of the busbar can be directly and externally protruded outside the fuel cell module without penetrating the outer container member, a structure electrically insulating between the outer container member and the busbar.
  • the parts and parts can also be omitted. As a result, by suppressing the number of parts, it is possible to suppress the manufacturing cost and also the electric resistance.
  • a housing in which a space for accommodating the reformer and the combustor is formed, and heat insulation arranged to thermally isolate the fuel cell stack from the housing.
  • the busbar is constrained at its proximal end side by the heat insulating material.
  • the heat insulating material can reduce the heat directly transmitted between the fuel cell stack and the housing. As a result, it is possible to further reduce the influence of the layout change of the reformer and the combustor in the housing on the temperature distribution of the fuel cell stack. Further, since the heat insulating material can restrain the base end side of the bus bar provided at the end portion of the fuel cell stack, the bus bar can be stably held without penetrating the outer container member.
  • the fuel cell stack is surrounded by the heat insulating material.
  • the present invention thus configured, it is possible to more effectively reduce the influence of the layout change of the reformer, the combustor and the like in the housing on the temperature distribution of the fuel cell stack.
  • the heat insulating material is a non-conductive insulator
  • the base end portion of the bus bar is covered with the heat insulating material and fixed to the end portion of the fuel cell stack.
  • the end portion of the bus bar is a free end portion that protrudes to the outside of the heat insulating material and is not constrained by the heat insulating material.
  • the base end portion of the bus bar is a fixed end portion that is fixed to the end portion of the fuel cell stack and directly or indirectly constrained by the heat insulating material. The heat transfer between the fixed end portion and its peripheral portion can be suppressed by the heat insulating material.
  • the heat insulating material is a non-conductive insulator, it is possible to electrically insulate between the fixed end portion of the bus bar and its peripheral portion. Further, since the outer container member is not provided and the tip end portion of the bus bar projects to the outside of the heat insulating material, the free end portion is not restricted by the heat insulating material. Thus, the position of the free end portion of the bus bar can be changed according to the position of the fixed end portion of the bus bar fixed to the end portion of the fuel cell stack, so that the degree of freedom in design can be increased. Therefore, when the electric power generated in the fuel cell unit is directly taken out of the fuel cell module by the bus bar, the position and direction for taking out electric power can be freely set according to the position of the free end of the bus bar. it can.
  • the free end portion of the bus bar is provided with an electric wire connecting portion to which an electric wire is connected
  • the heat insulating material is a deformation of the bus bar in a state where the electric wire is connected to the electric wire connecting portion. It is a cushioning material that suppresses
  • the heat insulating material can function as a cushioning material that suppresses the deformation of the bus bar when the electric wire is connected to the electric wire connecting portion at the free end of the bus bar.
  • the heat insulating material serves as a cushioning material that suppresses the deformation of the bus bar. , It is possible to protect the bus bar and the fuel cell stack from damage.
  • the bus bar is such that the front surface or the back surface is parallel to a stacking surface on which each of the plurality of flat plate-type fuel battery cells of the sealed fuel battery cell stack is stacked, It is arranged on the outer surface of the outermost flat type fuel cell of the fuel cell stack.
  • the front surface or the back surface is parallel to the stacking surface on which each of the plurality of flat plate type fuel battery cells is stacked.
  • the bus bar is formed in a plate shape from the base end portion to the tip end portion in the longitudinal direction, and is arranged such that the front surface or the back surface thereof is a vertical plane. If the bus bar formed in a plate shape from the base end to the distal end in the longitudinal direction is arranged so that the front surface or the back surface is a horizontal surface, the electric wire was connected to the electric wire connection portion of the free end of the bus bar. In this state, a downward deformation load (a bending load, a bending load, etc.) acts on the free end portion of the bus bar due to the weight of the electric wire or the like, so that the bus bar itself is easily deformed.
  • a downward deformation load a bending load, a bending load, etc.
  • the front surface or the back surface of the bus bar can be arranged so as to be vertical.
  • the rigidity (bending rigidity, bending rigidity, etc.) of the bus bar with respect to downward deformation load (bending load, bending load, etc.) can be increased compared to the case where the front surface or the back surface of the bus bar is arranged in a horizontal plane.
  • each of the plurality of flat plate type fuel cell units is horizontally stacked such that the stacking surface thereof is a vertical plane.
  • the outermost flat plate-type fuel By simply assembling the front surface or the back surface of the bus bar to the outer surface of the battery cell, these can be arranged in the vertical plane. Therefore, the bus bar can be easily attached to the end of the fuel cell stack. Further, by rotating and positioning the bus bar in the vertical plane, it is possible to freely set the position and the direction in which electric power is taken out from the bus bar.
  • a cover member provided outside the heat insulating material is provided, and the cover member is configured to hold the heat insulating material.
  • the heat insulating material can be reliably held by the cover member, so that the bus bar and the fuel cell stack can be surely protected from being damaged.
  • the fuel cell module of the present invention it is possible to suppress the manufacturing cost and the electric resistance.
  • FIG. 1 is a schematic configuration diagram of an entire fuel cell module according to a first embodiment of the present invention.
  • FIG. 3 is a perspective view of the fuel cell module according to the first embodiment of the present invention.
  • FIG. 3 is a front sectional view of the fuel cell module according to the first embodiment of the present invention.
  • FIG. 4 is a sectional view taken along line IV-IV in FIG. 3.
  • FIG. 5 is a sectional view taken along line VV of FIG. 3.
  • FIG. 6 is a cross-sectional view taken along line VI-VI of FIG. 3.
  • FIG. 11 is a schematic front view of the entire fuel cell module according to the second embodiment of the present invention with a heat insulating material and an end plate on the front side removed.
  • FIG. 8 is an enlarged perspective view of a bus bar portion in the fuel cell module according to the second embodiment of the present invention shown in FIG. 7.
  • FIG. 1 is a schematic configuration diagram of the entire fuel cell module according to the first embodiment of the present invention.
  • a fuel cell module 1 includes a fuel cell stack 2 that performs a power generation reaction, and a fuel gas obtained by reforming the raw fuel gas in the fuel cell stack 2. And a fluid supply device 4 for supplying air that is a heated oxidant gas.
  • the fuel cell stack 2 is a so-called “stacked fuel cell stack”, which is configured by vertically stacking a plurality of flat-plate fuel cell 2a.
  • the fuel cell stack 2 is also a so-called “sealed fuel cell stack” in which a fuel gas flow path and an oxidant gas flow path are defined in the closed chamber.
  • the fluid supply device 4 includes a housing 6, and the housing 6 is arranged above the fuel cell stack 2 in the vertical direction.
  • the fuel cell stack 2 and the housing 6 are surrounded by the heat insulating material 8 and also provided between the fuel cell stack 2 and the housing 6.
  • a cover member A1 (see FIG. 1) is provided outside the heat insulating material 8 surrounding the fuel cell stack 2 and the housing 6.
  • a hermetically-sealed container that allows inflow and outflow of air, water, fuel gas, and the like is defined as an “outer shell member”.
  • the cover member A1 merely holds the heat insulating material 8 from the outside and is not an outer container member. Therefore, in the fuel cell module 1 of this embodiment, the outer container member, which is a closed container, is not provided.
  • the reformer 36 and the combustor 38 are housed in the space sealed by the housing 6.
  • the heat insulating material 8 is described as one continuous piece, but may be composed of a plurality of heat insulating materials.
  • the heat insulating material that surrounds the fuel cell stack 2 and the housing 6 and the heat insulating material that is provided between the fuel cell stack 2 and the housing 6 may be different heat insulating materials.
  • the heat insulating material a plurality of members having different heat insulating performances may be used in combination, and the superposing and arranging methods can be designed according to the required specifications.
  • the heat insulating material provided between the fuel cell stack 2 and the housing 6 does not necessarily have to completely cover the space between the fuel cell stack 2 and the housing 6, and at least partially as needed. By arranging it, the effect is achieved.
  • the reformer 36 is configured to steam-reform the raw fuel gas supplied from the outside of the fluid supply device 4 to generate a fuel gas rich in hydrogen.
  • the fuel gas generated in the reformer 36 is sent to the fuel cell stack 2, and is used for power generation in the fuel cell stack 2.
  • the fuel gas is supplied to the fuel cell stack 2 through a fuel supply passage 12 extending between the housing 6 of the fluid supply device 4 and the fuel cell stack 2. Since the housing 6 of the fluid supply device 4 is surrounded by the heat insulating material 8, the fuel supply passage 12 for supplying the fuel gas penetrates the heat insulating material 8 and extends to the fuel cell stack 2.
  • the combustor 38 is configured to burn the residual fuel that remains in the fuel cell stack 2 without being used for power generation.
  • the fuel not used for power generation in the fuel cell stack 2 is discharged to the housing 6 side through a fuel discharge passage 14 extending between the housing 6 of the fluid supply device 4 and the fuel cell stack 2. Has become.
  • This fuel discharge passage 14 also extends from the fuel cell stack 2 to the fluid supply device 4 through the heat insulating material 8 that surrounds the housing 6 of the fluid supply device 4.
  • the residual fuel discharged to the housing 6 side is combusted by the combustor 38 housed in the housing 6 and heats the reformer 36 arranged above the combustor 38.
  • the reforming catalyst (not shown) in the reformer 36 is heated to a temperature at which steam reforming is possible.
  • air which is an oxidant gas for power generation
  • air is also supplied from the outside to the fluid supply device 4. Then, this air is heated by the combustion heat of the combustor 38 and is supplied to the fuel cell stack 2 in a high temperature state.
  • the fuel cell stack 2 is mainly heated by the heat of the power generation air heated to a high temperature to a temperature at which a power generation reaction is possible.
  • the power generation air heated in the fluid supply device 4 is supplied to the fuel cell stack 2 through the oxidant gas supply passage 16 extending from the housing 6.
  • This oxidant gas supply passage 16 also extends from the fluid supply device 4 to the fuel cell stack 2 through the heat insulating material 8 surrounding the housing 6 of the fluid supply device 4.
  • the residual air supplied to the fuel cell stack 2 and not used for power generation and remaining is discharged to the housing 6 side through the oxidant gas discharge passage 18.
  • the oxidant gas discharge passage 18 also extends from the fuel cell stack 2 to the fluid supply device 4 through the heat insulating material 8 surrounding the housing 6 of the fluid supply device 4.
  • the residual air discharged to the housing 6 side is used for combustion in the combustor 38 in the housing 6.
  • the combustion gas generated by the combustion is exhausted from the fluid supply device 4 as exhaust gas.
  • the residual fuel gas is burned by the residual air in the combustor 38 of the fluid supply device 4, and the reformer 36 is heated by the combustion heat. It has become.
  • the reformer 36 and the combustor 38 are housed in the housing 6 of the fluid supply device 4, and the housing 6 is thermally separated from the fuel cell stack 2 by the heat insulating material 8.
  • the fuel cell stack 2 is not substantially directly heated by the combustion heat of the residual fuel. That is, the heat transfer between the fluid supply device 4 (housing 6) side and the fuel cell stack 2 is substantially performed only by the fluid flowing between them, and the radiant heat radiated from the combustor 38 or the like is used. Therefore, the fuel cell stack 2 is not directly heated. Therefore, the temperature of the fuel cell stack 2 can be substantially regulated only by the flow rate and the temperature of the fluid supplied thereto.
  • an evaporator that produces steam for steam reforming, a desulfurizer that removes the sulfur component contained in the raw fuel gas, a combustion that removes carbon monoxide, etc. in the exhaust gas
  • a catalyst device and the like may be housed in a housing.
  • these devices can be placed outside the housing and covered with a heat insulating material so that they are heated by the heat of the exhaust gas discharged from the housing.
  • FIG. 2 is a perspective view of the fuel cell module according to the first embodiment of the present invention.
  • FIG. 3 is a front sectional view of the fuel cell module according to the first embodiment of the present invention.
  • FIG. 4 is a sectional view taken along the line IV-IV in FIG.
  • FIG. 5 is a sectional view taken along line VV of FIG. 6 is a cross-sectional view taken along the line VI-VI of FIG.
  • the heat insulating material surrounding the fuel cell stack and the like is omitted.
  • the fuel cell module 1 includes a fuel cell stack 2 that performs a power generation reaction, a fuel gas obtained by reforming the fuel cell stack 2 from a raw fuel gas, and a heated oxidizer.
  • the fluid supply device 4 is composed of an evaporator 4a and a reforming/heating device 4b.
  • the evaporator 4a is configured to evaporate the supplied water to generate water vapor and mix the water vapor with the raw fuel gas.
  • the reforming/heating device 4b is mixed with the mixture supplied from the evaporator 4a.
  • the gas is steam-reformed to generate a fuel gas containing hydrogen, and the fuel gas is supplied to the fuel cell stack 2.
  • the reforming/heating device 4b is covered with a substantially rectangular parallelepiped metal housing 6, and the fuel cell stack 2, the housing 6 of the reforming/heating device 4b arranged above the fuel cell stack 2, and the evaporator 4a. Are arranged side by side in the vertical direction.
  • the fuel cell stack 2, the housing 6, and the evaporator 4a are surrounded by the heat insulating material 8, and the fuel cell stack 2 is thermally isolated from the housing 6 and the evaporator 4a.
  • the fuel cell stack 2 is a flat cell stack, and is configured by stacking a plurality of rectangular flat fuel cells 2a. That is, each fuel battery cell 2a is configured by providing electrodes of a fuel electrode and an air electrode (oxidant gas electrode) on both sides of a flat plate electrolyte made of an oxide ion conductor, and each fuel cell A separator is arranged between the cells 2a (these are not shown).
  • a top end plate 10a is arranged at the upper ends of the plurality of stacked fuel cells 2a, and a bottom end plate 10b is arranged at the lower ends thereof.
  • a fuel gas supply passage (not shown) for supplying a fuel gas to each fuel battery cell 2a is provided inside the fuel battery cell stack 2 obtained by stacking a plurality of fuel battery cells 2a in this manner.
  • An oxidant gas supply passage (not shown) for supplying air that is an oxidant gas is formed.
  • two bus bars B1 and B2 for taking out the generated electric power extend from the top and bottom of the fuel cell stack 2.
  • these busbars B1, B2 are composed of a pair of upper and lower upper busbars B1 and lower busbars B2 in which a conductive member such as metal is formed into a long plate shape.
  • the base end of the upper bus bar B1 is provided between the upper end surface of the uppermost fuel cell 2a of the fuel cell stack 2 and the bottom surface of the top end plate 10a.
  • the base end portion of the lower bus bar B2 is provided between the lower end surface of the lowermost fuel cell 2a of the fuel cell stack 2 and the upper surface of the bottom end plate 10b.
  • each of the bus bars B1 and B2 includes the outer surface (the upper surface (uppermost end surface E1) of the uppermost fuel cell 2a) and the lowermost fuel cell of the outermost flat plate-type fuel cell 2a in the fuel cell stack 2. It is arranged on the bottom surface (the lowermost surface E2) of the cell 2a.
  • the respective surfaces upper surface S1 , S3 and the back surfaces (lower surfaces S2, S4) are parallel to each other.
  • bus bars B1 and B2 are horizontally (to be more specific, shown in FIGS. 2 and 3) so that they can be directly taken out of the fuel cell module 1 without penetrating the outer container member.
  • the bus bars B1 and B2 are projected to the right side when viewed from the front side).
  • the heat insulating material 8 is a non-conductive insulator, and the bus bars B1 and B2 are surrounded by the heat insulating material 8 from the base end side to the vicinity of the intermediate portion in the longitudinal direction. Have been restrained directly or indirectly. Thereby, the base end portions of the bus bars B1 and B2 are fixed to the uppermost end portion and the lowermost end portion of the fuel cell 2a of the fuel cell stack 2, respectively, and directly or indirectly by the heat insulating material 8. It has a fixed fixed end. On the other hand, the tip ends of the bus bars B1 and B2 project to the outside of the heat insulating material 8 and are free end portions that are not restrained by the heat insulating material 8.
  • electric wire connection portions are provided at the tip end portions (free end portions) of the bus bars B1 and B2.
  • Electric wires from a harness (not shown) in which a plurality of electric wires or cables are bundled are connected to the tip ends (free ends) of the bus bars B1 and B2 including the electric wire connecting portions (terminal holes C1 and C2).
  • Connection terminal in a state in which the electric wires are connected to the electric wire connecting portions (terminal holes C1, C2) of the bus bars B1, B2, the self-weight of the harness (not shown) or the like causes the tip portions (free end portions) of the bus bars B1, B2.
  • the heat insulating material 8 functions as a cushioning material that suppresses such deformation (bending deformation or bending deformation) of the bus bars B1 and B2. It is also becoming.
  • a fuel supply passage 12, a fuel discharge passage 14, an oxidant gas supply passage 16 and an oxidant gas discharge passage 18 are connected to the top end plate 10a of the fuel cell stack 2.
  • These four passages extend into the space sandwiched between the fuel cell stack 2 and the housing 6 of the reformer/heater 4b. That is, these passages extend upward from the upper surface of the top end plate 10a of the fuel cell stack 2, and are connected to the bottom surface, which is a single surface of the housing 6 arranged above the fuel cell stack 2. .. Therefore, the fuel supply passage 12, the fuel discharge passage 14, the oxidant gas supply passage 16 and the oxidant gas discharge passage 18 penetrate the heat insulating material 8 arranged between the fuel cell stack 2 and the housing 6. It is extended.
  • the housing 6 of the reformer/heater 4b has four passages (a fuel supply passage 12, a fuel discharge passage 14, an oxidant gas supply passage 16 and an oxidant gas discharge passage) for the fuel cell stack 2. 18) only connected and supported.
  • the fuel supply passage 12 and the fuel discharge passage 14 are attached side by side in the vicinity of one short side of the top end plate 10a, and linearly extend vertically upward.
  • the fuel gas reformed in the reformer/heater 4b is supplied to the fuel cell stack 2 through the fuel supply passage 12 and passes through the fuel gas supply passage (not shown) in the fuel cell stack 2. It is adapted to be distributed to each fuel cell 2a. Residual fuel gas remaining without being used for power generation in each fuel cell 2a is collected through a fuel gas discharge passage (not shown) in the fuel cell stack 2 and attached to the top end plate 10a.
  • the fuel is discharged to the reformer/heater 4b through the fuel discharge passage 14.
  • the oxidant gas supply passage 16 and the oxidant gas discharge passage 18 are attached side by side in the vicinity of one long side of the top end plate 10a, and extend vertically upward, respectively, and then, inside. It bends 90 degrees toward and extends in the horizontal direction, and further bends 90 degrees and extends vertically upward.
  • the upper ends of the oxidant gas supply passage 16 and the oxidant gas discharge passage 18 are connected to the bottom surface of the housing 6 of the reforming/heating device 4b side by side on the central axis line in the longitudinal direction.
  • the air heated in the reformer/heater 4b is supplied to the fuel cell stack 2 through the oxidant gas supply passage 16 and passes through the oxidant gas supply passage (not shown) in the fuel cell stack 2.
  • the air heated in the reformer/heater 4b is supplied to the fuel cell stack 2 through the oxidant gas supply passage 16 and passes through the oxidant gas supply passage (not shown) in the fuel cell stack 2.
  • the positions where the oxidant gas supply passage 16 and the oxidant gas discharge passage 18 are connected to the bottom surface of the housing 6 and the positions where these passages are connected to the fuel cell stack 2 are viewed from above. Are different in. However, by curving those passages in the space between the housing 6 and the fuel cell stack 2, the fuel cell stack 2 side and the housing 6 side can be connected. Therefore, various fuel cell stacks 2 can be connected to the single housing 6 (fluid supply device 4) by appropriately changing the connecting passages. Further, since each passage extends into the space sandwiched between the housing 6 and the fuel cell stack 2, the fuel supply passage 12, the fuel discharge passage 14, the oxidant gas supply can be provided without increasing the occupied floor area. A passage 16 and an oxidant gas discharge passage 18 can be provided.
  • the fuel supply passage 12, the fuel discharge passage 14, the oxidant gas supply passage 16 and the oxidant gas discharge passage 18 each have a connection structure using piping screws. Therefore, it can be separated by loosening the connecting nut.
  • the fuel supply passage 12, the fuel discharge passage 14, the oxidant gas supply passage 16, and the oxidant gas discharge passage 18 are detachably connected to the housing 6 of the reformer/heater 4b.
  • some or all of these four passages may be configured to extend from the bottom surface of the housing 6, and these passages may be detachably connected to the fuel cell stack 2.
  • the evaporator 4a includes a water supply pipe 20 for supplying water, a raw fuel gas supply pipe 22 for supplying raw fuel gas, and an exhaust gas for exhausting exhaust gas.
  • the discharge pipe 24 is connected.
  • the housing 6 of the reforming/heating device 4b and the evaporator 4a outside thereof are connected by a pipe.
  • this pipe has a double pipe structure of an exhaust gas pipe 26 for supplying exhaust gas from the reforming/heating device 4b to the evaporator 4a and a mixed gas conduit 28 arranged inside this (FIG. 3).
  • the mixed gas conduit 28 is configured to introduce, into the reforming/heating device 4b, a mixed gas obtained by mixing the water vapor generated in the evaporator 4a and the raw fuel gas supplied to the evaporator 4a.
  • An electric heater 29 for auxiliary heating of the evaporator 4a is wound around three sides of the evaporator 4a.
  • the evaporator 4a is formed of a metal plate into a rectangular parallelepiped box shape, and inside thereof, an evaporation chamber 30a, a mixing chamber 30b, and an exhaust gas chamber 30c are formed.
  • the evaporation chamber 30a is a thin space formed immediately below the ceiling surface of the evaporator 4a, and is supplied from a water supply pipe 20 and a raw fuel gas supply pipe 22 connected to the ceiling surface of the evaporator 4a. Water and raw fuel gas are configured to flow into the evaporation chamber 30a.
  • the mixing chamber 30b is formed as a space communicating with the downstream side of the evaporation chamber 30a via a narrow passage 30d.
  • the water vapor generated in the evaporation chamber 30a and the raw fuel gas supplied into the evaporation chamber 30a are mixed by flowing into the mixing chamber 30b through the narrow passage 30d.
  • the mixed gas conduit 28 is connected to the bottom surface of the mixing chamber 30b. As a result, the steam and the raw fuel gas mixed in the mixing chamber 30b are introduced into the reforming/heating device 4b through the mixed gas conduit 28.
  • the exhaust gas chamber 30c is a space provided in the lower portion of the evaporator 4a, and is configured so that exhaust gas flows in via an exhaust gas pipe 26 connected to the bottom surface of the evaporator 4a.
  • the exhaust gas flowing into the exhaust gas chamber 30c heats the floor surface of the evaporation chamber 30a provided above the exhaust gas chamber 30c, and is discharged from the exhaust gas discharge pipe 24 connected to the side end of the evaporator 4a. It is supposed to be done.
  • the water supplied to the evaporation chamber 30a is evaporated when the floor surface of the evaporation chamber 30a is heated by the exhaust gas flowing in the exhaust gas chamber 30c.
  • the downstream side of the exhaust gas chamber 30c is made thin so that the inflowing exhaust gas flows along the floor surface of the evaporation chamber 30a (the ceiling surface of the exhaust gas chamber 30c).
  • heat transfer fins 30e are arranged so that the heat of the exhaust gas flowing through the exhaust gas chamber 30c can be efficiently transferred to the floor surface of the evaporation chamber 30a.
  • the exhaust gas flowing from the exhaust gas pipe 26 connected to one end of the exhaust gas chamber 30c flows toward the exhaust gas discharge pipe 24 connected to the other end (from left to right in FIG. 3). It has become.
  • the water supplied from the water supply pipe 20 connected to the end of the evaporation chamber 30a on the exhaust gas discharge pipe 24 side is being evaporated in the evaporation chamber 30a, and toward the other end (FIG. 3). From right to left).
  • the water vapor and the exhaust gas flowing in the evaporator 4a flow in the opposite directions, so that counterflow type heat exchange is performed between them and the heat exchange is performed efficiently.
  • the reforming/heating device 4b is formed in a rectangular parallelepiped box shape surrounded by a metal housing 6, and its upper surface is supplied with air which is an oxidant gas for power generation.
  • An air supply pipe 32 for connecting is connected.
  • the upper surface of the housing 6 is a double pipe of the exhaust gas pipe 26 and the mixed gas conduit 28 (FIG. 3), and the bottom surface is the fuel supply passage 12, the fuel discharge passage 14, and the oxidant gas supply passage. 16 and the oxidant gas discharge passage 18 are connected.
  • a ceramic heater 34 for ignition is attached to one side surface of the housing 6.
  • the reformer/heater 4b steam-reforms the mixed gas introduced from the mixed gas conduit 28 to generate a fuel gas, which is supplied to the fuel cell stack 2 through the fuel supply passage 12 and an air supply pipe.
  • the air introduced via 32 is heated and supplied to the fuel cell stack 2 via the oxidant gas supply passage 16. Further, the residual fuel gas and the residual air (residual oxidant gas) remaining without being used for power generation in the fuel cell stack 2 are reformed/heated through the fuel discharge passage 14 and the oxidant gas discharge passage 18, respectively. It is designed to be discharged to the container 4b.
  • the residual fuel gas and residual air discharged through the fuel discharge passage 14 and the oxidant gas discharge passage 18 are combusted in the reformer/heater 4b, and the air introduced from the air supply pipe 32 by this combustion heat. Is designed to be heated.
  • the combustion gas generated by the combustion is introduced into the evaporator 4a as exhaust gas through the exhaust gas pipe 26.
  • a sealed space for housing the reformer 36 and the combustor 38 is formed inside the housing 6 forming the reformer/heater 4b.
  • the reformer 36 is a metal annular container having a rectangular cross section in a top view and having a rectangular opening in the center, and a mixed gas conduit 28 for introducing a mixed gas is provided at one end thereof. It is connected. Further, the fuel supply passage 12 for flowing out the reformed fuel gas is connected to the other end of the reformer 36 (FIG. 5).
  • the mixed gas conduit 28 extending from the evaporator 4a into the housing 6 is bent 90 degrees in the housing 6, extends horizontally, and then bends 90 degrees vertically downward to reach the ceiling surface of the reformer 36. It is connected.
  • the fuel supply passage 12 is connected to the bottom surface of the reformer 36 at the end opposite to the mixed gas conduit 28, penetrates the bottom surface of the housing 6 and extends vertically downward, and is connected to the fuel cell stack 2. ing.
  • the inside of the reformer 36 is filled with a reforming catalyst 36a.
  • the mixed gas of the raw fuel gas and steam flowing from the mixed gas conduit 28 is steam-reformed by coming into contact with the reforming catalyst 36a, and a fuel gas rich in hydrogen gas is generated.
  • the fuel gas steam-reformed in the reformer 36 flows into the fuel supply passage 12 and is supplied to the fuel cell stack 2.
  • the combustor 38 is provided inside the bottom wall surface of the housing 6 adjacent to the fuel cell stack 2. As a result, the residual fuel gas discharged through the fuel discharge passage 14 is burned by the residual air discharged through the oxidant gas discharge passage 18.
  • the combustor 38 includes a residual fuel gas manifold 38a, a residual fuel gas distribution pipe 38b connected to the residual fuel gas manifold 38a, and a residual air distribution plate 38c for dispersing the residual air in the housing 6.
  • the residual fuel gas manifold 38a is a box-shaped member attached to the bottom wall surface of one end of the housing 6, and allows the residual fuel gas from the fuel discharge passage 14 connected to the bottom wall surface of the housing 6 to flow into the inside. Is configured.
  • the residual fuel gas distribution pipe 38b is composed of a pipe having a circular cross section. These pipes extend from the residual fuel gas manifold 38a in parallel in the longitudinal direction of the housing 6, and are joined together by pipes extending in the lateral direction at the other end of the housing 6. A large number of pores are provided on the upper surface of the pipe forming the residual fuel gas distribution pipe 38b. As a result, the residual fuel gas flowing from the residual fuel gas manifold 38a into the residual fuel gas distribution pipe 38b is ejected from these pores.
  • the residual air distribution plate 38c is composed of an elongated metal plate bent into a trapezoidal cross section (see FIG. 4), and is attached to the center of the bottom wall surface of the housing 6 so as to extend in the longitudinal direction.
  • the oxidant gas discharge passage 18 connected to the bottom wall surface of the housing 6 communicates with the trapezoidal cross section space surrounded by the residual air distribution plate 38c and the bottom wall surface of the housing 6. Further, a large number of pores are formed on the slopes on both sides of the residual air dispersion plate 38c, and the residual air that has flowed in from the oxidant gas discharge passage 18 is injected into the housing 6 through these pores and dispersed. It is supposed to be done.
  • a ceramic heater 34 is attached to the side wall surface of the housing 6, and its tip portion extends to the center of the confluent portion of the residual fuel gas distribution pipe 38b.
  • the residual fuel gas is ejected from the respective pores of the residual fuel gas distribution pipe 38b, and the residual air is ejected from the respective pores of the residual air distribution plate 38c to the ceramic heater 34.
  • the reformer 36 arranged above the combustor 38 in the housing 6 can be heated. Since the reformer 36 is not heated in the initial stage of starting the fuel cell module 1, the reforming reaction does not occur in the reformer 36 and the fuel cell stack 2 does not generate power. ..
  • a part of the wall surface of the housing 6 has a double wall structure, and the combustor 38 is generated by flowing air for power generation inside the double wall.
  • the combustion gas is used to heat the air flowing inside. That is, a part of the upper surface, a part of the side wall surface in the longitudinal direction, and a part of the bottom wall surface of the housing 6 are formed of two metal plates, an inner wall plate 6a and an outer wall plate 6b.
  • the fins 40 for heat transfer are arranged between the inner wall plate 6a and the outer wall plate 6b so that the heat of the inner wall plate 6a is efficiently transferred to the space between the inner wall plate 6a and the outer wall plate 6b. There is. Therefore, the inner wall plate 6a, the outer wall plate 6b, and the heat transfer fins 40 heat the supplied oxidant gas, air, by the combustion gas generated by the combustor 38, and supply the air to the fuel cell stack 2. It functions as an oxidant gas heat exchanger.
  • the air supplied from the air supply pipe 32 flows into the space between the inner wall plate 6a and the outer wall plate 6b forming the upper wall surface of the housing 6 (see FIG. 3), and spreads from here in the lateral direction of the housing 6. , Flows into the space between the inner wall plate 6a and the outer wall plate 6b forming the side wall surface of the housing 6 (see FIG. 4).
  • the air that has flowed into the side wall surface of the housing 6 descends downward and flows into the space between the inner wall plate 6a and the outer wall plate 6b that forms the bottom wall surface of the housing 6.
  • the air flowing into the bottom wall surface of the housing 6 is supplied to the fuel cell stack 2 through the oxidant gas supply passage 16 (FIG.
  • the upper wall surface, the side wall surface, and a part of the bottom wall surface of the housing 6 function as an oxidant gas heat exchanger, and the oxidant gas heat exchanger is provided on these wall surfaces.
  • the operation of the fuel cell module 1 according to the first embodiment of the present invention will be described.
  • the raw fuel gas is supplied to the evaporator 4 a of the fluid supply device 4 via the raw fuel gas supply pipe 22, and the power generation air is supplied via the air supply pipe 32.
  • the reforming/heating device 4b of the fluid supply device 4 As shown in FIG. 3, the supplied raw fuel gas flows into the mixed gas conduit 28 through the evaporation chamber 30a and the mixing chamber 30b of the evaporator 4a, and further, the reformer 36 of the reforming/heating device 4b. Flows into.
  • the reaction for reforming the raw fuel gas does not occur.
  • the raw fuel gas flowing into the reformer 36 flows into the fuel cell stack 2 through the fuel supply passage 12 (see FIG. 5).
  • the air supplied to the reforming/heating unit 4b through the air supply pipe 32 passes through the space between the inner wall plate 6a and the outer wall plate 6b of the housing 6 and passes through the oxidant gas supply passage 16 (FIG. 5). It flows through and flows into the fuel cell stack 2.
  • the raw fuel gas and air that have flowed into the fuel cell stack 2 pass through the internal passages and are discharged to the reforming/heating unit 4b via the fuel discharge passage 14 and the oxidant gas discharge passage 18, respectively.
  • the power generation reaction does not occur in the fuel cell stack 2.
  • the raw fuel gas flowing into the reformer/heater 4b through the fuel discharge passage 14 flows into the residual fuel gas distribution pipe 38b through the residual fuel gas manifold 38a of the combustor 38, and is ejected from the pores thereof.
  • the air discharged to the reformer/heater 4b through the oxidant gas discharge passage 18 flows into the inside of the residual air dispersion plate 38c and is ejected from the pores thereof.
  • the reformer 36 arranged above the combustor 38 is heated, and the temperature of the internal reforming catalyst 36a rises. Further, the oxidant gas heat exchanger constituted by the inner wall plate 6a and the outer wall plate 6b of the housing 6 is heated by the combustion gas generated by the combustion, and the air flowing inside is heated. Since the heated air flows into the fuel cell stack 2, this heat heats the fuel cell stack 2.
  • the housing 6 of the fluid supply device 4 is surrounded by the heat insulating material 8, there is almost no heating of the fuel cell stack 2 due to radiation heat from the housing 6 and the fuel cell stack 2 is substantially It is heated only by the fluid (air and fuel gas) supplied from the fluid supply device 4.
  • the combustion gas generated in the housing 6 flows into the evaporator 4a as exhaust gas through the exhaust gas pipe 26.
  • the exhaust gas flowing into the evaporator 4a is discharged from the exhaust gas discharge pipe 24 through the exhaust gas chamber 30c.
  • the evaporation chamber 30a provided above the exhaust gas chamber 30c is heated.
  • the water supplied to the evaporator 4 a is heated by the combustion gas generated by the combustor 38 and supplied by the exhaust gas pipe 26.
  • the supply of water from the water supply pipe 20 is started, and steam is generated in the evaporation chamber 30a.
  • the electric heater 29 may be energized to assist in heating the evaporation chamber 30a.
  • a mixed gas of the raw fuel gas and steam is supplied to the reformer 36. Further, when the temperature of the reformer 36 is sufficiently increased, the steam reforming reaction is induced by the reforming catalyst 36a, and a fuel gas rich in hydrogen gas is generated from the raw fuel gas. The generated fuel gas is supplied to the fuel cell stack 2. When the temperature of the fuel cell stack 2 is sufficiently increased, the fuel gas and the air heated in the reforming/heating unit 4b cause a power generation reaction. In a state where the temperature of the fuel cell stack 2 has risen to a temperature at which power can be generated, electric power is taken out from the fuel cell stack 2 via the bus bar B1 and power generation is started.
  • an outer container member for accommodating a laminated fuel cell stack 2 configured by laminating a plurality of flat plate type fuel cell cells 2a is provided.
  • the base end side of each bus bar B1, B2 is located at the upper end portion of the fuel cell stack 2 (more specifically, between the upper end surface of the uppermost fuel cell 2a and the bottom surface of the top end plate 10a). Further, it can be easily provided on each of the lower end portions of the fuel cell stack 2 (more specifically, between the lower end surface of the lowermost fuel cell 2a and the upper surface of the bottom end plate 10b).
  • the structure in which the fuel cell stack 2 is accommodated in the outer container member in consideration of design error and thermal expansion difference between the both can be omitted by eliminating the outer container member. Furthermore, since the tip ends of the busbars B1 and B2 can be directly and externally protruded outside the fuel cell module 1 without penetrating the outer container member, the outer container member and the busbars B1 and B2 are not connected to each other. It is also possible to omit the structure and components for electrically insulating the spaces. As a result, by suppressing the number of parts, the manufacturing cost, the product weight, and the product size can be suppressed, and the electric resistance can also be suppressed.
  • the heat insulating material 8 can reduce the heat directly transmitted between the fuel cell stack 2 and the housing 6. As a result, it is possible to further reduce the influence of the layout change of the reformer 36, the combustor 38 and the like in the housing 6 on the temperature distribution of the fuel cell stack 2. Further, since the heat insulating material 8 can directly or indirectly restrain the base end sides of the bus bars B1 and B2 provided at the upper end portion and the lower end portion of the fuel cell stack 2, respectively. B2 can be stably held without penetrating the outer container member.
  • the base end portions of the bus bars B1 and B2 are fixed to the upper end portion and the lower end portion of the fuel cell stack 2, respectively, and are directly or indirectly connected by the heat insulating material 8. Since the fixed end portion is constrained, the heat insulating material 8 can suppress heat transfer between the fixed end portion of each of the bus bars B1 and B2 and its peripheral portion. Further, since the heat insulating material 8 is a non-conductive insulator, it is possible to electrically insulate the fixed end portions of the bus bars B1 and B2 from the peripheral portions thereof.
  • the tips of the bus bars B1 and B2 project to the outside of the heat insulating material 8, so that the heat insulating material directly It is a free end that is neither restrained nor indirectly bound.
  • the positions of the free ends of the bus bars B1 and B2 are changed according to the positions of the fixed ends of the bus bars B1 and B2 fixed to the upper end and the lower end of the fuel cell stack 2, respectively. Therefore, the degree of freedom in design can be increased. Therefore, when the electric power generated in the fuel cell 2a is directly taken out of the fuel cell module 1 by the busbars B1, B2, the electric power is taken out according to the position of the free end of each busbar B1, B2.
  • the position and direction can be set freely.
  • the heat insulating material 8 can function as a cushioning material that suppresses the deformation of the bus bars B1 and B2. That is, a deformation load or the like (a bending load or a bending load or the like) acts on the free ends of the bus bars B1 and B2 due to the weight of the wires or harnesses (not shown), and the bus bars B1 and B2 themselves are slightly deformed.
  • the heat insulating material 8 serves as a cushioning material that suppresses the deformation of the busbars, so that the busbars B1 and B2 can be protected from being damaged.
  • a surface (upper surface S1 or S3) is formed with respect to a stacking surface Ln on which the plurality of flat plate type fuel battery cells 2a are stacked.
  • the back surface (lower surfaces S2, S4) are parallel to each other, the outer surface of the outermost flat plate-type fuel cell of the fuel cell stack 2 (upper surface of the uppermost fuel cell 2a (uppermost end surface E1)) And the bottom surface (the bottom end surface E2) of the fuel cell 2a in the lowermost stage.
  • the cover member A1 is provided outside the heat insulating material 8, and the cover member A1 can reliably hold the heat insulating material 8. Therefore, the heat insulating material 8 held by the cover member A1 can surely protect the bus bars B1 and B2 and the fuel cell stack 2 from being damaged.
  • FIG. 7 is a schematic front view of the entire fuel cell module according to the second embodiment of the present invention with the front heat insulating material and the end plate removed.
  • 8 is an enlarged perspective view of the bus bar portion in the fuel cell module according to the second embodiment of the present invention shown in FIG.
  • the same parts as those of the fuel cell module 1 according to the first embodiment of the present invention described above are denoted by the same reference numerals, and The description of is omitted.
  • the stacking surface Ln of the plurality of flat plate-shaped fuel cells 2a is The stacked fuel cell stack 2 of the fuel cell module 1 according to the first embodiment of the present invention described above in that the fuel cells 2a are arranged so as to be vertical so as to be stacked in the horizontal front-rear direction. Is different from the stacking direction of the fuel cells 2a stacked in the vertical direction.
  • two busbars B101 and B102 are formed in a long plate shape from a front and rear pair of front and rear busbars B101 and B102.
  • the fuel cell module 1 differs from the fuel cell module 1 according to the first embodiment of the present invention described above. That is, the bus bars B101 and B102 are arranged such that their front surfaces (front surfaces S101 and S103) and back surfaces (rear surfaces S102 and S104) are vertical surfaces, and are also parallel to the stacking surface Ln of each fuel cell 2a. ing. Further, the tip end portions of the bus bars B101 and B102 can be directly taken out of the fuel cell module 100 without penetrating the outer container member in the horizontal direction (more specifically, in each of the cases shown in FIGS. 7 and 8). The bus bars B101 and B102 are projected to the right side when viewed from the front side).
  • the rear ends S102, S104) may be arranged such that the front end portions of the bus bars B101, B102 project outward in the vertical direction (downward) in a state where the rear surfaces S102, S104) are vertical surfaces.
  • the electric wires are connected to the electric wire connecting portions (terminal holes C1 and C2) at the free ends of the bus bars B101 and B102, and the electric wires are attached to each other by their own weight or the like. Even if a downward deformation load (bending load, bending load, etc.) is generated at the free ends of the bus bars B101, B102, the front surface (front surface S101, S103) and the back surface (rear surface S102, S104) of each bus bar B101, B102 are It can be arranged to be vertical.
  • each bus bar B101, B102 As a result, as compared with the case where the front and back surfaces of each bus bar B101, B102 are arranged in a horizontal plane, a downward deformation load (bending load, bending load, etc.) due to electric wires from a harness (not shown), etc. It is possible to increase the rigidity (bending rigidity, flexural rigidity, etc.) of each bus bar B101, B102 with respect to. Therefore, in the state where the electric wire from the harness (not shown) is connected to the electric wire connecting portions (terminal holes C1 and C2) of the free ends of the bus bars B101 and B102, the deformation (bending deformation, bending deformation, etc.) of the bus bars B101 and B102 is performed. Since flexural deformation and the like) can be suppressed, it is possible to reduce the risk that the bus bars B101 and B102 and the fuel cell stack 102 are damaged due to excessive deformation.
  • each of the plurality of flat plate-type fuel cell units 2a is horizontally stacked so that the stacking surface Ln thereof is a vertical plane, and thus the outermost surface is formed.
  • the bus bars B101 and B102 can be easily assembled to the front end portion and the rear end portion of the fuel cell stack 2. Further, by rotating and positioning each bus bar B101, B102 in the vertical plane, it is possible to freely set the position and direction in which electric power is taken out from each bus bar B101, B102.
  • the fuel cell modules 1 and 100 of the first and second embodiments of the present invention have been described above, various modifications can be made to the above-described first and second embodiments.
  • the reformer and the combustor are housed in the housing, and the evaporator is arranged outside the housing.
  • the present invention can also be configured to be housed within a housing. Further, the present invention can be configured such that a desulfurizer that removes a sulfur component contained in the raw fuel gas and a combustion catalyst that removes carbon monoxide and the like in the exhaust gas are housed in the housing.
  • the oxidant gas heat exchanger is formed integrally with the outer wall surface of the housing, but the oxidant gas heat exchanger is The present invention can also be configured to be housed inside.
  • the housings are arranged side by side above the fuel cell stack, but the housings may be arranged below the fuel cell stack. The housings may be arranged side by side on the side of the fuel cell stack.
  • Fuel cell module according to the first embodiment of the present invention Fuel cell stack 2a Fuel cell 4 Fluid supply device 4a Evaporator 4b Reforming/heater 6 Housing 6a Inner wall plate 6b Outer wall plate 8 Insulation material 10a Top end plate 10b Bottom end plate 12 Fuel supply passage 14 Fuel discharge passage 16 Oxidant gas supply passage 18 Oxidant gas discharge passage 20 Water supply pipe 22 Raw fuel gas supply pipe 24 Exhaust gas discharge pipe 26 Exhaust gas pipe 28 Mixed gas conduit 29 Electric heater 30a Evaporating chamber 30b Mixing chamber 30c Exhaust gas chamber 30d Passage 30e Fin 32 Air supply pipe 34 Ceramic heater 36 Reformer 36a Reforming catalyst 38 Combustor 38a Residual fuel gas manifold 38b Residual fuel gas distribution pipe 38c Residual air dispersion plate 40 Fin 100 Fuel Cell Module According to Second Embodiment of the Present Invention A1 Cover Member B1 Upper Bus Bar (Bus Bar) B2 Lower bus bar (bus bar) B101 Front side bus bar B102 Rear side bus bar C1 Terminal hole (electric

Abstract

The fuel cell module (1) according to the present invention has: a sealed fuel cell stack (2) formed by stacking a plurality of flat-plate fuel cells (2a) on one another; a reformer (36); a combustor (38); and conductive bus bars (B1, B2) for extracting electric power generated in the fuel cells, wherein the fuel cell module has no outer vessel member provided thereto for accommodating the fuel cell stack, and the bus bars each have the base end side thereof disposed at an end of the fuel cell stack while the distal end side thereof is configured to protrude, without penetrating an outer vessel member, so as to enable direct extraction outside the fuel cell module.

Description

燃料電池モジュールFuel cell module
 本発明は、燃料電池モジュールに関し、特に、供給された燃料ガスと酸化剤ガスを反応させることにより発電する燃料電池モジュールに関する。 The present invention relates to a fuel cell module, and more particularly to a fuel cell module that generates electricity by reacting a supplied fuel gas with an oxidant gas.
 従来から、供給された燃料ガスと酸化剤ガスを反応させることにより発電する燃料電池モジュールとして、例えば、特許文献1に記載されているものが知られている。
 このような特許文献1に記載されている従来の燃料電池モジュールにおいては、燃料電池セルスタックと、燃焼器と、改質器と、を備えており、これらが筐体に収容されている。
 また、上述した従来の燃料電池モジュールにおいては、燃料電池セルスタックが、燃料電池セルを複数積層してなる積層型の燃料電池セルスタックであり、各燃料電池セルが、酸化物イオン導電体で構成された平板状の電解質の両面に、カソード電極及びアノード電極をそれぞれ設けることにより構成されている。さらに、各燃料電池セルの間には、カソードセパレータとアノードセパレータがそれぞれ配置されている。さらに、カソードセパレータには、カソード電極に酸化剤ガスを供給する酸化剤ガス流路が形成され、アノードセパレータには、アノード電極に燃料ガスを供給する燃料ガス流路が形成されている。
BACKGROUND ART Conventionally, as a fuel cell module that generates electric power by reacting a supplied fuel gas with an oxidant gas, for example, one described in Patent Document 1 is known.
The conventional fuel cell module described in Patent Document 1 includes a fuel cell stack, a combustor, and a reformer, and these are housed in a housing.
Further, in the above-described conventional fuel cell module, the fuel cell cell stack is a stacked fuel cell cell stack in which a plurality of fuel cell cells are laminated, and each fuel cell cell is composed of an oxide ion conductor. It is configured by providing a cathode electrode and an anode electrode on both surfaces of the formed flat plate-shaped electrolyte, respectively. Further, a cathode separator and an anode separator are arranged between the fuel cells, respectively. Further, the cathode separator is provided with an oxidant gas flow passage for supplying an oxidant gas to the cathode electrode, and the anode separator is provided with a fuel gas flow passage for supplying a fuel gas to the anode electrode.
 このようにして積層された複数の燃料電池セル、カソードセパレータ、及びアノードセパレータは、両端から上部エンドプレート及び下部エンドプレートによって挟まれ、積層方向に押圧固定されている。また、下部エンドプレートには、各燃料電池セルに酸化剤ガスを供給するための酸化剤ガス入口と、各燃料電池セルに燃料ガスを供給するための燃料ガス入口が設けられている。下部エンドプレートには、さらに、各燃料電池セルのカソード電極に供給され、発電に使用されずに残った酸化剤ガスを排出する酸化剤ガス出口と、各燃料電池セルのアノード電極に供給され、発電に使用されずに残った燃料ガスを排出する燃料ガス出口が設けられている。  The fuel cells, cathode separators, and anode separators stacked in this way are sandwiched from both ends by the upper end plate and the lower end plate, and are pressed and fixed in the stacking direction. Further, the lower end plate is provided with an oxidant gas inlet for supplying an oxidant gas to each fuel cell and a fuel gas inlet for supplying a fuel gas to each fuel cell. The lower end plate is further supplied to the cathode electrode of each fuel cell and is supplied to the oxidant gas outlet for discharging the oxidant gas not used for power generation and remaining, and the anode electrode of each fuel cell, A fuel gas outlet is provided for discharging the remaining fuel gas that is not used for power generation.
 燃料ガス出口から流出した残余の燃料ガスと酸化剤ガス出口から流出した残余の酸化剤ガスは、筐体内に配置された燃焼器に導かれ、ここで燃焼される。燃焼器において生成された燃焼熱は、筐体の両側側面にそれぞれ配置された酸化剤ガス通路内を流れる酸化剤ガスと熱交換が行われる。熱交換により昇温された酸化剤ガスは酸化剤ガス導入口を介して燃料電池セルスタックに導入される。これにより、燃料電池セルスタックは、発電反応が可能な温度に昇温される。このように、特許文献1記載の燃料電池モジュールにおいては、筐体内に配置された燃焼器において、残余の燃料ガスを残余の酸化剤ガスにより燃焼させ、生成された燃焼ガスにより燃料電池セルスタックを間接的に加熱し、燃料電池セルスタックを発電反応が可能な温度に効率的に昇温させ、その温度を維持している。 Residual fuel gas flowing out from the fuel gas outlet and residual oxidant gas flowing out from the oxidant gas outlet are guided to a combustor arranged in the housing and burned there. The combustion heat generated in the combustor exchanges heat with the oxidant gas flowing in the oxidant gas passages arranged on both side surfaces of the casing. The oxidant gas whose temperature has been raised by heat exchange is introduced into the fuel cell stack through the oxidant gas inlet. As a result, the temperature of the fuel cell stack is raised to a temperature at which the power generation reaction is possible. As described above, in the fuel cell module described in Patent Document 1, in the combustor arranged in the housing, the residual fuel gas is burned by the residual oxidant gas, and the fuel cell stack is formed by the generated combustion gas. The fuel cell stack is indirectly heated to efficiently raise the temperature of the fuel cell stack to a temperature at which the power generation reaction is possible, and the temperature is maintained.
 また、上述した従来の燃料電池モジュールにおいては、積層型の燃料電池セルスタックが筐体等の外郭容器部材の内部に収容されるものが一般的であり、燃料電池セルにおいて発電された電力を取り出す導電性のバスバーが、外郭容器部材を貫通して外部に取り出されるようになっている。 In addition, in the above-described conventional fuel cell module, it is general that a stacked fuel cell stack is housed inside an outer container member such as a housing, and electric power generated in the fuel cell is taken out. The conductive bus bar penetrates the outer container member and is taken out to the outside.
特開2017-50192号公報JP, 2017-50192, A
 しかしながら、上述した特許文献1に記載されている従来の燃料電池モジュールにおいては、燃料電池セルスタックを収容する外郭容器部材を備えており、この外郭容器部材をバスバーが貫通する構造であるため、バスバーと外郭容器部材との間を電気的に絶縁する構造が必要となる。
 また、燃料電池セルスタックを外郭容器部材に収容するためには、両者の設計誤差や熱膨張差等に配慮した構造が必要となる。
 したがって、これらの必要となる構造を確保するためには、部品点数が増大したり、加工コスト等が増大したり、サイズ・重量が増大したりするため、製造コストが増大するという問題がある。
 また、部品点数を増大すると、その分、電気抵抗も増大するおそれもあるという問題もある。
However, in the conventional fuel cell module described in Patent Document 1 described above, the outer container member that accommodates the fuel cell stack is provided, and the bus bar penetrates the outer container member. A structure that electrically insulates between the outer container member and the outer container member is required.
Further, in order to house the fuel cell stack in the outer container member, a structure that takes into account design error and thermal expansion difference between the two is required.
Therefore, in order to secure these necessary structures, there are problems that the number of parts increases, the processing cost and the like increase, and the size and weight increase, so that the manufacturing cost increases.
Further, if the number of parts is increased, there is a problem that the electric resistance may be increased accordingly.
 そこで、本発明は、上述した従来技術の問題を解決するためになされたものであり、製造コストを抑制することができると共に、電気抵抗を抑制することができる燃料電池モジュールを提供することを目的としている。 Therefore, the present invention has been made in order to solve the above-mentioned problems of the prior art, and an object thereof is to provide a fuel cell module capable of suppressing the manufacturing cost and suppressing the electric resistance. I am trying.
 上述した課題を解決するために、本発明は、供給された燃料ガスと酸化剤ガスを反応させることにより発電する燃料電池モジュールであって、燃料ガスと酸化剤ガスの流路が各々規定された密閉型の燃料電池セルスタックと、原燃料ガスを改質して、水素を含む燃料ガスを生成し、上記燃料電池セルスタックに供給する改質器と、上記燃料電池セルスタックにおいて発電に使用されずに残った残余燃料ガスを燃焼させ、上記改質器を加熱する燃焼器と、上記燃料電池セルにおいて発電された電力を取り出す導電性のバスバーと、を有し、上記燃料電池モジュールは、上記燃料電池セルスタックを収容する外郭容器部材を備えておらず、上記バスバーは、その基端側が上記燃料電池セルスタックに設けられていると共に、先端側が上記外郭容器部材を貫通することなく上記燃料電池モジュールの外部に直接的に取り出し可能に突出していることを特徴としている。
 このように構成された本発明においては、まず、密閉型の燃料電池セルスタックを収容する外郭容器部材が設けられていないため、バスバーの基端側を燃料電池セルスタックに容易に設けることができる。
 また、燃料電池セルスタックを外郭容器部材に収容する際に両者の設計誤差や熱膨張差等に配慮した構造については、外郭容器部材を不要にすることにより省略することができる。
 さらに、バスバーの先端側について、外郭容器部材を貫通することなく燃料電池モジュールの外部で直接的に取り出し可能に突出させることができるため、外郭容器部材とバスバーとの間を電気的に絶縁する構造や部品についても省略することができる。
 これらの結果、部品点数を抑制することにより、製造コストを抑制することができると共に電気抵抗を抑制することもできる。
In order to solve the above-mentioned problems, the present invention is a fuel cell module that generates electricity by reacting a supplied fuel gas with an oxidant gas, and the flow paths of the fuel gas and the oxidant gas are defined respectively. A closed fuel cell stack, a reformer that reforms raw fuel gas to generate fuel gas containing hydrogen, and supplies the fuel gas to the fuel cell stack, and a reformer used for power generation in the fuel cell stack. The combustor that burns the residual fuel gas remaining without heating to heat the reformer, and a conductive bus bar that takes out the electric power generated in the fuel cell, the fuel cell module, The outer peripheral container member for accommodating the fuel cell stack is not provided, and the bus bar has the base end side thereof provided in the fuel cell stack and the front end side of the fuel cell without penetrating the outer container member. It is characterized in that it protrudes directly to the outside of the module so that it can be taken out.
In the present invention thus configured, first, since the outer container member for housing the closed type fuel cell stack is not provided, the base end side of the bus bar can be easily provided in the fuel cell stack. ..
In addition, a structure in which the fuel cell stack is accommodated in the outer container member in consideration of design error and thermal expansion difference between the two can be omitted by eliminating the outer container member.
Further, since the tip end side of the busbar can be directly and externally protruded outside the fuel cell module without penetrating the outer container member, a structure electrically insulating between the outer container member and the busbar. The parts and parts can also be omitted.
As a result, by suppressing the number of parts, it is possible to suppress the manufacturing cost and also the electric resistance.
 本発明において、好ましくは、さらに、上記改質器及び上記燃焼器を収容する空間が内部に形成されたハウジングと、上記燃料電池セルスタックを上記ハウジングから熱的に隔離するように配置された断熱材と、を有し、上記バスバーは、その基端側が上記断熱材によって拘束されている。
 このように構成された本発明においては、断熱材により、燃料電池セルスタックとハウジングとの間で直接伝わる熱を低減することができる。これにより、ハウジング内の改質器、燃焼器等の配置変更等が、燃料電池セルスタックの温度分布に与える影響をさらに低減することができる。
 また、断熱材により、燃料電池セルスタックの端部に設けられたバスバーの基端側を拘束することができるため、バスバーについて外郭容器部材を貫通することなく安定して保持することができる。
In the present invention, preferably, a housing in which a space for accommodating the reformer and the combustor is formed, and heat insulation arranged to thermally isolate the fuel cell stack from the housing. The busbar is constrained at its proximal end side by the heat insulating material.
In the present invention thus configured, the heat insulating material can reduce the heat directly transmitted between the fuel cell stack and the housing. As a result, it is possible to further reduce the influence of the layout change of the reformer and the combustor in the housing on the temperature distribution of the fuel cell stack.
Further, since the heat insulating material can restrain the base end side of the bus bar provided at the end portion of the fuel cell stack, the bus bar can be stably held without penetrating the outer container member.
 本発明において、好ましくは、上記燃料電池セルスタックは、上記断熱材によって包囲されている。
 このように構成された本発明においては、ハウジング内の改質器、燃焼器等の配置変更等が、燃料電池セルスタックの温度分布に与える影響をさらに効果的に低減することができる。
In the present invention, preferably, the fuel cell stack is surrounded by the heat insulating material.
In the present invention thus configured, it is possible to more effectively reduce the influence of the layout change of the reformer, the combustor and the like in the housing on the temperature distribution of the fuel cell stack.
 本発明において、好ましくは、上記断熱材は、非導電性の絶縁体であり、上記バスバーの基端部は、上記断熱材に覆われて上記燃料電池セルスタックの端部に固定された固定端部であり、上記バスバーの先端部は、上記断熱材の外側まで突出しており、上記断熱材によって拘束されていない自由端部である。
 このように構成された本発明においては、バスバーの基端部が燃料電池セルスタックの端部に固定されて断熱材によって直接的または間接的に拘束された固定端部であることより、バスバーの固定端部とその周辺部分との間の熱伝達を断熱材により抑制することができる。
 また、断熱材が非導電性の絶縁体であることにより、バスバーの固定端部とその周辺部分との間を電気的に絶縁することができる。
 さらに、外郭容器部材が設けられていないことに加えて、バスバーの先端部が断熱材の外側まで突出していることにより、断熱材によって拘束されていない自由端部となる。これにより、燃料電池セルスタックの端部に固定されるバスバーの固定端部の位置に応じて、バスバーの自由端部の位置を変更することができるため、設計の自由度を高めることができる。
 したがって、燃料電池セルにおいて発電された電力をバスバーにより燃料電池モジュールの外部で直接的に取り出す際には、バスバーの自由端部の位置に応じて電力を取り出す位置や方向を自由に設定することができる。
In the present invention, preferably, the heat insulating material is a non-conductive insulator, and the base end portion of the bus bar is covered with the heat insulating material and fixed to the end portion of the fuel cell stack. The end portion of the bus bar is a free end portion that protrudes to the outside of the heat insulating material and is not constrained by the heat insulating material.
In the present invention thus configured, the base end portion of the bus bar is a fixed end portion that is fixed to the end portion of the fuel cell stack and directly or indirectly constrained by the heat insulating material. The heat transfer between the fixed end portion and its peripheral portion can be suppressed by the heat insulating material.
Further, since the heat insulating material is a non-conductive insulator, it is possible to electrically insulate between the fixed end portion of the bus bar and its peripheral portion.
Further, since the outer container member is not provided and the tip end portion of the bus bar projects to the outside of the heat insulating material, the free end portion is not restricted by the heat insulating material. Thus, the position of the free end portion of the bus bar can be changed according to the position of the fixed end portion of the bus bar fixed to the end portion of the fuel cell stack, so that the degree of freedom in design can be increased.
Therefore, when the electric power generated in the fuel cell unit is directly taken out of the fuel cell module by the bus bar, the position and direction for taking out electric power can be freely set according to the position of the free end of the bus bar. it can.
 本発明において、好ましくは、上記バスバーの自由端部は、電線が接続される電線接続部を備えており、上記断熱材は、上記電線が上記電線接続部に接続された状態で上記バスバーの変形を抑制する緩衝材である。
 このように構成された本発明においては、バスバーの自由端部の電線接続部に電線が接続された状態において、断熱材がバスバーの変形を抑制する緩衝材として機能することができる。
 すなわち、電線の自重・弾性力等によりバスバーの自由端部に変形荷重等が作用して、バスバー自体に多少の変形が生じたとしても、断熱材がバスバーの変形を抑制する緩衝材となるため、バスバーや燃料電池セルスタックが破損しないように保護することができる。
In the present invention, preferably, the free end portion of the bus bar is provided with an electric wire connecting portion to which an electric wire is connected, and the heat insulating material is a deformation of the bus bar in a state where the electric wire is connected to the electric wire connecting portion. It is a cushioning material that suppresses
In the present invention thus configured, the heat insulating material can function as a cushioning material that suppresses the deformation of the bus bar when the electric wire is connected to the electric wire connecting portion at the free end of the bus bar.
That is, even if a deformation load is applied to the free end portion of the bus bar due to its own weight and elastic force of the electric wire, and the bus bar itself is slightly deformed, the heat insulating material serves as a cushioning material that suppresses the deformation of the bus bar. , It is possible to protect the bus bar and the fuel cell stack from damage.
 本発明において、好ましくは、上記バスバーは、上記密閉型の燃料電池セルスタックの複数の平板型の燃料電池セルのそれぞれが互いに積層される積層面に対して表面又は裏面が平行になるように、上記燃料電池セルスタックのうちの最も外側の上記平板型の燃料電池セルの外面に配置されている。
 このように構成された本発明においては、バスバーについて、複数の平板型の燃料電池セルのそれぞれが互いに積層される積層面に対して表面又は裏面が平行になるように、燃料電池セルスタックのうちの最も外側の平板型の燃料電池セルの外面に配置することができる。
 これにより、バスバーを燃料電池セルスタックの端部に容易に組み付けることができ、簡易な構造にすることができる。
In the present invention, preferably, the bus bar is such that the front surface or the back surface is parallel to a stacking surface on which each of the plurality of flat plate-type fuel battery cells of the sealed fuel battery cell stack is stacked, It is arranged on the outer surface of the outermost flat type fuel cell of the fuel cell stack.
In the present invention thus configured, in the bus bar, among the fuel cell stacks, the front surface or the back surface is parallel to the stacking surface on which each of the plurality of flat plate type fuel battery cells is stacked. Can be arranged on the outer surface of the outermost flat type fuel cell.
Thereby, the bus bar can be easily assembled to the end portion of the fuel cell stack, and the structure can be simplified.
 本発明において、好ましくは、上記バスバーは、その基端部から長手方向の先端部まで板状に形成され、その表面又は裏面が鉛直面になるように配置されている。
 仮に、基端部から長手方向の先端部まで板状に形成されたバスバーの表面又は裏面が水平面になるように配置されている場合、バスバーの自由端部の電線接続部に電線が接続された状態では、電線の自重等によりバスバーの自由端部に下方向の変形荷重(曲げ荷重、たわみ荷重等)が作用するため、バスバー自体の変形が生じ易い状態となる。
 これに対し、本発明においては、バスバーの自由端部の電線接続部に電線が接続された状態で、電線の自重等によりバスバーの自由端部に下方向の変形荷重(曲げ荷重、たわみ荷重等)が発生したとしても、バスバーの表面又は裏面が鉛直面になるように配置することができる。
 これにより、バスバーの表面又は裏面が水平面内に配置した場合に比べて、下方向の変形荷重(曲げ荷重、たわみ荷重等)に対するバスバーの剛性(曲げ剛性、たわみ剛性等)を高めることができる。
 したがって、バスバーの自由端部の電線接続部に電線が接続された状態において、バスバーの変形(曲げ変形、たわみ変形等)を抑制することができるため、過度な変形によりバスバーが破損するリスクを低減することができる。
In the present invention, preferably, the bus bar is formed in a plate shape from the base end portion to the tip end portion in the longitudinal direction, and is arranged such that the front surface or the back surface thereof is a vertical plane.
If the bus bar formed in a plate shape from the base end to the distal end in the longitudinal direction is arranged so that the front surface or the back surface is a horizontal surface, the electric wire was connected to the electric wire connection portion of the free end of the bus bar. In this state, a downward deformation load (a bending load, a bending load, etc.) acts on the free end portion of the bus bar due to the weight of the electric wire or the like, so that the bus bar itself is easily deformed.
On the other hand, in the present invention, in the state in which the electric wire is connected to the electric wire connecting portion of the free end portion of the bus bar, downward load (bending load, bending load, etc.) is applied to the free end portion of the bus bar due to its own weight or the like. ) Occurs, the front surface or the back surface of the bus bar can be arranged so as to be vertical.
As a result, the rigidity (bending rigidity, bending rigidity, etc.) of the bus bar with respect to downward deformation load (bending load, bending load, etc.) can be increased compared to the case where the front surface or the back surface of the bus bar is arranged in a horizontal plane.
Therefore, it is possible to suppress the deformation (bending deformation, bending deformation, etc.) of the busbar when the electric wire is connected to the electric wire connecting portion at the free end of the busbar, and thus the risk of damaging the busbar due to excessive deformation is reduced. can do.
 本発明において、好ましくは、上記複数の平板型の燃料電池セルのそれぞれは、その積層面が鉛直面となるように互いに水平方向に積層されている。
 このように構成された本発明においては、複数の平板型の燃料電池セルのそれぞれについて、その積層面が鉛直面となるように互いに水平方向に積層されているため、最も外側の平板型の燃料電池セルの外面にバスバーの表面又は裏面を組み付けるだけで、これらを鉛直面内に配置することができる。
 したがって、バスバーを燃料電池セルスタックの端部に容易に組み付けることができる。また、バスバーを鉛直面内で回転させて位置決めすることにより、バスバーから電力を取り出す位置や方向を自由に設定することができる。
In the present invention, preferably, each of the plurality of flat plate type fuel cell units is horizontally stacked such that the stacking surface thereof is a vertical plane.
In the present invention configured as described above, since each of the plurality of flat plate-type fuel cells is stacked in the horizontal direction so that the stacking surface becomes a vertical plane, the outermost flat plate-type fuel By simply assembling the front surface or the back surface of the bus bar to the outer surface of the battery cell, these can be arranged in the vertical plane.
Therefore, the bus bar can be easily attached to the end of the fuel cell stack. Further, by rotating and positioning the bus bar in the vertical plane, it is possible to freely set the position and the direction in which electric power is taken out from the bus bar.
 本発明において、好ましくは、さらに、上記断熱材の外側に設けられたカバー部材を有し、このカバー部材は、上記断熱材を保持するように構成されている。
 このように構成された本発明においては、カバー部材により断熱材を確実に保持することができるため、バスバーや燃料電池セルスタックが破損しないように確実に保護することができる。
In the present invention, preferably, further, a cover member provided outside the heat insulating material is provided, and the cover member is configured to hold the heat insulating material.
In the present invention thus configured, the heat insulating material can be reliably held by the cover member, so that the bus bar and the fuel cell stack can be surely protected from being damaged.
 本発明の燃料電池モジュールによれば、製造コストを抑制することができると共に、電気抵抗を抑制することができる。 According to the fuel cell module of the present invention, it is possible to suppress the manufacturing cost and the electric resistance.
本発明の第1実施形態による燃料電池モジュール全体の概略構成図である。FIG. 1 is a schematic configuration diagram of an entire fuel cell module according to a first embodiment of the present invention. 本発明の第1実施形態による燃料電池モジュールの斜視図である。FIG. 3 is a perspective view of the fuel cell module according to the first embodiment of the present invention. 本発明の第1実施形態による燃料電池モジュールの正面断面図である。FIG. 3 is a front sectional view of the fuel cell module according to the first embodiment of the present invention. 図3のIV-IV線に沿った断面図である。FIG. 4 is a sectional view taken along line IV-IV in FIG. 3. 図3のV-V線に沿った断面図である。FIG. 5 is a sectional view taken along line VV of FIG. 3. 図3のVI-VI線に沿った断面図である。FIG. 6 is a cross-sectional view taken along line VI-VI of FIG. 3. 本発明の第2実施形態による燃料電池モジュール全体において、正面側の断熱材及びエンドプレートを取り外した状態の概略正面図である。FIG. 11 is a schematic front view of the entire fuel cell module according to the second embodiment of the present invention with a heat insulating material and an end plate on the front side removed. 図7に示す本発明の第2実施形態による燃料電池モジュールにおいて、バスバー部分を拡大した斜視図である。FIG. 8 is an enlarged perspective view of a bus bar portion in the fuel cell module according to the second embodiment of the present invention shown in FIG. 7.
 つぎに、添付図面を参照して、本発明の第1実施形態による燃料電池モジュールについて説明する。
 図1は、本発明の第1実施形態による燃料電池モジュール全体の概略構成図である。
Next, the fuel cell module according to the first embodiment of the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a schematic configuration diagram of the entire fuel cell module according to the first embodiment of the present invention.
 <燃料電池モジュールの概略構成及び作用>
 図1に示すように、本発明の第1実施形態による燃料電池モジュール1は、発電反応を行う燃料電池セルスタック2と、この燃料電池セルスタック2に、原燃料ガスを改質した燃料ガス、及び加熱した酸化剤ガスである空気を供給する流体供給装置4と、を有する。
 まず、燃料電池セルスタック2は、複数の平板型の燃料電池セル2aを鉛直方向に積層して構成された、いわゆる、「積層型の燃料電池セルスタック」である。
 また、燃料電池セルスタック2は、その密閉された室内に燃料ガスの流路及び酸化剤ガスの流路のそれぞれが定めされた、いわゆる、「密閉型の燃料電池セルスタック」でもある。
<Schematic configuration and operation of fuel cell module>
As shown in FIG. 1, a fuel cell module 1 according to a first embodiment of the present invention includes a fuel cell stack 2 that performs a power generation reaction, and a fuel gas obtained by reforming the raw fuel gas in the fuel cell stack 2. And a fluid supply device 4 for supplying air that is a heated oxidant gas.
First, the fuel cell stack 2 is a so-called "stacked fuel cell stack", which is configured by vertically stacking a plurality of flat-plate fuel cell 2a.
The fuel cell stack 2 is also a so-called "sealed fuel cell stack" in which a fuel gas flow path and an oxidant gas flow path are defined in the closed chamber.
 また、流体供給装置4はハウジング6を備えており、このハウジング6が燃料電池セルスタック2の上方に鉛直方向に並べて配置されている。これらの燃料電池セルスタック2、及びハウジング6は断熱材8によって包囲されているとともに、燃料電池セルスタック2とハウジング6との間にも設けられている。
 これにより、燃料電池セルスタック2は、ハウジング6(流体供給装置4)から熱的に隔離されている。
 また、この燃料電池セルスタック2及びハウジング6を包囲している断熱材8の外側には、カバー部材A1(図1参照)が設けられている。
 ここで、本明細書中において、空気、水、燃料ガス等の流入及び流出を可能にするような密閉型の容器を「外郭容器部材」と定義する。
 なお、カバー部材A1は、断熱材8を外側から保持するものにすぎず、外郭容器部材ではない。
 したがって、本実施形態の燃料電池モジュール1においては、密閉型の容器である外郭容器部材が設けられていない。
Further, the fluid supply device 4 includes a housing 6, and the housing 6 is arranged above the fuel cell stack 2 in the vertical direction. The fuel cell stack 2 and the housing 6 are surrounded by the heat insulating material 8 and also provided between the fuel cell stack 2 and the housing 6.
As a result, the fuel cell stack 2 is thermally isolated from the housing 6 (fluid supply device 4).
A cover member A1 (see FIG. 1) is provided outside the heat insulating material 8 surrounding the fuel cell stack 2 and the housing 6.
Here, in this specification, a hermetically-sealed container that allows inflow and outflow of air, water, fuel gas, and the like is defined as an “outer shell member”.
The cover member A1 merely holds the heat insulating material 8 from the outside and is not an outer container member.
Therefore, in the fuel cell module 1 of this embodiment, the outer container member, which is a closed container, is not provided.
 また、ハウジング6によって密閉された空間内には、改質器36、燃焼器38が収容されている。
 なお、図1においては、断熱材8はひと続きのものとして記載しているが、複数の断熱材で構成されるものであってもよい。例えば、燃料電池セルスタック2及びハウジング6を包囲する断熱材と、燃料電池セルスタック2とハウジング6との間に設ける断熱材とは、異なる断熱材であってもよい。
 さらに断熱材は、異なる断熱性能を有する部材を複数組み合わせて用いてもよく、重ねあわせや配置方法は、適宜要求される仕様に応じて設計することができる。
 また、燃料電池セルスタック2とハウジング6との間に設ける断熱材は、必ずしも燃料電池セルスタック2とハウジング6との間を完全に覆うものでなくてもよく、少なくとも必要に応じて部分的に配置することで効果を奏するものである。
Further, the reformer 36 and the combustor 38 are housed in the space sealed by the housing 6.
In addition, in FIG. 1, the heat insulating material 8 is described as one continuous piece, but may be composed of a plurality of heat insulating materials. For example, the heat insulating material that surrounds the fuel cell stack 2 and the housing 6 and the heat insulating material that is provided between the fuel cell stack 2 and the housing 6 may be different heat insulating materials.
Further, as the heat insulating material, a plurality of members having different heat insulating performances may be used in combination, and the superposing and arranging methods can be designed according to the required specifications.
Further, the heat insulating material provided between the fuel cell stack 2 and the housing 6 does not necessarily have to completely cover the space between the fuel cell stack 2 and the housing 6, and at least partially as needed. By arranging it, the effect is achieved.
 改質器36は、流体供給装置4の外部から供給された原燃料ガスを水蒸気改質して、水素を豊富に含む燃料ガスを生成するように構成されている。
 改質器36において生成された燃料ガスは、燃料電池セルスタック2に送られ、燃料電池セルスタック2において発電に使用されるようになっている。この燃料ガスは、流体供給装置4のハウジング6と燃料電池セルスタック2の間に延びる燃料供給通路12を介して燃料電池セルスタック2に供給されるようになっている。
 ここで、流体供給装置4のハウジング6は断熱材8によって包囲されているので、燃料ガスを供給する燃料供給通路12は、断熱材8を貫通して燃料電池セルスタック2へ延びている。
The reformer 36 is configured to steam-reform the raw fuel gas supplied from the outside of the fluid supply device 4 to generate a fuel gas rich in hydrogen.
The fuel gas generated in the reformer 36 is sent to the fuel cell stack 2, and is used for power generation in the fuel cell stack 2. The fuel gas is supplied to the fuel cell stack 2 through a fuel supply passage 12 extending between the housing 6 of the fluid supply device 4 and the fuel cell stack 2.
Since the housing 6 of the fluid supply device 4 is surrounded by the heat insulating material 8, the fuel supply passage 12 for supplying the fuel gas penetrates the heat insulating material 8 and extends to the fuel cell stack 2.
 燃焼器38は、燃料電池セルスタック2において発電に使用されずに残った残余燃料を燃焼させるように構成されている。
 燃料電池セルスタック2において発電に使用されずに残った燃料は、流体供給装置4のハウジング6と燃料電池セルスタック2の間に延びる燃料排出通路14を介してハウジング6側へ排出されるようになっている。この燃料排出通路14についても、流体供給装置4のハウジング6を包囲する断熱材8を貫通して燃料電池セルスタック2から流体供給装置4へ延びている。
 ハウジング6側へ排出された残余燃料は、ハウジング6内に収容された燃焼器38によって燃焼され、燃焼器38の上方に配置された改質器36を加熱するようになっている。これにより、改質器36内の改質触媒(図示せず)が水蒸気改質可能な温度に加熱されるようになっている。
The combustor 38 is configured to burn the residual fuel that remains in the fuel cell stack 2 without being used for power generation.
The fuel not used for power generation in the fuel cell stack 2 is discharged to the housing 6 side through a fuel discharge passage 14 extending between the housing 6 of the fluid supply device 4 and the fuel cell stack 2. Has become. This fuel discharge passage 14 also extends from the fuel cell stack 2 to the fluid supply device 4 through the heat insulating material 8 that surrounds the housing 6 of the fluid supply device 4.
The residual fuel discharged to the housing 6 side is combusted by the combustor 38 housed in the housing 6 and heats the reformer 36 arranged above the combustor 38. As a result, the reforming catalyst (not shown) in the reformer 36 is heated to a temperature at which steam reforming is possible.
 一方、発電用の酸化剤ガスである空気についても、外部から流体供給装置4に供給されるようになっている。そして、この空気は、燃焼器38の燃焼熱によって加熱され、高温になった状態で燃料電池セルスタック2へ供給されるようになっている。
 燃料電池セルスタック2は、主として、高温に加熱された発電用空気の熱により、発電反応可能な温度まで加熱されるようになっている。
 流体供給装置4において加熱された発電用の空気は、ハウジング6から延びる酸化剤ガス供給通路16を介して燃料電池セルスタック2に供給されるようになっている。この酸化剤ガス供給通路16についても、流体供給装置4のハウジング6を包囲する断熱材8を貫通して流体供給装置4から燃料電池セルスタック2へ延びている。
On the other hand, air, which is an oxidant gas for power generation, is also supplied from the outside to the fluid supply device 4. Then, this air is heated by the combustion heat of the combustor 38 and is supplied to the fuel cell stack 2 in a high temperature state.
The fuel cell stack 2 is mainly heated by the heat of the power generation air heated to a high temperature to a temperature at which a power generation reaction is possible.
The power generation air heated in the fluid supply device 4 is supplied to the fuel cell stack 2 through the oxidant gas supply passage 16 extending from the housing 6. This oxidant gas supply passage 16 also extends from the fluid supply device 4 to the fuel cell stack 2 through the heat insulating material 8 surrounding the housing 6 of the fluid supply device 4.
 また、燃料電池セルスタック2に供給され、発電に使用されずに残った残余の空気は、酸化剤ガス排出通路18を介してハウジング6側へ排出されるようになっている。
 この酸化剤ガス排出通路18についても、流体供給装置4のハウジング6を包囲する断熱材8を貫通して燃料電池セルスタック2から流体供給装置4へ延びている。
 ハウジング6側へ排出された残余空気は、ハウジング6内の燃焼器38において、燃焼に使用されるようになっている。燃焼により生成された燃焼ガスは、排気ガスとして流体供給装置4から排出されるようになっている。
Further, the residual air supplied to the fuel cell stack 2 and not used for power generation and remaining is discharged to the housing 6 side through the oxidant gas discharge passage 18.
The oxidant gas discharge passage 18 also extends from the fuel cell stack 2 to the fluid supply device 4 through the heat insulating material 8 surrounding the housing 6 of the fluid supply device 4.
The residual air discharged to the housing 6 side is used for combustion in the combustor 38 in the housing 6. The combustion gas generated by the combustion is exhausted from the fluid supply device 4 as exhaust gas.
 このように、本発明の実施形態の燃料電池モジュール1においては、残余燃料ガスが、流体供給装置4の燃焼器38において残余空気によって燃焼され、その燃焼熱によって改質器36が加熱されるようになっている。
 一方、改質器36及び燃焼器38は、流体供給装置4のハウジング6内に収容され、ハウジング6は断熱材8によって燃料電池セルスタック2から熱的に分離されている。
 これにより、燃料電池セルスタック2は、実質的に、残余燃料の燃焼熱によって直接加熱されることはない。すなわち、流体供給装置4(ハウジング6)側と、燃料電池セルスタック2の間の熱の移動は、実質的に、それらの間を流れる流体のみによって行われ、燃焼器38等から放射された輻射熱等によって、燃料電池セルスタック2が直接加熱されることはない。
 このため、燃料電池セルスタック2の温度は、実質的に、これに供給する流体流量、温度のみによって規定することができるようになっている。
As described above, in the fuel cell module 1 according to the embodiment of the present invention, the residual fuel gas is burned by the residual air in the combustor 38 of the fluid supply device 4, and the reformer 36 is heated by the combustion heat. It has become.
On the other hand, the reformer 36 and the combustor 38 are housed in the housing 6 of the fluid supply device 4, and the housing 6 is thermally separated from the fuel cell stack 2 by the heat insulating material 8.
As a result, the fuel cell stack 2 is not substantially directly heated by the combustion heat of the residual fuel. That is, the heat transfer between the fluid supply device 4 (housing 6) side and the fuel cell stack 2 is substantially performed only by the fluid flowing between them, and the radiant heat radiated from the combustor 38 or the like is used. Therefore, the fuel cell stack 2 is not directly heated.
Therefore, the temperature of the fuel cell stack 2 can be substantially regulated only by the flow rate and the temperature of the fluid supplied thereto.
 なお、燃料電池モジュールと共に使用される装置として、水蒸気改質用の水蒸気を生成する蒸発器、原燃料ガスに含まれる硫黄成分を除去する脱硫器、排気ガス中の一酸化炭素等を除去する燃焼触媒器等があるが、これらをハウジング内に収容することもできる。
 或いは、これらの装置をハウジングの外側に配置すると共に断熱材で被覆し、ハウジングから排出される排気ガスの熱により、これらを加熱することもできる。
As an apparatus used with the fuel cell module, an evaporator that produces steam for steam reforming, a desulfurizer that removes the sulfur component contained in the raw fuel gas, a combustion that removes carbon monoxide, etc. in the exhaust gas There are a catalyst device and the like, but these may be housed in a housing.
Alternatively, these devices can be placed outside the housing and covered with a heat insulating material so that they are heated by the heat of the exhaust gas discharged from the housing.
 つぎに、図2~図6を参照して、本発明の第1実施形態による燃料電池モジュールの構成を詳細に説明する。
 まず、図2は、本発明の第1実施形態による燃料電池モジュールの斜視図である。つぎに、図3は、本発明の第1実施形態による燃料電池モジュールの正面断面図である。また、図4は、図3のIV-IV線に沿った断面図である。さらに、図5は、図3のV-V線に沿った断面図である。また、図6は、図3のVI-VI線に沿った断面図である。
 なお、図2においては、燃料電池セルスタック等を包囲する断熱材を省略して示している。
Next, the configuration of the fuel cell module according to the first embodiment of the present invention will be described in detail with reference to FIGS. 2 to 6.
First, FIG. 2 is a perspective view of the fuel cell module according to the first embodiment of the present invention. Next, FIG. 3 is a front sectional view of the fuel cell module according to the first embodiment of the present invention. FIG. 4 is a sectional view taken along the line IV-IV in FIG. Further, FIG. 5 is a sectional view taken along line VV of FIG. 6 is a cross-sectional view taken along the line VI-VI of FIG.
In FIG. 2, the heat insulating material surrounding the fuel cell stack and the like is omitted.
 <燃料電池モジュールの全体構成>
 図2に示すように、本実施形態による燃料電池モジュール1は、発電反応を行う燃料電池セルスタック2と、この燃料電池セルスタック2に原燃料ガスを改質した燃料ガス、及び加熱した酸化剤ガスである空気を供給する流体供給装置4と、を有する。また、流体供給装置4は、蒸発器4a及び改質・加熱器4bから構成されている。蒸発器4aは、供給された水を蒸発させて水蒸気を生成すると共に、この水蒸気を原燃料ガスと混合するように構成されており、改質・加熱器4bは蒸発器4aから供給された混合ガスを水蒸気改質して、水素を含む燃料ガスを生成し、燃料電池セルスタック2に供給するように構成されている。
<Overall structure of fuel cell module>
As shown in FIG. 2, the fuel cell module 1 according to the present embodiment includes a fuel cell stack 2 that performs a power generation reaction, a fuel gas obtained by reforming the fuel cell stack 2 from a raw fuel gas, and a heated oxidizer. A fluid supply device 4 for supplying air that is gas. Further, the fluid supply device 4 is composed of an evaporator 4a and a reforming/heating device 4b. The evaporator 4a is configured to evaporate the supplied water to generate water vapor and mix the water vapor with the raw fuel gas. The reforming/heating device 4b is mixed with the mixture supplied from the evaporator 4a. The gas is steam-reformed to generate a fuel gas containing hydrogen, and the fuel gas is supplied to the fuel cell stack 2.
 また、改質・加熱器4bは概ね直方体形状の金属製のハウジング6によって覆われており、燃料電池セルスタック2、その上方に配置された改質・加熱器4bのハウジング6、及び蒸発器4aは、鉛直方向に並べて配置されている。これらの燃料電池セルスタック2、ハウジング6、及び蒸発器4aは断熱材8によってそれぞれ包囲されており、燃料電池セルスタック2は、ハウジング6及び蒸発器4aから熱的に隔離されている。 Further, the reforming/heating device 4b is covered with a substantially rectangular parallelepiped metal housing 6, and the fuel cell stack 2, the housing 6 of the reforming/heating device 4b arranged above the fuel cell stack 2, and the evaporator 4a. Are arranged side by side in the vertical direction. The fuel cell stack 2, the housing 6, and the evaporator 4a are surrounded by the heat insulating material 8, and the fuel cell stack 2 is thermally isolated from the housing 6 and the evaporator 4a.
 <燃料電池セルスタックの構成>
 図2及び図3に示すように、本実施形態においては、燃料電池セルスタック2は平板型セルスタックであり、複数の長方形の平板型燃料電池セル2aを積層して構成されている。
 すなわち、各燃料電池セル2aは、酸化物イオン導電体で構成された平板状の電解質の両面に、燃料極及び空気極(酸化剤ガス極)の電極をそれぞれ設けることにより構成され、各燃料電池セル2aの間にはセパレータが配置されている(以上、図示せず)。
 また、積層された複数の燃料電池セル2aの上端にはトップエンドプレート10aが配置され、下端にはボトムエンドプレート10bが配置されている。このように複数の燃料電池セル2aを積層して得られた燃料電池セルスタック2の内部には、各燃料電池セル2aに燃料ガスを供給するための燃料ガス供給通路(図示せず)と、酸化剤ガスである空気を供給するための酸化剤ガス供給通路(図示せず)が形成されている。
 さらに、燃料電池セルスタック2の上部及び底部からは、発電された電力を取り出すための2本のバスバーB1,B2がそれぞれ延びている。
<Configuration of fuel cell stack>
As shown in FIGS. 2 and 3, in the present embodiment, the fuel cell stack 2 is a flat cell stack, and is configured by stacking a plurality of rectangular flat fuel cells 2a.
That is, each fuel battery cell 2a is configured by providing electrodes of a fuel electrode and an air electrode (oxidant gas electrode) on both sides of a flat plate electrolyte made of an oxide ion conductor, and each fuel cell A separator is arranged between the cells 2a (these are not shown).
A top end plate 10a is arranged at the upper ends of the plurality of stacked fuel cells 2a, and a bottom end plate 10b is arranged at the lower ends thereof. A fuel gas supply passage (not shown) for supplying a fuel gas to each fuel battery cell 2a is provided inside the fuel battery cell stack 2 obtained by stacking a plurality of fuel battery cells 2a in this manner. An oxidant gas supply passage (not shown) for supplying air that is an oxidant gas is formed.
Further, two bus bars B1 and B2 for taking out the generated electric power extend from the top and bottom of the fuel cell stack 2.
 つぎに、図2及び図3に示すように、これらのバスバーB1,B2は、金属等の導電性の部材が長板状に形成された上下一対の上側バスバーB1及び下側バスバーB2からなる。
 また、上側バスバーB1の基端部は、燃料電池セルスタック2の最上段の燃料電池セル2aの上端面とトップエンドプレート10aの底面との間に設けられている。
 一方、下側バスバーB2の基端部は、燃料電池セルスタック2の最下段の燃料電池セル2aの下端面とボトムエンドプレート10bの上面との間に設けられている。
 すなわち、各バスバーB1,B2は、燃料電池セルスタック2のうちの最も外側の平板型の燃料電池セル2aの外面(最上段の燃料電池セル2aの上面(最上端面E1)及び最下段の燃料電池セル2aの底面(最下端面E2))に配置されている。
 これにより、図2及び図3に示すように、各バスバーB1,B2においては、複数の平板型の燃料電池セル2aのそれぞれが互いに積層される積層面Lnに対して、それぞれの表面(上面S1,S3)及び裏面(下面S2,S4)が平行になるように配置されている。
 さらに、各バスバーB1,B2の先端部は、外郭容器部材を貫通することなく燃料電池モジュール1の外部で直接的に取り出し可能に水平方向(より具体的には、図2及び図3に示す各バスバーB1,B2を正面側から見て右側方)に突出している。
Next, as shown in FIGS. 2 and 3, these busbars B1, B2 are composed of a pair of upper and lower upper busbars B1 and lower busbars B2 in which a conductive member such as metal is formed into a long plate shape.
The base end of the upper bus bar B1 is provided between the upper end surface of the uppermost fuel cell 2a of the fuel cell stack 2 and the bottom surface of the top end plate 10a.
On the other hand, the base end portion of the lower bus bar B2 is provided between the lower end surface of the lowermost fuel cell 2a of the fuel cell stack 2 and the upper surface of the bottom end plate 10b.
That is, each of the bus bars B1 and B2 includes the outer surface (the upper surface (uppermost end surface E1) of the uppermost fuel cell 2a) and the lowermost fuel cell of the outermost flat plate-type fuel cell 2a in the fuel cell stack 2. It is arranged on the bottom surface (the lowermost surface E2) of the cell 2a.
As a result, as shown in FIGS. 2 and 3, in each of the bus bars B1 and B2, with respect to the stacking surface Ln on which the plurality of flat plate-type fuel battery cells 2a are stacked, the respective surfaces (upper surface S1 , S3) and the back surfaces (lower surfaces S2, S4) are parallel to each other.
Further, the tip end portions of the bus bars B1 and B2 are horizontally (to be more specific, shown in FIGS. 2 and 3) so that they can be directly taken out of the fuel cell module 1 without penetrating the outer container member. The bus bars B1 and B2 are projected to the right side when viewed from the front side).
 つぎに、図3に示すように、断熱材8は非導電性の絶縁体であり、各バスバーB1,B2は、その基端側から長手方向の中間部付近に亘って断熱材8によって包囲されて直接的または間接的に拘束された状態となっている。
 これにより、各バスバーB1,B2の基端部は、燃料電池セルスタック2の燃料電池セル2aの最上端部及び最下端部のそれぞれに固定されており、断熱材8によって直接的または間接的に拘束された固定端部となっている。
 一方、各バスバーB1,B2の先端部は、断熱材8の外側まで突出しており、この断熱材8によって拘束されていない自由端部となっている。
Next, as shown in FIG. 3, the heat insulating material 8 is a non-conductive insulator, and the bus bars B1 and B2 are surrounded by the heat insulating material 8 from the base end side to the vicinity of the intermediate portion in the longitudinal direction. Have been restrained directly or indirectly.
Thereby, the base end portions of the bus bars B1 and B2 are fixed to the uppermost end portion and the lowermost end portion of the fuel cell 2a of the fuel cell stack 2, respectively, and directly or indirectly by the heat insulating material 8. It has a fixed fixed end.
On the other hand, the tip ends of the bus bars B1 and B2 project to the outside of the heat insulating material 8 and are free end portions that are not restrained by the heat insulating material 8.
 つぎに、図2及び図3に示すように、各バスバーB1,B2の先端部(自由端部)には、電線接続部(端子穴C1,C2)が設けられている。
 この電線接続部(端子穴C1,C2)を含む各バスバーB1,B2の先端部(自由端部)は、複数の電線又はケーブル等が束ねられたハーネス(図示せず)からの電線が接続される接続端子となっている。
 また、各バスバーB1,B2の電線接続部(端子穴C1,C2)に電線が接続された状態では、ハーネス(図示せず)等の自重が各バスバーB1,B2の先端部(自由端部)を下方向に変形させようとする曲げ荷重又はたわみ荷重が発生するが、断熱材8は、このようなバスバーB1,B2の変形(曲げ変形又はたわみ変形)を抑制する緩衝材として機能するようにもなっている。
Next, as shown in FIGS. 2 and 3, electric wire connection portions (terminal holes C1 and C2) are provided at the tip end portions (free end portions) of the bus bars B1 and B2.
Electric wires from a harness (not shown) in which a plurality of electric wires or cables are bundled are connected to the tip ends (free ends) of the bus bars B1 and B2 including the electric wire connecting portions (terminal holes C1 and C2). Connection terminal.
Further, in a state in which the electric wires are connected to the electric wire connecting portions (terminal holes C1, C2) of the bus bars B1, B2, the self-weight of the harness (not shown) or the like causes the tip portions (free end portions) of the bus bars B1, B2. Although a bending load or a bending load is generated that tries to deform the shaft downward, the heat insulating material 8 functions as a cushioning material that suppresses such deformation (bending deformation or bending deformation) of the bus bars B1 and B2. It is also becoming.
 さらに、燃料電池セルスタック2のトップエンドプレート10aには、燃料供給通路12と、燃料排出通路14と、酸化剤ガス供給通路16と、酸化剤ガス排出通路18がそれぞれ接続されている。
 これらの4本の通路は、燃料電池セルスタック2と改質・加熱器4bのハウジング6の間に挟まれた空間内に延びている。
 すなわち、これらの通路は、燃料電池セルスタック2のトップエンドプレート10aの上面から上方に延び、燃料電池セルスタック2の上方に配置されたハウジング6の単一の面である底面に接続されている。
 したがって、燃料供給通路12、燃料排出通路14、酸化剤ガス供給通路16、及び酸化剤ガス排出通路18は、燃料電池セルスタック2とハウジング6の間に配置されている断熱材8を貫通して延びている。
 なお、改質・加熱器4bのハウジング6は、燃料電池セルスタック2に対し、これら4本の通路(燃料供給通路12、燃料排出通路14、酸化剤ガス供給通路16、及び酸化剤ガス排出通路18)のみによって連結され、支持されている。
Further, a fuel supply passage 12, a fuel discharge passage 14, an oxidant gas supply passage 16 and an oxidant gas discharge passage 18 are connected to the top end plate 10a of the fuel cell stack 2.
These four passages extend into the space sandwiched between the fuel cell stack 2 and the housing 6 of the reformer/heater 4b.
That is, these passages extend upward from the upper surface of the top end plate 10a of the fuel cell stack 2, and are connected to the bottom surface, which is a single surface of the housing 6 arranged above the fuel cell stack 2. ..
Therefore, the fuel supply passage 12, the fuel discharge passage 14, the oxidant gas supply passage 16 and the oxidant gas discharge passage 18 penetrate the heat insulating material 8 arranged between the fuel cell stack 2 and the housing 6. It is extended.
The housing 6 of the reformer/heater 4b has four passages (a fuel supply passage 12, a fuel discharge passage 14, an oxidant gas supply passage 16 and an oxidant gas discharge passage) for the fuel cell stack 2. 18) only connected and supported.
 燃料供給通路12及び燃料排出通路14は、トップエンドプレート10aの1つの短辺の近傍に並べて取り付けられ、それぞれ鉛直上方に直線状に延びている。
 改質・加熱器4bにおいて改質された燃料ガスは、燃料供給通路12を介して燃料電池セルスタック2に供給され、燃料電池セルスタック2内の燃料ガス供給通路(図示せず)を通って各燃料電池セル2aに分配されるようになっている。
 各燃料電池セル2aにおいて発電に使用されずに残った残余の燃料ガスは、燃料電池セルスタック2内の燃料ガス排出通路(図示せず)を通って集められ、トップエンドプレート10aに取り付けられた燃料排出通路14を介して改質・加熱器4bに排出されるようになっている。
The fuel supply passage 12 and the fuel discharge passage 14 are attached side by side in the vicinity of one short side of the top end plate 10a, and linearly extend vertically upward.
The fuel gas reformed in the reformer/heater 4b is supplied to the fuel cell stack 2 through the fuel supply passage 12 and passes through the fuel gas supply passage (not shown) in the fuel cell stack 2. It is adapted to be distributed to each fuel cell 2a.
Residual fuel gas remaining without being used for power generation in each fuel cell 2a is collected through a fuel gas discharge passage (not shown) in the fuel cell stack 2 and attached to the top end plate 10a. The fuel is discharged to the reformer/heater 4b through the fuel discharge passage 14.
 図3及び図4に示すように、酸化剤ガス供給通路16及び酸化剤ガス排出通路18は、トップエンドプレート10aの1つの長辺の近傍に並べて取り付けられ、それぞれ鉛直上方に延びた後、内側に向けて90度屈曲して水平方向に延び、さらに90度屈曲して鉛直上方に延びている。
 これら酸化剤ガス供給通路16、酸化剤ガス排出通路18の上端は、改質・加熱器4bのハウジング6の底面に、その長手方向の中心軸線上に並べて接続されている。
As shown in FIGS. 3 and 4, the oxidant gas supply passage 16 and the oxidant gas discharge passage 18 are attached side by side in the vicinity of one long side of the top end plate 10a, and extend vertically upward, respectively, and then, inside. It bends 90 degrees toward and extends in the horizontal direction, and further bends 90 degrees and extends vertically upward.
The upper ends of the oxidant gas supply passage 16 and the oxidant gas discharge passage 18 are connected to the bottom surface of the housing 6 of the reforming/heating device 4b side by side on the central axis line in the longitudinal direction.
 改質・加熱器4bにおいて加熱された空気は、酸化剤ガス供給通路16を介して燃料電池セルスタック2に供給され、燃料電池セルスタック2内の酸化剤ガス供給通路(図示せず)を通って各燃料電池セル2aに分配されるようになっている。
 各燃料電池セル2aにおいて発電に使用されずに残った残余の空気は、燃料電池セルスタック2内の酸化剤ガス排出通路(図示せず)を通って集められ、トップエンドプレート10aに取り付けられた酸化剤ガス排出通路18を介して改質・加熱器4bに排出されるようになっている。
The air heated in the reformer/heater 4b is supplied to the fuel cell stack 2 through the oxidant gas supply passage 16 and passes through the oxidant gas supply passage (not shown) in the fuel cell stack 2. Are distributed to each fuel cell 2a.
Residual air remaining without being used for power generation in each fuel cell 2a is collected through an oxidant gas discharge passage (not shown) in the fuel cell stack 2 and attached to the top end plate 10a. It is adapted to be discharged to the reforming/heating device 4b through the oxidizing gas discharge passage 18.
 また、上述したように、酸化剤ガス供給通路16及び酸化剤ガス排出通路18がハウジング6の底面に接続される位置と、それらの通路が燃料電池セルスタック2に接続される位置は、上面視において異なっている。しかしながら、それらの通路をハウジング6と燃料電池セルスタック2の間の空間内で湾曲させることにより、燃料電池セルスタック2側とハウジング6側を接続することができるようになっている。
 したがって、接続する通路を適宜変更することにより、単一のハウジング6(流体供給装置4)に、種々の燃料電池セルスタック2を接続することができるようになっている。
 また、各通路は、ハウジング6と燃料電池セルスタック2の間に挟まれた空間内に延びているので、占有床面積を広げることなく、燃料供給通路12、燃料排出通路14、酸化剤ガス供給通路16、及び酸化剤ガス排出通路18を設けることができるようになっている。
Further, as described above, the positions where the oxidant gas supply passage 16 and the oxidant gas discharge passage 18 are connected to the bottom surface of the housing 6 and the positions where these passages are connected to the fuel cell stack 2 are viewed from above. Are different in. However, by curving those passages in the space between the housing 6 and the fuel cell stack 2, the fuel cell stack 2 side and the housing 6 side can be connected.
Therefore, various fuel cell stacks 2 can be connected to the single housing 6 (fluid supply device 4) by appropriately changing the connecting passages.
Further, since each passage extends into the space sandwiched between the housing 6 and the fuel cell stack 2, the fuel supply passage 12, the fuel discharge passage 14, the oxidant gas supply can be provided without increasing the occupied floor area. A passage 16 and an oxidant gas discharge passage 18 can be provided.
 さらに、燃料供給通路12、燃料排出通路14、酸化剤ガス供給通路16、及び酸化剤ガス排出通路18は、それぞれ、配管用ねじを使用した連結構造を有している。よって、連結用のナットを緩めることにより分離可能に構成されている。このように、燃料供給通路12、燃料排出通路14、酸化剤ガス供給通路16、及び酸化剤ガス排出通路18は、改質・加熱器4bのハウジング6に対し、取り外し可能に連結されている。
 或いは、これら4本の通路のうちの一部又は全部をハウジング6の底面から延びるように構成し、それらの通路を燃料電池セルスタック2に対して取り外し可能に連結することもできる。
Further, the fuel supply passage 12, the fuel discharge passage 14, the oxidant gas supply passage 16 and the oxidant gas discharge passage 18 each have a connection structure using piping screws. Therefore, it can be separated by loosening the connecting nut. As described above, the fuel supply passage 12, the fuel discharge passage 14, the oxidant gas supply passage 16, and the oxidant gas discharge passage 18 are detachably connected to the housing 6 of the reformer/heater 4b.
Alternatively, some or all of these four passages may be configured to extend from the bottom surface of the housing 6, and these passages may be detachably connected to the fuel cell stack 2.
 <蒸発器の構成>
 つぎに、図2及び図3を参照して、蒸発器4aの構造を説明する。図2に示すように蒸発器4aには、水を供給するための水供給用配管20と、原燃料ガスを供給するための原燃料ガス供給配管22と、排気ガスを排出するための排気ガス排出管24が接続されている。
 また、改質・加熱器4bのハウジング6と、その外部の蒸発器4aとは配管により接続されている。これにより、この配管は、改質・加熱器4bから蒸発器4aへ排気ガスを供給する排気ガス配管26と、この内側に配置された混合ガス導管28の二重管構造となっている(図3参照)。
 混合ガス導管28は、蒸発器4a内で生成された水蒸気と、蒸発器4aに供給された原燃料ガスを混合した混合気を改質・加熱器4b内に導入するように構成されている。
 また、蒸発器4aの側面周囲三辺には、蒸発器4aを補助的に加熱するための電気ヒータ29が巻回されている。
<Structure of evaporator>
Next, the structure of the evaporator 4a will be described with reference to FIGS. 2 and 3. As shown in FIG. 2, the evaporator 4a includes a water supply pipe 20 for supplying water, a raw fuel gas supply pipe 22 for supplying raw fuel gas, and an exhaust gas for exhausting exhaust gas. The discharge pipe 24 is connected.
Further, the housing 6 of the reforming/heating device 4b and the evaporator 4a outside thereof are connected by a pipe. As a result, this pipe has a double pipe structure of an exhaust gas pipe 26 for supplying exhaust gas from the reforming/heating device 4b to the evaporator 4a and a mixed gas conduit 28 arranged inside this (FIG. 3).
The mixed gas conduit 28 is configured to introduce, into the reforming/heating device 4b, a mixed gas obtained by mixing the water vapor generated in the evaporator 4a and the raw fuel gas supplied to the evaporator 4a.
An electric heater 29 for auxiliary heating of the evaporator 4a is wound around three sides of the evaporator 4a.
 図3に示すように、蒸発器4aは、金属板により直方体状の箱形に形成されており、内部には、蒸発室30aと、混合室30bと、排気ガス室30cが形成されている。
 蒸発室30aは、蒸発器4aの天井面の直下に形成された薄型の空間であり、蒸発器4aの天井面に接続された水供給用配管20及び原燃料ガス供給配管22からそれぞれ供給された水及び原燃料ガスが蒸発室30a内に流入するように構成されている。
As shown in FIG. 3, the evaporator 4a is formed of a metal plate into a rectangular parallelepiped box shape, and inside thereof, an evaporation chamber 30a, a mixing chamber 30b, and an exhaust gas chamber 30c are formed.
The evaporation chamber 30a is a thin space formed immediately below the ceiling surface of the evaporator 4a, and is supplied from a water supply pipe 20 and a raw fuel gas supply pipe 22 connected to the ceiling surface of the evaporator 4a. Water and raw fuel gas are configured to flow into the evaporation chamber 30a.
 混合室30bは、細い通路30dを介して蒸発室30aの下流側に連通した空間として形成されている。
 蒸発室30a内で生成された水蒸気と、蒸発室30a内に供給された原燃料ガスは、細い通路30dを通って混合室30b内に流入することにより混合されるようになっている。
 混合室30bの底面には、混合ガス導管28が接続されている。これにより、混合室30b内で混合された水蒸気及び原燃料ガスは、混合ガス導管28を通って改質・加熱器4b内に導入されるようになっている。
The mixing chamber 30b is formed as a space communicating with the downstream side of the evaporation chamber 30a via a narrow passage 30d.
The water vapor generated in the evaporation chamber 30a and the raw fuel gas supplied into the evaporation chamber 30a are mixed by flowing into the mixing chamber 30b through the narrow passage 30d.
The mixed gas conduit 28 is connected to the bottom surface of the mixing chamber 30b. As a result, the steam and the raw fuel gas mixed in the mixing chamber 30b are introduced into the reforming/heating device 4b through the mixed gas conduit 28.
 排気ガス室30cは、蒸発器4aの下部に設けられた空間であり、蒸発器4aの底面に接続された排気ガス配管26を介して排気ガスが流入するように構成されている。
 排気ガス室30cに流入した排気ガスは、排気ガス室30cの上側に設けられた蒸発室30aの床面を加熱して、蒸発器4aの側面端部に接続された排気ガス排出管24から排出されるようになっている。
 蒸発室30aに供給された水は、排気ガス室30c内を流れる排気ガスによって蒸発室30aの床面が加熱されることにより蒸発されるようになっている。
The exhaust gas chamber 30c is a space provided in the lower portion of the evaporator 4a, and is configured so that exhaust gas flows in via an exhaust gas pipe 26 connected to the bottom surface of the evaporator 4a.
The exhaust gas flowing into the exhaust gas chamber 30c heats the floor surface of the evaporation chamber 30a provided above the exhaust gas chamber 30c, and is discharged from the exhaust gas discharge pipe 24 connected to the side end of the evaporator 4a. It is supposed to be done.
The water supplied to the evaporation chamber 30a is evaporated when the floor surface of the evaporation chamber 30a is heated by the exhaust gas flowing in the exhaust gas chamber 30c.
 排気ガス室30cの下流側は、流入した排気ガスが蒸発室30aの床面(排気ガス室30cの天井面)に沿って流れるように、薄型にされている。
 この薄型にされた空間には、排気ガス室30cを流れる排気ガスの熱が蒸発室30aの床面に効率良く伝わるように、伝熱用のフィン30eが配置されている。このように、排気ガス室30cの一端に接続された排気ガス配管26から流入した排気ガスは、他端に接続された排気ガス排出管24に向かって(図3の左から右へ)流れるようになっている。 一方、蒸発室30aの、排気ガス排出管24側の端部に接続された水供給用配管20から供給された水は、蒸発室30a内で蒸発されながら、他端部に向かって(図3の右から左へ)流れるようになっている。このように、蒸発器4a内を流れる水蒸気と排気ガスは反対方向に流れるので、それらの間でカウンターフロー型の熱交換が行われ、効率良く熱交換がなされるようになっている。
The downstream side of the exhaust gas chamber 30c is made thin so that the inflowing exhaust gas flows along the floor surface of the evaporation chamber 30a (the ceiling surface of the exhaust gas chamber 30c).
In this thin space, heat transfer fins 30e are arranged so that the heat of the exhaust gas flowing through the exhaust gas chamber 30c can be efficiently transferred to the floor surface of the evaporation chamber 30a. In this way, the exhaust gas flowing from the exhaust gas pipe 26 connected to one end of the exhaust gas chamber 30c flows toward the exhaust gas discharge pipe 24 connected to the other end (from left to right in FIG. 3). It has become. On the other hand, the water supplied from the water supply pipe 20 connected to the end of the evaporation chamber 30a on the exhaust gas discharge pipe 24 side is being evaporated in the evaporation chamber 30a, and toward the other end (FIG. 3). From right to left). In this way, the water vapor and the exhaust gas flowing in the evaporator 4a flow in the opposite directions, so that counterflow type heat exchange is performed between them and the heat exchange is performed efficiently.
 <改質・加熱器の構成>
 つぎに、図2~図6を参照して、改質・加熱器4bの構造を説明する。
 図2に示すように、改質・加熱器4bは、金属製のハウジング6によって囲まれた直方体状の箱形に形成されており、その上面には発電用の酸化剤ガスである空気を供給するための空気供給パイプ32が接続されている。また、上述したように、ハウジング6の上面には排気ガス配管26と混合ガス導管28の二重管(図3)、底面には、燃料供給通路12、燃料排出通路14、酸化剤ガス供給通路16、及び酸化剤ガス排出通路18が接続されている。また、ハウジング6の一方の側面には、点火用のセラミックヒータ34が取り付けられている。
<Structure of reformer/heater>
Next, the structure of the reforming/heating unit 4b will be described with reference to FIGS.
As shown in FIG. 2, the reforming/heating device 4b is formed in a rectangular parallelepiped box shape surrounded by a metal housing 6, and its upper surface is supplied with air which is an oxidant gas for power generation. An air supply pipe 32 for connecting is connected. As described above, the upper surface of the housing 6 is a double pipe of the exhaust gas pipe 26 and the mixed gas conduit 28 (FIG. 3), and the bottom surface is the fuel supply passage 12, the fuel discharge passage 14, and the oxidant gas supply passage. 16 and the oxidant gas discharge passage 18 are connected. A ceramic heater 34 for ignition is attached to one side surface of the housing 6.
 改質・加熱器4bは、混合ガス導管28から導入された混合ガスを水蒸気改質して燃料ガスを生成し、燃料供給通路12を介して燃料電池セルスタック2に供給すると共に、空気供給パイプ32を介して導入された空気を加熱し、酸化剤ガス供給通路16を介して燃料電池セルスタック2に供給するように構成されている。
 また、燃料電池セルスタック2において発電に使用されずに残った残余燃料ガス及び残余空気(残余酸化剤ガス)は、それぞれ、燃料排出通路14及び酸化剤ガス排出通路18を介して改質・加熱器4bに排出されるようになっている。
 燃料排出通路14及び酸化剤ガス排出通路18を介して排出された残余燃料ガス及び残余空気は、改質・加熱器4b内で燃焼され、この燃焼熱により、空気供給パイプ32から導入された空気を加熱するようになっている。燃焼により生成された燃焼ガスは、排気ガス配管26を介して排気ガスとして蒸発器4aへ導入されるようになっている。
The reformer/heater 4b steam-reforms the mixed gas introduced from the mixed gas conduit 28 to generate a fuel gas, which is supplied to the fuel cell stack 2 through the fuel supply passage 12 and an air supply pipe. The air introduced via 32 is heated and supplied to the fuel cell stack 2 via the oxidant gas supply passage 16.
Further, the residual fuel gas and the residual air (residual oxidant gas) remaining without being used for power generation in the fuel cell stack 2 are reformed/heated through the fuel discharge passage 14 and the oxidant gas discharge passage 18, respectively. It is designed to be discharged to the container 4b.
The residual fuel gas and residual air discharged through the fuel discharge passage 14 and the oxidant gas discharge passage 18 are combusted in the reformer/heater 4b, and the air introduced from the air supply pipe 32 by this combustion heat. Is designed to be heated. The combustion gas generated by the combustion is introduced into the evaporator 4a as exhaust gas through the exhaust gas pipe 26.
 つぎに、図3~図6を参照して、改質・加熱器4bの内部構造を説明する。
 図3に示すように、改質・加熱器4bを形成するハウジング6の内部には、改質器36と、燃焼器38を収容する密閉空間が形成されている。
Next, the internal structure of the reforming/heating device 4b will be described with reference to FIGS.
As shown in FIG. 3, a sealed space for housing the reformer 36 and the combustor 38 is formed inside the housing 6 forming the reformer/heater 4b.
 改質器36は、上面視で長方形の断面を有し、中央に長方形の開口が設けられた金属製の環状容器であり、その一端部には混合ガスを導入するための混合ガス導管28が接続されている。
 また、改質器36の他端部には改質された燃料ガスを流出させる燃料供給通路12が接続(図5)されている。
 蒸発器4aからハウジング6内に延びる混合ガス導管28は、ハウジング6内で90度屈曲され、水平方向に延びた後、鉛直下方に向けて90度屈曲して、改質器36の天井面に接続されている。
 燃料供給通路12は、混合ガス導管28とは反対側の端部の、改質器36の底面に接続され、ハウジング6の底面を貫通して鉛直下方に延び、燃料電池セルスタック2に接続されている。
 改質器36の内部には改質触媒36aが充填されている。混合ガス導管28から流入した原燃料ガスと水蒸気の混合ガスは、改質触媒36aと接触することにより水蒸気改質され、水素ガスを豊富に含む燃料ガスが生成されるようになっている。改質器36内で水蒸気改質された燃料ガスは、燃料供給通路12に流入し、燃料電池セルスタック2に供給されるようになっている。
The reformer 36 is a metal annular container having a rectangular cross section in a top view and having a rectangular opening in the center, and a mixed gas conduit 28 for introducing a mixed gas is provided at one end thereof. It is connected.
Further, the fuel supply passage 12 for flowing out the reformed fuel gas is connected to the other end of the reformer 36 (FIG. 5).
The mixed gas conduit 28 extending from the evaporator 4a into the housing 6 is bent 90 degrees in the housing 6, extends horizontally, and then bends 90 degrees vertically downward to reach the ceiling surface of the reformer 36. It is connected.
The fuel supply passage 12 is connected to the bottom surface of the reformer 36 at the end opposite to the mixed gas conduit 28, penetrates the bottom surface of the housing 6 and extends vertically downward, and is connected to the fuel cell stack 2. ing.
The inside of the reformer 36 is filled with a reforming catalyst 36a. The mixed gas of the raw fuel gas and steam flowing from the mixed gas conduit 28 is steam-reformed by coming into contact with the reforming catalyst 36a, and a fuel gas rich in hydrogen gas is generated. The fuel gas steam-reformed in the reformer 36 flows into the fuel supply passage 12 and is supplied to the fuel cell stack 2.
 燃焼器38は、燃料電池セルスタック2と隣接しているハウジング6の底壁面の内側に設けられている。これにより、燃料排出通路14を介して排出された残余燃料ガスは、酸化剤ガス排出通路18を介して排出された残余空気により燃焼するようになっている。 The combustor 38 is provided inside the bottom wall surface of the housing 6 adjacent to the fuel cell stack 2. As a result, the residual fuel gas discharged through the fuel discharge passage 14 is burned by the residual air discharged through the oxidant gas discharge passage 18.
 図6に示すように、燃焼器38は、残余燃料ガスマニホルド38aと、これに接続された残余燃料ガス分配管38bと、残余空気をハウジング6内に分散させる残余空気分散板38cと、を有する。
 残余燃料ガスマニホルド38aは、ハウジング6の一端部の底壁面に取り付けられた箱形の部材であり、ハウジング6の底壁面に接続された燃料排出通路14からの残余燃料ガスが内部に流入するように構成されている。
As shown in FIG. 6, the combustor 38 includes a residual fuel gas manifold 38a, a residual fuel gas distribution pipe 38b connected to the residual fuel gas manifold 38a, and a residual air distribution plate 38c for dispersing the residual air in the housing 6. ..
The residual fuel gas manifold 38a is a box-shaped member attached to the bottom wall surface of one end of the housing 6, and allows the residual fuel gas from the fuel discharge passage 14 connected to the bottom wall surface of the housing 6 to flow into the inside. Is configured.
 残余燃料ガス分配管38bは円形断面のパイプから構成されている。これらのパイプは残余燃料ガスマニホルド38aからハウジング6の長手方向に4本平行に延び、ハウジング6の他端部において短手方向に延びるパイプにより合流されている。
 残余燃料ガス分配管38bを構成するパイプの上面には、多数の細孔が設けられている。これにより、残余燃料ガスマニホルド38aから残余燃料ガス分配管38bに流入した残余燃料ガスは、これらの細孔から噴出するようになっている。
The residual fuel gas distribution pipe 38b is composed of a pipe having a circular cross section. These pipes extend from the residual fuel gas manifold 38a in parallel in the longitudinal direction of the housing 6, and are joined together by pipes extending in the lateral direction at the other end of the housing 6.
A large number of pores are provided on the upper surface of the pipe forming the residual fuel gas distribution pipe 38b. As a result, the residual fuel gas flowing from the residual fuel gas manifold 38a into the residual fuel gas distribution pipe 38b is ejected from these pores.
 残余空気分散板38cは、台形断面に折り曲げられた細長い金属板から構成され(図4参照)、ハウジング6の底壁面の中央に長手方向に延びるように取り付けられている。
 ハウジング6の底壁面に接続された酸化剤ガス排出通路18は、残余空気分散板38cとハウジング6の底壁面で囲まれた台形断面の空間と連通している。
 また、残余空気分散板38cの両側の斜面には多数の細孔が形成されており、酸化剤ガス排出通路18から流入した残余空気は、これらの細孔からハウジング6の内部に噴射され、分散されるようになっている。
The residual air distribution plate 38c is composed of an elongated metal plate bent into a trapezoidal cross section (see FIG. 4), and is attached to the center of the bottom wall surface of the housing 6 so as to extend in the longitudinal direction.
The oxidant gas discharge passage 18 connected to the bottom wall surface of the housing 6 communicates with the trapezoidal cross section space surrounded by the residual air distribution plate 38c and the bottom wall surface of the housing 6.
Further, a large number of pores are formed on the slopes on both sides of the residual air dispersion plate 38c, and the residual air that has flowed in from the oxidant gas discharge passage 18 is injected into the housing 6 through these pores and dispersed. It is supposed to be done.
 図3及び図6に示すように、ハウジング6の側壁面にはセラミックヒータ34が取り付けられており、その先端部が残余燃料ガス分配管38bの合流部の中央まで延びている。
 燃料電池モジュール1の起動時において、残余燃料ガス分配管38bの各細孔から残余燃料ガスが噴出し、残余空気分散板38cの各細孔から残余空気が噴出している状態でセラミックヒータ34に通電することにより、噴出している残余燃料ガスに点火することができるようになっている。これにより、ハウジング6内で燃焼器38の上方に配置された改質器36を加熱することができるようになっている。
 なお、燃料電池モジュール1の起動初期においては、改質器36が昇温されていないため、改質器36内で改質反応は発生せず、燃料電池セルスタック2による発電も行われていない。
As shown in FIGS. 3 and 6, a ceramic heater 34 is attached to the side wall surface of the housing 6, and its tip portion extends to the center of the confluent portion of the residual fuel gas distribution pipe 38b.
When the fuel cell module 1 is started up, the residual fuel gas is ejected from the respective pores of the residual fuel gas distribution pipe 38b, and the residual air is ejected from the respective pores of the residual air distribution plate 38c to the ceramic heater 34. By energizing, it is possible to ignite the residual fuel gas that is being ejected. As a result, the reformer 36 arranged above the combustor 38 in the housing 6 can be heated.
Since the reformer 36 is not heated in the initial stage of starting the fuel cell module 1, the reforming reaction does not occur in the reformer 36 and the fuel cell stack 2 does not generate power. ..
 <酸化剤ガス熱交換器の構成>
 つぎに、図3及び図4を参照して、改質・加熱器4bに備えられた酸化剤ガス熱交換器を説明する。
 図3及び図4に示すように、ハウジング6はその壁面の一部が二重壁構造に構成されており、この二重壁の内側に発電用の空気を流すことにより、燃焼器38が生成した燃焼ガスで内部を流れる空気を加熱している。
 すなわち、ハウジング6の上面の一部、長手方向の側壁面の一部、及び底壁面の一部は、内壁板6aと、外壁板6bの二枚の金属板から形成されている。これら内壁板6aと外壁板6bの間には、伝熱用のフィン40が配置されており、内壁板6aの熱が内壁板6aと外壁板6bの間の空間に効率良く伝わるようになっている。
 したがって、内壁板6a、外壁板6b、及び伝熱用のフィン40は、供給された酸化剤ガスである空気を、燃焼器38によって生成された燃焼ガスにより加熱して燃料電池セルスタック2に供給する酸化剤ガス熱交換器として機能する。
<Structure of oxidant gas heat exchanger>
Next, the oxidant gas heat exchanger provided in the reforming/heating device 4b will be described with reference to FIGS. 3 and 4.
As shown in FIG. 3 and FIG. 4, a part of the wall surface of the housing 6 has a double wall structure, and the combustor 38 is generated by flowing air for power generation inside the double wall. The combustion gas is used to heat the air flowing inside.
That is, a part of the upper surface, a part of the side wall surface in the longitudinal direction, and a part of the bottom wall surface of the housing 6 are formed of two metal plates, an inner wall plate 6a and an outer wall plate 6b. The fins 40 for heat transfer are arranged between the inner wall plate 6a and the outer wall plate 6b so that the heat of the inner wall plate 6a is efficiently transferred to the space between the inner wall plate 6a and the outer wall plate 6b. There is.
Therefore, the inner wall plate 6a, the outer wall plate 6b, and the heat transfer fins 40 heat the supplied oxidant gas, air, by the combustion gas generated by the combustor 38, and supply the air to the fuel cell stack 2. It functions as an oxidant gas heat exchanger.
 空気供給パイプ32から供給された空気は、ハウジング6の上壁面を構成する内壁板6aと外壁板6bの間の空間に流入し(図3参照)、ここからハウジング6の短手方向に広がって、ハウジング6の側壁面を構成する内壁板6aと外壁板6bの間の空間に流入するようになっている(図4参照)。
 ハウジング6の側壁面の中に流入した空気は、下方に下り、ハウジング6の底壁面を構成する内壁板6aと外壁板6bの間の空間に流入するようになっている。
 ハウジング6の底壁面の中に流入した空気は、ハウジング6の底壁面の短手方向中央に接続された酸化剤ガス供給通路16(図3)を通って燃料電池セルスタック2に供給されるようになっている。
 したがって、ハウジング6の上壁面、側壁面、及び底壁面の一部が酸化剤ガス熱交換器として機能し、これらの壁面に酸化剤ガス熱交換器が設けられていることになる。
The air supplied from the air supply pipe 32 flows into the space between the inner wall plate 6a and the outer wall plate 6b forming the upper wall surface of the housing 6 (see FIG. 3), and spreads from here in the lateral direction of the housing 6. , Flows into the space between the inner wall plate 6a and the outer wall plate 6b forming the side wall surface of the housing 6 (see FIG. 4).
The air that has flowed into the side wall surface of the housing 6 descends downward and flows into the space between the inner wall plate 6a and the outer wall plate 6b that forms the bottom wall surface of the housing 6.
The air flowing into the bottom wall surface of the housing 6 is supplied to the fuel cell stack 2 through the oxidant gas supply passage 16 (FIG. 3) connected to the center of the bottom wall surface of the housing 6 in the lateral direction. It has become.
Therefore, the upper wall surface, the side wall surface, and a part of the bottom wall surface of the housing 6 function as an oxidant gas heat exchanger, and the oxidant gas heat exchanger is provided on these wall surfaces.
 <燃料電池モジュールの作用>
 つぎに、本発明の第1実施形態による燃料電池モジュール1の作用を説明する。
 まず、燃料電池モジュール1の起動時においては、原燃料ガス供給配管22を介して流体供給装置4の蒸発器4aに原燃料ガスが供給されると共に、空気供給パイプ32を介して発電用の空気が流体供給装置4の改質・加熱器4bに供給される。
 図3に示すように、供給された原燃料ガスは、蒸発器4aの蒸発室30a、混合室30bを通って混合ガス導管28に流入し、さらに、改質・加熱器4bの改質器36の中に流入する。
 なお、燃料電池モジュール1の起動初期においては、改質器36の温度が低いため、原燃料ガスを改質する反応は発生しない。改質器36に流入した原燃料ガスは、燃料供給通路12(図5参照)を通って燃料電池セルスタック2の内部に流入する。
<Operation of fuel cell module>
Next, the operation of the fuel cell module 1 according to the first embodiment of the present invention will be described.
First, when the fuel cell module 1 is started, the raw fuel gas is supplied to the evaporator 4 a of the fluid supply device 4 via the raw fuel gas supply pipe 22, and the power generation air is supplied via the air supply pipe 32. Is supplied to the reforming/heating device 4b of the fluid supply device 4.
As shown in FIG. 3, the supplied raw fuel gas flows into the mixed gas conduit 28 through the evaporation chamber 30a and the mixing chamber 30b of the evaporator 4a, and further, the reformer 36 of the reforming/heating device 4b. Flows into.
In the initial stage of starting the fuel cell module 1, since the temperature of the reformer 36 is low, the reaction for reforming the raw fuel gas does not occur. The raw fuel gas flowing into the reformer 36 flows into the fuel cell stack 2 through the fuel supply passage 12 (see FIG. 5).
 一方、空気供給パイプ32を介して改質・加熱器4bに供給された空気は、ハウジング6の内壁板6aと外壁板6bの間の空間を通って酸化剤ガス供給通路16(図5)を通って燃料電池セルスタック2の内部に流入する。
 燃料電池セルスタック2内に流入した原燃料ガス及び空気は、内部の通路を通り、燃料排出通路14及び酸化剤ガス排出通路18を介してそれぞれ改質・加熱器4bに排出される。
 なお、燃料電池モジュール1の起動初期においては、燃料電池セルスタック2の温度が低いため、燃料電池セルスタック2において発電反応は発生しない。
On the other hand, the air supplied to the reforming/heating unit 4b through the air supply pipe 32 passes through the space between the inner wall plate 6a and the outer wall plate 6b of the housing 6 and passes through the oxidant gas supply passage 16 (FIG. 5). It flows through and flows into the fuel cell stack 2.
The raw fuel gas and air that have flowed into the fuel cell stack 2 pass through the internal passages and are discharged to the reforming/heating unit 4b via the fuel discharge passage 14 and the oxidant gas discharge passage 18, respectively.
In the initial stage of starting the fuel cell module 1, since the temperature of the fuel cell stack 2 is low, the power generation reaction does not occur in the fuel cell stack 2.
 燃料排出通路14を通って改質・加熱器4bに流入した原燃料ガスは、燃焼器38の残余燃料ガスマニホルド38aを通って残余燃料ガス分配管38bに流入し、その細孔から噴出する。
 一方、酸化剤ガス排出通路18を通って改質・加熱器4bに排出された空気は、残余空気分散板38cの内側に流入し、その細孔から噴出する。
 また、燃料電池モジュール1の起動時においては、セラミックヒータ34に通電され、セラミックヒータ34の熱により残余燃料ガス分配管38bの細孔から噴出した原燃料ガスに点火される。これにより燃焼器38が燃焼熱を生成するようになる。
The raw fuel gas flowing into the reformer/heater 4b through the fuel discharge passage 14 flows into the residual fuel gas distribution pipe 38b through the residual fuel gas manifold 38a of the combustor 38, and is ejected from the pores thereof.
On the other hand, the air discharged to the reformer/heater 4b through the oxidant gas discharge passage 18 flows into the inside of the residual air dispersion plate 38c and is ejected from the pores thereof.
When the fuel cell module 1 is activated, the ceramic heater 34 is energized, and the heat of the ceramic heater 34 ignites the raw fuel gas ejected from the pores of the residual fuel gas distribution pipe 38b. This causes the combustor 38 to generate heat of combustion.
 燃焼器38が点火されると、その上方に配置された改質器36が加熱され、内部の改質触媒36aの温度が上昇する。
 また、燃焼により生成される燃焼ガスにより、ハウジング6の内壁板6aと外壁板6bによって構成される酸化剤ガス熱交換器が加熱され、内部を流れる空気が加熱される。
 加熱された空気は燃料電池セルスタック2に流入するので、この熱により燃料電池セルスタック2が加熱される。
 ここで、流体供給装置4のハウジング6は、断熱材8によって包囲されているので、ハウジング6からの輻射熱等による燃料電池セルスタック2の加熱は殆どなく、燃料電池セルスタック2は実質的に、流体供給装置4から供給される流体(空気及び燃料ガス)のみによって加熱される。
When the combustor 38 is ignited, the reformer 36 arranged above the combustor 38 is heated, and the temperature of the internal reforming catalyst 36a rises.
Further, the oxidant gas heat exchanger constituted by the inner wall plate 6a and the outer wall plate 6b of the housing 6 is heated by the combustion gas generated by the combustion, and the air flowing inside is heated.
Since the heated air flows into the fuel cell stack 2, this heat heats the fuel cell stack 2.
Here, since the housing 6 of the fluid supply device 4 is surrounded by the heat insulating material 8, there is almost no heating of the fuel cell stack 2 due to radiation heat from the housing 6 and the fuel cell stack 2 is substantially It is heated only by the fluid (air and fuel gas) supplied from the fluid supply device 4.
 また、ハウジング6内で生成された燃焼ガスは、排気ガス配管26を通って排気ガスとして蒸発器4aに流入する。
 蒸発器4a内に流入した排気ガスは、排気ガス室30cを通って排気ガス排出管24から排出される。
 この際、排気ガス室30cの上側に設けられた蒸発室30aが加熱される。
 このように、蒸発器4aに供給された水は、燃焼器38によって生成され、排気ガス配管26によって供給された燃焼ガスにより加熱される。
 蒸発室30aの温度が上昇した後、水供給用配管20からの水の供給が開始され、蒸発室30a内で水蒸気が生成されるようになる。
 なお、燃料電池モジュール1の起動時において、蒸発室30aの加熱を補助するために電気ヒータ29に通電を行っても良い。
Further, the combustion gas generated in the housing 6 flows into the evaporator 4a as exhaust gas through the exhaust gas pipe 26.
The exhaust gas flowing into the evaporator 4a is discharged from the exhaust gas discharge pipe 24 through the exhaust gas chamber 30c.
At this time, the evaporation chamber 30a provided above the exhaust gas chamber 30c is heated.
In this way, the water supplied to the evaporator 4 a is heated by the combustion gas generated by the combustor 38 and supplied by the exhaust gas pipe 26.
After the temperature of the evaporation chamber 30a rises, the supply of water from the water supply pipe 20 is started, and steam is generated in the evaporation chamber 30a.
When the fuel cell module 1 is activated, the electric heater 29 may be energized to assist in heating the evaporation chamber 30a.
 蒸発室30aにおいて水蒸気が生成されるようになると、原燃料ガスと水蒸気の混合ガスが、改質器36に供給されるようになる。
 また、改質器36の温度が十分に上昇すると、改質触媒36aにより水蒸気改質反応が誘発されて、原燃料ガスから水素ガスを豊富に含む燃料ガスが生成される。
 生成された燃料ガスは、燃料電池セルスタック2に供給される。燃料電池セルスタック2の温度が十分に上昇すると、燃料ガスと、改質・加熱器4bにおいて加熱された空気により発電反応が発生するようになる。燃料電池セルスタック2の温度が発電可能な温度まで上昇した状態において、燃料電池セルスタック2からバスバーB1を介して電力が取り出され、発電が開始される。
When steam is generated in the evaporation chamber 30a, a mixed gas of the raw fuel gas and steam is supplied to the reformer 36.
Further, when the temperature of the reformer 36 is sufficiently increased, the steam reforming reaction is induced by the reforming catalyst 36a, and a fuel gas rich in hydrogen gas is generated from the raw fuel gas.
The generated fuel gas is supplied to the fuel cell stack 2. When the temperature of the fuel cell stack 2 is sufficiently increased, the fuel gas and the air heated in the reforming/heating unit 4b cause a power generation reaction. In a state where the temperature of the fuel cell stack 2 has risen to a temperature at which power can be generated, electric power is taken out from the fuel cell stack 2 via the bus bar B1 and power generation is started.
 <本発明の第1実施形態の燃料電池モジュールが奏する効果>
 本発明の第1実施形態の燃料電池モジュール1によれば、まず、複数の平板型の燃料電池セル2aを積層して構成された積層型の燃料電池セルスタック2を収容する外郭容器部材が設けられていない。これにより、各バスバーB1,B2の基端側を燃料電池セルスタック2の上端部(より具体的には、最上段の燃料電池セル2aの上端面とトップエンドプレート10aの底面との間)、及び、燃料電池セルスタック2の下端部(より具体的には、最下段の燃料電池セル2aの下端面とボトムエンドプレート10bの上面との間)のそれぞれに容易に設けることができる。
 また、燃料電池セルスタック2を外郭容器部材に収容する際に両者の設計誤差や熱膨張差等に配慮した構造については、外郭容器部材を不要にすることにより省略することができる。
 さらに、各バスバーB1,B2の先端側について、外郭容器部材を貫通することなく燃料電池モジュール1の外部で直接的に取り出し可能に突出させることができるため、外郭容器部材と各バスバーB1,B2との間を電気的に絶縁する構造や部品についても省略することができる。
 これらの結果、部品点数を抑制することにより、製造コスト及び製品重量、製品サイズを抑制することができると共に電気抵抗を抑制することもできる。
<Effects of the fuel cell module according to the first embodiment of the present invention>
According to the fuel cell module 1 of the first embodiment of the present invention, first, an outer container member for accommodating a laminated fuel cell stack 2 configured by laminating a plurality of flat plate type fuel cell cells 2a is provided. Has not been done. Thereby, the base end side of each bus bar B1, B2 is located at the upper end portion of the fuel cell stack 2 (more specifically, between the upper end surface of the uppermost fuel cell 2a and the bottom surface of the top end plate 10a). Further, it can be easily provided on each of the lower end portions of the fuel cell stack 2 (more specifically, between the lower end surface of the lowermost fuel cell 2a and the upper surface of the bottom end plate 10b).
Further, the structure in which the fuel cell stack 2 is accommodated in the outer container member in consideration of design error and thermal expansion difference between the both can be omitted by eliminating the outer container member.
Furthermore, since the tip ends of the busbars B1 and B2 can be directly and externally protruded outside the fuel cell module 1 without penetrating the outer container member, the outer container member and the busbars B1 and B2 are not connected to each other. It is also possible to omit the structure and components for electrically insulating the spaces.
As a result, by suppressing the number of parts, the manufacturing cost, the product weight, and the product size can be suppressed, and the electric resistance can also be suppressed.
 また、本実施形態の燃料電池モジュール1によれば、断熱材8により、燃料電池セルスタック2とハウジング6との間で直接伝わる熱を低減することができる。これにより、ハウジング6内の改質器36、燃焼器38等の配置変更等が、燃料電池セルスタック2の温度分布に与える影響をさらに低減することができる。
 また、断熱材8により、燃料電池セルスタック2の上端部及び下端部にそれぞれ設けられた各バスバーB1,B2の基端側を直接的または間接的に拘束することができるため、各バスバーB1,B2について外郭容器部材を貫通することなく安定して保持することができる。
Further, according to the fuel cell module 1 of the present embodiment, the heat insulating material 8 can reduce the heat directly transmitted between the fuel cell stack 2 and the housing 6. As a result, it is possible to further reduce the influence of the layout change of the reformer 36, the combustor 38 and the like in the housing 6 on the temperature distribution of the fuel cell stack 2.
Further, since the heat insulating material 8 can directly or indirectly restrain the base end sides of the bus bars B1 and B2 provided at the upper end portion and the lower end portion of the fuel cell stack 2, respectively. B2 can be stably held without penetrating the outer container member.
 さらに、本実施形態の燃料電池モジュール1によれば、各バスバーB1,B2の基端部が、燃料電池セルスタック2の上端部及び下端部のそれぞれに固定されて断熱材8によって直接的または間接的に拘束された固定端部であることより、各バスバーB1,B2の固定端部とその周辺部分との間の熱伝達を断熱材8により抑制することができる。
 また、断熱材8が非導電性の絶縁体であることにより、各バスバーB1,B2の固定端部とその周辺部分との間を電気的に絶縁することができる。
 さらに、燃料電池セルスタック2を収容する外郭容器部材が設けられていないことに加えて、各バスバーB1,B2の先端部が断熱材8の外側まで突出していることにより、断熱材によって直接的にも間接的にも拘束されていない自由端部となる。これにより、燃料電池セルスタック2の上端部及び下端部のそれぞれに固定される各バスバーB1,B2の固定端部の位置に応じて、各バスバーB1,B2の自由端部の位置を変更することができるため、設計の自由度を高めることができる。
 したがって、燃料電池セル2aにおいて発電された電力を各バスバーB1,B2により燃料電池モジュール1の外部で直接的に取り出す際には、各バスバーB1,B2の自由端部の位置に応じて電力を取り出す位置や方向を自由に設定することができる。
Furthermore, according to the fuel cell module 1 of the present embodiment, the base end portions of the bus bars B1 and B2 are fixed to the upper end portion and the lower end portion of the fuel cell stack 2, respectively, and are directly or indirectly connected by the heat insulating material 8. Since the fixed end portion is constrained, the heat insulating material 8 can suppress heat transfer between the fixed end portion of each of the bus bars B1 and B2 and its peripheral portion.
Further, since the heat insulating material 8 is a non-conductive insulator, it is possible to electrically insulate the fixed end portions of the bus bars B1 and B2 from the peripheral portions thereof.
Furthermore, in addition to the fact that the outer container member that accommodates the fuel cell stack 2 is not provided, the tips of the bus bars B1 and B2 project to the outside of the heat insulating material 8, so that the heat insulating material directly It is a free end that is neither restrained nor indirectly bound. Thereby, the positions of the free ends of the bus bars B1 and B2 are changed according to the positions of the fixed ends of the bus bars B1 and B2 fixed to the upper end and the lower end of the fuel cell stack 2, respectively. Therefore, the degree of freedom in design can be increased.
Therefore, when the electric power generated in the fuel cell 2a is directly taken out of the fuel cell module 1 by the busbars B1, B2, the electric power is taken out according to the position of the free end of each busbar B1, B2. The position and direction can be set freely.
 また、本実施形態の燃料電池モジュール1によれば、各バスバーB1,B2の自由端部の電線接続部(端子穴C1,C2)にハーネス(図示せず)からの電線が接続された状態において、断熱材8が各バスバーB1,B2の変形を抑制する緩衝材として機能することができる。
 すなわち、電線やハーネス(図示せず)の自重等により各バスバーB1,B2の自由端部に変形荷重等(曲げ荷重又はたわみ荷重等)が作用して、各バスバーB1,B2自体に多少の変形(曲げ変形又はたわみ変形等)が生じたとしても、断熱材8がバスバーの変形を抑制する緩衝材となるため、各バスバーB1,B2が破損しないように保護することができる。
Further, according to the fuel cell module 1 of the present embodiment, in the state where the electric wire from the harness (not shown) is connected to the electric wire connecting portions (terminal holes C1 and C2) of the free ends of the bus bars B1 and B2. The heat insulating material 8 can function as a cushioning material that suppresses the deformation of the bus bars B1 and B2.
That is, a deformation load or the like (a bending load or a bending load or the like) acts on the free ends of the bus bars B1 and B2 due to the weight of the wires or harnesses (not shown), and the bus bars B1 and B2 themselves are slightly deformed. Even if (bending deformation, bending deformation, or the like) occurs, the heat insulating material 8 serves as a cushioning material that suppresses the deformation of the busbars, so that the busbars B1 and B2 can be protected from being damaged.
 さらに、本実施形態の燃料電池モジュール1によれば、各バスバーB1,B2について、複数の平板型の燃料電池セル2aのそれぞれが互いに積層される積層面Lnに対して、表面(上面S1,S3)及び裏面(下面S2,S4)が平行になるように、燃料電池セルスタック2のうちの最も外側の平板型の燃料電池セルの外面(最上段の燃料電池セル2aの上面(最上端面E1)及び最下段の燃料電池セル2aの底面(最下端面E2))に配置することができる。
 これにより、各バスバーB1,B2を燃料電池セルスタック2の上端部及び下端部に容易に組み付けることができ、簡易な構造にすることができる。
Further, according to the fuel cell module 1 of the present embodiment, for each of the bus bars B1 and B2, a surface (upper surface S1 or S3) is formed with respect to a stacking surface Ln on which the plurality of flat plate type fuel battery cells 2a are stacked. ) And the back surface (lower surfaces S2, S4) are parallel to each other, the outer surface of the outermost flat plate-type fuel cell of the fuel cell stack 2 (upper surface of the uppermost fuel cell 2a (uppermost end surface E1)) And the bottom surface (the bottom end surface E2) of the fuel cell 2a in the lowermost stage.
Thereby, the bus bars B1 and B2 can be easily assembled to the upper end portion and the lower end portion of the fuel cell stack 2, and the structure can be simplified.
 また、本実施形態の燃料電池モジュール1によれば、断熱材8の外側にカバー部材A1が設けられており、このカバー部材A1が断熱材8を確実に保持することができる。
 したがって、カバー部材A1により保持された断熱材8が、バスバーB1,B2や燃料電池セルスタック2が破損しないように確実に保護することができる。
Further, according to the fuel cell module 1 of the present embodiment, the cover member A1 is provided outside the heat insulating material 8, and the cover member A1 can reliably hold the heat insulating material 8.
Therefore, the heat insulating material 8 held by the cover member A1 can surely protect the bus bars B1 and B2 and the fuel cell stack 2 from being damaged.
 つぎに、図7及び図8を参照して、本発明の第2実施形態による燃料電池モジュールについて説明する。
 図7は、本発明の第2実施形態による燃料電池モジュール全体において、正面側の断熱材及びエンドプレートを取り外した状態の概略正面図である。また、図8は、図7に示す本発明の第2実施形態による燃料電池モジュールにおいて、バスバー部分を拡大した斜視図である。
 ここで、図7及び図8に示す本発明の第2実施形態による燃料電池モジュールにおいて、上述した本発明の第1実施形態による燃料電池モジュール1と同一部分については同一の符号を付し、これらの説明については省略する。
Next, a fuel cell module according to a second embodiment of the present invention will be described with reference to FIGS. 7 and 8.
FIG. 7 is a schematic front view of the entire fuel cell module according to the second embodiment of the present invention with the front heat insulating material and the end plate removed. 8 is an enlarged perspective view of the bus bar portion in the fuel cell module according to the second embodiment of the present invention shown in FIG.
Here, in the fuel cell module according to the second embodiment of the present invention shown in FIGS. 7 and 8, the same parts as those of the fuel cell module 1 according to the first embodiment of the present invention described above are denoted by the same reference numerals, and The description of is omitted.
 まず、図7及び図8に示すように、本発明の第2実施形態による燃料電池モジュール100の積層型の燃料電池セルスタック102においては、複数の平板型の燃料電池セル2aの積層面Lnが鉛直面となるように、各燃料電池セル2aが水平前後方向に積層して配置されている点で、上述した本発明の第1実施形態による燃料電池モジュール1の積層型の燃料電池セルスタック2において鉛直方向に積層された燃料電池セル2aの積層方向と相違する。
 また、図7及び図8に示すように、本実施形態の燃料電池モジュール100においては、2本のバスバーB101,B102が長板状に形成された前後一対の前側バスバーB101及び後側バスバーB102からなる点で、上述した本発明の第1実施形態による燃料電池モジュール1と相違する。
 すなわち、各バスバーB101,B102は、その表面(前面S101,S103)及び裏面(後面S102,S104)が鉛直面になるように配置されており、各燃料電池セル2aの積層面Lnとも平行となっている。
 さらに、各バスバーB101,B102の先端部は、外郭容器部材を貫通することなく燃料電池モジュール100の外部で直接的に取り出し可能に水平方向(より具体的には、図7及び図8に示す各バスバーB101,B102を正面側から見て右側)に突出している。
 しかしながら、本実施形態の燃料電池モジュール100の変形例として、例えば、床置き以外の設置状態で下方のスペースを確保できる場合には、各バスバーB101,B102の表面(前面S101,S103)及び裏面(後面S102,S104)が鉛直面になるような状態で、各バスバーB101,B102の先端部を鉛直方向(下方)の外部に突出させるように配置してもよい。
First, as shown in FIGS. 7 and 8, in the stacked fuel cell stack 102 of the fuel cell module 100 according to the second embodiment of the present invention, the stacking surface Ln of the plurality of flat plate-shaped fuel cells 2a is The stacked fuel cell stack 2 of the fuel cell module 1 according to the first embodiment of the present invention described above in that the fuel cells 2a are arranged so as to be vertical so as to be stacked in the horizontal front-rear direction. Is different from the stacking direction of the fuel cells 2a stacked in the vertical direction.
Further, as shown in FIGS. 7 and 8, in the fuel cell module 100 of the present embodiment, two busbars B101 and B102 are formed in a long plate shape from a front and rear pair of front and rear busbars B101 and B102. In this respect, the fuel cell module 1 differs from the fuel cell module 1 according to the first embodiment of the present invention described above.
That is, the bus bars B101 and B102 are arranged such that their front surfaces (front surfaces S101 and S103) and back surfaces (rear surfaces S102 and S104) are vertical surfaces, and are also parallel to the stacking surface Ln of each fuel cell 2a. ing.
Further, the tip end portions of the bus bars B101 and B102 can be directly taken out of the fuel cell module 100 without penetrating the outer container member in the horizontal direction (more specifically, in each of the cases shown in FIGS. 7 and 8). The bus bars B101 and B102 are projected to the right side when viewed from the front side).
However, as a modified example of the fuel cell module 100 of the present embodiment, for example, when the lower space can be secured in an installation state other than floor-standing, the front surface (front surface S101, S103) and the rear surface (front surface S101, S103) of each bus bar B101, B102. The rear ends S102, S104) may be arranged such that the front end portions of the bus bars B101, B102 project outward in the vertical direction (downward) in a state where the rear surfaces S102, S104) are vertical surfaces.
<本発明の第2実施形態の燃料電池モジュールが奏する効果>
 仮に、バスバーの表面及び裏面が水平面になるように配置されている場合には、バスバーの自由端部の電線接続部(端子穴C1,C2)にハーネス(図示せず)からの電線が接続された状態では、電線の自重等により各バスバーの自由端部に下方向の変形荷重(曲げ荷重、たわみ荷重等)が作用するため、バスバー自体の変形が生じ易い状態となる。
 これに対し、本実施形態の燃料電池モジュール100においては、各バスバーB101,B102の自由端部の電線接続部(端子穴C1,C2)に電線が接続された状態で、電線の自重等により各バスバーB101,B102の自由端部に下方向の変形荷重(曲げ荷重、たわみ荷重等)が発生したとしても、各バスバーB101,B102の表面(前面S101,S103)及び裏面(後面S102,S104)が鉛直面になるように配置することができる。
 これにより、各バスバーB101,B102の表面及び裏面が水平面内になるように配置した場合に比べて、ハーネス(図示せず)からの電線等によって下方向の変形荷重(曲げ荷重、たわみ荷重等)に対する各バスバーB101,B102の剛性(曲げ剛性、たわみ剛性等)を高めることができる。
 したがって、各バスバーB101,B102の自由端部の電線接続部(端子穴C1,C2)にハーネス(図示せず)からの電線が接続された状態において、各バスバーB101,B102の変形(曲げ変形、たわみ変形等)を抑制することができるため、過度な変形により各バスバーB101,B102、並びに燃料電池セルスタック102が破損するリスクを低減することができる。
<Effects of Fuel Cell Module of Second Embodiment of the Present Invention>
If the front and back surfaces of the busbar are arranged so as to be horizontal, the electric wires from the harness (not shown) are connected to the electric wire connecting portions (terminal holes C1 and C2) at the free end of the busbar. In this state, a downward deformation load (bending load, bending load, etc.) acts on the free ends of the bus bars due to the weight of the electric wires, etc., so that the bus bar itself is easily deformed.
On the other hand, in the fuel cell module 100 of the present embodiment, the electric wires are connected to the electric wire connecting portions (terminal holes C1 and C2) at the free ends of the bus bars B101 and B102, and the electric wires are attached to each other by their own weight or the like. Even if a downward deformation load (bending load, bending load, etc.) is generated at the free ends of the bus bars B101, B102, the front surface (front surface S101, S103) and the back surface (rear surface S102, S104) of each bus bar B101, B102 are It can be arranged to be vertical.
As a result, as compared with the case where the front and back surfaces of each bus bar B101, B102 are arranged in a horizontal plane, a downward deformation load (bending load, bending load, etc.) due to electric wires from a harness (not shown), etc. It is possible to increase the rigidity (bending rigidity, flexural rigidity, etc.) of each bus bar B101, B102 with respect to.
Therefore, in the state where the electric wire from the harness (not shown) is connected to the electric wire connecting portions (terminal holes C1 and C2) of the free ends of the bus bars B101 and B102, the deformation (bending deformation, bending deformation, etc.) of the bus bars B101 and B102 is performed. Since flexural deformation and the like) can be suppressed, it is possible to reduce the risk that the bus bars B101 and B102 and the fuel cell stack 102 are damaged due to excessive deformation.
 また、本実施形態の燃料電池モジュール100によれば、複数の平板型の燃料電池セル2aのそれぞれについて、その積層面Lnが鉛直面となるように互いに水平方向に積層されているため、最も外側の平板型の燃料電池セル2aの外面(最前面及び最背面)に各バスバーB101,B102の表面(前面S101,S103)又は裏面(後面S102,S104)を組み付けるだけで、これらを鉛直面内に配置することができる。
 したがって、各バスバーB101,B102を燃料電池セルスタック2の前端部及び後端部のそれぞれに容易に組み付けることができる。また、各バスバーB101,B102を鉛直面内で回転させて位置決めすることにより、各バスバーB101,B102から電力を取り出す位置や方向を自由に設定することができる。
Further, according to the fuel cell module 100 of the present embodiment, each of the plurality of flat plate-type fuel cell units 2a is horizontally stacked so that the stacking surface Ln thereof is a vertical plane, and thus the outermost surface is formed. By assembling the front surface (front surface S101, S103) or the back surface (rear surface S102, S104) of each bus bar B101, B102 to the outer surface (the front surface and the back surface) of the flat type fuel cell 2a, Can be placed.
Therefore, the bus bars B101 and B102 can be easily assembled to the front end portion and the rear end portion of the fuel cell stack 2. Further, by rotating and positioning each bus bar B101, B102 in the vertical plane, it is possible to freely set the position and direction in which electric power is taken out from each bus bar B101, B102.
 以上、本発明の第1及び第2実施形態の燃料電池モジュール1,100を説明したが、上述した第1及び第2実施形態に種々の変更を加えることができる。特に、上述した第1及び第2実施形態の燃料電池モジュール1,100においては、ハウジング内に改質器及び燃焼器が収容され、蒸発器はハウジングの外部に配置されていたが、蒸発器をハウジング内に収容するように本発明を構成することもできる。
 さらに、原燃料ガスに含まれる硫黄成分を除去する脱硫器や、排気ガス中の一酸化炭素等を除去する燃焼触媒器をハウジング内に収容するように本発明を構成することもできる。
 また、上述した第1及び第2実施形態の燃料電池モジュール1,100においては、酸化剤ガス熱交換器がハウジングの外壁面と一体に構成されていたが、酸化剤ガス熱交換器をハウジングの内部に収容するように本発明を構成することもできる。
 さらに、上述した第1及び第2実施形態の燃料電池モジュール1,100においては、燃料電池セルスタックの上方にハウジングが並べて配置されていたが、燃料電池セルスタックの下方にハウジングを並べて配置したり、燃料電池セルスタックの側方にハウジングを並べて配置したりすることもできる。
Although the fuel cell modules 1 and 100 of the first and second embodiments of the present invention have been described above, various modifications can be made to the above-described first and second embodiments. Particularly, in the fuel cell modules 1 and 100 of the first and second embodiments described above, the reformer and the combustor are housed in the housing, and the evaporator is arranged outside the housing. The present invention can also be configured to be housed within a housing.
Further, the present invention can be configured such that a desulfurizer that removes a sulfur component contained in the raw fuel gas and a combustion catalyst that removes carbon monoxide and the like in the exhaust gas are housed in the housing.
Further, in the fuel cell modules 1 and 100 of the first and second embodiments described above, the oxidant gas heat exchanger is formed integrally with the outer wall surface of the housing, but the oxidant gas heat exchanger is The present invention can also be configured to be housed inside.
Further, in the above-described fuel cell modules 1 and 100 of the first and second embodiments, the housings are arranged side by side above the fuel cell stack, but the housings may be arranged below the fuel cell stack. The housings may be arranged side by side on the side of the fuel cell stack.
   1   本発明の第1実施形態による燃料電池モジュール
   2   燃料電池セルスタック
   2a  燃料電池セル
   4   流体供給装置
   4a  蒸発器
   4b  改質・加熱器
   6   ハウジング
   6a  内壁板
   6b  外壁板
   8   断熱材
  10a  トップエンドプレート
  10b  ボトムエンドプレート
  12   燃料供給通路
  14   燃料排出通路
  16   酸化剤ガス供給通路
  18   酸化剤ガス排出通路
  20   水供給用配管
  22   原燃料ガス供給配管
  24   排気ガス排出管
  26   排気ガス配管
  28   混合ガス導管
  29   電気ヒータ
  30a  蒸発室
  30b  混合室
  30c  排気ガス室
  30d  通路
  30e  フィン
  32   空気供給パイプ
  34   セラミックヒータ
  36   改質器
  36a  改質触媒
  38   燃焼器
  38a  残余燃料ガスマニホルド
  38b  残余燃料ガス分配管
  38c  残余空気分散板
  40   フィン
 100   本発明の第2実施形態による燃料電池モジュール
  A1   カバー部材
  B1   上側バスバー(バスバー)
  B2   下側バスバー(バスバー)
  B101 前側バスバー
  B102 後側バスバー
  C1   端子穴(電線接続部)
  C2   端子穴(電線接続部)
  E1   燃料電池セルの最上端面
  E2   燃料電池セルの最下端面
  Ln   燃料電池セルの積層面
  S1   上側バスバーの上面(バスバーの表面)
  S2   上側バスバーの下面(バスバーの裏面)
  S3   下側バスバーの上面(バスバーの表面)
  S4   下側バスバーの下面(バスバーの裏面)
  S101 前側バスバーの前面(バスバーの表面)
  S102 前側バスバーの後面(バスバーの裏面)
  S103 後側バスバーの前面(バスバーの表面)
  S104 後側バスバーの後面(バスバーの裏面)
1 Fuel cell module according to the first embodiment of the present invention 2 Fuel cell stack 2a Fuel cell 4 Fluid supply device 4a Evaporator 4b Reforming/heater 6 Housing 6a Inner wall plate 6b Outer wall plate 8 Insulation material 10a Top end plate 10b Bottom end plate 12 Fuel supply passage 14 Fuel discharge passage 16 Oxidant gas supply passage 18 Oxidant gas discharge passage 20 Water supply pipe 22 Raw fuel gas supply pipe 24 Exhaust gas discharge pipe 26 Exhaust gas pipe 28 Mixed gas conduit 29 Electric heater 30a Evaporating chamber 30b Mixing chamber 30c Exhaust gas chamber 30d Passage 30e Fin 32 Air supply pipe 34 Ceramic heater 36 Reformer 36a Reforming catalyst 38 Combustor 38a Residual fuel gas manifold 38b Residual fuel gas distribution pipe 38c Residual air dispersion plate 40 Fin 100 Fuel Cell Module According to Second Embodiment of the Present Invention A1 Cover Member B1 Upper Bus Bar (Bus Bar)
B2 Lower bus bar (bus bar)
B101 Front side bus bar B102 Rear side bus bar C1 Terminal hole (electric wire connection part)
C2 terminal hole (electric wire connection part)
E1 Uppermost end surface of fuel cell E2 Lowermost end surface of fuel cell Ln Laminated surface of fuel cell S1 Upper surface of upper bus bar (surface of bus bar)
S2 Lower surface of upper bus bar (back surface of bus bar)
S3 Upper surface of lower bus bar (surface of bus bar)
S4 Lower bus bar bottom surface (back surface of bus bar)
S101 Front side of front busbar (front of busbar)
S102 Rear side of the front bus bar (back side of the bus bar)
S103 Front of rear busbar (front of busbar)
S104 Rear side of rear side bus bar (back side of bus bar)

Claims (9)

  1.  供給された燃料ガスと酸化剤ガスを反応させることにより発電する燃料電池モジュールであって、
     燃料ガスと酸化剤ガスの流路が各々規定された密閉型の燃料電池セルスタックと、
     原燃料ガスを改質して、水素を含む燃料ガスを生成し、上記燃料電池セルスタックに供給する改質器と、
     上記燃料電池セルスタックにおいて発電に使用されずに残った残余燃料ガスを燃焼させ、上記改質器を加熱する燃焼器と、
     上記燃料電池セルにおいて発電された電力を取り出す導電性のバスバーと、を有し、
     上記燃料電池モジュールは、上記燃料電池セルスタックを収容する外郭容器部材を備えておらず、
     上記バスバーは、その基端側が上記燃料電池セルスタックに設けられていると共に、先端側が上記外郭容器部材を貫通することなく上記燃料電池モジュールの外部に直接的に取り出し可能に突出していることを特徴とする燃料電池モジュール。
    A fuel cell module for generating power by reacting a supplied fuel gas with an oxidant gas,
    A sealed fuel cell stack in which the flow paths of the fuel gas and the oxidant gas are defined,
    A reformer that reforms the raw fuel gas to generate a fuel gas containing hydrogen and supplies the fuel gas to the fuel cell stack,
    A combustor that burns the residual fuel gas that is not used for power generation in the fuel cell stack and that heats the reformer,
    A conductive bus bar for extracting electric power generated in the fuel cell,
    The fuel cell module does not include an outer container member that houses the fuel cell stack,
    The bus bar is characterized in that the base end side thereof is provided in the fuel cell stack, and the tip end side thereof directly protrudes outside the fuel cell module without penetrating the outer container member. And a fuel cell module.
  2.  さらに、上記改質器及び上記燃焼器を収容する空間が内部に形成されたハウジングと、上記燃料電池セルスタックを上記ハウジングから熱的に隔離するように配置された断熱材と、を有し、
     上記バスバーは、その基端側が上記断熱材によって拘束されている請求項1記載の燃料電池モジュール。
    Furthermore, a housing in which a space for housing the reformer and the combustor is formed, and a heat insulating material arranged to thermally isolate the fuel cell stack from the housing,
    The fuel cell module according to claim 1, wherein the bus bar has its base end side restrained by the heat insulating material.
  3.  上記燃料電池セルスタックは、上記断熱材によって包囲されている請求項2記載の燃料電池モジュール。 The fuel cell module according to claim 2, wherein the fuel cell stack is surrounded by the heat insulating material.
  4.  上記断熱材は、非導電性の絶縁体であり、上記バスバーの基端部は、上記断熱材に覆われて上記燃料電池セルスタックの端部に固定された固定端部であり、上記バスバーの先端部は、上記断熱材の外側まで突出しており、上記断熱材によって拘束されていない自由端部である請求項2又は3に記載の燃料電池モジュール。 The heat insulating material is a non-conductive insulator, the base end of the bus bar is a fixed end covered with the heat insulating material and fixed to the end of the fuel cell stack, The fuel cell module according to claim 2 or 3, wherein the tip portion is a free end portion that protrudes to the outside of the heat insulating material and is not constrained by the heat insulating material.
  5.  上記バスバーの自由端部は、電線が接続される電線接続部を備えており、上記断熱材は、上記電線が上記電線接続部に接続された状態で上記バスバーの変形を抑制する緩衝材である請求項2乃至4の何れか1項に記載の燃料電池モジュール。 The free end portion of the bus bar includes an electric wire connecting portion to which an electric wire is connected, and the heat insulating material is a cushioning material that suppresses deformation of the bus bar in a state where the electric wire is connected to the electric wire connecting portion. The fuel cell module according to any one of claims 2 to 4.
  6.  上記バスバーは、上記密閉型の燃料電池セルスタックの複数の平板型の燃料電池セルのそれぞれが互いに積層される積層面に対して表面又は裏面が平行になるように、上記燃料電池セルスタックのうちの最も外側の上記平板型の燃料電池セルの外面に配置されている請求項1乃至5の何れか1項に記載の燃料電池モジュール。 The bus bar is one of the fuel cell stacks so that the front surface or the back surface is parallel to a stacking surface on which the plurality of flat plate fuel battery cells of the sealed fuel cell stack are stacked. 6. The fuel cell module according to claim 1, wherein the fuel cell module is disposed on the outer surface of the outermost flat fuel cell unit.
  7.  上記バスバーは、その基端部から長手方向の先端部まで板状に形成され、その表面又は裏面が鉛直面になるように配置されている請求項6記載の燃料電池モジュール。 The fuel cell module according to claim 6, wherein the bus bar is formed in a plate shape from the base end portion to the tip end portion in the longitudinal direction, and is arranged such that the front surface or the back surface thereof becomes a vertical plane.
  8.  上記複数の平板型の燃料電池セルのそれぞれは、その積層面が鉛直面となるように互いに水平方向に積層されている請求項6記載の燃料電池モジュール。 7. The fuel cell module according to claim 6, wherein each of the plurality of flat plate type fuel battery cells is stacked in a horizontal direction so that the stacking surface is a vertical plane.
  9.  さらに、上記断熱材の外側に設けられたカバー部材を有し、このカバー部材は、上記断熱材を保持するように構成されている請求項2乃至5の何れか1項に記載の燃料電池モジュール。 The fuel cell module according to claim 2, further comprising a cover member provided outside the heat insulating material, the cover member configured to hold the heat insulating material. ..
PCT/JP2019/040070 2018-12-19 2019-10-10 Fuel cell module WO2020129372A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-237292 2018-12-19
JP2018237292A JP7137459B2 (en) 2018-12-19 2018-12-19 fuel cell module

Publications (1)

Publication Number Publication Date
WO2020129372A1 true WO2020129372A1 (en) 2020-06-25

Family

ID=71100793

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/040070 WO2020129372A1 (en) 2018-12-19 2019-10-10 Fuel cell module

Country Status (2)

Country Link
JP (1) JP7137459B2 (en)
WO (1) WO2020129372A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022127048A1 (en) 2022-10-17 2024-04-18 Bayerische Motoren Werke Aktiengesellschaft Fuel cell arrangement for a motor vehicle, drive device and motor vehicle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007207555A (en) * 2006-02-01 2007-08-16 Toyota Motor Corp Fuel cell
JP2016139470A (en) * 2015-01-26 2016-08-04 本田技研工業株式会社 Fuel cell module
JP2016207342A (en) * 2015-04-17 2016-12-08 本田技研工業株式会社 Fuel cell module
JP2017076574A (en) * 2015-10-16 2017-04-20 三菱自動車工業株式会社 Fuel battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007207555A (en) * 2006-02-01 2007-08-16 Toyota Motor Corp Fuel cell
JP2016139470A (en) * 2015-01-26 2016-08-04 本田技研工業株式会社 Fuel cell module
JP2016207342A (en) * 2015-04-17 2016-12-08 本田技研工業株式会社 Fuel cell module
JP2017076574A (en) * 2015-10-16 2017-04-20 三菱自動車工業株式会社 Fuel battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022127048A1 (en) 2022-10-17 2024-04-18 Bayerische Motoren Werke Aktiengesellschaft Fuel cell arrangement for a motor vehicle, drive device and motor vehicle

Also Published As

Publication number Publication date
JP2020098749A (en) 2020-06-25
JP7137459B2 (en) 2022-09-14

Similar Documents

Publication Publication Date Title
JP6017977B2 (en) Fuel cell system
JP7263212B2 (en) Fuel cell module and fluid supply device used therefor
JP6247671B2 (en) Fuel cell module
JP5294778B2 (en) Fuel cell module and fuel cell device
JP6093392B2 (en) Fuel cell module
JP6406704B2 (en) Fuel cell module
JP6550814B2 (en) Air preheater and power generator
WO2020129372A1 (en) Fuel cell module
JP6951204B2 (en) Fuel cell module and fluid supply device used for it
JP5166723B2 (en) Power generator
JP5418986B2 (en) Fuel cell assembly
JP5435191B2 (en) Fuel cell module and fuel cell including the same
JP4986403B2 (en) Power generator
JP6699226B2 (en) Fuel cell module
JP7397631B2 (en) fuel cell module
JP6628084B2 (en) Solid oxide fuel cell device
JP7414632B2 (en) Reforming unit and fuel cell equipment
JP7053323B2 (en) Fuel cell equipment
JP7386057B2 (en) fuel cell module
EP3486988A1 (en) Fuel cell module and fluid supply device used therefor
JP2021036488A (en) Fuel battery module
JP2021036487A (en) Fuel battery module
JP2021082469A (en) Fuel battery module
JP2011029074A (en) Fuel cell module
JP2020098751A (en) Fuel cell module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19898652

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19898652

Country of ref document: EP

Kind code of ref document: A1